
Robust Tracking of Unknown Objects Through Adaptive Size
Estimation and Appearance Learning

Alessandro Pieropan Niklas Bergström Masatoshi Ishikawa Danica Kragic Hedvig Kjellström

Abstract— This work employs an adaptive learning mecha-
nism to perform tracking of an unknown object through RGBD
cameras. We extend our previous framework to robustly track
a wider range of arbitrarily shaped objects by adapting the
model to the measured object size. The size is estimated as the
object undergoes motion, which is done by fitting an inscribed
cuboid to the measurements. The region spanned by this cuboid
is used during tracking, to determine whether or not new
measurements should be added to the object model.

In our experiments we test our tracker with a set of objects
of arbitrary shape and we show the benefit of the proposed
model due to its ability to adapt to the object shape which
leads to more robust tracking results.

I. INTRODUCTION

Many successful object tracking methods are typically
based on a combination of detection, tracking and learning
of the object model [1]. For applications in controlled
environments, e.g. factory automation, a model of the object
is built beforehand [2] reducing the problem to detection
and tracking. However the process of building the model
can be cumbersome. It requires either a specialized set-
ting/equipment or a large amount of hand-labeled images.
In both cases the amount of manual work required is high.

Alternatively, there are general methods that can track an
object starting from a partial view and employing learning to
build a complete representation of the object online [3], [4].
In such a case, the object is represented as a set of patches or
interest points which describes the appearances of the object.
New appearances are accumulated to the representation while
the object moves or rotates.

Such an approach dramatically decreases the amount of
supervision since the only required manual operation is the
initialization, usually using a bounding box. However the
method needs a mechanism to understand if an observed ap-
pearance belongs to the object. Incorporating the background
as part of the object model increases the chance of failure
of the tracker. This problem is often referred to as drifting
due to the tracked region drifting over to the background.

In our previous work [5] we proposed a general tracking
framework that can estimate the six degree of freedom
(DOF) pose of an unknown object and simultaneously build

This research has been supported by the EU through ROBOHOW,
IST-FP7-Collaborative Project-288533 and by the Japan Society for the
Promotion of Science (JSPS).

AP, HK and DK are with CVAP/CAS, KTH Royal Institute of Tech-
nology, Stockholm, Sweden, pieropan,dani,hedvig@kth.se. NB
and MI are with Ishikawa Watanabe Lab, University of Tokyo, Japan,
niklas bergstrom,ishikawa@ipc.i.u-tokyo.ac.jp.

The GPUs used for this research were donated by the NVIDIA Corpo-
ration.

Fig. 1. Tracking and incremental learning. Initially (top left) the method
knows only the appearance of the object facing the camera. Its depth
is furthermore unknown. Current appearance measurements are used to
estimate the pose of the object and together with depth measurements adjust
the inscribed cuboid (right). As new sides of the object become visible (mid
and bottom left), the cuboid is used to determine which measurements are
added to the object model (blue points) and which are discarded (red points).

a model of the object, represented as a sparse point cloud.
An inscribed cuboid is used to bound the complexity of
the learning procedure and mitigate the drifting problem
occurring when learning the background. In addition to a
manually provided initial bounding box, the tracker required
knowledge of the depth of the object. Otherwise it was
assumed that the depth was similar to the smaller of the
initial (known) width and height.

In the present we move one step more towards gener-
ality by proposing a method that can adjust the learning
mechanism dynamically to the estimated size of the object
allowing our framework to work without knowing the size
of the object beforehand.

The main contribution is an adaptive method that improves
the stability of the tracker by allowing to learn the depth of
the object online.

As the object begins to rotate, as in Fig. 1, we seek the
depth of the object using the side corresponding to the face
of the cuboid with greatest visibility. Then we employ a set
of particles to explore the surface of the object and estimate

the depth through consensus. The estimation is furthermore
stabilized over time using a mean sliding window filtering
technique. The result is then used to dynamically adjust the
model of the object and learn new appearances accordingly.

Experiments show that the proposed method improves the
robustness of the previously proposed tracking framework
by introducing a more general approach through reducing
the information needed in the initialization step.

