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Abstract

Despite the success of CDCL SAT solvers solv-
ing industrial problems, there are still many open
questions to explain such success. In this con-
text, the generation of random SAT instances hav-
ing computational properties more similar to real-
world problems becomes crucial. Such generators
are possibly the best tool to analyze families of in-
stances and solvers behaviors on them.
In this paper, we present a random SAT instances
generator based on the notion of locality. We show
that this is a decisive dimension of attractiveness
among the variables of a formula, and how CDCL
SAT solvers take advantage of it. To the best of our
knowledge, this is the first random SAT model that
generates both scale-free structure and community
structure at once.

1 Introduction
It is well known that most industrial SAT instances used in
SAT competitions have a great variability in the number of
occurrences of variables. In fact, Ansótegui et al. [2009a]
showed that, in most real-world industrial SAT instances, the
number of occurrences k of a randomly selected variable fol-
lows a power-law distribution P (k) ∼ k−δ where δ is be-
tween 2 and 3. In many cases, the clauses size also shows
this kind of distribution. This means that a solver that would
assign preferably those very frequent or popular variables
would decrease the size of the formula very quickly. Vari-
ants of this strategy have been used in the past [Marques-
Silva, 1999], in the Bohm’s heuristic, Maximum Occurrences
on clauses of Minimum Size (MOMS) [Freeman, 1995] and
Jeroslow-Wang heuristic [Jeroslow and Wang, 1990], for in-
stance. However, nowadays most modern SAT solvers use the
Variable State Independent Decaying Sum (VSIDS) heuris-
tic [Moskewicz et al., 2001]. The intuition is that this
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heuristic focuses the solver on some local area of the for-
mula. In large formulas, sometimes, it is preferable to as-
sign variables closer to other recently assigned variables, than
to assign popular but distant variables [Katsirelos and Si-
mon, 2012]. In this direction, Giráldez-Cru and Levy [2015;
2016] define a model of random SAT instances with high
modularity [Ansótegui et al., 2012; Ansótegui et al., 2015;
2016], and showed that VSIDS tends to focus the search in-
side communities of variables closely connected by clauses.
Ansótegui et al. [2009b] define another model of random for-
mulas with scale-free structure, i.e. where the number of
occurrences of variables follow a power-law distribution, as
observed in real-world SAT instances. However, there is no
model of random SAT formulas that captures both properties
at once: a power-law distribution in the number of variable
occurrences and a notion of locality.

We can represent SAT instances as graphs; either repre-
senting variables as nodes, and the coexistence of two vari-
ables in a clause as an edge; or variables and clauses both as
nodes, and the occurrence of a variable in a clause as an edge
between them. This approach has allowed to apply many
ideas from complex networks to SAT, e.g. the study of the
fractal dimension of these formulas [Ansótegui et al., 2014].

Most real-world networks (or graphs), such as Internet, the
Web, or many social and metabolic networks, have the same
scale-free structure observed in industrial SAT instances.
This means that the degree (number of connections) of a ran-
dom node follows a power-law distribution, where a few pop-
ular nodes attract a significant fraction of the edges. Preferen-
tial attachment [Barabási and Albert, 1999] is a model where
the probability of a node to get new connections is propor-
tional to its popularity (defined as the number of connections
it already has). It has been proposed as the force that gov-
erns the growth of scale-free networks. However, it has also
been observed that most real-world networks have also high
clustering factor1 and modularity, whereas graphs generated
with the preferential attachment model have a low clustering
factor and a modularity that tends to zero as the number of
nodes tends to infinite.

Papadopoulos et al. [2012] showed that, although popular-

1The clustering factor is the fraction of neighbors of a node that
are connected, i.e. the conditional probability P (a↔ b | ∃c.a↔
c ∧ b↔c).



ity and preferential attachment is one of the forces ruling real-
world networks, another force is similarity. In other words,
new nodes tend to connect to popular nodes (that already
have a lot of connections), and also to similar nodes (that
are close with respect to some metric). They define a model
where at every time instants t ∈ {1, . . . , n} a new node with
index t is created. The probability of an older node s < t to
get a connection from the new node t depends on some energy
or distance est = rs + rt + log(θst/2), where rs = log(s)
is the popularity2 of node s, and θst is the similarity between
s and t. To model similarity, they assign a random angle θt
to each node t, and compute θst as the minimum distance be-
tween angles θt and θs, i.e., θst = π−|π−|θt− θs||. Prefer-
ential attachment generates scale-free graphs with nodes de-
gree following a power-law distribution P (k) ∼ k−δ , where
δ = 2. In order to obtain greater values of δ, they assume a
popularity fading, where popularity of node s depends on the
time t as rs(t) = β log(s) + (1 − β) log(t), and β ∈ [0, 1]
is smaller as fading is faster. Finally, as edges in a graph are
exclusive (we cannot have more than one edge between two
nodes), they assume that they behave as fermions3. There-
fore, they use the Fermi-Dirac probability distribution for the
expected number of edges n in a given energy level est:

