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Abstract

This paper presents an approach to articulatory inversomguau-
dio and video of the user’s face, requiring no special matkéhe
video is stabilized with respect to the face, and the moutfore
cropped out. The mouth image is projected into a learnegemie
dent component subspace to obtain a low-dimensional reptzs
tion of the mouth appearance. The inversion problem isdckat
as one of regression; a non-linear regressor using relevaator
machines is trained with a dataset of simultaneous imagesaib-
ject’s face, acoustic features and positions of magnetis gtued
to the subjects’s tongue. The results show the benefit ofyusith
cues for inversion. We envisage the inversion method to kieopa
a pronunciation training system with articulatory feedbac
Index Terms: audio-visual to articulatory inversion.

1. Introduction

We are in the process of creating an automatic languagergain
system, which gives the user articulatory feedback on thatpr-
ciation [1]. One of the core challenges is the resynthesithef
user’s articulatory movements from audio and video, i.e pitob-
lem of audiovisual-to-articulatory inversion.

There are two approaches to inversion, a generative agsalysi
by-synthesis approach [2, 3, 4], and a discriminative agnd5,

6, 7, 8]. Like all generative approaches, inversion-bytsgsis is
computationally demanding, and requires a generative hufde
the tongue and vocal tract. The downside of the discrimieati
approach is that it requires large volumes of labeled tnagiciata.
In this paper, we follow the discriminative approach.

Previous attempts [3, 5, 6, 7, 8] at discriminative visual-t
articulatory or audio-visual-to-articulatory inversitiave shown
that important information on the tongue position may bengdi
from the speaker’s face. All these studies however used 3fibmo
capture of the face, while in this paper, we investigate trssibil-
ities of reconstructing the tongue shape from markerledsosof
the face. For the computer assisted pronunciation traisystem
we envisage [1], this is necessary since the need for madkers
blue lipstick would compromize the usability of the system.

Most existing methods for extracting information from face
video rely on extracting the lip contours, either for lipdking
or for parameter extraction. The lip countours are modeked u
ing snake-like methods [9, 10] or data driven principal comgnt
analysis (PCA) methods [11, 12, 13]. In contrast, we do not at
tempt to explicitly model the lip shape, for two reasons.sthr
tracking the lips is difficult and computationally demarglto do
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robustly [9]. Secondly, important information, such asdihg in-
dicating lip protusion, and visibility of the teeth and tamgg is not
present in the lip shape.

Instead of tracking the lips, we track the face as a whole, [14]
which is less deformable and easier to track. We then staftitie
lips in each image and extract the mouth region. The artictta
information in this region is represented in terms of thesjpeh-
dent components of the lip image.

The approach is similar to methods used in [11, 13], with the
execption that these studies stabilized the images byitgtke
lips themselves. In [15] features in the face were tracketl)ip
contours were then extracted and used as a basis for reicognit
Saenko et al. [16] do not detect lip contours, but insteadaekt
binary articulatory mouth features. Although robust fquation
between a small set of words, the approach renders a quitsecoa
representation that might be unsuitable for inversion.

We explore the possibilities of reconstructing the tondwps
from the independent components of the lipimage, from thesic
tic signal, and from combinations thereof.

2. Data Acquisition

The midsagittal position of six electromagnetic articubgzhy
(EMA) coils on the tongue, jaw, upper incisor and upper lipave
recorded simultaneously with the audio signal and videohef t
subject’s face [17]. The data from the three coils on the teng
Tgl-Tg3 (approximately 8, 20, 52 mm from the tip, respetfive
and on the jaw were used in this study.

The subject was a female speaker of Swedish, judged as highly
intelligible by hearing-impaired listeners. The corpusdign this
study consisted of 63 symmetric VCV words with M1, u] and
C:[p) t) k'r b) d'r gw f'r S) g) ﬁ) m'r n) 1]1 1) I-.‘ rl.1 t'l dJ V1 .ﬂ EaCh Word
appeared only once in the training set.

3. Data Processing

3.1. Speech Acoustics

The audio signal was originally sampled at 16 kHz. For carrel
tion with the articulatory data, the audio signal was didideto
frames of length 24 ms with a shift of 16.67 ms. Each acoustic
frame was pre-emhasized and multiplied by a Hamming window.
A covariance-based LPC algorithm [18] was then applied t© ge
erate 16 line spectrum pairs (LSP), which are closely rdlaig¢he
formant frequencies and the vocal tract shape [5, 6, 8].

To enable correlation with the PAL video stream, the speech
signal was finally resampled with linear interpolation to 25,
giving a sequence of 2101 17-dimensional vectorsconsisting
of the 16 LSP coefficient and the RMS amplitude in each frame.
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Figure 1: ICA base for lip images. (a) Templai®,. (b-z) The first 25 independent componenislearned from a set oV = 472

difference images; = my; — my.