The paper is structured as follows. After discussing the
related work in Sec. II we present our adaptive tracker
method in Section III. Quantitative experiments are presented
in Sec. IV. Finally conclusions are discussed in Sec. V.

II. RELATED WORK

Existing methods to track objects tend to be part of one of
two categories. Model-based methods can robustly track an
object whose appearance and shape are known beforehand.
Some methods are able to estimate the pose of textureless
objects relying solely on the shape or the edges of an object.
This is particularly useful in an industrial environment to
recognize metal parts. [6] proposes to track an object by
rendering its model and compute the overlap with the edges
found in the image. [7] is able to estimate the pose of an
object with a monocular camera and its CAD model. [8]
uses depth sensors to compute the pose directly in 3D space.
Alternatively, in case the objects are textured, it is possible
to compute the pose of an object by mapping the features of
the object to the image [9]. However building the model of
the object offline is a cumbersome procedure that requires a
lot of manual work. It can be done using either a specific
setting [10] or a large amount of hand tuned images [11].

On the other hand, there is a large spectra of generic
methods able to track unknown objects. In [12] a method
to track an object using mean shift is proposed, while a
segmentation based method is used in [13]. A widely used
approach is tracking-by-detection [14]–[16]. The localization
of the object is performed using a bounding box as initial-
ization and some kind of learning technique is employed
to estimate the new position. In [17] boosting is employed
while structured output SVM is used by [4]. The key aspect
of all those methods is the ability to learn new appearances
of the object allowing to update the model of the object
online. However there is the risk that the learning strategy
will include the background as part of the model causing the
tracker to drift. Some methods are more prone to this since
they apply an aggressive learning strategy [3]. Alternatively,
no learning is used, and it is assumed that the appearance of
the object does not change as in [18]. In this case however,
the object is lost when this assumption does not hold.

All these methods require very little supervision but the
object pose estimation is often expressed as an axis aligned
bounding box. While this estimation can be enough for
computer vision application (e.g. video surveillance), it is
not enough for robotics application especially when the robot
needs to interact with the object.

In our previous work [5], we presented a general tracker
able to update the appearance of an object. Our learning

strategy used an inscribed cuboid within the object to bound
the complexity of the learning problem and prevent drifting.
This is in the spirit of [19], where simple shapes such as
cubes or cylinders are fitted within the object to learn new
appearances and track it. Our method works robustly under
the assumption that the depth of the object is known. [19]
works if a simple shape can fit the actual object since the
new appearances learned are projected on the surface of the
shape. In the present work we want to move one step further
having a completely adaptive approach that can work with
objects that are very far from being rotationally symmetric.

III. METHOD

Our goal is to track an unknown object while it is
moved, estimate its pose and accumulate new appearance
measurements to update its representation. The object is
expressed as a sparse cloud of 3D interest points P and its 6
DOF is described by its centroid CCC and the rotation matrix
RRR.

Given the initial position of the object in the first frame I1
of sequence of RGBD images, the object pose is estimated
through the rest of the sequence I2, ..., In. Since the object
shape is unknown and only one particular 3D view of the
object is visible, the actual 3D size of the object has to
be calculated during tracking. This is done by dynamically
adjusting an inscribed cuboid representing the spatial extent
of the object. Initially however, only the front of the object
can be seen. Therefore tracking is initialized with a 2D
bounding box representing the front face of the inscribed
cuboid. The initial object model is represented as a sparse
cloud of interest points PPP j extracted within the area defined
by the bounding box. Each 3D point PPP j has a corresponding
2D keypoint ppp j with an attached feature descriptor. The
keypoints are used to calculate a sparse optical flow and
perform feature matching. The first inscribed cuboid ICICIC1 will
be used in the learning mechanism.

The summary of our algorithm is shown Alg. 1, compared
to our previous work [5], there are significant changes in the
initialization and in the learning procedure. While we refer to
the original paper for details on how optical flow and feature
matching are employed to estimate the position and pose of
the object, we here reiterate the visibility concept since it is
central to the depth estimation as well as the learning of new
appearances.