E[nst] =
1

1 + e
est−µ
k T

where µ is the total chemical potential, k is the Boltzmann’s
constant, and T is the temperature4.

In this paper, we propose a new model of random SAT in-
stances that captures the notion of locality whereas preserves
the power-law distribution in the number of variable occur-
rences. Additionally, this model also allows the lengths of
the clauses following another power-law distribution. We
will adapt many ideas of Papadopoulos et al. [2012]. One
of the problems is that the growing process imposes some
limitations on the graph. For instance, a minimum degree on
nodes. Therefore, we will also adapt some ideas of Ansótegui
et al. [2009b], where instead of a growing process as in prefer-
ential attachment, all nodes are created at once, and a distinct
probability is used for every possible edge, ensuring that the
expected node degree isE[ki] ∼ i−β . This produces a power-
law distribution of degrees on random nodes P (k) ∼ k−δ ,
where δ = 1+1/β. Moreover, we have to generate bi-partite
graphs with variable and clause-nodes, where the degree of a
variable-node is the number of occurrences of this variable,
and the degree of a clause-nodes is the size of this clause.
Although in most real-world industrial instances both values
follow power-law distributions, their exponent δ is different
in each case.

Finally, we show that CDCL SAT solvers take advantage
of both popularity and similarity. In particular, we show that
when formulas have these two properties, VSIDS quickly fo-
cuses its decisions on both popular variables, and variables

2A smaller value of rs means a greater popularity.
3Fermions are particles that obey the Pauli exclusion principle.

Therefore, we can not have two fermions in exactly the same physi-
cal state.

4In fact, they integrate the Boltzmann’s constant inside the defi-
nition of temperature.

similar to them. We also show that CDCL solvers perform
better in formulas with popularity and similarity, than other
solvers specialized in classical random formulas. On the con-
trary, the absence of these two properties makes these last
solvers more efficient than CDCL ones. This suggests that
both popularity and similarity are two crucial properties to
understand the success of CDCL on industrial benchmarks.

2 The Popularity-Similarity SAT Model
In this section we define our Popularity-Similarity model (PS
for short), adapting ideas from [Papadopoulos et al., 2012]
and [Ansótegui et al., 2009b].

Definition 1 (Popularity-Similarity Random SAT Instance)
In order to generate a random SAT instance with locality
over n variables with m clauses of average size k, we
first assign a random angle θi ∈ [0, 2π], to every variable
i ∈ {1, . . . , n}, and a random angle θ′j ∈ [0, 2π], to
every clause j ∈ {1, . . . ,m}, with uniform probability
distributions.

Then, we construct a bi-partite random graph with n
variable-nodes and m clause-nodes, where every possible
edge i↔j between a variable-node i and a clause-node j, is
selected with probability:

P (i↔j) =
1

1 +

(
iβ · jβ′ · θij

R

)1/T
(1)

where β, β′ and T are parameters of the model, θij is the
minimal distance between angles θi and θ′j:

θij = π −
∣∣π − |θi − θ′j |∣∣

and R is the normalizing constant ensuring that, on average,
the number of selected edges is km:

n∑
i=1

m∑
j=1

P (i↔j) = k ·m (2)

Finally, we construct a random SAT formula from the
graph as follows. For every edge i↔j in the bi-partite graph,
we add to the clause Cj the literal xi with probability 1/2, or
the literal ¬xi otherwise.

This model corresponds to defining the energy of the edge
i↔ j as eij = β · log(i) + β′ · log(j) + log(θij), the chem-
ical potential as µ = logR, and using the Fermi-Dirac prob-
ability distribution. The first term in the energy eij repre-
sents the popularity of variable i, the second the popularity
of clause j and the third the similarity between them. The
probability of selecting an edge could be any function of this
energy P (i↔ j) = f(eij). However, following the same ar-
gument as [Papadopoulos et al., 2012], we decide to use the
Fermi-Dirac probability distribution, and a simplification of
it in Subsection 2.3.

