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Abstract— In this contribution, we propose a novel approach
towards representing physically stable grasps which enables
us to transfer grasps between different hand kinematics. We
use a low dimensional topologically inspired coordinate rep-
resentation which we call topological synergies, and which is
motivated by the topological notion of winding numbers. We
address the transfer problem as a stochastic optimization task
and carry out motion planning in our topologically inspired
coordinates using the Approximate Inference Control (AICO)
framework. This perspective allows us to compute not only the
final grasp itself, but also a trajectory in configuration space
leading to it. We evaluate our approach using the simulation
framework PhysX. The presented experiments, which develop
further recent attempts to use topologically inspired coordinates
in robotics, demonstrate that our approach makes it possible
to transfer a large percentage of grasps between a simulated
human hand and a 3-finger Schunk hand.

I. INTRODUCTION

Humans are able to easily imitate another human grasping
and manipulating an object. Furthermore, even if one or two
of our fingers are incapacitated due to a bandage or injury, we
are still able to carry out most tasks as before. While much
research in the last few decades has concentrated on robot
grasping, the question of how to efficiently represent a stable
grasp and how to transfer such grasps between differing
hand kinematics remains an open area of research [3]. The
work [1] suggested that humans use the concept of virtual
fingers in order to control hand movements during grasp
execution which supports the hypothesis that there might
be a non-trivial low-dimensional representation that is used
by humans to control, observe and reproduce grasps. In a
similar vein, the framework of postural synergies [16], [15]
and force synergies [17], where a linear subspace is used for
representing grasp postures and forces respectively, tries to
find such a low-dimensional representation.

A classical and popular approach towards finding good
grasps is to proceed via a force closure analysis which takes
into account the contact positions and normals between the
hand’s surface and the object being grasped. While this
approach is theoretically sound, it can be problematic in
practice since the robot’s sensor input might be noisy, making
object pose and normal estimation difficult. Furthermore,
even if perfect knowledge of the object is assumed, com-
puting stable grasps often still relies on a computationally
expensive brute force search. Simulation software packages
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Fig. 1. Demonstrated stable human grasp (left) and transfered grasp (right)
applying our topological approach

such as GraspIT [11], for example, can attempt to find
force-closed grasps by sampling hand positions on a sphere
surrounding the object, approaching the object until contact
occurs and then closing the hand as much as possible, but
using such a ‘blind’ method requires a lot of tests that might
take too long to carry out on a real robot.

In this workshop paper, we argue that some of the prob-
lems surrounding this type of analysis are caused by the
representation of the state space. If one works, for example,
with the joint space coordinates directly, there exists no
obvious way of transferring a grasp to a new kinematic hand
structure with different joint lenghts or a different number of
joints. In this work, we hence begin to explore an alternative
– topologically motivated – coordinate representation which
can be transferred between different hand kinematics and
which describes not just the hand’s state space but also the
interaction between the hand and object. Our work falls into
a class of recent methods in robotics and computer graphics
inspired by concepts from topology such as [8], [19], [12].

In summary, this work makes the following contributions:
a) We evaluate a novel low-dimensional topologically mo-

tivated grasp representation for the purpose of grasp
transfer which describes how much a hand is wrapped
around an object.

b) We use this representation with a planning framework
based on Approximate Inference Control (AICO) [18]
in order to transfer grasps between different hands.

c) We demonstrate the success of our motion synthesis
method in simulation by transferring a set of grasps
from a human hand to the Schunk robot hand.

d) We evaluate the transferred grasps’ stability using a
realistic physics simulation carried out using the PhysX
simulation software.



II. RELATED WORK
A posture Ph of a human hand has a state space with more

than 20 degrees of freedom [4], [5], [16], while a Schunk
robot hand has just 7 degrees of freedom. The question
of how to transfer a human hand configuration to a robot
hand configuration is hence highly non-trivial and somewhat
ill-defined since there exists no natural comparison metric.
In a programming by demonstration context [7], [10] one
would however like to transfer a demonstration from a human
subject to the robot in order to teach a robot how to carry
out various tasks. Similarly, in the context of teleoperation
[13] it is highly desirable to be able to transfer grasps from a
human to a robotic hand. Several approaches to the transfer
problem have been explored. The work [14] discusses three
broad methods for transfer given by a) linear joint mapping
- which is applicable if the robot’s hand kinematics are very
similar to those of the human hand, b) pose mapping - using
least squares fitting and c) synergistic fingertip mapping. In
more recent work, approaches related to the notion of virtual
fingers have been explored in [6], [10], where a subset of the
fingers of the human hand are manually mapped to one or
more fingers of a robot hand.