3.2. Video Data

The video had a frame-rate of 25 Hz, each frar6@ x 576 pixels.
The subject was wearing white markers for a 3D motion capture
system, but they were not employed in the lip parameter etkbra

The subject’'s mouth was stabilized in the image by tracking o
the speaker’s face [14]. After down-sampling, a 25 Biz,x 23
pixel video of the mouth was obtained.

A low-dimensional representation of the mouth was learned
according to the following. Consider a set/fmouth imagesny.
Subtract a template imag®, with neutral lip pose (Figure 1a)
from myg, the R, G and B bands subtracted separately. The differ-
ence image can be represented as a column vegter my, —mg
of sized, with X = [x1,...,xn]. A projection of these vectors
onto a base&” = [ci,...,¢c,], wheren < N,n < d can be
expressed aX ~ CV whereV is a parameter matrix in the sub-
space defined by'. The baseC should be selected to represent
the data seKX as well as possible.

This can be done in a number of ways, of which two are princi-
pal component analysis (PCA) [11, 12, 13] and independemt co
ponent analysis (ICA) [19]. Using PCA/ is selected so that the
columns represent the largest principal components (eigenvec-
tors) of the data set. In ICAY' is instead selected as themost
informative statistically independent components of thiadet — a
more compact representation of the dataset than PCA. Irtudy s
we hence employed ICA (Figure 1).

All difference framesxy, in the training set were now projected
onto the learned subspa€e Withn = 50 andd = 33x23x 3, we
obtained a sequence of 2101 vectegswhich were approximate
representations of the mouth images. (Figure 2). The effect
of different compression rate$ on the representation of visual
articulatory features is discussed in a separate comimty.stu

3.2.1. The White Motion Capture Markers

The subject was wearing reflective markers for the 3D motags ¢
ture system [17]. These markers were not used in this stugly, n
ther in the stabilization nor in the ICA learning. Howevenget
markers clearly affected the component base (Figures.1b-z)

(a) Orig. /1/ (b) ICA 1/ (c) Orig. /p/ (d) ICA /p/

Figure 2: ICA representation. (a) Original frame;,, sound/1/.
(b) Reconstruction of the same franmey + 37 vk ;cq, USING
n = 50. (c) Original framemj, sound/p/. (d) Reconstruction of
the same frameng + X7, vy ;c;, usingn = 50.

The question is if the markers improved or worsened the re-
sults. The reconstruction in Figure 2b indicates that thekera
do not help in reconstruction; only four of the markers in Figure
2a are reconstructed properly in Figure 2b. Moreover, smge
method does not rely on tracking of individual features atbthe
mouth, but rather on a holistic representation of the moattep,
it whould even be possible that the markers cause the ICAadeth
to fail to represent information about shadowing and te&tiioi-
ity, leading to a mouth representation with less expregsbveer.

We hence consider that the results presented below repieesen
fair estimation of what may be achieved with audiovisuaénsion
for an unmarked face, rather than a special case of marlkdiriga

3.3. EMA Data

In previous studies using this data set [7, 8, 17], EMA data at
sampling rate of 60 Hz has been used, while we in the present
study use EMA data resampled with linear interpolation td125

to correspond to the frequency of the PAL video stream. Tiliesg

a sequence of 2101 8-dimensional vectigrghorizontal and ver-
tical position of the four EMA coils in the midsagittal plgne

4. Inversion

For inversion, we want to learn functiorfs', £V, £, mapping
respectively acoustic, video data and acoustic and vidém tda
estimated EMA coil positions as' = f*(ax), t) = fV(vs),

t2V = f4(ag, vy). The set of training triplegay, v, ti) can

be used to learn these functions.

Previous similar inversion approaches [5, 6, 7, 8] have used
linear or multi-linear regression to learn these functiomow-
ever, the relationship between the ICA parameters and th& EM
coil positions can be expected to be higly non-linear. Thuss,
employ a relevance vector machine (RVM) [20], which is a non-
linear kernel-based regression technique.

4.1. Fusion of Audio and Video

There are two approaches to fusing the two modalities intthe-f
tion f4V, early and late fusion.

An early fusion approach is to simply concatenate the tngini
vectors astiV"" = 4V (ja"al vi|T) wherea® = Zy is
a normalizing scale factof“ and&" being the mean standard
deviations in the audio and video datasets.

Late fusion instead performs regression separately fombe
modalities, combining the results ag"'*** = T4 f4(a;) +
'V #V(vi) wherel'* andI'V are a diagonal matrices whose re-

tive elements are2i)” (o)
spective elements are.r7i— TIEEnS)

being the correlations betweep andt;' andt} respectively.
Both these approaches were evaluated in our study.

5, p" andp”
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Figure 3: Correlation coefficienig?, p"', p2V*¥¥, p
jaw and tongue tip (Tgl), middle (Tg2) and back (Tg3) coilipos
tion (X vertical, Y horizontal). Correlations are also shofer 3D
motion capture data of the face [7] "Mocap only (2003)".
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5. Results

The training data was employed in a jackknife fashion: Thetr
ing set was divided into 10 equally large parts. One partin tu
was removed from the training data and used as test set, thiile
functionsf4, fV, f*V were learned from the 9 others. This gave
estimates, t)/, €, t;V'*** for all training frames, with no
overlap between training and test sets.