The effect of temperature T is regulating the entropy of the
resulting formula. In the limit T → 0, when we approach the
absolute zero temperature, the number of fermions in state i
is one when ei < µ, and zero when ei > µ. For other temper-
atures, the average number of fermions is between zero and



one. Therefore, at T = 0, the total chemical potential is equal
to the energy of the n-th less energetic state, where n is the
number of particles. In our case, for T = 0, the value R is
the minimum value such that

|{i↔j | eij < log(R)}| = k ·m

Therefore, for T = 0, the generated bi-partite graph consists
of the k ·m edges with smallest energy. At T = ∞, we get
the graph with maximal entropy, which corresponds to the
classical Erdös-Rényi random model, i.e., classical random
SAT formulas. The chemical potential µ, or in our case R,
depends on the temperature. In Subsection 2.2 we will see
how to approximate R for T > 0.

The model generates SAT instances with km literals on
average. If we want to generate instances of exactly km lit-
erals, we can select a random variable i and clause j with
uniform probability, add the corresponding edge with proba-
bility given by Eq. 1, and repeat the process until we get the
desired number of edges.

2.1 Generating Scale-free Instances
Ansótegui et al. [2009b] proved that, for scale-free random
SAT instances, if the probability of a clause is given by
P (xi1 ∨ · · · ∨ xin) ∼

∏n
j=1(ij)

−β , then the number of oc-
currences of a variable chosen at random follows a power-law
distribution P (k) ∼ k−δ , where δ = 1/β+1. Here we prove
a similar result:

Lemma 2 For Popularity-Similarity random SAT instances,
if the probability of an edge is P (i↔ j) = f(iβ jβ

′
θij), and

the function f decreases fast enough, then the resulting SAT
instance is scale-free with a number of variable occurrences
distributed as P (k) ∼ k−δ , where δ = 1 + 1/β. Similarly,
clauses size also follows a power-law distribution with expo-
nent δ′ = 1 + 1/β′.

PROOF: The expected degree of node i can be computed in-
tegrating P (i↔ j) for all possible values of j. Since θi and
θ′j are uniformly distributed in [0, 2π], the minimal distance
between both angles will be uniformly distributed in [0, π],
and the integral be can computed as:

E[ki]=
1

π

∫ m

1

∫ π

0

f(iβjβ
′
θ) dθ dj

=
1

π

∫ m

1

i−βj−β
′
∫ iβjβ

′
π

0

f(x) dx dj

≈ 1

π

∫ m

1

i−βj−β
′
∫ ∞
0

f(x) dx dj

=
1

π

(∫ ∞
0

f(x) dx

)
m−β

′+1

1− β′
i−β

The approximation is correct when
∫∞
iβjβ′π

f(x) dx is negli-
gible.

Now, we basically have to reproduce the proof in
[Ansótegui et al., 2009b], to prove that E[ki] ∼ i−β implies
P (k) ∼ k−δ with δ = 1 + 1/β. Similarly, we prove that
the expected size of clause j is E[kj ] ∼ j−β

′
. From this, we

deduce that clause size also follows a power-law distribution.

In our case the approximation above is correct for small
values of T . For instance, for T = 0, the function f defined
by the Fermi-Dirac distribution returns one for the small-
est km values of energy, and zero elsewhere. Therefore,∫∞
iβ jβ′ π

f(x) dx is exactly zero, because there are less edges
than possible levels of energy. For small values of T , there is
some error.

2.2 Normalizing the Probability Distribution
In order to normalize the probability distribution to ensure
that the sum of probabilities is equal to the number of edges,
as stated in Eq. (2), we have to integrate it. As the distance
θij between angles is uniformly distributed, we can compute
the probability of an edge between nodes i and j as:

P (i↔j) =
1

π

∫ π

0

1

1 +
(
iβjβ′ θ
R

)1/T dθ

=
R

π
i−βj−β

′
∫ iβjβ

′
π

0

1

1 + x1/T
dx

≈ R

π
i−βj−β

′
∫ ∞
0

1

1 + x1/T
dx =

R

π

Tπ

sin(Tπ)
i−βj−β

′

where we are using the same approximation as in Lemma 2,
and the equality

∫∞
0

1
1+x1/T = Tπ

sin(Tπ) only holds for 0 <

T < 1. Imposing the condition of Eq. 2, we get:

