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Abstract

We present a method for audio-visual classification of Swedish
phonemes, to be used in computer-assisted pronunciation train-
ing. The probabilistic kernel-based method is applied to the
audio signal and/or either a principal or an independent compo-
nent (PCA or ICA) representation of the mouth region in video
images. We investigate which representation (PCA or ICA) that
may be most suitable and the number of components required
in the base, in order to be able to automatically detect pronun-
ciation errors in Swedish from audio-visual input. Experiments
performed on one speaker show that the visual information help
avoiding classification errors that would lead to gravely erro-
neous feedback to the user; that it is better to perform phoneme
classification on audio and video seperately and then fuse the
results, rather than combining them before classification;and
that PCA outperforms ICA for few components.
Index Terms: audiovisual phoneme classification, pronuncia-
tion error detection, PCA, ICA

1. Introduction
The needs and potential for Computer Assisted Pronunciation
Training (CAPT) are great, but if a breakthrough is to be
achieved, the CAPT systems must become much more apt than
currently at helping the user correct the error, rather thanmerely
pointing out that something is wrong. We are developing a
computer-animated articulation tutor, ARTUR [1], who should
assist hearing- or language-impaired children and second lan-
guage learners with their pronunciation of Swedish. The aim
is to detect pronunciation errors and give audio-visual help on
how they may be corrected. In order to achieve this, the system
must firstly have a knowledge about the important features of
each phoneme, and, secondly, gain information about how the
user produced it.

Swedish vowel roundedness is particularly difficult for for-
eign speakers. Not only do rounded front vowels occur (as in
e.g., French, but contrary to most other languages), but it is also
one of the few languages that has two types of phonemic distinct
rounded vowel types: endolabial (or compressed) and exolabial
(or protruded), in addition to the unrounded vowels. This leads
to frequent mispronunciations dependent on the speaker’s first
language, such as the near-close, near-front compressed vowel[0:� ℄ being pronounced as[u:℄ or [y:℄, and[Y℄ as[I℄ or [U℄. Among
the consonants, at least the palatovelar fricative[Ê℄ is trouble-
some and often mispronounced as one of[S, x, X℄.

Automatic detection of such pronunciation errors is diffi-
cult, but the task becomes more feasible if video data is added,
since the phonemes are acoustically close but visually distinct.

In this paper, we hence investigate audio-visual phoneme clas-
sification for pronunciation training. This signifies that the
method should be able to identify deviations in contrastivefea-
tures, such as vowel roundedness and fricative place of articu-
lation.

2. Audio-visual phoneme recognition
The most common approach to visual speech recognition is
to track or extract the lip contours, which are modeled using
snakes [2, 3] or data-driven PCA methods [4, 5]. This approach
is successful because much of the articulatory informationis
present in the lip shape, but some information, such as the visi-
bility of the tongue tip, and shadows above and below the mouth
indicating lip protrusion, is lost in this type of representation.

Since lip protrusion is of particular interest in Swedish, we
instead track the upper part of the face, extract the mouth region
in the stabilized image and represent its articulatory information
implicitly in terms of image pixel values [6].

The advantages of tracking the face and use all pixel val-
ues, rather than lip contours, are that information about both
horizontal and vertical lip movements relative to the face is pre-
served, and that it is easier and less computationally demanding
to track the face robustly [2, 7], since it is less deformablethan
the lips.

From a set of training images of the mouth, basis functions
representing the most prominent variations were learned with
principal or independent component analysis (PCA or ICA).

To test the quality of the PCA and ICA representations
for pronunciation error detection purposes, we perform audio-
visual classification of Swedish phonemes from the speech sig-
nal and/or lip images, represented by principal or independent
components (PC or IC). We in particular investigate the number
of PC and IC required to classify vowel roundedness correctly.

3. Data Acquisition
A video of the face of a female speaker of Swedish was recorded
together with the audio signal. Simultaneously, registrations
were made of the 2D positions of electromagnetic articulog-
raphy coils on the tongue and jaw and the 3D positions of 28
infra-red reflectors on the face [8], but that data was not used in
this study.

