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Abstract

We present a robust automatic method for modeling cyclic 3D human motion such as walking using motion-capture data. The pose of the body

is represented by a time-series of joint angles which are automatically segmented into a sequence of motion cycles. The mean and the principal

components of these cycles are computed using a new algorithm that enforces smooth transitions between the cycles by operating in the Fourier

domain. Key to this method is its ability to automatically deal with noise and missing data. A learned walking model is then exploited for Bayesian

tracking of 3D human motion.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Increasing amounts of three-dimensional human motion

data are available from commercial motion-capture systems

and are used for a variety of applications. For example, they

provide an input for the animation of virtual characters in

computer graphics (see [21] for an overview), for biometric

person identification [8,17,55,56], or for the analysis of gait

abnormalities in medicine [38,62]. The focus of much of this

work has been on cyclic human motions such as walking and

running. A common approach for modeling such motions uses

principal component analysis (PCA) to represent them in a

low-dimensional linear subspace that captures the natural

variations among people and activities [5,9,26,30,41,

53,56,65,66]. Our work addresses some of the difficulties in
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such an approach by providing a fully automatic method for

learning PCA models of human motion. In particular, we show

how the cycle length can be automatically determined and

provide a new algorithm for learning PCA models with missing

data that is tailored to cyclic data. The resulting set of

techniques can be exploited by any motion modeling approach

that first represents cyclic human motion using PCA. To

illustrate the methods we learn a probabilistic model for human

walking and we apply it to the problem of human motion

recovery from a sequence of 2D video images.

In many applications, the human body is approximated by a

collection of articulated limbs (Fig. 1) that form a kinematic

tree. The motion of the body can then be thought of as a

collection of time-series describing the joint angles as they

evolve over time. A key difficulty for the modeling of these

body angles is that each time-series has to be decomposed, or

segmented, into sequences of meaningful actions (or

‘movemes’ [12]) prior to statistical analysis. For example, in

the case of repetitive human motion such as walking, motion

sequences decompose naturally into a sequence of similar

motion cycles. The exact nature of this decomposition is

unknown a priori and needs to be estimated from the motion

data. In this work, we present a new set of tools that carry out

this identification automatically. These tools also allow us to

automatically compute the mean and the principal components

of the individual cycles. While PCA models of human gait are,

by now, quite standard [5,9,30,41,53,56,65,66] a number of

technical difficulties have not previously been addressed. One
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Fig. 1. The human body is represented as a kinematic tree consisting of articulated, tapered, cylinders with 25 degrees of freedom (DOF); six degrees for the

translation and rotation of the torso and 19 relative joint angles expressed here as Euler angles. Each limb, i, has a local coordinate system with the Zi axis directed

along the limb. Joints have up to 3 angular DOF, expressed as relative rotations ðq
j;i
x ; q

j;i
y ; q j;i

z Þ between body parts i and j.
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important issue involves dealing with missing information in

the motion time-series due to occlusion. Missing data is

common in even high-quality motion-capture data and

commercial systems rely on ad hoc, semi-automated methods

to fill in what is missing. Such methods may introduce bias or

remove fine temporal structure from the data. Additionally, in

the case of cyclic activities, one needs to enforce smooth

transitions between cycles. To deal with these problems, we

develop a new iterative method for functional principal

component analysis that is based on a singular value

decomposition (SVD) in the Fourier domain. The result is a

fully automatic method that takes a database of cyclic human

motions and produces a statistical model that is suitable for

various applications. This automated method ignores missing

data and consequently avoids problems of bias introduced by

post hoc data manipulation.

To demonstrate the application of such a model we explore

its use in recovering 3D human motion from 2D image

sequences. In this tracking application, the principal com-

ponents serve to define a low-dimensional representation of the

human 3D poses in a state-space model that treats the 2D video

images as observations. We specify the transition probabilities

(or motion prior) for this state-space model using the singular

values of the learned motion model and we also specify an

image likelihood term based on a generative model of the

image appearance. This generative model is non-linear and the

posterior probability density over human poses is non-

Gaussian. Consequently, we exploit approximate Bayesian

inference techniques for temporal filtering. Specifically, we

apply a particle filter [23,29] where the posterior distribution is

represented by a discrete set of samples and is propagated over

time using Monte Carlo techniques. The resulting algorithm is

able to track human subjects in monocular video sequences and

to recover their 3D motion under changes in their pose and

against complex unknown backgrounds.

The remainder of this paper is organized as follows: In

Section 2 we briefly review previous work on human motion

modeling and tracking. In Section 3, we present details of the

data set under investigation and we describe the sequence
alignment procedures that divide the motion-capture data into

cycles. In Section 4, we explain our algorithm for functional

principal component analysis and we illustrate the method with

human walking motions. The application for tracking is

described briefly in Section 5 to illustrate the ideas; for a

detailed description, the reader is referred to [41,52,53].