R ≈ sin(Tπ)

T

1− β
n1−β − 1

1− β′

m1−β′ − 1
km

which is a good approximation of R for small values of T .
Unfortunately, we have to compute the value of R for

values T > 1, and we do not know how to do this ana-
lytically. Therefore, we use in our algorithm the Newton-
Raphson method. Let F =

∑n
i=1

∑m
j=1 P (i↔ j). We want

to find the value of R such that F (R) = km. Therefore, we
compute:

∂F

∂R
=

(
iβjβ

′
θij

R

)1/T

RT

(
1 +

(
iβjβ′θij

R

)1/T)2

and compute R as the limit of the serie:

Ri+1 = Ri +
km− F

∂F
∂R

∣∣∣∣∣
R=Ri

Experimentally, we observe that in 4 or 5 iterations the value
of F is km± 0.1.

2.3 Simplifying the Model
In the previous subsection we have seen that computing the
value of R is a difficult task. Given an unnormalized proba-
bility distribution P (x) ∼ f(x) where x = 1, . . . , n, a trivial
way to normalize it is defining P (x) = f(x)/

∑n
i=1 f(x),

which ensures that
∑n
i=1 P (x) = 1. However, in the case of

Equation (1), the function is already normalized (its value is
always in the range [0, 1]), and Equation (2) is used to com-
pute R, not as a proper probability normalization. However,



if we slightly modify Equation (1), we can transform the com-
putation of R in a proper probability normalization.

The expected number of bosons5 in an energy state ei is
given by the Bose-Einstein probability distribution:

E[ni(ei)] =
1

e
ei−µ
kT − 1

Compared to the Fermi-Dirac distribution, we observe that
a “plus one” has changed to “minus one”. In our case, we
propose to simply remove the “plus one”. With this change,
if we replace R1/T by simply R, and we impose an upper
bound of 1 to the probability, in order to get a single edge for
every pair of nodes, we get:

P (i↔j) = min

{
1 ,

R

(iβjβ′ θij)1/T

}
(3)

Now, R is almost a normalizing constant, since it multiplies
one of the cases in the min. This probability distribution is
quite similar to Eq. (1), and it results into SAT formulas quite
similar to the ones obtained with the other model.

Since the probability is proportional to i−β , adapting
Lemma 2, we can see that the expected degree of node i is
also P (ki) ∼ i−β and the generated formulas are also scale-
free.

The computation of R is also quite simple. We have to
compute a set S of pairs of nodes whose probability is 1, and
iterate the computation of R as follows. Initially, we set:

S0 = ∅
R0 = km

∑
i∈{1,...,n},j∈{1,...,m}

(iβjβ
′
θij)

1/T

and, at every iteration, compute

Si+1 = {(i, j) | Ri/(iβjβ
′
θij)

1/T ≥ 1}
Ri+1 = (km− |Si+1|)

∑
i∈{1,...,n},j∈{1,...,m}

(i,j) 6∈Si+1

(iβjβ
′
θij)

1/T

until Si = Si+1 and the series converges6. In practice, it
converges in just 2 or 3 steps. At this point, Eq. (2) holds.

3 Models with Clauses of Distinct Lengths
The Popularity-Similarity model we have described generates
clauses of distinct sizes, following a power-law distribution
with exponent δ′ = 1 + 1/β′, as it has been observed in
real-world industrial instances. However, the satisfiability of
formulas is very sensitive to the size of the clause. In partic-
ular, if the formula contains (many) small –unary or binary–
clauses, it becomes trivially unsatisfiable. Moreover, one of
the properties we appreciate in the classical random model is
the existence of a SAT-UNSAT phase transition phenomenon.
This allows to generate formulas with 50% probability of be-
ing satisfiable, and hence, more adequate for competitions.

5Bosons are particles that are not restricted by the Pauli’s exclu-
sion principle. Thus, we may have several bosons in the same state.

6Notice that Ri+1 ≤ Ri and Si+1 ⊇ Si, for any i. Therefore,
convergence is ensured.

However, it is difficult to define a model with both distinct
clause sizes and a phase transition. In order to exemplify this
fact, we are going to study what we can consider a classi-
cal model of random formulas with distinct sizes. This is the
simplest model with maximal entropy –hence, generating the
most difficult instances– that we can define. Even though, we
show that the existence of small clauses in this model makes
formulas trivial.