The corpus consisted of 37 asymmetric CVC words for the
vowel classification, and 63 symmetric VCV words for the con-
sonant classification. The C1VC2 words were combinations of
C1 C2=[p k, k p, k r℄ and V=[i:, I, e:, e, E:, E, æ:, æ, y:, Y, 0�:,8, ø:, ø, ÷, ÷:, o:, O, u:, U, a, A:℄, and the VCV words were
combinations of V=[I, U, a℄ and C=[p, t, k, b, d, g, f, s, C, Ê,
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Figure 1: (a) Templatem0. (b-k) The first 10 principal componentscP
1−10. (l-u) The first 10 independent componentsc

I
1−10.m, n, N, l, r, ï, ú, ã, v, j℄. Each word appeared once in the set.

4. Data Processing
4.1. Video Data

The video frame-rate was 25 Hz and the image size768 × 576
pixels. After image stabilization, a33 × 23 pixel image of the
mouth region was extracted in the frames representing the cen-
tral phoneme in each CVC and VCV word, identified using an
HMM-based forced-alignment.

A low-dimensional representation of this region was
learned with PCA or ICA. The task of the component analy-
sis is to select a baseC = [c1, . . . , cn] that represents the
data setX = [x1, . . . ,xN ] as well as possible, usingxk =
Pn

i=1
vi,kci. V = [v1, . . . ,vn] is a parameter matrix in the

subspaceC. In this case,xk = mk −m0 is the difference (the
R, G, B bands substracted seperately) between imagemk and
a template imagem0 with neutral lip pose, Fig. 1(a). Any new
lip image can be approximated as a linear combination ofm0

and the components in the base.
Using PCA,C is selected so that the columns represent the

n largest principal components of the data set, c.f. Fig. 1(b-k),
while ICA instead selects then most informative statistically
independent components, c.f. Fig. 1(l-u).

The reflective markers that the subject wore to allow for
3D motion capture [8] were not used in this study, neither in the
stabilization nor in the learning, but they nevertheless clearly af-
fected the ICA base, Fig. 1(l-u). The effect of the markers was
discussed in [9], concluding that they do not improve the results,
and possibly even worsen them. This is in accordance with the
reconstructed images in Figs. 2(e-g), where the markers in the
original, Fig. 2(a), are reconstructed in the wrong positions or
not at all. We have further tested ICA of an unmarked face, with
similar results for the appearance of the reconstructed images.
Since the method relies on a holistic representation of the mouth
pattern, rather than tracking of individual features, the presence
of the markers are not crucial. We therefore consider that the re-

(a) Original[0�℄ (b) 100 PC (c) 25 PC (d) 5 PC

(e) 100 IC (f) 25 IC (g) 5 IC

Figure 2: (a) Original frame. (b-d) PCA reconstruction of the
same frame. (e-h) ICA reconstruction of the same frame.

sults presented below are comparable to what may be achieved
for an unmarked face.

4.2. Speech Signal

The audio signal was originally sampled at 16 kHz, but was
divided into frames of length 57.6 ms with a shift of 40 ms to
correspond to the video frame rate. Each acoustic frame was
pre-emhasized and multiplied by a Hamming window, before
applying a covariance-based LPC algorithm [10] to generate16
line spectrum pairs (LSP). The acoustic data hence consisted of
vectorsak with the 16 LSP coefficients and the RMS amplitude
in the frames representing the central phoneme in each word.

5. Classification training
The phoneme classification was evaluated on separate frames,
without any contextual information, vocabulary or grammarde-
fined, using the acoustic and video data. In order to analyze the
effect of the different image representations (ICA or PCA and
number of components) in more detail, a viseme classification
was also performed, using the video data only.

A jackknife procedure was employed for training and test-
ing. The data for each phoneme or viseme was divided into
four equally large parts. One part in turn was removed from the
training data and used as test set, while the three others andthe
data from all other classes constituted the training set. The clas-
sification result for each class was then averaged over the four
permutations.

Consonants and vowels were trained separately, using the
VCV words for consonants and the C1VC2 words for vowels.

The phoneme categoryπk is estimated from the acoustic
ak and videovk signals using a probabilistic maximum likeli-
hood classifier, asπk = argmaxπp(ak,vk |π). The functions
p(ak, vk |π) are kernel based [11] and describe the likelihood
of observingak andvk given that the speaker uttered phoneme
π. In general terms,p(tk |π) = 1

m

Pm

i=1
N(tk | tπ

i , σ0) where
the vectors[tπ

1 , . . . , tπ
m] are the training examples for phoneme

π andN(· | t, σ) is a Gaussian with meant and stddevσ. In the
case of audio-visual phoneme classification,tk includes both
ak andvk, combined using either early or late fusion.

