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Abstract – In this paper, we suggest a practical method
for measuring the difference between situation pictures ob-
tained independently from each other. In previous work,
we have considered the output of two independent tracking
methods, while we here consider the output from a threat
analysis/prediction system at two time instances. At two in-
stances in time, a hypothesized threat analysis/prediction
system generates future situation pictures, describing the
world at the same future point in time. Qualitative and
quantitative differences between the two future situation
pictures are then detected. The detected difference map
serves as an indication of the amount of unpredictability in
the world; or alternatively, of the ability of the threat analy-
sis/prediction system to model different areas in the future
situation picture accurately. This could either be used as
feedback in training a learning threat analysis/prediction
system, or to inform a human user about the reliability of
the future situation picture.
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1 Introduction
Modern data and information fusion systems and algo-

rithms aim to speed up the processing in the OODA loop.
This leads to the possibility of “getting inside the enemy’s
OODA loop”, giving us decision superiority.

The situation pictures and threat analyses that are the
outputs of fusion algorithms give commanders a better
starting-point when planning own forces’ future actions.
Such planning is also helped by many other kinds of deci-
sion support systems, ranging from geographical databases
to logistical support systems and tools for making simula-
tions of the enemy’s expected future behavior.

Even the best laid plans, however, often go awry. When
unexpected things occur, it is important to be able to quickly
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Figure 1: An information fusion system gives a situation
picture at 1200 hrs. A method for propagation of situa-
tion pictures in time is used to predict the situation at 1600
hrs. At 1400 hrs, the information fusion system has an up-
dated situation picture. The same method of propagation is
again used to predict the situation at 1600 hrs. We present a
method to measure the difference between the two predic-
tions. This difference gives a measure of the reliability of
the prediction method. Furthermore, it gives an indication
to a operator of the information fusion system as to which
areas of the predicted situation pictures to trust.

adapt to a new situation. The planning tools mentioned be-
fore can be used to change the current plan and adapt it to
new circumstances. Is is also important to be able to dis-
cover when a current situation picture is different from an
anticipated one. Today, this discovery needs to be done by
human operators. Since they might be preoccupied with



making plans or analyses for other parts of the battlefield, it
would be useful to have an automatic system that alerts the
human operator when re-planning needs to be done. In this
paper, we describe how such a capability could work, and
how it can be implemented for a simple example.

The idea is to compare threat analyses or future situation
pictures made at different times (Figure 1). Given a situa-
tion picture consisting of the location of, e.g., hostile units
or mobs, we hypothesize a method for predicting their fu-
ture position. In a decision support system, this prediction
is used to initiate resource allocations and planning to meet
the threat posed by the enemy. After some time has passed,
more information about the enemy is received, allowing us
to update the prediction. By comparing the new prediction
with the old, we can automatically detect if the enemy is
following the behavior suggested by the prediction method.
There can be several reasons for a discrepancy: our first pre-
diction might be wrong because is was based on too little
information, the enemy might have been forced to change
their plans, or they might have succeeded in deceiving us at
first.

When the divergence in behavior is discovered, the sys-
tem notifies the human operator of the situation. The op-
erator can then analyze the situation picture and determine
whether replanning needs to be done or not.

The work presented here is an extension of previous
work [11], where we suggested that a useful command and
control system should have several subsystems that imple-
ment the same functionality. The subsystems could use dif-
ferent algorithms to answer the same questions, one method
could for instance be slow but exact while another is fast
but approximate. Another scenario is the case where new
modules are integrated into existing systems — here it will
ease the transition for operators if they can continue to use
the old, well-known subsystem in conjunction with the new,
hopefully improved version: by showing where the meth-
ods differ, the operators will learn the new capabilities of
the system quickly.

The rest of this paper is outlined as follows. In Section 2,
we briefly describe some related work. Section 3 describes
a scenario and the hypothesized methods for prediction and
threat analysis, while Section 4 reviews the mathematics of
comparing situation pictures and threat maps. The paper is
concluded with a discussion about potential applications of
the methods, followed by a summary in Section 6.

