
EL2310 – Scientific Programming
Lecture 12: Memory, Files and Bitoperations

Florian Pokorny
Yasemin Bekiroglu

Royal Institute of Technology – KTH

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 12: Memory, Files and Bit operations
Wrap Up
Main function; reading and writing
Bitwise Operations

GNU C library

Project

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Presentation 12 on 8. Oct

� Numerical integration and differentiation - what are the
methods, when do we need them?

� Implement your own numerical integration/differentiation routine
in C using a first and a second or higher order method.

� Report on speed and errors and your design choices.
� Hint: Have a look at Riemann sums vs Simpson’s rule, finite

differences with several terms, etc.

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Lecture 12: Memory, Files and Bit operations
Wrap Up
Main function; reading and writing
Bitwise Operations

GNU C library

Project

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Last time

� Complex data structures (struct)
� Memory

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Today

� More on Memory
� Reading/writing files
� Bitwise operations

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Pointers and structures

� You can use pointers to structures
� Ex:
struct complex number x;
struct complex number *xptr = &x;

� To access a member using a pointer we use the “− >” operator
� Ex: xptr->real = 2;
� Same as (*xptr).real = 2;
� and x.real = 2;

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Structures of structures

� You can have any number of levels of structures of structures
� Ex:
struct position {
double x;
double y;

};
struct line {
struct position start;
struct position end;

};

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Pointers to structures in structures

� Normally you need to declare a type before you use it.
� You can have a pointer to the structure you define
� Ex: struct person {

char name[32];
struct person *parent;

};

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

cast

� Some conversions between types are implicit
� Ex: double x = 4; (cast from int to double)
� In other cases you need to tell the compiler to do this
� Ex: int a = (int)4.2; (will truncate to 4)
� Often used together with pointers
� Ex:
int a;
unsigned char *byte = (unsigned char*)&a;

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Dynamic allocation of memory

� Sometimes you do not know the size of arrays etc.
� Idea: Allocate memory dynamically
� This way you can allocate memory at runtime

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

malloc

� Allocate memory with malloc
� Need to #include<stdlib.h>
� This function returns a pointer of type void*

Ex: int *p = malloc(100*sizeof(int));
� To avoid warnings, add explicit cast

Ex: int *p = (int *)malloc(100*sizeof(int));
� Will allocate memory for 100 ints

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

free

� You should free the memory that you no longer need!!!
� Ex:
int *p = (int *)malloc(100*sizeof(int));

...

free(p);
� If you do not free allocated memory you will get memory leaks
� Your program will crash eventually
� A big problem if you program should run a very long time

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Memory

� When you run your program the memory is divided between the
heap and the stack

� The stack:
� Memory allocated for all parameters and local variables of a

function
� Fast-allocated memory
� Current function at the top of the stack
� When a function returns its memory is removed from the stack

� The heap:
� Used for persistent data
� Dynamically allocated memory

From http://www.csl.mtu.edu/cs3090/www/lecture-notes/Memory Allocation.ppt

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Common mistakes

� Forgetting to free memory (memory leak!!!)
� Using memory that you have not initialized
� Using memory that you do not own
� Using more memory than you allocated
� Returning pointer to local variable (thus no longer existing)

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Wrap Up

Tip when using dynamic memory allocation

� If you have a malloc think about where the corresponding
free is

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Main function; reading and writing

Lecture 12: Memory, Files and Bit operations
Wrap Up
Main function; reading and writing
Bitwise Operations

GNU C library

Project

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Main function; reading and writing

Command line arguments

� You add parameters to the main function
� int main(int argc, char **argv)
� See the lab in C for more details and examples
� First argument is in argv[1], argv[0] contains program

name
� atoi and atof are useful to get number from char arrays
� Ex:
int value;
...
if (argc > 1) value = atoi(argv[1]);
else value = 42;

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Main function; reading and writing

Reading and writing files

� We have already seen how we can write to the screen with
printf

� This writes to a special file called stdout
� Can also write to stderr
� Ex: fprintf(stderr, ‘‘Hello world\n’’);

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Main function; reading and writing

Reading from the keyboard

� Can use char getchar(); to get a single character
� For more more complex input try scanf(...) which is the

“dual” of printf(...)
� The arguments for scanf the same as for printf except that it

wants pointers to where to put the data
� Ex:
int i;
double num[3];
printf("Enter 3 number: ");
fflush(stdout);
for (i = 0; i < 3; i++) {

scanf("%lf", &num[i]);
}

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Main function; reading and writing