The following notation is used in the rest of the paper:
• A frame Ii = (RGBi,RGBDi) consists of an RGB image

and a the corresponding 3D points.
• ICICIC correspond to the inscribed cuboid used for learning.
• CCCi,RRRi is the 6 DOF pose of the object at time frame i.
• The object model consists of a sparse cloud of 3D

points PPP, 2D keypoints ppp and corresponding BRISK [20]
feature descriptor.

• VVV c
i ,c 2 {F,L,R,Ba,T,Bo} indicates the visibility of the

faces of the cuboid (F=front, Ba=back, L=left, R=right,
T=top, Bo=bottom) that are visible at frame i.

• An observation ppp i = [ppp j
i] = ([ppp j

i], [PPP
j
i]) is an array of

Input: I1, ..., In,b1
Result: b2, ...,bn, IC2, ..., ICn
ICICIC1 init cube(b1);
ppp1 extract points(I1);
PPP label points(ppp1,b1);
c F ;
for i 2 2 : n do

ppp i�1 PPPV
i�1;

p̃̃p̃p i track points(Ii, Ii�1,ppp i�1);
RRRi get rotation(p̃̃p̃p i,PPP);
nnnc vote(p̃̃p̃p i,RRRi,PPP);
CCCi dbscan(nnnc,e,l);
{ICICICi,bbbi} update cuboid(ICICICi�1,CCCi,RRR);
p̂̂p̂p i extract points(Ii);
p̂̂p̂pm

i match points(PPPV c
, p̂̂p̂p i);

ppp i update point set(p̃̃p̃p i, p̂̂p̂pm
i);

Ṽ̃ṼV get visibility(RRR, CCC);
d estimate size(ICICICi);
ICICICi adjust cuboid(ICICICi,d);
PPP learn(PPP, p̂̂p̂p i\p̂̂p̂pm

i ,Ṽ̃ṼV ,RRRi,ICICICi);
c pick visible(Ṽ̃ṼV);

end Algorithm 1: Pipeline of the algorithm.

keypoints with attached feature descriptors pppi and cor-
responding 3D points PPPi extracted at frame i.

• PPPV c corresponds to the subset of points that has been
extracted using the faces VVV c.

• DDDi = ddd j
i is the set of particles used to estimate the size

d of the object.
• µµµ i is the normal vector of face i.
• FFFi is the set of appearance measurements extracted from

an image frame delimited by a face of the inscribed
cuboid.

• Subscript i refers to the number of the image in the
sequence, superscript j refers to the index of a point.
If only the subscript is used the variable indicates an
array.

A. Initialization

The manually provided bounding box bbb1 is used to initial-
ize the object model. BRISK features [20] are detected in the
initial frame and the corresponding keypoints are extracted
pppi. Each keypoint is associated to its corresponding 3D point
PPPi. All the points pi,Pi within the space defined by bbb1 are
added to the model of the object only if PPP j

i has a valid
depth value, and discarded otherwise. Points can have invalid
depth e.g. if they are located close to the object boundary

µ

R

µ

F

µ

T

µ

L

µ

Ba

µ

Bo

µ

R

µ

F

µ

T

µ

L

µ

Ba

µ

Bo

µ

R

µ

F

µ

T

µ

L

µ

Ba

µ

Bo

µ

R

µ

F

µ

T

µ

L

µ

Ba

µ

Bo

Fig. 2. In the first image the front face is facing the camera, while the
right face is barely visible. As the object rotates the right face becomes
more visible while the visibility of the front face decreases.

or in very reflective areas. All the keypoints outside the area
delimited by the bounding box are marked as background.
The initial bounding box bbb1 is also used to initialize the front
face of the inscribed cuboid and to position it within the
object. The size of this cuboid will subsequently be updated
as the object starts to move. Its sole purpose is to prevent
including background into the object model by only learning
new appearances that reside within the cuboid.

B. Visibility of the cuboid

Depth estimation and learning new appearances depends
largely on to what extent a certain face c of ICICIC is facing
the camera. We refer to this as the visibility V c of the face.
The pose of the inscribed cuboid is given by the estimated
rotation matrix of the object RRRi and the computed object
centroid CCCi. It is then possible, using the normal of the faces
VVV , to calculate the area of each face visible to the camera as
in Eq. (1). A negative value means that the object is facing
away from the camera.

