

(a) Single small server (b) Single large server

(c) Cluster of small servers (d) Cluster of large servers
Fig. 6. Lab testbed measurements and model predictions

the AP, which forwards it to the load injector. The
response time of each request is measured as shown in
Figure 5 (bottom). Regarding dimensioning, the number
of allocated objects per server is similar to the one in the
experiments discussed above involving single servers.
The same is true regarding the number of objects cached
in memory, the number of requests for a warmup run,
and the number of requests for a measurement run.

For each experimental run, a request stream is gener-
ated at a certain rate, and, for each request, the response
time is measured. The runs start at a request rate of 50
and end at 300, with increments of 50, for the cluster
of small servers; they start at a rate of 180 and end
at 360, with increments of 60, for the cluster of large
servers. Figures 6c and 6d show the measurement results
for three selected latencies for the cluster of small and
large servers, respectively. The figures further include the
model predictions in form of solid lines. The predictions
are obtained from equation 2 and model parameters,
discussed in Section IV-C. Our conclusions from the
experiments on the two clusters are similar to those on
the single servers: the fraction of requests that can be
served under a given time decreases as the load increases.
The relationship is almost linear; the slopes of the curves
decrease slightly with increasing request rate. Further,
the measurements and models diverge at most 9.3%
below the confidence limit.

B. Evaluation on the Spotify operational environment

For this evaluation, we had access to hardware and
direct, anonymized measurements from the Spotify op-
erational environment. The single server evaluation has
been performed on a Spotify storage server, and the

cluster evaluation has been performed with measurement
data from the Stockholm backend site.

1) Single storage server: We benchmark an opera-
tional Spotify server with the same method as discussed
in Section IV-A1. Such a server stores about 7.5M
objects (using 600GB), and a cache after the warm-
up phase contains about 375K objects (using 30GB).
(The actual capacity of the Spotify server is significantly
larger. We only populate 600GB of space, since the
traces for our experiment contains requests for objects
with a total size of 600GB.) For a run of the experiment,
1000K requests are processed during the warm-up phase,
and 300K requests during the measurement phase. The
runs start at a request rate of 100 and end at 1,100, with
increments of 100. Figure 7a shows the measurement
results for three selected latencies for the Spotify oper-
ational server.

The qualitative observations we made for the two
servers on the KTH testbed (Section IV-A1) hold also for
the measurements from the Spotify server. Specifically,
the measurements and model predictions diverge at most
8.45%, for request rates lower than the model confidence
limit.

2) Spotify storage system: For the evaluation, we
use 24 hours of anonymized monitoring data from the
Stockholm site. This site has 31 operational storage
servers. The monitoring data includes, for each storage
server, measurements of the arrival rate and response
time distribution for the requests that have been sent
by the APs. The measurement values are five-minutes
averages. The data includes also measurements from
requests that have been forwarded to the Master Storage,
but as stated in Section III, such requests are rare, below

2012 8th International Conference on Network and Service Management (CNSM 2012) 121

1% of all requests sent to the storage servers.
Some of the servers at the Stockholm site have a

slightly different configuration from the one discussed
above. These differences have been taken in account for
the estimation of model parameters. Figure 7b presents
the measurement results in the same form as those we
obtained from the KTH testbed. It allows us to compare
the performance of the storage system with predictions
from the analytical model. Specifically, it shows mea-
surement results and model predictions for three selected
latencies, starting at a request rate of 1,000 and ending at
12,000, with increments of 1,000. The confidence limit is
outside the measurement interval, which means that we
have confidence that our analytical model is applicable
within the complete range of available measurements.

We make two observations. First, similar to the eval-
uations we performed on the KTH testbed, the measure-
ments and the model predictions diverge at most 9.61%.
This is somewhat surprising, since this operational en-
vironment is much more complex and less controllable
for us than the lab testbed. For instance, for our testbed
measurements, (1) we generate requests with Poisson
arrival characteristics, which only approximates arrivals
in the operational system; (2) on the testbed we use
identical servers, while the production system has some
variations in the server configuration; (3) the testbed
configurations do not consider Master Storage, etc.

Furthermore, the measurements suggested that the
fraction of requests under a specific latency stays almost
constant within the range of request rates measured. In
fact, our model predicts that, the fraction of requests
served within 50 msec stays almost constant until the
confidence limit, at about 22,000 requests/sec. Therefore,
we expect that this site can handle a much higher load
than observed during our measurement period, without
experiencing a significant decrease in performance when
considering the 50 msec response-time limit. A response
time of up to 50 msec provides the user experience that
a selected track starts “instantly”.