Given a number of variables n, number of clauses m and
average clause size k, we can generate a random formula
choosing a random variable i ∈ {1, . . . , n} with uniform
probability, a random clause j ∈ {1, . . . ,m} with uniform
probability, and a random sign s ∈ {1,−1} with probability
1/2, adding s · i in j, and repeating this process km times.
Finally, we remove empty clauses, if there is any.

We have studied the phase transition and the hardness
of formulas for this model, for distinct values of k, and
clause/variable m/n fractions. We show the results in Fig. 1
for n = 104 variables. We observe that the transition between
SAT and UNSAT is not so sharp as in regular random k-SAT
formulas. The clause/variable fraction at the transition point
increases with k, like the phase transition fraction for regular
k-SAT. However, the value is not exactly the same. More-
over, if we repeat the experiment with n = 105 variables,
we observe that almost all formulas in the represented ranges
are trivially unsatisfiable. This means that the clause/variable
fraction at the transition point is not constant. Finally, if we
observe the number of conflicts needed to solve the formula,
we see that, although the hardest formulas are located in the
phase transition region, like in regular random formulas, they
are trivially solvable for a modern SAT solver.

The only way to avoid all these problems is not only re-
moving empty clauses, but also unary (and probably binary)
clauses. Alternatively, we can also force clauses to contain a
minimum of K literals (now k and K will be parameters of
the model). In this second case, we would assign K literals
to each clause like in the classical model, and then we would
add kmmore literals shared among all clauses, following the
above method. This way, the average clause size would be
k + K. This is exactly what we do in our model. However,
to assign the K literals to each clause, instead of the classical
method, we use the following method:

For every clause, and for 1 to K, we select a random vari-
able i with probability P (i) = 1/(1 + (iβθij/R)

1/T ) and a
random sign with probability 1/2. This is exactly the same
probability distribution described in Eq. (1) removing the
popularity of j. After that, we generate the km additional
literals as described in Section 2, avoiding repetitions of vari-
ables in clauses.

4 Locality and CDCL SAT Solving
Let us recall first the parameters of the PS model for random
SAT instances. The number of variables and clauses are n
and m. K is the minimum clause size, and (K + k) is the
average clause size. The exponent of the power-law distribu-
tions of number of variable occurrences and clause size are
respectively δ = 1 + 1/β and δ′ = 1 + 1/β′. When β and
β′ are very close to 0 (resp. to 1), there is almost no (resp.
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Figure 1: Fraction of unsatisfiable formulas for the variable clause length model (left) and number of conflicts required by Minisat to solve
them (right), for n = 104 variables. Every point is the mean for 100 instances.

a high) variability. Finally, T is the temperature. When T is
small, variables are chosen according to their popularity and
similarity. In contrast, when the temperature is high enough,
all variables have almost the same probability to be chosen at
a certain moment, and hence, the model behaves very similar
to the classical random model.

Since we are just interested in analyzing the effects of pop-
ularity and similarity of variables in SAT solving performance
–and not the effects of different clause sizes–, we limit our ex-
perimentation to the case β′ = 0, K = 3 and k = 0, i.e., all
clauses of size 3. We always use m/n = 4.25.

In a first experiment, we show how VSIDS exploits both
the popularity and the similarity of variables by analyzing
the variables selected by the branching heuristic of the well-
known CDCL SAT solver Minisat. VSIDS rewards the vari-
ables occurring in the last conflicts, and hence they are more
likely to be selected in the next branching steps. We generate
some extreme cases of our model to show these results.

In Fig. 2, we represent the variables chosen by VSIDS
along the search, for some formulas of the PS model gener-
ated with n = 5000. Each point (i, j) represents that variable
j was decided between the i-th and the (i + 1)-th conflicts.
We represent three cases. First, a formula with high popu-
larity (β = 0.8) and small temperature (T = 1.50); vari-
ables ordered by popularity (see top). Second, a formula with
high similarity (β = 0.1) and small temperature (T = 0.75);
variables ordered by similarity (see center). Finally, a third
formula with high temperature (T = 100). In this last case,
β = 0.1 and variables are ordered by similarity; similar re-
sults occur with other β or if ordered by popularity. Although
we only represent the first 30,000 conflicts, the same results
can be observed during the whole execution.