Opening/closing a file

� FILE *fopen(char *path, char *mode);
� mode is “r”: read, “w”: write, “a”:append, . . .
� On success returns pointer to file descriptor, else NULL
� fclose(FILE*);

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Main function; reading and writing

Writing to a file

� Write to the file with for example
� fprintf(FILE*, ...);
� Ex: double x=1, y=2, theta=0.5;
FILE *fd = NULL;
fd = fopen("test.txt", ‘‘w’’);
fprintf(fd, "Robot pose is %f %f %f\n",
x,y,theta);
fclose(fd);

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Main function; reading and writing

Reading from a file

� Read from the file with for example
� fscanf(FILE*, ...);
� Ex: double x,y,theta;
FILE *fd = NULL;
fd = fopen("test.txt", "r");
fscanf(fd, "Robot pose is %lf %lf %lf\n",
&x,&y,&theta);
fclose(fd);

� Notice that you need %lf when you read a double, %f for a float
� Function sscanf() is similar but operates on a char array

instead of a file

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Bitwise Operations

Lecture 12: Memory, Files and Bit operations
Wrap Up
Main function; reading and writing
Bitwise Operations

GNU C library

Project

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Bitwise Operations

Bitwise operations

� When programming at low level, bitwise operations are
common

� Also, if you want to store flags it is very wasteful to use 1 byte
for every flag that can only be 0 or 1.

� Typical construction, use bitmask
� Let each bit in the variable be one flag

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Bitwise Operations

Bitwise operator

& bitwise AND
| bitwise inclusive OR
ˆ bitwise exclusive OR

<< left shift
>> right shift

˜ bitwise NOT

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Bitwise Operations

Example of bit operations

� mask = mask & 0xF Set all but the lower 4 bits to zero
(0xF = 1111)

� mask = mask | 0x3 Set lower 2 bits 0x3 = 11
� short value;
...
unsigned char lower = (value & 0xFF);
(0xFF = 11111111)
unsigned char upper = (value >> 8);

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Bitwise Operations

Shift operators

� Should primarily be used on unsigned data types
� Shifting results in division (right) and multiplication (left) of

integers by 2 times the number of shifts

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

GNU C library

� For linux programming in particular
� Many features including memory mapping, streams, ...

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Lecture 12: Memory, Files and Bit operations
Wrap Up
Main function; reading and writing
Bitwise Operations

GNU C library

Project

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

C Project

� Will be released on Monday
� Help/lab session:

Fri 10.10.2014, 9:00-11:00, Room ”22:an”, Teknikringen 14
� Submission Deadline: before 8pm on Mon 20.10.2014.

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Boids

� Simulate Flocking
� Invented by Craig Reynolds 1987

”Flocks, Herds, and Schools: A Distributed Behavioral Model”,
Siggraph’87

� Based on very simple interaction rules

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

SDL - Simple DirectMedia Layer

� Open Source C library for,
� Graphics
� Sound
� Input

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

main

1. Define Variables
2. Initialise Screen to draw on
3. Event Loop
4. Cleans up

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Event Loop

� Switch statement
� SDL KEYDOWN: if key is pressed, check if key is ESC
� SDL QUIT: Quit using system
� SDL MOUSEMOTION: If mose is moving

� FPS times per second call
� update boids()
� render screen(screen)

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Skeleton

� int render screen(SDL Surface* screen);
� void update boids(void);
� void clean up(SDL Surface* screen);
� void read mouse(SDL Event* event);
� void put pixel(SDL Surface* screen,int x,int
y,pixel* p);

� void clear screen(SDL Surface* screen);
� void render boids(void);

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

int render screen(SDL Surface* screen);

1. Creates a white pixel
2. SDL LockSurface(screen);: Opens the screen for

rendering
3. SDL UnlockSurface(screen);: Closes the screen
4. You can only safely write to the screen between these

commands

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

void read mouse(SDL Event* event);

� Called if mouse movement triggered
� Prints out mouse pointer coordinates

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 12: Memory, Files and Bit operations GNU C library Project

Project

� Think through how to structure data
� structs
� structs of structs
� . . .

� How should the “flow” of the program be
� Divide into several functions
� Comment code for someone else to understand
� Base program is NOT the only solution

Florian Pokorny, Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 12: Memory, Files and Bit operations
	Wrap Up
	Main function; reading and writing
	Bitwise Operations

	GNU C library
	Project