One of the key features that the virtual finger, fingertip
and synergy approaches share is that they attempt to first
reduce the number of dimensions needed to describe a
hand pose to a common minimum. Similarly, in the case
of postural synergies [17], [2], a lower dimensional linear
subspace of the full joint space is extracted using principal
component analysis. Recent work [15] investigates cases
where a linear dimensionality reduction might be subobtimal
for this purpose and explores the use of the nonlinear GP-
LVM dimensionality reduction framework. The representa-
tion which we develop here falls into this non-linear class
of state space representations, but while [15] attempt to
find such a representation by data-analysis, in this work,
we consider designing such a representation by drawing
inspiration from the tools that topology offers us.

Topology-based representations

Topology, in the rigorous sense, studies topological space
such as, but not restricted to, smooth manifolds. Of particular
interest to us is the fact that a large class of topological
invariants – that is, quantities defined on a topological space
which stay invariant under certain continuous deformations
of the space – have been developed in this field.

In the context of character animation, [8] have investigated
a state space representation utilizing ideas from topology.
There, the topological Gauss linking number, which de-
scribes the linking between two closed curved in R3 is used
as an inspiration to construct a writhe matrix to describe
how wrapped the limbs of two avatars are. While the writhe
matrix itself is not a topological invariant, [8] demonstrate
that drawing inspiration from topology can be a very fruitful
idea. In the work [19], the writhe matrix is applied in a
robotics context for the first time. There, the authors show
that the writhe matrix can successfully be used in conjunction
with the AICO framework to plan motions. As an example,

the authors demonstrate unwrapping a multi-joint robot arm
which is initially wrapped around a line segment - a task
which is difficult to solve in the high-dimensional joint space
directly.

In this paper, we begin to develop a low-dimensional
description of the grasp state space which is inspired by
another classical topological invariant: The winding number
of an oriented closed curve γ : [0, 1] → R2 not containing
a point p ∈ R2. The winding number for a closed curve
is hence integer valued and measures how many times
the curve wraps around p. If two plane curves γ1, γ2 not
containing a point p have a non-zero winding numbers
w(γ1), w(γ2), they cannot be continuously deformed into
each other without crossing the point p which explains why
w is of interest in topology. Let us remark here that, if one is
presented with a piecewise linear curve γ : [0, 1] → R2 not
containing the origin, one can easily evaluate w by simply
adding up the local angles which the various line segments
make with the origin. In the work [12] homology groups
and a version of winding numbers of plane-curves were
investigated to generate caging grasps on objects with holes.
While we are also actively exploring the use of this notion
of winding numbers for plane-curves, we will work with a
three-dimensional analogue of the winding number that can
be calculated for any curve γ : [0, 1] → R3 which does not
traverse some fixed reference point p ∈ R3.
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Fig. 2. A closed oriented plane curve γ : [0, 1] → R2 with w(γ) = 2.

III. OUR METHODOLOGY

A. Invariant representation

Given a robotic or human hand with n > 2 fingers
f1, . . . , fn, we assume that one of the fingers, say fn, can
be labelled as a thumb. In practice, the thumb for a robotic
hand such as the Barrett, Schunk, and Shadow hand, can be
easily identified.

We then consider piecewise linear curves γ1, . . . γn−1,
such that γi(0) starts at the tip of the thumb fn and ends
at the tip of fi by traversing the joints of fn, then going
through the center of the base of the hand and continuing
through the joints of fi (see Figure I, where γ1(0) is depicted
in white). Such a curve is also used in [12].

Observing that the traditional winding number w(γ) ∈ Z,
for a closed curve γ in R2 measures the winding around
a point p ∈ R2 by calculating the total change in angular
coordinates, we now define a similar quantity for piecewise
linear curves in R3. Suppose that γ : [0, 1]→ R3 is the piece-
wise linear curve connecting the points X0, . . . , Xn ∈ R3 by



linear line segments from Xi to Xi+1, for i = 0, . . . , n− 1
such that a fixed point p ∈ R3 is not contained in the image
of γ. We define

ŵ(γ) =
1

2π

n∑
i=0

anglep(Xi, Xi+1),

where anglep(Xi, Xi+1) denotes the angle between the vec-
tors Xi − p and Xi+1 − p. If γ is a closed curve that lies
completely in a plane containing p, the above quantity is
just the usual winding number. We will show in this work
that ŵ(γ) can be reliably used in a grasping application to
quantify how much a curve is ‘wrapped’ around a point.
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Fig. 3. A non-closed curve γ : [0, 1] → R3 (solid lines) with reference
point p and αi = anglep(Xi, Xi+1).