2 Related work
With the growing amount of information flowing into

command and control systems, automatic performance
evaluation is an extremely important tool to help a human
operator decide on what information to attend to, and when
replanning is needed. We present a practical method to help
the operator make such decisions. Replanning is a vital field
in artificial intelligence, but most of its applications have so

far been rather simple systems, such as path planning for
robots (e.g., [12]). For military applications, discovering
when replanning needs to be done currently relies on man-
ual observation.

In our view, a random set [2] is the most general way
to mathematically describe a situation picture. Using the
random set representation, Mahler [5], Zajic and Mahler
[13], and Hoffman et al. [3] have employed generalized
Kullback-Leibler difference and Csiszár metrics to measure
the efficiency and correctness of fusion methods in a num-
ber of papers. Although we have a similar goal, there are
several differences between the approach taken in these pa-
pers and our work.

Firstly, the data compared in papers [5, 13, 3] is on the
form of full random sets, while our data is on the form
of probability density functions (PDF:s) or probability hy-
pothesis density (PHD) functions [7]. Obviously, the prob-
lem of defining a distance between two multi-target proba-
bility density functions over random sets is quite different
from the problem of defining a distance metric between two
PDF:s or PHD functions.

Secondly, our goal is to obtain an online quality measure
based on the difference between the outputs of two prop-
agation methods, while the goal of Mahler et al. is to ob-
tain a measure of the information content, i.e., an entropy
measure, in the multi-target probability density function, or
a measure of the difference between the obtained function
and a known ground truth.

Thirdly, the measures in [3, 5, 13] are global, while we
are interested in local measures. The desired output from
our comparison method is a “difference map” over the state-
space, that can be presented to a human operator as a basis
for decisions on replanning.

3 System
For the rest of this paper, we will let the term situation

picture refer to a list of observed and/or inferred task forces.
We will assume that each task force has certain information
associated with it. A minimum of information in a geo-
graphical situation picture is the position and speed of the
task force. However, most of the discussion applies equally
to more advanced representations, such as intent, mission,
or composition of the task force. We intend to study such
problems in more detail in the future.

An example of how the information fusion system could
work is shown in Figure 2. The left column of the figure
shows situation pictures that are obtained from a set of data
fusion methods. In this example, only one task force is
present, for clarity of presentation. It should be noted that
this is not a limitation of the comparison algorithm.

At time t1, the situation picture S1 shows that an en-
emy task force has been observed in the upper part of the
map. A commander determines that it is vital to infer
where this task force will be located at time t3. The com-
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Figure 2: A hypothesized scenario. In the left column, the situation picture from an information fusion algorithm is
shown. At times t1 and t2 respectively, two independent predictions over time of the situation picture are made. A threat
analysis algorithm is used to analyze each predicted situation picture in terms of threatened areas and range of fire of
hostile units.



mand and control system has access to a prediction method
Φ, which gives as output the estimated situation picture
S1,3 = Φ(S1, t1, t3) based on the known state at time t1.1

This prediction is used by the commander to plan ahead.
The estimated situation picture S1,3 is a probability den-

sity function over possible states with two peaks, here indi-
cated by the task force symbols with ellipses around them.
In the case of more than one task force, the estimated situa-
tion picture is represented by a random set [2, 6] structure,
e.g., a PHD [7].

A threat analysis module Ξ is also available, which com-
putes areas of visibility and range of fire [9] for enemy
forces, based on the estimated situation picture. From S1,3,
a threat map T1,3 = Ξ(S1,3) is computed using this mod-
ule. The commander might use this map along with S1,3

for planning.
At time t2, the situation picture S2 is computed. The task

force has moved onto one of the smaller roads in the lower
part of the map. The propagation of this picture to time t3
gives the estimated situation picture S2,3 = Φ(S2, t2, t3),
which is based on more evidence and propagated over a
shorter time span than S1,3, thus with sharper peaks, which
is indicated with smaller ellipses. The threat map T2,3 =
Ξ(S2,3) has a smaller threatened area than T1,3, for the
same reasons.

