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Abstract

We present a method for audio-visual classification of Saredi
phonemes, to be used in computer-assisted pronunciagion tr
ing. The probabilistic kernel-based method is applied ® th
audio signal and/or either a principal or an independentpmm
nent (PCA or ICA) representation of the mouth region in video
images. We investigate which representation (PCA or ICA) th
may be most suitable and the number of components required
in the base, in order to be able to automatically detect pronu
ciation errors in Swedish from audio-visual input. Expezitts
performed on one speaker show that the visual informati¢m he
avoiding classification errors that would lead to gravelsoer
neous feedback to the user; that it is better to perform phene
classification on audio and video seperately and then fuse th
results, rather than combining them before classificataorg
that PCA outperforms ICA for few components.

Index Terms: audiovisual phoneme classification, pronuncia-
tion error detection, PCA, ICA

1. Introduction

The needs and potential for Computer Assisted Pronunaiatio
Training (CAPT) are great, but if a breakthrough is to be
achieved, the CAPT systems must become much more apt than
currently at helping the user correct the error, rather tharely
pointing out that something is wrong. We are developing a
computer-animated articulation tutor, ARTUR [1], who shibu
assist hearing- or language-impaired children and secamd |
guage learners with their pronunciation of Swedish. The aim
is to detect pronunciation errors and give audio-visugb loel
how they may be corrected. In order to achieve this, the syste
must firstly have a knowledge about the important features of
each phoneme, and, secondly, gain information about how the
user produced it.

Swedish vowel roundedness is particularly difficult for-for
eign speakers. Not only do rounded front vowels occur (as in
e.g., French, but contrary to most other languages), baitisio
one of the few languages that has two types of phonemic distin
rounded vowel types: endolabial (or compressed) and exedlab
(or protruded), in addition to the unrounded vowels. Thizle
to frequent mispronunciations dependent on the speakests fi
language, such as the near-close, near-front compressed vo
[#:] being pronounced ds:] or [y:], and[v] as[i] or [u]. Among
the consonants, at least the palatovelar fricdfiyes trouble-
some and often mispronounced as ongfok, .

Automatic detection of such pronunciation errors is diffi-
cult, but the task becomes more feasible if video data isddde
since the phonemes are acoustically close but visualljndtst

In this paper, we hence investigate audio-visual phoneie cl
sification for pronunciation training. This signifies thdet
method should be able to identify deviations in contradibze
tures, such as vowel roundedness and fricative place alarti
lation.

2. Audio-visual phoneme recognition

The most common approach to visual speech recognition is
to track or extract the lip contours, which are modeled using
shakes [2, 3] or data-driven PCA methods [4, 5]. This apgroac
is successful because much of the articulatory informaison
present in the lip shape, but some information, such as #ie vi
bility of the tongue tip, and shadows above and below the mout
indicating lip protrusion, is lost in this type of represatin.

Since lip protrusion is of particular interest in Swedisk, w
instead track the upper part of the face, extract the mogibme
in the stabilized image and represent its articulatoryrimfation
implicitly in terms of image pixel values [6].

The advantages of tracking the face and use all pixel val-
ues, rather than lip contours, are that information aboti bo
horizontal and vertical lip movements relative to the fecprie-
served, and that it is easier and less computationally deéimgn
to track the face robustly [2, 7], since it is less deformahbn
the lips.

From a set of training images of the mouth, basis functions
representing the most prominent variations were learngd wi
principal or independent component analysis (PCA or ICA).

To test the quality of the PCA and ICA representations
for pronunciation error detection purposes, we performaud
visual classification of Swedish phonemes from the speegh si
nal and/or lip images, represented by principal or indepahd
components (PC or IC). We in particular investigate the nermb
of PC and IC required to classify vowel roundedness cosrectl

3. Data Acquisition

Avideo of the face of a female speaker of Swedish was recorded
together with the audio signal. Simultaneously, regigirst
were made of the 2D positions of electromagnetic articulog-
raphy coils on the tongue and jaw and the 3D positions of 28
infra-red reflectors on the face [8], but that data was nod irse
this study.

The corpus consisted of 37 asymmetric CVC words for the
vowel classification, and 63 symmetric VCV words for the con-
sonant classification. The;&C, words were combinations of
Ci Co=[pk, kp, krjand Vs, 1, e1, e, &1, &, @1, 2, 31, Y, W,

e, g1, ¢, ce, ce, o1, 0, ui, u, a, aif, and the VCV words were
combinations of V&, u, a] and Cp, t, k, b, d, g, f, s, ¢, §,
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Figure 1: (a) Templaten,. (b-k) The first 10 principal component$_;,. (I-u) The first 10 independent componenfs ;.

m, n, 1,1 1,0,t d, v, j]. Each word appeared once in the set.

