
Hashing
Jaafar Alzubaidi

Ioannis Karagiannis
Shaoling Zhu

Hashing

● Hash table

● Hash functions

● Collisions

● Simple example

Hash Table

● Data structure used to implement associative array

● Maps keys to values using a hash function

Hash Table

● Faster than other data structures when searching

● Increases speed while searching, comparing and

inserting data

● Collisions (later)

10 21 22 33 54 5 2376 8887 28 9

Hash Functions

● Any function to map digital data of arbitrary size to
digital data of fixed size

● Accelerate table search or database lookup by detecting
duplicated records

● Choice of hash function depends on nature of input data
● Some hash function algorithms:

–Perfect hashing
–Hashing uniformly distributed data
–Hashing variable-length data

Collisions

● Collisions are unavoidable

● Strategies to handle collisions

–Open addressing

•Linear probing

•Quadratic probing

–Separate chaining

Collisions

● Open addressing

– Linear probing

Collisions

● Separate chaining

Code Example of Hash function

● Redirecting to Matlab...

Map Containers

● Fast key lookup data structure

● Map values to unique keys

● Retrieve values with a corresponding key

Mean monthly rainfall
statistics (mm)

Properties of the Map Class

mapObj = containers.Map(keySet, valueSet)

mapObj.Count

mapObj.KeyType

mapObj.ValueType

Property Description Default

Count Uint64 0

KeyType double, single, char char

ValueType any any

Methods of the Map Class

Method Description

isKey Check if Map contains specified key

keys Names of all keys in Map

length Length of Map

remove Remove key and its value from Map

size Dimensions of Map

values Values contained in Map

Code Example of Map Class

● Redirecting to Matlab...

Locality-Sensitive Hashing (LSH)

● What is LSH all about?
○ A method of projecting probabilistically high

dimensional-data into a fewer dimensional-space

● In what sense “Hashing”?
○ Hash functions to maximize the probability of

collision of similar data (the opposite of a regular
hash function’s objective)

LSH (general principles)

1. Take random projection of data (low-dimensional binary
space→ Hamming space)

2. Associate each data point to a b-bit vector (hash key)

3. Pr[h(xi)=h(xj)] = sim(xi,xj)

Basic idea is that the number of buckets will be significantly less than the
universe of possible input arguments.

LSH Applications

● Nearest neighbor search

● Audio similarity identification

● Image similarity identification

● Near-duplicate detection

● Hierarchical clustering

● Audio fingerprint

Find pairs of similar docs

● Hash similar documents to the same buckets
● Only compare candidate documents (hashed to the

same bucket)
● Only O(N) comparisons instead of O(N2)

Shingling and Min-Hashing
● Take consecutive words, group them together as a single object. A k-

shingle is a consecutive set of k words. e.g.:

D1: I am Jack

D2: I am a gambler

(k=1)-shingle of D1∪D2: { [I], [am], [Jack], [a], [gambler] }

(k=2)-shingle of D1∪D2: { [I am], [am Jack], [am a], [a gambler] }

JS(k=2) = |D1∩D2|/|D1∪D2| = ¼ = 0.25 (Jaccard similarity)

JS(k=1) = |D1∩D2|/|D1∪D2| = ⅖ = 0.40

● Min-Hashing is a technique to estimate the similarity of two sets (Andrei
Broder 1997)

 Thanks for your attention!