Motion planning

The introduction of any new representation of a state space
directly impacts motion synthesis. One of the motivations for
the search for alternate representations is that these might
allow us to express “wrapping-type motions”, which are
typical for grasping, as a simple Gaussian process prior. In
this work we shall use the quantities ŵ(γi), as a compact
reduced representation of the “wrappedness” of a grasp. In
particular, for a human grasp posture p, we shall consider the
quantitiy y = (ŵ(γi), ŵ(γj)) ∈ R2, where γi, γj are the two
curves with the highest winding ŵ around the centre of mass
of the grasped object as a “topological state descriptor” of
a grasp. We shall record y for a human demonstration grasp
and we will then use this topological coordinate to control
the Schunk robotic hand to attain the same winding values
with respect to the two curves γ′1, γ

′
2 running through the

Schunk robotic hand.
Approximate Inference Control (AICO) frames the prob-

lem of optimal control as a problem of inference in a
dynamic Bayesian network. Let xt be the state of the
system—we will always consider the dynamic case where
xt = (qt, q̇t). The robot dynamics are described by the tran-
sition probabilities P (xt+1|ut, xt). We introduce an auxiliary
random variable zt with P (zt = 1|xt) ∝ exp{−cx(xt)}, that
is, z = 1 if the task costs cx(xt) are low in time slice t.
AICO in particular tries to estimate the posterior trajectory
and controls. In [18], this is done using Gaussian message
passing (comparable to Kalman smoothing) based on local
Gaussian approximations around the current belief model.

Expressing motion priors in topology-based spaces and
coupling spaces: Employing AICO with a linear Gaussian

configuration space

control

topology−based space
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Fig. 4. AICO in configuration and topology-based space. The new topology
motivated space represented as an additional task variable.

motion prior in a topologically motivated space is not suf-
ficient to solve general motion synthesis problems, we need
mechanisms to couple inference in topology-based space
and state space. Figure 4 displays a corresponding graphical
model. The top layer represents a process in alternate space
and is coupled with the state-space layer by introducing
additional factors

f(xt, yt) = exp{−1

2
ρ‖ϕ(qt)− yt‖2}, (1)

which essentially attempt to minimize the squared distance
between the topology-based state yt and the one computed
from the joint configuration ϕ(qt), weighted by a precision
constant ρ. Note that for Gaussian message passing between
levels using a local linearisation of ϕ (having the Jacobian
of the topology-based space) is sufficient. These factors
essentially treat the topology-based state yt, namely the
winding values (ŵ(γ1), ŵ(γ2)), as an additional task variable
for the lower level inference, analogous to other potential
task variables like end-effector position or orientation.

IV. EXPERIMENTS

For our experiments we will use libORS, a freely available
robot simulator incorporating routines for planning trajecto-
ries in the AICO framework. We use two kinematic models.

Firstly, a model based on a 3d scan of a human hand with
20 DOF (Figure I, left) which serves as our “demonstrator”
and secondly a model of the Schunk robot hand (Figure
I, right) which is the target of our transfer method. The
Schunk hand is connected to the Schunk arm and motion
are generated for the full 14 DOF robot.

Instead of generating training motions from human sub-
jects, we have opted to automatically generate a large set
of grasps in simulation in order to obtain a statistically
significant amount of test data.

Test data generation

The test data consists of a set of stable grasps with a
human hand model and with two object models: a bottle
and a hammer as shown in the left column of Figure 6.
The grasps are generated using a part-based grasp planning
system – BADGr [9].

For each object, its 3D shape and dimension is first
approximated through a constellation of oriented bounding
boxes. These boxes decompose the object according to a
convexity index, so that each box encapsulates a compact
part of the object that is the candidate for grasp generation.
For each reachable facet of the boxes, 4 grasp hypotheses are



Fig. 5. Left side: examples of bottle grasps generated with human-like
hand. Right side: Results of motion planning with a 3-finger Schunk hand.