In early fusion training vectors are concatenating before
classification asp(ak,vk |π) =
1

m

Pm

i=1
N([α(ak)T (vk)T ]T | [α(aπ

i )T (vπ
i )T ]T , σ0) where

α = σ̄V

σ̄A is a normalizing scale factor,̄σA and σ̄V being the
mean standard deviations in the audio and video datasets, and
σ0 = 0.03

√
nAσ̄A + 0.15

√
nV σ̄V . The scale factors inσ0 are

chosen empirically to maximize classification results. Sinceσ0

is selected to maximize the performance ontest data, and test
and training sets are non-overlapping, overlearning is avoided.

With late fusion, classification is performed seperately for
the two modalities and the results are combined, assuming that



the data from the two modalities are statistically independent,
asp(ak, vk |π) = p(ak | π) p(vk |π) =
1

m

Pm

i=1
N(ak |aπ

i , σ0)
1

m

Pm

j=1
N(vk |vπ

j , σ0).
The viseme classification is performed similarly. The pro-

jectionvk of the imagemk is classified into viseme category
φk asφk = argmaxφp(vk |φ) wherep(vk |φ) is the likeli-
hood of observingvk given visemeφ. σ0 is set empirically to
σ0 = 0.2

√
nσ̄.

The Swedish viseme classes [12] are bilabial[p, b, m℄,
labiodental[f, v℄, alveodental[t, d, n, r, s, l℄, palatal[C, j, Ê℄,
and velar[k, g, N℄ consonants, and front unrounded[i:, I, e:, e,E:, E, æ:, æ℄, front rounded[y:, Y, 0�:, 8, ø:, ø, ÷, ÷:℄, back un-
rounded[A:, a℄ and back rounded[o:, O, u:, U℄ vowels.[8℄ and[a℄
are quite central, but are grouped with the corresponding long
vowels.

6. Results
The phoneme recognition was made from audio alone, from
video alone and from audio-visual input, combining the two
sources either before classification or after separate classifica-
tions (c.f. Section 5). The overall classification rates in Fig. 3
are similar within each condition for ICA or PCA, if enough
components are used. 25 components are enough for the PCA
base, but more are needed for ICA to maintain the video only
classifiaction rate.

While the early fusion of audio and visual data is only
marginally better than visual alone data (for>10 PC,>25
IC), late fusion results in a substantially higher correct classi-
fication rate. Interestingly, this coincides with theorieson hu-
man speech perception (e.g., [13]) stating that information is
processed within each modality independently and then fused.
When the confusion matrices are considered, it becomes clear
that the early fusion gives rise to unreasonable confusions, con-
sidering that visual information is available, with unrounded
vowels misclassified as rounded and vice versa, e.g.,[i:℄↔[0�:℄
and[y:℄→[æ:℄. Late fusion is hence better at taking information
from both modalities into account, most notably for[f℄, [s℄ and[l℄.

The two modalities contribute in varying degrees to the
recognition of different phonemes. The audio signal is moreim-
portant for[p, m, t, d, g℄, which is natural, since the phonemes
within each of the bilabial, alveolar and velar groups are identi-
cal or extremely similar in the visual input, but quite distinct in
the audio, because of the difference in voicing or nasality.For
video only, there are indeed frequent confusions within thebil-
abial and labiodental viseme groups. The video is, on the other
hand, better at separating[f℄ and[s℄ and identifying[i:℄ and[y:℄.
The complementary information is most important for[e:, ÷:,æ:, l, j℄, with clearly better results for the audiovisual case.

For the use as a detector of mispronunced features of
Swedish, the main benefit of adding visual input is that many
misclassifications between unrounded and rounded vowels and
between significantly different places of consonant articula-
tion can be avoided. Errors such as[e:, æ:℄→[÷:℄, [u:℄→[i:℄,[y:℄→[æ:℄, [p℄↔[k℄, [v, l℄→[Ê℄ or [N℄→[j℄ are eliminated, or dras-
tically reduced. In cases when the audio-visual classification
still makes errors, they tend to be less serious, when the classifi-
cation is used to generate articulatory feedback, e.g. confusions[y:℄↔[÷:℄ instead of with[æ:℄; [u:℄ classified as[0�:℄ rather than[i:℄; [f℄ as[v℄ rather than[p, C, Ê℄; or [b℄ as[p℄ rather than[s℄.