4. Data Processing
4.1. Video Data

The video frame-rate was 25 Hz and the image Sit&x 576
pixels. After image stabilization, 33 x 23 pixel image of the
mouth region was extracted in the frames representing the ce
tral phoneme in each CVC and VCV word, identified using an
HMM-based forced-alignment.

A low-dimensional representation of this region was
learned with PCA or ICA. The task of the component analy-
sis is to select a bas€ = [ci,...,cy,] that represents the
data setX = [xi,...,xn] as well as possible, using, =
> vikci. Vo= [vi,...,vy] is a parameter matrix in the
subspace’. In this casex, = my — my is the difference (the
R, G, B bands substracted seperately) between imagend
a template imagen, with neutral lip pose, Fig. 1(a). Any new
lip image can be approximated as a linear combinatiomef
and the components in the base.

Using PCA,C is selected so that the columns represent the
n largest principal components of the data set, c.f. Fig.K)\(b-
while ICA instead selects the most informative statistically
independent components, c.f. Fig. 1(I-u).

The reflective markers that the subject wore to allow for
3D motion capture [8] were not used in this study, neithehe t
stabilization nor in the learning, but they neverthelesady af-
fected the ICA base, Fig. 1(I-u). The effect of the markers wa
discussed in [9], concluding that they do notimprove thaltes
and possibly even worsen them. This is in accordance with the
reconstructed images in Figs. 2(e-g), where the markeisein t
original, Fig. 2(a), are reconstructed in the wrong posgior
not at all. We have further tested ICA of an unmarked faceh wit
similar results for the appearance of the reconstructegésa
Since the method relies on a holistic representation of tatim
pattern, rather than tracking of individual features, thespnce
of the markers are not crucial. We therefore consider tieateh

(a) Originallu (b) 100 PC (c) 25 PC (d) 5PC
(e) 100I1C () 251C (g) 51C

Figure 2: (a) Original frame. (b-d) PCA reconstruction o th
same frame. (e-h) ICA reconstruction of the same frame.

sults presented below are comparable to what may be achieved
for an unmarked face.

4.2. Speech Signal

The audio signal was originally sampled at 16 kHz, but was
divided into frames of length 57.6 ms with a shift of 40 ms to
correspond to the video frame rate. Each acoustic frame was
pre-emhasized and multiplied by a Hamming window, before
applying a covariance-based LPC algorithm [10] to genetéte
line spectrum pairs (LSP). The acoustic data hence codsi$te
vectorsay, with the 16 LSP coefficients and the RMS amplitude
in the frames representing the central phoneme in each word.

5. Classification training

The phoneme classification was evaluated on separate frames
without any contextual information, vocabulary or grammier
fined, using the acoustic and video data. In order to anahze t
effect of the different image representations (ICA or PCA an
number of components) in more detail, a viseme classificatio
was also performed, using the video data only.

A jackknife procedure was employed for training and test-
ing. The data for each phoneme or viseme was divided into
four equally large parts. One part in turn was removed froen th
training data and used as test set, while the three otherthand
data from all other classes constituted the training set. Clés-
sification result for each class was then averaged over tire fo
permutations.

Consonants and vowels were trained separately, using the
VCV words for consonants and thg\@C. words for vowels.

The phoneme category; is estimated from the acoustic
a and videov,, signals using a probabilistic maximum likeli-
hood classifier, as, = argmax_p(ax, vi | 7). The functions
p(ak, vi | m) are kernel based [11] and describe the likelihood
of observinga;, andv;, given that the speaker uttered phoneme

7. Ingeneraltermg(t | m) = = > | N(tx|t],00) where
the vectorgtT, ..., t;,] are the tralnlng examples for phoneme
mandN(-|t, a') is a Gaussian with meanand stddew. In the
case of audio-visual phoneme classificatiop,includes both
a; andvy, combined using either early or late fusion.

In early fusion training vectors are concatenating before
classification ag(ay, vi | 7) =
L3 N(laa)™ (vi) 1" | la(al)” (vi)T]7, 00) where
a = ff—vg is a normalizing scale factog* and&" being the
mean standard deviations in the audio and video datasets, an
o0 = 0.03vn464 +0.15v/nV 5" . The scale factors ia are
chosen empirically to maximize classification results.c8in
is selected to maximize the performancetest data and test
and training sets are non-overlapping, overlearning isdeeb

With late fusion, classification is performed seperately fo
the two modalities and the results are combined, assumatg th



the data from the two modalities are statistically indeemnd
asp(ai, vi | m) = p(ar | T) p(vi|T) =
L3 N(ax|af,o00) & iy N(vi | vy, 00).

The viseme classification is performed similarly. The pro-
jection v, of the imagemy, is classified into viseme category
ér as ¢y, = argmax,p(vy | ) wherep(vy | ¢) is the likeli-
hood of observingv,. given visemep. oy is set empirically to
oo = 0.2\/55'.