V c = µµµc ⇤RRRi[:,2] 2 [�1,1] (1)

The visibility concept is illustrated in Fig. 2. The tracker
is initialized in the first image, so only the front face of
the cuboid is visible to the camera (blue). As soon as the
object rotates, the cuboid is rotated according to RRRi and it
is translated according to the newly calculated CCCi. The right
face of the cuboid (green) becomes more visible.

C. Evaluating the current pose

As discussed in the introduction, a tracker that learns
the appearance of the object is prone to drifting caused
by the inclusion of the background in the object model.
A very aggressive learning technique tends to drift more
than a conservative one. Therefore it is crucial to define a
good mechanism to learn appearance candidates. The use
of the inscribed cuboid allows our method to filter out the
background. However this alone is not enough since the
estimated object pose may be incorrect. As a result the
cuboid may be not inscribed in the object and may include
parts of the background. To detect such scenarios we analyze
the temporal signature of the estimated pose in order to
detect sudden changes that are likely to correspond to errors.
In order to do that we keep a history of the estimation in
the past t frames represented as a set of the quaternions qqqi

e1

e2
Fig. 3. Depth estimation. Particles are spawned on the surface of the object
starting from the visible edge of the cuboid (red edge). They will explore
the surface following a linear path. Each particle will then vote for the
estimated depth and the cuboid will be adjusted accordingly (blue edge).

Fig. 4. Example showing the estimation of the depth using particles. In the initial frame the object is slightly rotated and the particles starts to explore
the object. As soon as the object rotates the inscribed cuboid starts to increase. Due to noise in the depth data some particles do not provide a provide a
good estimate. Therefore the average (yellow box) is unstable. The sliding window estimation (green box) is more consistent and stable over time.

extracted from the estimated RRRi. We compute the median
angular distance with the quaternions computed in the last t
frames. Therefore the computation of a low median angular
distance DQ indicates a robust estimated pose while a high
value represent a noisy estimation. Our learning mechanism
and depth estimation are triggered only if the value of this
signature is lower than a certain threshold g . More details
can be found in our previous work [5].

D. Estimating the depth of the object

After initialization, the front face F of the cuboid is visible
as shown in Fig. 2 and Fig. 3. The depth of the object is
still unknown. Assuming orthographic projection, the depth
can be completely known as soon as the objects yaws or
pitches by 90 degrees, corresponding to a complete side
view with respect to the initial position. We use this fact
to continuously estimate the depth of the object as it starts
rotate until a 90 degree rotation is reached. Upon rotation, a
set of particles DDD is initialized on the surface of the object
with the purpose of estimating the depth. We found that
a particle based approach, described below, is more robust
to noise in the estimation if compared to a segmentation
approach such as connected components [21]. As we have
shown in [22], a segmentation approach is very sensitive to
the proximity of other objects. A segment can propagate to
objects interacting with the tracking target (e.g. human hand
rotating the object) causing to overestimate the size of the
object. With a particle based approach, there is indeed the
possibility that some particles will spread over another entity,
but the voting mechanism will filter out these.

Each particle pppk independently estimates the object depth
and votes for di, the depth of the object in frame i. As
explained in Sec. III-C, such estimation is performed only
when the estimated pose of the object in the current frame
is considered to be reliable.

First the visibility of each face V c
i ,c 2 {R,T,Bo,L} is

calculated as in Eq. (1), where a value of one represent a face
straight in front of the camera. Particles are then initialized
on the edge eee = [e1,e2] shared between face F and the face
with the highest visibility, which is chosen as follows:

c = argmax
c

VVV c with c 2 {R,T,Bo,L}. (2)

Fig. 3 illustrates this procedure. The initial position of the
n particles on the edge eee in image coordinates is defined by

the following equation:

ddd1 = {dk
1[x,y] | x = xe1 + k ⇤ xe2 � xe1

n
,

y = ye1 + k ⇤ ye2 � ye1

n
(where 0 < k < n)} (3)

For a frame at time i The particles are then moved
independently in the image in the direction of a vector ~v~v~v,
perpendicular to the edge e until the stop criteria has been
reached.

dk
s+1 = dk

s +a~v (4)