The scope of this paper is methods for measuring the dif-
ferences in S2,3 and T2,3, compared to S1,3 and T1,3. The
observed differences are due to two factors. The first source
of difference is noise introduced by the methods Φ and Ξ.
This part of the difference does not give the commander any
vital information about the situation picture or the behavior
of the enemy. The second source of differences is actual
change in the behavior of the enemy between times t1 and
t2; we term this part of the observed difference qualitative,
since it tells the commander about qualitative changes in
the planning, intent or behavior of the enemy.

Which differences are considered qualitative depends on
the context in which the method is employed. This is further
addressed in Section 5.

The key question for a commander using the system is:

Is there a qualitative difference in S2,3 and T2,3,
compared to S1,3 and T1,3? That is, does the
commander have to replan after receiving the sec-
ond prediction?

The key question for the designer of the system is:

How does the difference measure separate be-
tween qualitative difference and difference due to
method noise?

1The reason for including t1 and t3 as individual parameters, as op-
posed to the time of propagation t3 − t1 only, is that the propagation
might be dependent on the time of day or on the season when the propa-
gation takes place, not only on the situation picture S1.

In the next section, a qualitative difference measure is
presented, which partly compensates for method noise.

4 Measures of Comparison
In this section, we describe methods for comparing pre-

dicted situation pictures and predicted threat maps, to ob-
tain a measure of the qualitative difference over time.

4.1 Comparing Predicted Situation Pictures
The first thing that can be noted about the two propagated

situation pictures (see Figure 3) is that they have been prop-
agated over different amounts of time; S1,3 has been prop-
agated t3− t1 time units, while S2,3 only t3− t2 time units.
Now imagine that the prediction method Φ adds noise in
proportion to the propagation time. Addition of noise to a
probability density function or PHD can be expressed math-
ematically as the convolution of the function with a kernel2

of standard deviation proportional to the noise level – in
other words, “smoothing” or “blurring” the function, mak-
ing its peaks less pronounced. The noise added by the pre-
diction method Φ in rendering S1,3 can be expressed as a
kernel K(t3−t1)σ with standard deviation (t3 − t1)σ, while
the noise added to S2,3 is equivalent to K(t3−t2)σ with stan-
dard deviation (t3 − t2)σ. The noise level per time step, σ,
is a constant determined in Φ.

Thus, in order for an informative comparison between
S1,3 and S2,3 to take place, the noise (t2 − t1)σ must be
added to S2,3. If the distributions are expressed analyti-
cally, this can be achieved by convolving S2,3 with a kernel
K(t2−t1)σ of standard deviation (t2 − t1)σ:3

S∗1,3 = K(t2−t1)σ ⊗ S2,3 (1)

If the distributions S1,3 and S2,3 are instead expressed as
particle clouds [10], the diffused distribution S∗1,3 can be
generated from S2,3 by adding a random noise term sam-
pled from K(t2−t1)σ to each particle in S2,3.

A common measure for comparison of two probability
density functions f and g is the Kullback-Leibler diver-
gence [1, 4]

K(f, g) =
∫

f(x) log
f(x)
g(x)

dx . (2)

However, this measure does not suit our purposes. There
are two reasons for this. Firstly, the measure is only well
defined when

∫
f(x)dx =

∫
g(x)dx, which is the case

for probability density functions, but not for PHD func-
tions. Secondly, it is not a proper metric, since K(f, g) 6=
K(g, f) in the general case. The divergence was defined

2A kernel is here a zero-mean function that integrates to 1. In the case
of Gaussian noise, the kernel is a zero-mean Gaussian distribution. In the
case of no noise, the kernel is a zero-mean Dirac function.