5.1. Correlation

AVearly ) pA Vlate be-

For each framék, the correlationp?, pV, p
tween true EMA coil positiort,, and the reconstructed positions
£, ty, t)veertv ) gaviate were computed. Figure 3 shows the
correlation coefficients for each coil parameter indiviuaThe

low correlation for parameter Tg2 Y is due to rapid tongueogeo
changes and spurious measurement errors for this coil.

Except for the horizontal position of the backmost tongué co
the video makes a larger contribution than the acoustiasigiot
only for the front coils, but even for positions further baekich
are often considered impossible to lipread.

Compared to the results using 3D motion capture of the face,
it is natural that the reconstruction of the jaw from the viden-
ages is not as perfect as from the 3D data, since both theoneriz
tal and vertical jaw movement is given almost directly by 8@
data, while they must be estimated from the video. The horizo
tal movement is a hidden parameter, indicated only by craige
shading, while the vertical movement needs to be estimated f
the shape and size of the mouth opening rather than from a&n abs
lute position.

It is noteworthy that the vertical tongue tip position isiest
mated better from video images than from 3D motion captut®, da
which may be explained by the fact that the tongue tip willact
ally be visible in some of the video images. For the remaining
tongue coil coordinates, the estimation from video imagemiy
marginally worse than that of the 3D motion capture, except f
the back tongue coil. The better estimation of Tg3 from 3D mo-
tion capture data is probably due either to information igity
markers on other parts of the face or the correlation betjaen
and tongue movements: since the jaw position is almost gtgrfe
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Figure 4: Mean correlation coefficients', p¥, p4Veatw, pAViate

for the three EMA tongue coils. Mean correlations are alsovsh
for audio [8] "A (2005)”, 3D motion capture data of the facg [7
"M (2003)", and a combination thereof [8] "AM (2005)”.

estimated from the 3D motion capture, this data will haveupe
per hand for all frames for which there is no independent teng
movement with respect to the jaw.

Figure 4 shows that audio-visual speech inversion outpago
both acoustic- and visual-to-articulatory inversion, grhis natu-
ral, since the two modalities are complementary. Figurerthéu
indicates, in accordance with previous studies using 3Dianot
capture of the face [7, 8], that visual data contributes nttwaa the
acoustic data. The video images of the speaker’s lips camaikt
not provide as much information for the inversion as 3D muotio
capture data of the entire face, but the improvement cordpare
the audio only case is nevertheless important.

While the early fusion of audio and visual data is only
marginally better than visual alone data, late fusion tesul a
substantially higher correlation. Interestingly, thisicords with
influential theories on human speech perception (e.g. [2]), 2
stating that humans process information within a modatitjet
pendently and then fuse the processed, rather than the aitaw, d

5.2. Articulatory reconstruction

To analyze the quality of the reconstructed coil positionan ar-
ticulatory context, the EMA coil positions were used to nestouct
the tongue shape in an articulatory model [23]. The conwaref
EMA caoil positions into the parameters controlling the mlode
described in [7]. It is based on a simultaneous optimizatibn
the articulatory parameters in order to minimize the Ewdindis-
tance between the three EMA coils and the tongue contourthgth
constraints that the tongue tip of the contour should cpmed to
that infered from the first tongue coil.

Figure 5 shows five different cases of reconstruction, wigh F
ure 5a being the "mean” case, i.e. that the audio-visualtiiset-
ter than either modality alone. The most common is howe\ar th
one of the modalities, either the visual (Figure 5b) or theuatic
(Figure 5¢) is better than the other, thus contributing taghér
degree to the audio-visual reconstruction than the othevould
therefore be interesting to investigate online computatib the
optimal fusion weight§“ andI"” for each new frame.

Comparing early and late fusion, Figures 5d-e give an iust
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Figure 5: Reconstructed midsagittal tongue shapes, fraginat EMA data (thick solid line), acoustics only (dashed}leo only (dotted),
audio-visual early fusion (dash-dotted) and audio-visai@ fusion (solid).

tion of the fact that the early fusion is often better wheheitooth
modalities fail or one of the modalities fail completely, evbas

Figures 5a-c show that late fusion is better when at leastobne

the modalities is successful. Moreover, the early fusidis fass
gracefully than the late fusion (Figure 5b), which also ekm the

over-all better correlation results for the late fusion.

6. Conclusions

We have in this study shown that automatic extraction of ijme
ponents from a video image can contribute substantiallydsa
criminative articulatory inversion. Indeed, the conttibn given
by the visual modality is higher than that from the acousdiud
even if the results obtained from video images of the faceatan
quite match those of 3D motion capture, these results are mor
promising for pronunciation training applications, sitiece audio-
visual inversion can be done without special measuremaripeq
ment on the user. Our results suggest that the best resuftbena
achieved by processing the audio and video streams selyarate
subsequently fuse the inversion estimations.
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