
Floating point calculations

Daniele Petrili
Jana Fank
Christoph Gehrlein

AGENDA

1 Definition: Floating Point Numbers

2 Representation: Floating Point Numbers

3 Problems: Floating Point Numbers

4 Solution: Kahan Summation

5 Optimization: Sorted floats vs. unsorted floats

AGENDA

1 Definition: Floating Point Numbers

2 Representation: Floating Point Numbers

3 Problems: Floating Point Numbers

4 Solution: Kahan Summation

5 Optimization: Sorted floats vs. unsorted floats

Floating-point numbers =
common way to represent decimal numbers - real numbers for the computer.

Real numbers =
numbers that have decimal places => -7.25

completely unproblematic: 7/2 = 3.5
more difficult: 10/3 = 3.33333...

=> A computer can not easily view an infinite number, or calculate.

Definition: Floating Point Numbers

Each number consists of a sign, a part before the comma and the numbers
after the decimal point:

Example: -5432578865,7890763257556

=> Sign: -
=> Before Comma: 5432578865
=> Decimal: 7890763257556

Exponential notation: -5,432*10^9 => Sign*Mantissa*Base^Exponent

Definition: Floating Point Numbers

AGENDA

1 Definition: Floating Point Numbers

2 Representation: Floating Point Numbers

3 Problems: Floating Point Numbers

4 Solution: Kahan Summation

5 Optimization: Sorted floats vs. unsorted floats

Representation: Floating Point Numbers

IEEE-Standard =
defined standard for binary floating-point representations in computers and lay
down detailed procedures for performing mathematical operations, in particular
for rounding, determine.

x = s * m * β ^ e => Sign s (1 Bit)
 Mantissa m (p Bits)
 Base β (assumed to be even)
 Exponent e (r Bits)
 emax,emin(allowable exponents)

x = s * m * β ^ e => Sign s (1 Bit)
 Mantissa m (p Bits)
 Base β (assumed to be even, normalized β=2)
 Exponent e (r Bits)
 emax, emin(allowable exponents)

 typ size (1+r+p) exponent (r) mantissa (p) values of the exponent (e) bias value (B)

single 32 bit 8 bit 23 bit -126 ≤ e ≤ 127 127

double 64 bit 11 bit 52 bit -1022 ≤ e ≤ 1023 1023

Representation: Floating Point Numbers

IEEE Types for example single and double:

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

Representation: Floating Point Numbers

Decimal Number => IEEE-Standard (Example for single typ)

- 5.25

1) Sign => negativ = 1
2) Number in binary => 5.25 = 101.01
3) Move decimal point so that the first number is a one => 1.0101
4) Record number of displaced points (n)
5) Calculate exponent: Bias + n = 127 + 2 => 129 = 10000001
6) Calculate mantissa shifted partial (minus 1) => 1.0101 -1 = 0101

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

AGENDA

1 Definition: Floating Point Numbers

2 Representation: Floating Point Numbers

3 Problems: Floating Point Numbers

4 Solution: Kahan Summation

5 Optimization: Sorted floats vs. unsorted floats

Problems: Floating Point Numbers

Floating-point numbers are only approximations!

In most cases approximations is not a problem.
The problem, however, it is if they create a sequence errors.

10/3 = 3.3333 => 3.3333 x 3 = 9.9999

9.9999 is not 10!

Relative Error and Ulps

Example: with β =10 and p=3
 3.12 x 10-2 =0.0314 => Error by 2 units in the last plasce =ulps
 Representing 0314159

 3.14 × 10-2, => Error by 159units in the last place=ulps

● Relative error ((β /2)β -p)
○ Simplify the difference between two numbers divided by the real

number
Example: 3.14159 by 3.14 × 100
Relative error: .(10/2)10 -3)= .005

Problems: Floating Point Numbers

Guard Digits

● Most computer systems

Given 0.100 x21 - 0.111x20
0.1000 x21 - 0.0111x20 ===> 0.0001 x 21

Without guard digit:
0.001x 21 ---Relative error of 1

● Relative Error can be large without

Problems: Floating Point Numbers

More problems

● Cancellation (Catastrophic, Benign)
Operands are subject to rounding errors

● Exactly Rounded Operations
{0, 1, 2, 3, 4} round down, {5, 6, 7, 8, 9} round up

Numbers ending in 5:
rounded result have its least significant digit be even

Problems: Floating Point Numbers

AGENDA

1 Definition: Floating Point Numbers

2 Representation: Floating Point Numbers

3 Problems: Floating Point Numbers

4 Solution: Kahan Summation

5 Optimization: Sorted floats vs. unsorted floats

● What? Computes the sum of n floating point numbers

● Why? Rounding error occurs through finite precision floating point
numbers (limited number of digits, example on the next slides)

● How? Reduces the numerical error by a compensated summation:
The algorithm uses feedback from the previous iteration and evaluates an
error which is added to the sum in the following step

Solution: Kahan Summation
What is it?

Solution: Kahan Summation
The algorithm

v = [a;b;c;...;n]; % define a vector of n numbers you want to add

sum_kahan = 0; % initialize the Kahan sum
e = 0; % initialize the error
n = size(v,1); % returns the number of rows

for i = 1:n % for loop computes a + b + c + ... + n
y = v(i,1) - e; % consider the error of the previous step
temp = sum_kahan + y; % compute the new sum
e = (temp - sum_kahan) - y; % compute the new error (lost digits)
sum_kahan = temp; % assign the sum to final variable

end

Solution: Kahan Summation
Matlab Example

● Compute the following sum of 3 floating numbers:
○ 10.000,0 + 3,14159 + 2,71828

● Suppose we are using six-digit decimal floating point arithmetic
→ e.g. 10.000,08 has 7 digits and will be rounded to 10.000,1

● Problem: Adding 2 small numbers to a much larger number leads to a loss
of many low order digits

● Solution: Improve the accuracy by using Kahan Summation
→ continuously recovering the lost bits from the previous addition and add
this “error” to the sum in the next iteration

AGENDA

1 Definition: Floating Point Numbers

2 Representation: Floating Point Numbers

3 Problems: Floating Point Numbers

4 Solution: Kahan Summation

5 Optimization: Sorted floats vs. unsorted floats

Optimization: Sorted vs. unsorted floats
Basic ideas and Matlab Code

● Idea: Sort the floating numbers from small to large

● Why? We don´t loose digits and thereby accuracy if we add the smaller
numbers first and round them afterwards.

● In the previous example it would look like that:

● The result in Matlab shows that now the calculation without Kahan’s
algorithm has the same accuracy as the one using the algorithm
(for the choice of these numbers)

Thank you very much
for your attention!

Any Questions?