We can observe that in the formula with popularity, the
solver decides in popular variables (low variable indexes).
Ansótegui et al. [2009a] already showed that VSIDS likes
branching on popular variables. Interestingly, in the formula
with similarity, we observe that the solver is focused on a cer-
tain area of the angular space, i.e., similar variables. This
suggests that the solver is indeed also taking advantage of the
notion of locality in the formula. Finally, if the formula has
neither popularity nor similarity –because the temperature is

too high–, decisions occur everywhere (as expected) because
the formula is more similar to a classical random CNF.

When a SAT formula has popularity and similarity, the
CDCL solver is able to exploit these two structures, finding a
good balance between both of them. A possible explanation
is that the solver is finding conflicts faster, and these conflicts
relate less variables. In the formula with popularity, the av-
erage clause size of the learned clauses is 18.2 literals, and
conflicts occur at a rate of 584 conf/s; in the formula with
similarity 20.3 literals and 510 conf/s. On the other hand, in
the formula with high temperature, it is observed that after
each restart (vertical lines), the solver makes many decisions,
suggesting that it is harder to find conflicts in this formula
(as it happens in random SAT instances). In fact, the average
clause size for the learned clauses is 120.6 literals, and the
learning rate is 154 conf/s.

In a second experiment, we show that CDCL SAT solvers
indeed over-perform other solvers in PS random formulas. To
this purpose, we evaluate the performances of the CDCL SAT
solver Glucose [Audemard and Simon, 2009] and the look-
ahead SAT solver March [Heule et al., 2004] –more efficient
in classical random instances–, on some families of random
PS formulas with different temperatures T . The size of the
formulas is n = 5000 when T < 2, and n = 300 other-
wise. Notice that actual industrial formulas have millions of
variables, but n = 5000 is enough to show the effects of pop-
ularity and similarity. On the contrary, when the temperature
is high, the formulas are similar to random CNF. No com-
plete solver could even solve a hard random instance with
n = 5000 variables (in a reasonable timeout). So, we need to
decrease the formula size to analyze these cases.

In Fig. 3, we plot the results. It can be seen that when the
temperature is low (see T = 1.40), all formulas are very easy,
and both solvers solve them in a few seconds. Interestingly,
as we increase the temperature T , formulas become harder
(as expected), but the CDCL solver is much more efficient
solving most of the formulas (see T = 1.50). This happens
until the temperature is very high, when both solvers fail to
solve any formula (see T = 1.55). Finally, if the temperature
keeps growing, the formulas become easier for March (see
T = 10), as expected.
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Figure 3: Scatter plot of runtimes of Glucose and March on different
PS instances, for different temperatures T .

5 Related Work
The problem of generating random SAT formulas which
realistically capture the computational properties of indus-
trial instances has been stated as one of the most challeng-
ing problems in propositional search [Selman et al., 1997;
Kautz and Selman, 2003; 2007; Dechter, 2003].

Ansótegui et al. [2009b] propose the Scale-free model for
random SAT formulas, where the number of variable occur-
rences follow a power-law distribution. However, this model
is unable to generate formulas with high clustering or com-
munity structure. Recently, it has been shown that the phase
transition point of these formulas depend on the exponent δ of

the power-law distribution, in 2-CNF [Friedrich et al., 2017].
Experimental results suggest that this is also the case in k-
CNF, with k > 2.

Giráldez-Cru and Levy [2016] propose the Community At-
tachment model for random SAT formulas, which generates
formulas with clear community structure. In this model, there
is no variability in the occurrences of variables. Although
these formulas are experimentally easy, it has been proven
that in theory they are exponentially hard [Mull et al., 2016].

6 Conclusions
In this paper, we present the Popularity-Similarity model for
random SAT instances. It generates formulas with a power-
law distribution in the number of variable occurrences (popu-
larity), and good clustering between them (similarity). To the
best of our knowledge, this is the first model that generates
these two properties at once. Additionally, it also generates
formulas with variable clause size. All of these features are
typically found in a vast majority of industrial SAT instances.

We check that this model is characterized by a phase tran-
sition SAT-UNSAT phenomenon. We show that popularity
and similarity are two orthogonal forces exploited by VSIDS.
Also, we show that the performance of CDCL SAT solvers
(w.r.t. other solving techniques) is related to the existence of
popularity and similarity in the SAT formulas. Therefore, this
suggests that both popularity and similarity are two crucial
properties to understand the success of CDCL on industrial
benchmarks.
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[Ansótegui et al., 2012] Carlos Ansótegui, Jesús Giráldez-
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