3This corresponds to the convolution with the sub-unit kernel
Ddoctrine in [11].



to measure the difference between the ground truth f and
an approximation g of the ground truth, or the entropy of
a distribution f compared to a non-informative, or prior,
distribution g - not the difference between two different ap-
proximations. Thirdly, the Kullback-Leibler divergence is
a global measure. We are instead interested in a measure
that is defined over a small part of the state space. In Figure
3, the comparison is made locally for each part of the state
space defined by a square in the grid ∆S1,3.

Therefore, we use standard norms as a distance metric.
The Lp norm of a function f over a sub-area A in the state
space is defined as

‖ f ‖p,A≡ (
∫

A

|f(x)|pdx)1/p (3)

For the special case of p = ∞, we define

‖ f ‖∞,A≡ max
x∈A

f . (4)

Using this norm, the distance function ∆S1,3(A) be-
tween a certain area A in the two situation pictures S1,3

and S∗1,3 is defined as

∆S1,3(A) = ‖ S1,3 − S∗1,3 ‖p,A . (5)

This function computed for each bin in the grid (see Fig-
ure 3) gives the difference map ∆S1,3, a measure of the
qualitative difference between the two predicted situation
pictures S1,3 and S2,3.

4.2 Comparing Predicted Threat Maps
In addition to the predicted situation pictures displayed

in Figure 3, more advanced representations can be com-
pared in the same manner. One such representation is the
threat maps T1,3 and T2,3 (see Figure 4). The threat differ-
ence ∆T1,3 can be presented to the operator of the informa-
tion system to indicate areas where, e.g., placement of own
troops needs to be replanned.

5 Discussion
We see a number of different applications of this method

in military command and control systems:

Alerting the user. With the increasing amounts of infor-
mation an operator of a command and control system is
presented with, focus of attention is an important issue.
The difference measure can draw the operator’s attention
to the areas in the situation picture where the prediction has
changed. For example, in areas where a qualitative differ-
ence (see Section 3) is detected, a “red flag” can be raised
(as in Figure 1).

As discussed in Section 3, whether the difference is qual-
itative is dependent on the context in which the method is
employed. One alternative could be to learn [8] rules for
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Figure 3: Comparison of predicted situation pictures with
compensation for prediction noise.

the shape and level of qualitative differences, versus differ-
ences due to method noise, possibly in interaction with a
human operator.

The potential reasons for qualitative differences in the
prediction are many, such as an erroneous motion model in
the prediction model, the fact that the enemy has changed
their plans, or that the enemy has actively deceived us. A
difference module can of course not give information on
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Figure 4: Comparison of threat maps.

what has happened, only alert the operator when replanning
is needed, indicating in which areas of the situation picture
the qualitative difference was detected.

Learning systems. It is also possible to use the differ-
ence map to automatically improve the information fusion
methods in the system. It could, e.g., be used as input to an
automatic replanning tool or for reinforcement learning [8]
in an adaptive prediction method.

Operator education. In a training or war-game situation,
the method could be used to illustrate the effect of actions
taken by training operators of a command and control sys-
tem. By simulating the outcomes of multiple choices the
pupil could have made, the system or supervisor can later
show the pupil exactly what were the consequences of his
or her decisions.

Alternatively, if the pupil intervenes in the fusion process
and changes an intermediate result, the system can process
both the operator-changed and the old information and
maintain two different end-results. A comparison module
can then check the two situation pictures and the resulting
differences be presented to the operator.

6 Conclusion
A method for measuring the qualitative difference be-

tween predicted situation pictures, made with the same sys-
tem at different times, is presented. The goal is to help a

human operator attend to events in the predicted situation
pictures requiring replanning or other forms of action.

We use the Lp norm as a measure of difference between
the two situation pictures, expressed as probability density
or PHD functions. The measure is local, and computed over
a grid in the state-space. The method also compensates for
differences in the amount of noise in the predicted situation
pictures. This is done by convolving the least noisy pic-
ture with a kernel with a standard deviation dependent on
the difference in time span over which the predictions were
made. The method can also be used to measure the dif-
ference between, e.g., threat maps evaluated from the pre-
dicted situation pictures.
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