The stop criteria is defined as follows. The 3D points
corresponding to the particles dddk

s are projected to points DDDk
s

on the surface of the object along the normal of the selected
face c. If there is a discontinuity along the resulting 3D path
dddk

1, dk
2, ...,d

k
s , the last particle is taken as one vote for the

estimated depth, and the particle update stops. The path is
considered to be discontinuous at step s if

kDDDk
s �DDDk

s+1k> i (5)

The estimated depth di at frame i is the median of the
measurements obtained by the n particles. Fig. 3 shows an
example where 3 particles are spawned along eee. When the
particles meet a discontinuity they stop and the last valid
depth reached is used to compute the median depth of the
object for that specific time frame.

Since the variance of the depth estimation is high due
to noise in the observations, we employ a temporal sliding
window mean filter technique,

d̂i =
1
t

i

Â
k=i�t+1

dk, (6)

to make the estimation stable over time. Fig. 6 shows the
estimation of the depth of an object while it is rotating. It
can be noticed that the estimation performed at a specific
time point (yellow line) is noisy before the object reaches a
considerable side view (red line) but the learning mechanism
already accumulates new appearances used to track the object
while the estimation is noisy. The sliding window average
smooths the signal (green line) providing a more stable depth
estimation to the learning procedure.

Fig. 4 shows an example of the estimation. The yellow box

Fig. 5. Results achieved using the proposed method to estimate the size of the object online. The yellow estimation in the result obtained trough voting
in the current frame while the more stable green line shows the sliding window average over time. The single frame estimation stabilizes the closer object
is to a full size view as explained in Fig.6.

Fig. 6. Plot showing an example of the estimation. The object is rotated
so that the visibility of the newly visible face increases (red line). The
estimation performed with the particles (yellow line) is very unstable until
a certain visibility is reached due to noise and reflectance. The temporal
average (green line) is smoother and it converges to the actual depth (blue
line). The gray dashed line indicates the time frame when the learning
procedure starts since the minimum visibility required is met.

shows the depth estimation in the current frame, while the
green box shows the estimation performed with the sliding
window average. It can be noticed that the average over time
d̂i increases steadily and stabilize around the actual depth of
the object.

E. Learning new appearances and updating the model

An appearance candidate that can be included in the model
is not evaluated only in terms of the stability of the estimation
(Sec. III-C). The model is updated only if the quality of the
new candidate Fi

new is higher that the current learned face
Fi

old . The quality is determined by the current visibility value
V i. The closer the value is to 1, the closer the object is to
the ideal situation of having a completely new part of the
object in front of the camera meaning that we are confident
that an accurate depth is estimated.

Fi =

(
Fi

new i f V i
new >V i

old ^ DQi
new < DQi

old

Fi
old otherwise

(7)

Fig. 7 shows an example of the procedure in case the
quality of the current model is higher to what has been
learned so far. First the inscribed cuboid is adjusted to the
newly estimated size (blue box). Secondly, 3D points PPPi,
keypoints ppp i and feature descriptors are extracted from the
area of the object contained in the updated inscribed cuboid.
Then they are incorporated in our model using the following
equation:

rmrmrm j
1 =RRR�1

i (PPP j
i �CCCi) (8)

where RRRi,CCCi is the estimated pose of the object in the
current frame. rmrmrm is the position of the point of interest
extracted with respect to the pose of the object in the
initial frame RRR1,CCC1. Note here the function of the inscribed
cuboid which decides which 3D points from RGBDi that are
included in the model update.

In this section we described the adaptive learning method
that we employ in our tracking framework. We now move on
to the experiment section where we test our tracker on a set

Fig. 7. Points in green and red are currently used to track the object and
calculate its pose. They are in different color because they are associated
to different faces of the cuboid. During the learning procedure the tracker
estimated an increased size of the object and the cuboid is updated (in blue).
New keypoints are extracted from the updated part (blue points) and added
to the model.

of objects of arbitrary shape. As an example Fig. 1 shows
the tracker working with a bag of cookies while in Fig. 5 a
cup is being tracked. The pose estimated by our framework
will be evaluated against our previous method.