C. Estimating model parameters / confidence limit

We determine the model parameters for the single
server, given in equation 1, namely, the service rate
of a disk μd, the number of identical disks nd, and
the probability that a request is served from memory
q. While nd can be read out from the system config-
uration, the other two parameters are obtained through
benchmarking. We first estimate the average service time
Ts of the single disk through running iostat [7] while
the server is in operation (i.e. after the warm-up phase),
and we obtain μd = 1/Ts. We estimate parameter q
as a fraction of requests that have a latency below 1
msec while the server is in operation. Figure 8 shows
the measured values for q, for different server types
and request rates. We observe a significant difference in
parameter q between the testbed servers(small and large
server) and Spotify operational server. We believe that

Parameter Small server Large server Spotify server
μd 93 120 150
nd 1 1 6
α 0.0137 0.00580 0.000501
q0 0.946 1.15 0.815

TABLE II
MODEL PARAMETERS FOR A SINGLE STORAGE SERVER

this is because software and hardware of the operational
server is highly optimized for serving Spotify traffic
while the testbed servers are general-purpose servers and
configured with default options.

Based on the results in Figure 8 and other measure-
ments, we approximate, through least-square regression,
q with the linear function q = −αλ + q0, whereby λ is
the request rate. All model parameters of a single storage
server are summarized in Table II.

We now compute the model confidence limit for the
single server, i.e., the maximum request rate below
which we feel confident that our model (i.e., equation
1) applies. Through extensive testing, we found that our
model predictions are close to the measurements from
the real system, as long as the average length of any
disk queue is at most one. From the behavior of an
M/M/1 queue, we know that the average queue length
for one of the disks is Ld = λd

μd−λd
. Applying the

linear approximation for q and setting Ld = 1, simple
manipulations give the model confidence limit λL for a
single server as the positive root of αλ2

L+(1− q0)λL−
1
2μdnd = 0. The confidence limits in Figures 6a, 6b, and
7a are computed using this method. As can be observed,
increasing request rates beyond the confidence limits
coincides with a growing gap between model predictions
and measurements, specifically for the latency of 50
msec, which is an important value for the Spotify storage
system.

The model parameters for a cluster, appearing in
equation 2, contain the model parameters of each server
in the cluster. Therefore, if the model parameters for each
server are known, then the parameters for the cluster can
be obtained.

We now discuss the model confidence limit for the
cluster, i.e., the maximum request rate to the cluster
below which we have confidence that the model pre-
dictions are close to actual measurements, under the
assumption that we know the confidence limit for each
server. The allocation of objects to primary servers in the
Spotify storage system can be approximated by a process
whereby each object is placed on a server uniformly at
random, weighted by the storage capacity of the server.
Therefore, the number of objects allocated to servers
can vary, even for a cluster with homogeneous servers.
The distribution of the number of objects on servers
can be modeled using the balls-and-bins model [8]. If
the server contains a large number of objects, as in our
system, the expected load on the server is proportional to
the number of objects. To compute the confidence limit
for the cluster, we must know the load of the highest

122 2012 8th International Conference on Network and Service Management (CNSM 2012)

(a) Single Spotify Storage server (b) Cluster of Spotify Storage servers
Fig. 7. Spotify operational environment measurements and model predictions

Fig. 8. Estimating the parameter q

loaded server. A result from the analysis of the balls-
and-bins model states that, when m balls are thrown
independently and uniformly at random into n bins and
m � n · (log n)3 can be assumed, then there is no bin

having more than M = m/n+
√

2m log n
n (1− 1

β
log logn
2 log n)

balls with high probability, for any β > 1 [9]. We
apply this result by interpreting balls as request rates
and bins as servers. By doing so, we obtain the con-
fidence limit λL,c of the cluster as a function of the
minimum λL of the confidence limits of all servers and
the number of servers |S|. We can conclude that the
confidence limit for the cluster is the smaller root of
1
|S|2λ

2
L,c+(2λL

|S| −
2 log |S|Kβ,|S|

|S|)λL,c+λ2
L = 0, whereby

β = 2 and Kβ,|S| = 1 − 1
β

log log |S|
2 log |S| . The confidence

limits in Figures 6c and 6d are computed using this
method. Similar to the case of the single server, the
model predictions can diverge significantly from the
measurements for rates beyond the confidence limits.

V. APPLICATIONS OF THE MODEL

We apply the analytical model to predict, for the
Spotify storage system at the Stockholm site, the fraction
of requests served under given latencies for a load of
12,000 requests/sec, which is the peak load from the
dataset we used. While our evaluation has involved 31
servers, we use the model to estimate response time
for configurations from 12 to 52 storage servers. The
result is shown in Figure 9a. The confidence limit is 17
servers. Above this number, we have confidence that the
model applies. We observe that for each latency curve
in the figure the slope decreases with increasing number
of servers. This means that adding additional servers to

the storage system of, say, 20 servers result in a much
larger reduction of response time than adding servers to
the storage system of, say, 50 servers.