Fig. 6. Left side: examples of hammer grasps generated with human-like
hand. Right side: Results of motion planning with a 3-finger Schunk hand.

generated by aligning the approach vector to its normal and
the 4 orientations to its 4 edge vectors. Details of the grasp
planning process can be found in [9]. The hypotheses are
executed on the objects in the simulator which gives a grasp
quality measure for stability assessment. We tested those
grasps for physical stability using the simulation environment
PhysX by moving the hand with the object by random
rotational motions. A grasp was accepted as stable if the
object did not fall out of the hand during this process. Using
this procedure, we first generated 251 grasps for the hammer
and bottle object. After testing for stability in PhysX, this
resulted in 67 stable grasps for the Hammer and 32 such
grasps for the bottle (see Figure I). We shall use this set of
stable human grasps as our candidate data set for transfer to
the Schunk robot hand.

Transfer

The transfer itself consists of two phases: motion planning
using AICO and the closing of the fingers. This distinguishes

Fig. 7. A complex grasping trajectory in configuration space is represented
by a pair of simple monotonically increasing curves in our topologically
motivated state space consisting of yt = (ŵ(γ1(t)), ŵ(γ2(t))). The graph
displays steps t in the simulation (horizontal axis) against the values of
ŵ(γ1(t)) and ŵ(γ2(t)).

TABLE I
COMPARITIVE STABILITY ANALYSIS

Objects Hammer Bottle
Total number of grasps 101 151
Stable grasps 67 32
Autoclose based on initial human
hand configuration

13% 25%

Grasp transfer using topological
synergies

53% 63%

our approach from similar methods, which focus mainly on
the last phase or which try to find good contact points. We
instead let the planner decide what an optimal configuration
of the hand should be. For the optimization problem we use
the winding numbers extracted from human hand example
grasps as goals - in particular, we choose the winding with
respect to the two curves γ1, γ2 with the largest winding
numbers around the centre of mass of the object (out of the
four curves γ1, . . . , γ4, running along the human hand). We
have also included a collision task variable, which defines a
potential in the neighbourhood of the object and which has
very high costs for states penetrating the object. Since not all
orientations are reachable by the robot arm, we imitate the
approach direction of the simulated human grasp by rotating
the object so that the grasp approach direction is feasible for
the robot arm. In the final phase, the fingers are closed until
contact with the surface occurs.

Evaluation

In order to benchmark the transfer of grasps, we ap-
plied a realistic simulation within PhysX. The object and
the hand (without the arm) were copied to the physical
environment with gravity and friction forces. We simulated
random rotational motion of the hand in 100 simulation steps
and measured if the object was still inside the hand. This
procedure then results in a success classification of the grasp.

We have mentioned in the previous section that our



approach consists of two phases: Control via AICO and a
final automatic closing of the fingers. One could argue that
transplanting the Schunk hand to the same position as the
human hand and an automatic closing of fingers might be
enough for reliable transfer. For comparison, we first tested
such a direct ’transplantation’. For this, we put the Schunk
hand into the same position and orientation as the human
hand and performed automatic finger closing. As can be seen
from table I, this, in a sense, naı̈ve method, has a very low
success rate w.r.t the total number of stable grasps.

Topological synergies, on the other hand, yield a much
higher percentage of successful grasps. At least half of the
transferred grasps are stable under realistic physical condi-
tions. It is worth mentioning that the amount of information
needed for our method is significantly less than required
by other approaches - only two winding numbers and the
orientation of the object is sufficient for simple objects. The
trajectory in topological space (see Figure 7) is also very
simple, but as a result of the non-linear properties of the
mapping between layers of our Bayesian network, we obtain
a relatively complex behaviour in the configuration space.

V. CONCLUSIONS

In this workshop contribution, we have begun to inves-
tigate a novel grasp representation based on the notion of
winding numbers which measures how much a hand wraps
around a target object. We have used this representation
to transfer a large percentage of stable human grasps to
stable grasps of a 7 degree of freedom Schunk hand. Our
method incorporates planning using the AICO framework,
which allows us to combine our topological task goals
with traditional constraints such as collision avoidance. An
initial evaluation of our approach using the PhysX simulation
framework suggests that such “topological synergies” can be
used to successfully transfer grasps between a human hand
model and a Schunk hand. The strength of our approach lies
in the fact that we are able to use topological task goals
in conjunction with more traditional task variables in order
to synthesize complex motions. In future, we would like to
investigate how to incorporate additional information about
object structure into our method and we are interested in
exploring further how ideas from topology, such as winding
numbers, linking numbers and writhe can be used for the
purpose of grasping in robotics.
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