IV. EXPERIMENTS

We perform qualitative experiments to test the robustness
of the proposed method compared to our previous work
[5]. First we describe how the parameters introduced are
set in Sec. IV-A, then we evaluate our method in terms of
robustness of the pose estimated while the object moves in
Sec. IV-B. Finally we analyze the framework computing time
and its scalability to potentially track multiple objects.

A. Parameter settings

The proposed method starts to learn new appearances
when an unknown face is visible more that a value k > 0.5.
The quality measurement g of a learning candidate based
on the median quaternion distance has to be lower than 10
degrees. The number of particles n generated to estimate the
depth are 10. Each particle stops exploring the surface of an
object if the distance between two consecutive 3D points i
is less than 1 cm.

B. Benchmark

The goal is to evaluate the behavior of the tracker when
the rotational symmetric assumption does not hold. There are
two different scenarios where this criteria is not met: The
object depth is (1) smaller or (2) bigger than the observed
width or height that are used to guess the depth in the
previous method. In the first row of Fig. 10(a,b,c) we show
some results achieved using objects that fall in category
(1). The trackers are initialized with a bounding box within
the boundary of the visible area of the object. When the

Fig. 8. Comparison of the proposed method with our previous tracker using
an elongated object as in Fig. 10(c). As soon as the object rotates on the side
more features are learned. The yellow dashed line indicates the time point
when then tracker starts to use the features on the side. Our method can
use more features and have a more robust pose estimation. Upon tracking
the back face of the object, indicated by the green dashed line, our previous
method loses the object since there are not enough features to estimate the
pose.

Fig. 9. ROS tracking framework preview.

object yaws, the learning procedure starts to accumulate new
appearances of the objects. The proposed method adapts the
dimension of the inscribed cuboid according to the estimated
depth. It can be seen that the cuboid grows until it converges
to the real size of the object. Features are extracted from the
area of the object delimited by the lateral side of the cuboid,
increasing the number of features on that side used for
tracking. In the second row of Fig. 10(a,b,c) the previously
proposed tracker is used. The cuboid in those examples is
not adjusted and some parts of the background are inside
the area delimited by the cuboid. Therefore appearances of
the background are included in the model of the object upon
learning, causing the tracker to drift. We use objects that fall
in category (2) in Fig. 11(a,b). When the object yaws the
tracker increases the size of the cuboid allowing to extract
features from a bigger portion of the object making the result
more stable. In the second row of Fig. 11(a,b) our previous
method is used. It can be noticed in Fig. 11(b) that after a
270 degrees rotation the previous tracker estimates the pose
incorrectly since not enough appearance measurements are
learned for tracking.

Fig. 8 shows a plot comparing the number of features used
for tracking in the experiment in Fig. 10(c). This visualizes
the importance of having a correct estimate of the object size
in order to maintain good tracking.

C. Performance

The current implementation of the algorithm has been
tested on a desktop computer with an Intel core i73687U
using a single core. The average running time to estimate
the pose of an object with an RGB-D frame extracted with
Kinect 1 is 13 milliseconds. The average running time with
Kinect 2 is 28 milliseconds.

D. Scalability

The most time consuming operations performed by the
tracker are the computation of sparse optical flow and the
extraction of features in an image. Those operation are
performed globally on the image, so the performance of
the tracker will not be greatly affected by an increasing
number of objects. The important factor that influence the
performances are the number of features extracted from an

(a) Wide box: the object depth is shorter than its width and height. The results of the proposed method are shown in the first row.

(b) Wide box: the object depth is shorter than its width and height. The results of the proposed method are shown in the first row.

(c) Pack of biscuits: arbitrary shaped object with its depth smaller than its width or depth. The results of the proposed method are shown in the first row.
Fig. 10. Results achieved using the proposed method against our previously presented tracker [5] using objects that fall in category (1). The depth of the
object to track is smaller than its width or height therefore our original method started to add appearance measurements of the background to the object
model causing the tracker to drift.

image. Highly textured objects and very cluttered environ-
ments allow to extract more features increasing the cost of
matching the features and clustering the votes. However both
steps could easily be parallelized on a graphics card.