The Swedish viseme classes [12] are bilaljal b, m],
labiodental[f, v], alveodentalt, d, n, r, s, 1], palatallg, j, ],
and velarlk, g, g] consonants, and front unroundgg 1, e:, e,

e, &, @, &), front roundedy:, v, w:, o, @1, ¢, ce, cez], back un-
roundeda:, a] and back roundefd:, o, u:, u] vowels.[e] and|a]
are quite central, but are grouped with the corresponding lo
vowels.

6. Results

The phoneme recognition was made from audio alone, from
video alone and from audio-visual input, combining the two
sources either before classification or after separatsifitzs

tions (c.f. Section 5). The overall classification rates ig. B

are similar within each condition for ICA or PCA, if enough
components are used. 25 components are enough for the PCA
base, but more are needed for ICA to maintain the video only
classifiaction rate.

While the early fusion of audio and visual data is only
marginally better than visual alone data (forl0 PC, >25
IC), late fusion results in a substantially higher corrdessi-
fication rate. Interestingly, this coincides with theorteshu-
man speech perception (e.g., [13]) stating that infornmaiso
processed within each modality independently and therdfuse
When the confusion matrices are considered, it becomes clea
that the early fusion gives rise to unreasonable confusmms
sidering that visual information is available, with unroead
vowels misclassified as rounded and vice versa, g:g=[u]
and|[y:]—|e:]. Late fusion is hence better at taking information
from both modalities into account, most notably ftjr [s] and
1.

The two modalities contribute in varying degrees to the
recognition of different phonemes. The audio signal is nirore
portant for[p, m, t, d, g], which is natural, since the phonemes
within each of the bilabial, alveolar and velar groups asnié
cal or extremely similar in the visual input, but quite digtiin
the audio, because of the difference in voicing or nasality.
video only, there are indeed frequent confusions withinkiie
abial and labiodental viseme groups. The video is, on theroth
hand, better at separatif and[s] and identifying]i:] and[y:].

The complementary information is most important fer ce:,
&1, 1 j], with clearly better results for the audiovisual case.

For the use as a detector of mispronunced features of
Swedish, the main benefit of adding visual input is that many
misclassifications between unrounded and rounded vowdls an
between significantly different places of consonant aldicu
tion can be avoided. Errors such s @:]—[cc], [u]—]i],
ly:]—[a], [p]«[k], [v, ] —[§] or [y]—[j] are eliminated, or dras-
tically reduced. In cases when the audio-visual classifinat
still makes errors, they tend to be less serious, when tissiéila
cation is used to generate articulatory feedback, e.g.ustoris
[y:]«=[cer] instead of with[ze:]; [u:] classified agu:] rather than
[i]; [f] as[v] rather thar]p, ¢, §]; or [b] as[p] rather thars].

Such errors should certainly be avoided as far as possible,
but the consequences for the feedback instructions aredeiss
ous since vowel roundedness or consonant place of ariimulat
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Figure 3: Phoneme classification rates using PCA or ICA.

are correct. The overall classification rate of 74% may floeee
be acceptable for pronunciation training purposes.

The overall viseme classification accuracy from video data
only (100 IC, PC), 80% for consonants (Figs. 4a-h) and 87% for
vowels (Figs. 4a-h), outperforms human speechreaders (68%
for consonants and 79% for vowels in [12]).

As already indicated by Fig. 3, more than 25 IC are needed,
or else vowel groups are confused and labiodentals are-class
fied as bilabials. At 10 IC, even velars and palatals areifleds
as bilabials. The cause of the confusion between vowel \ésem
is illustrated in Fig. 2. When too few IC are used, the recon-
structed image becomes quite neutral and the lip rounding of
[#] in the original image disappears.

For the PCA it is less crucial how many components that
are used, the classification score remains more or lessiife sa
except for alveolars and rounded vowels. When only 10 PC are
used, the alveolars are more commonly classified as palatals
possibly because the visibility of the tongue tip is not reco
structed.

The relatively high viseme classification score for patatal
and velars is promising for mispronunciation detectionecd,,

[G], which is problematic for many foreign speakers of Swedish.

7. Discussion & Conclusions

Our experiments with a probabilistic phoneme classificatio
have shown that the addition of visual input avoids many of
the misclassifications between unrounded and rounded sowel
and between consonants with very different places of daticu
tion that are made if acoustic only data is used. Audio-Vista

ror detection is hence very appealing for CAPT, since ewase
feedback on lip rounding or consonant place of articulatiay

be avoided.

The performance was similar for PCA and ICA, with PCA
being better for few (25 or less) components. In previoud-stu
ies on visual speech recognition and face expression ré&zmgn
[6, 14], ICA has outperformed PCA. One reason for the weak
performance of the ICA, compared to previous studies, is tha
the lip rounding is better reconstructed with PCA. As vowel
roundedness is more important in Swedish than in many other
languages, itis essential to correctly represent lip roygndr he
white markers may also have affected the bases, but prelisnin
tests with an unmarked face indicate that they are not tha mai
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