Such errors should certainly be avoided as far as possible,
but the consequences for the feedback instructions are lessseri-
ous since vowel roundedness or consonant place of articulation

Figure 3: Phoneme classification rates using PCA or ICA.

are correct. The overall classification rate of 74% may therefore
be acceptable for pronunciation training purposes.

The overall viseme classification accuracy from video data
only (100 IC, PC), 80% for consonants (Figs. 4a-h) and 87% for
vowels (Figs. 4a-h), outperforms human speechreaders (68%
for consonants and 79% for vowels in [12]).

As already indicated by Fig. 3, more than 25 IC are needed,
or else vowel groups are confused and labiodentals are classi-
fied as bilabials. At 10 IC, even velars and palatals are classified
as bilabials. The cause of the confusion between vowel visemes
is illustrated in Fig. 2. When too few IC are used, the recon-
structed image becomes quite neutral and the lip rounding of[0�:℄ in the original image disappears.

For the PCA it is less crucial how many components that
are used, the classification score remains more or less the same,
except for alveolars and rounded vowels. When only 10 PC are
used, the alveolars are more commonly classified as palatals,
possibly because the visibility of the tongue tip is not recon-
structed.

The relatively high viseme classification score for palatals
and velars is promising for mispronunciation detection of,e.g.,[Ê℄, which is problematic for many foreign speakers of Swedish.

7. Discussion & Conclusions
Our experiments with a probabilistic phoneme classification
have shown that the addition of visual input avoids many of
the misclassifications between unrounded and rounded vowels
and between consonants with very different places of articula-
tion that are made if acoustic only data is used. Audio-visual er-
ror detection is hence very appealing for CAPT, since erroneous
feedback on lip rounding or consonant place of articulationmay
be avoided.

The performance was similar for PCA and ICA, with PCA
being better for few (25 or less) components. In previous stud-
ies on visual speech recognition and face expression recognition
[6, 14], ICA has outperformed PCA. One reason for the weak
performance of the ICA, compared to previous studies, is that
the lip rounding is better reconstructed with PCA. As vowel
roundedness is more important in Swedish than in many other
languages, it is essential to correctly represent lip rounding. The
white markers may also have affected the bases, but preliminary
tests with an unmarked face indicate that they are not the main
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Figure 4: Confusion matrices for viseme classification of (a)-(f) consonants and (g)-(l) vowels using either PCA (a)-(c), (g)-(i) or ICA
(d)-(f), (j)-(l) for different numbers of PC and IC. Rows represent the true viseme classi, columns the assigned classj, and the numbers
in element(i, j) the fraction of visemesi classified asj. The classes areBil: [p, b, m℄, Lab: [f, v℄, Alv: [t, d, n, r, s, l℄, Pal: [C, j, Ê℄,
Vel: [k, g, N℄, FU: [i:, I, e:, e, E:, E, æ:, æ℄, FR: [y:, Y, 0�:, 8, ø:, ø, ÷, ÷:℄, BR: [o:, O, u:, U℄, BU: [a, A:℄.
problem. Either ICA with more components or PCA should
hence be used for audio-visual detection of Swedish pronunci-
ation errors.

Further, late fusion of separate acoustic and visual classifi-
cations should be used rather than early in order to take advan-
tages of the complementarity of the modalities.

Much work remains before the method can be successfully
incorporated in pronunciation training. The most crucial is to
achieve speaker independence or adaptation, so that the detec-
tion can be used for any speaker, without previous training on
that speaker. It is then probable that ICA will be the better op-
tion, since ICA seems to be able to separate variations due to
speaker identity from those due to articulation [14], if learned
from a training set with several speakers. Alternatively, speaker
adaptation may be achieved by mapping a neutral template im-
age of the reference speaker onto the target speaker and recalcu-
late the components based on the template differences. It then
remains to be shown that the components extracted from one
speaker are able to describe the articulations of another speaker
after adaptation, despite inter-speaker variability.
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