E. Tracking Software Package

The proposed method is part of a larger ROS-based open
source package that will be released under the BSD-license.
The package allows to perform 2D tracking of unknown
object with monocular cameras [23] and 3D tracking with

RGBD camera. We also provide code to use different cam-
eras with the tracker and detailed instructions how to use
it.

V. CONCLUSIONS

In this paper we present a framework to detect, learn and
track unknown 3D objects that estimates the size of the
object online and adapts its learning strategy accordingly.
Our method is able to track online an unknown object of
an arbitrary shape with an average running time of 13 mil-

(a) Elongated cylinder: rounded shape object with the depth bigger than its height or width. The results of the proposed method are shown in the first row.

(b) Elongated box: the object is rotated 270 degrees on the y axis. The results of the proposed method are shown in the first row.
Fig. 11. Results achieved using objects that fall in category (2). The object depth is bigger than expected therefore the tracker has a more robust estimate
of the pose adjusting the cuboid and extracting more feature points.

liseconds using Kinect 1. We compared our method against
our previous work [5] showing consistent improvements in
the estimation of the pose making the tracker less prone to
drift. Our method is part of a bigger ROS-based package
that will be released soon allowing researchers to quickly
track unknown objects in experiments without the burden of
building the model of the object.

REFERENCES

[1] Y. Wu, J. Lim, and M-H. Yang. Online object tracking: A benchmark.
CVPR, 2013.

[2] A. Pieropan, G. Salvi, K. Pauwels, and H. Kjellström. Audio-visual
classification and detection of human manipulation actions. In IROS,
2014.

[3] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection.
PAMI, 7(34):1409–1422, 2012.

[4] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking
with kernels. In ICCV, 2011.

[5] A. Pieropan, N. Bergström, M. Ishikawa, and H. Kjellström. Robust
3d tracking of unknown objects. In ICRA, 2015.

[6] P. Azad, D. Munch, T. Asfour, and R. Dillmann. 6-dof model-based
tracking of arbitrarily shaped 3d objects. In ICRA, 2011.

[7] M. Ulrich, C. Wiedemann, and C. Steger. Cad-based recognition of
3d objects in monocular images. In ICRA, 2009.

[8] T. Schmidt, K. Hertkorn, R. Newcombe, Z. Marton, M. Suppa, and
D. Fox. Depth-based tracking with physical constraints for robot
manipulation. In ICRA, 2015.

[9] Karl Pauwels and Danica Kragic. Simtrack: A simulation-based
framework for scalable real-time object pose detection and tracking.
In IROS, 2015.

[10] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel. Bigbird: A
large-scale 3d database of object instances. In ICRA, pages 509–516,
May 2014.

[11] Autodesk. 123d catch. http://www.123dapp.com/catch,
2015.

[12] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-
rigid objects using mean shift. In CVPR, 2000.

[13] N. Bergström, M. Björkman, and D. Kragic. Generating object
hypotheses in natural scenes through human-robot interaction. In
IROS, 2011.

[14] S. Avidan. Support vector tracking. PAMI, 26(8):1064–1072, 2004.
[15] S. Avidan. Ensemble tracking. PAMI, 29(2):261–271, 2007.
[16] R.T. Collins, Yanxi L., and M. Leordeanu. Online selection of

discriminative tracking features. PAMI, 27(10):1631–1643, 2005.
[17] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-

line boosting. In BMVC, 2006.
[18] G. Nebehay and R. Pflugfelder. Consensus-based matching and

tracking of keypoints for object tracking. In WCACV, 2014.
[19] T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze. Blort-

the blocks world robotic vision toolbox. Proc. ICRA Workshop Best
Practice in 3D Perception and Modeling for Mobile Manipulation,
2010.

[20] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary Robust
Invariant Scalable Keypoints. ICCV, November 2011.

[21] M. B. Dillencourt, H. Samet, and M. Tamminen. A general approach
to connected-component labeling for arbitrary image representations.
ACM, 1992.

[22] A. Pieropan and H. Kjellström. Unsupervised object exploration using
context. In ROMAN, 2014.

[23] A.Pieropan, N.Bergström, H.Kjellström, and M.Ishikawa. Robust and
adaptive keypoint based object tracking. Advanced Robotics, 2015. In

press.