Second, we predict the fraction of requests served
under specific response times for a storage system with
25 servers. We consider a scenario where the load varies
from 1,000 to 20,000 requests/sec. The result is shown in
Figure 9b. The confidence limit is 18,000 below which
our model applies. We observe that the slope of all
curves in the figure is almost zero between 1,000 to
3,000 requests/sec, beyond which it starts decreasing.
We can predict that increasing the load on the storage
system from 1,000 to 3,000 requests/sec does not have
any measurable impact on performance, while we ex-
pect that an increase from 1,000 to 15,000 requests/sec
clearly will. Our model also predicts that, for a response
time limit of 50 msec, the fraction of requests remains
almost unchanged for rates between 1,000 and 18,000
requests/sec.

VI. RELATED WORK

Substantial research has been undertaken in modeling
the performance of storage devices (see, e.g., [10]–[12]).
Our work differs from these, since our modeling work
is on the systems level and thus captures aspects of
an entire system. Several works present performance
models of storage systems [13]–[15]. However, to the
best of our knowledge, none of them discusses and
validates models for predicting the latency distribution
of requests to a real storage system. The authors in [13]
present a performance model for Ursa Minor [16], a
robust distributed storage system. Their model allows
them to predict the average latency of a request, as well
as the capacity of the system. A second performance
model of a storage system is presented in [14]. In this
work, expected latency and throughput metrics can be
predicted for different allocation schemes of virtual disks
to physical storage devices. The authors of [15] discuss
in that paper a performance model for predicting the
average response time of an IO request when multiple
virtual machines are consolidated on a single server.

The development and evaluation of distributed key-
value stores has been an active research area. While

2012 8th International Conference on Network and Service Management (CNSM 2012) 123

(a) Varying the number of servers in the storage system for a load of
12,000 requests/sec

(b) Varying the load in the storage system for 25 storage servers

Fig. 9. Applications of the model to system dimensioning

these systems generally provide more functionality than
the Spotify storage system, to our knowledge, no per-
formance model has yet been developed for any of
them. In contrast to Spotify’s storage system design,
which is hierarchical, many advanced key-value storage
systems in operation today are based on a peer-to-peer
architecture. Among them are Amazon Dynamo [17],
Cassandra [18], and Scalaris [19]. Facebook’s Haystack
storage system follows a different design which is closer
to Spotify’s. Most of these systems use some forms of
consistent hashing to allocate objects to servers. The
differences in the designs of the systems are motivated
by their respective operational requirements, and they
relate to the number of objects to be hosted, the size of
the objects, the rate of update, the number of clients, and
the expected scaling of the load.

VII. DISCUSSION

We make the following contributions with this paper.
First, we introduce an architectural model of a dis-
tributed key-value store that simplifies the architecture
and functionality of the Spotify storage system. We then
present a queuing model that allows us to compute the
response time distribution of the storage system. Further,
we estimate the confidence range for this model, under
the assumption that the system is lightly loaded. Second,
we perform an extensive evaluation of the model, first
on our testbed and later on the Spotify operational
infrastructure. This evaluation shows that the model
predictions are accurate, with the error of at most 11%.

The reported errors result from the fact that we use
a simple model to describe, on an abstract level, the
behavior of a complex distributed system. This sim-
plicity is a virtue insofar as it allows us to predict
metrics like the response time distribution without much
mathematical and computational effort. The downside
is that applicability of the model is restricted to a
lightly loaded system; however, this corresponds to the
operational range of the Spotify storage system (see
further discussion below). To increase the accuracy of
the model, or to extend the range of load patterns for
which it can make predictions, one needs to refine the
system model. Such refinements can include, modeling

the specific software process structure in a server, the
OS scheduling policies, heterogeneous hardware, the
detailed request routing policy in the cluster, as well
as the real arrival process and service discipline of
the queuing model. The difficulty will be to identify
refinements that significantly increase the accuracy of
the model while keeping it simple and tractable.

As it turns out, the confidence range of our model
covers the entire operational range of the load to the
Spotify storage system. As we have validated through
experimentation, the performance of the system deteri-
orates when the load significantly surpass the model-
predicted confidence limit. Lastly, applying our model,
we predict for a specific Spotify backend site that the
system could handle the peak load observed during a
specific day with fewer servers, or, alternatively, that
the system with 25 servers could handle a significantly
higher load than observed, without noticable perfor-
mance degradation (for important response time limit,
which is 50 msec).

This work is important to Spotify, since latency is the
key performance metric of its storage system. The main
reason for this is that estimating latency distributions is
essential to guarantee the quality of the overall service.
Note that recent performance studies on storage systems
cover only expected latencies, which is not sufficient for
our case. The validity of the results in this paper goes
beyond the scope of Spotify’s technology. In fact, our
approach can be applied to similar types of distributed
key-value stores and other services that rely on them,
such as video streaming.

As for future work, we plan to develop a subsys-
tem that continuously estimates the model parameters
at runtime, taking into account that the resources of
the storage servers may be used by other processes
than object retrieval, for instance, for maintainence or
system reconfiguration. Based on such a capability, we
envision an online performance management system for
a distributed key-value store like the Spotify storage
system.

ACKNOWLEDGEMENTS

Viktoria Fodor provided helpful comments and sug-
gestions regarding the queuing model used in this work.

124 2012 8th International Conference on Network and Service Management (CNSM 2012)

REFERENCES

[1] G. Kreitz and F. Niemelä, “Spotify – large scale, low latency,
P2P music-on-demand streaming,” in Peer-to-Peer Computing.
IEEE, 2010, pp. 1–10.

[2] I. Sysoev, “Nginx,” http://nginx.org/.
[3] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.

Levine, and D. Lewin, “Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web,” in STOC, F. T. Leighton and P. W. Shor, Eds. ACM,
1997, pp. 654–663.

[4] L. Kleinrock, Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975.

[5] D. Mosberger and T. Jin, “httperf - a tool for measuring web
server performance,” SIGMETRICS Perform. Eval. Rev., vol. 26,
no. 3, pp. 31–37, Dec. 1998.

[6] W. Tarreau, “Haproxy,” http://haproxy.1wt.eu/.
[7] S. Godard, “iostat,” http://linux.die.net/man/1/iostat.
[8] M. Mitzenmacher and E. Upfal, Probability and Computing:

Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, Jan. 2005.

[9] M. Raab and A. Steger, ““Balls into Bins” - A Simple and Tight
Analysis,” in Proceedings of the Second International Workshop
on Randomization and Approximation Techniques in Computer
Science, ser. RANDOM ’98. London, UK: Springer-Verlag,
1998, pp. 159–170.

[10] J. Garcia, L. Prada, J. Fernandez, A. Nunez, and J. Carretero,
“Using black-box modeling techniques for modern disk drives
service time simulation,” in Simulation Symposium, 2008. ANSS
2008. 41st Annual, april 2008, pp. 139 –145.

[11] A. Lebrecht, N. Dingle, and W. Knottenbelt, “A performance
model of zoned disk drives with i/o request reordering,” in
Quantitative Evaluation of Systems, 2009. QEST ’09. Sixth In-
ternational Conference on the, sept. 2009, pp. 97 –106.

[12] F. Cady, Y. Zhuang, and M. Harchol-Balter, “A Stochastic Anal-
ysis of Hard Disk Drives,” International Journal of Stochastic
Analysis, vol. 2011, pp. 1–21, 2011.

[13] E. Thereska, M. Abd-El-Malek, J. Wylie, D. Narayanan, and
G. Ganger, “Informed data distribution selection in a self-
predicting storage system,” in Autonomic Computing, 2006. ICAC
’06. IEEE International Conference on, june 2006, pp. 187 – 198.

[14] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and
M. Uysal, “Pesto: online storage performance management in
virtualized datacenters,” in Proceedings of the 2nd ACM Sym-
posium on Cloud Computing, ser. SOCC ’11. New York, NY,
USA: ACM, 2011, pp. 19:1–19:14.

[15] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kil-
patrick, “Io performance prediction in consolidated virtualized
environments,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 5, pp.
295–306, Sep. 2011.

[16] M. Abd-El-Malek, W. V. Courtright, II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier, M. Prasad,
B. Salmon, R. R. Sambasivan, S. Sinnamohideen, J. D. Strunk,
E. Thereska, M. Wachs, and J. J. Wylie, “Ursa minor: versatile
cluster-based storage,” in Proceedings of the 4th conference on
USENIX Conference on File and Storage Technologies - Volume
4, ser. FAST’05. Berkeley, CA, USA: USENIX Association,
2005, pp. 5–5.

[17] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: amazon’s highly available key-value store,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007.

[18] A. Lakshman and P. Malik, “Cassandra: a decentralized struc-
tured storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2,
pp. 35–40, Apr. 2010.

[19] T. Schütt, F. Schintke, and A. Reinefeld, “Scalaris: reliable
transactional p2p key/value store,” in Proceedings of the 7th ACM
SIGPLAN workshop on ERLANG, ser. ERLANG ’08. New York,
NY, USA: ACM, 2008, pp. 41–48.

2012 8th International Conference on Network and Service Management (CNSM 2012) 125