2. Previous work

There has been substantial previous work on the modeling

of human motion data in the statistical and computer science

communities. Statistical representations of time-series data

using functional analysis are described in detail in [45]. An

interesting treatment of the statistical analysis of human motion

data in a medical context can be found in [40] while Faraway

[20] applies functional analysis to a problem in ergonomics.

For a good review of human motion modeling see [56].

Much of the work on gait analysis has focused on 2D image

representations such as silhouettes, raw images, or features

derived directly from images [6,7,16,18,27,31,37,39]. Here, we

focus on 3D body joint angles, which have also received a great

deal of attention for biometric person identification

[8,17,27,55] emotion modeling [2,56] and tracking

[30,53,59,60,65].

A common approach to model repetitive 3D human motion

data is to hand-segment and align the data in contrast to the

automated alignment procedures suggested here. Previous

approaches for automated alignment can be found, for

example, in [46]. Based on this segmentation the individual

walking ‘cycles’ can be modeled using various statistical

techniques, e.g. those described in [4] or [47].

We focus here on modeling 3D joint angles for tracking,

rather than recognition of, human motion. The simplest such

models place constraints on the smooth change in joint angles

[25,61]. These models are derived from biometric studies of

human motion [13,48,49] or learned from 3D motion-capture

data. The learned statistical properties may be captured by

wavelets [43], principal component analysis (PCA)

[5,9,26,30,53,56,65,66], polynomial basis functions [22],
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Fourier components [17,56,58], dynamical models [42,63],

vector quantization [26,36], phase-space constraints [14], or

various types of hidden Markov models (HMM) [9–11,36].

Cyclic human motion, in particular, has received special

attention [1,35,50,56,65] where the focus is often on

recognition of individuals based on ‘signatures’ in their gait

or recognition of deviations from the norm (e.g. as a result of

carrying a heavy object). For cyclic articulated motion, Pullen

and Bregler [43] use a frequency decomposition of joint angles

with a learned, non-parametric, kernel density estimate of the

conditional statistics across frequency bands. Sampling from

this model produces synthetic repetitive motions with natural

variation.

In previous work on principal component analysis of human

motion data, the 3D motion curves corresponding to particular

activities were typically hand-segmented and aligned [6,53,65].

In contrast, this paper details an automated method for

segmenting the data into individual activities, aligning activities

from different examples, modeling the statistical variation in the

data, dealing with missing data, enforcing smooth transitions

between cycles, and deriving a probabilistic model suitable for a

Bayesian interpretation. PCA with missing data has been dealt

with in other contexts [33,51] but not for the case of cyclic

motions.

Murase and Sakai [37] use PCA to reduce the dimension-

ality of silhouette images of walkers and then represent

activities as trajectories of eigenspace coefficients. This differs

from the approach of representing trajectories themselves in a

low-dimensional subspace. Similarly, Huang et al. [27] build

an eigenspace of spatio-temporal templates and exploit this for

gait recognition. The approach does not deal explicitly with 3D

joint angle data or the problem of detecting and modeling

individual motion cycles.

In contrast to PCA approaches, Cunado et al. [17] extract 2D

motion information about the upper leg from video and then

model the upper leg motion using a Fourier series. The Fourier

basis is used in contrast to the learned PCA basis for specific

activities. An advantage of the PCA approach is that it

automatically captures covariation between limbs when the

model is trained using multiple joints.

Troje [56] takes a slightly different approach by performing

PCA on marker positions (not 3D joint angles) to derive a low-

dimensional posture model. The time-series of postures in this
Fig. 2. Example walking sequence synthesized from motio
low-dimensional space are then fit by sinusoids. To capture

variability across subjects and behaviors Troje then performs

PCA on the reduced-dimension time-series. In contrast to a

learned PCA representation of the time-series, the sinusoid

representation may remove important subtly from the motion.

Our approach goes beyond this to deal with the automated

modeling of cyclic motions. We work directly with times series

and do not make the sinusoidal assumption. Key to our

approach is the ability to automatically deal with imperfect and

missing data. Finally we apply the model to 3D human

tracking.

More recently, there has been an emphasis on non-

parametric models of human motion that essentially assemble

motion clips sampled from a large database of motions [3,32,

34,44,64]. Like the analogous texture synthesis techniques,

these methods provide detailed synthesis but do not generalize

well to motions not present in the database. The functional

analysis approach here provides a probabilistic model that can

generalize within a particular class of motions and hence may

be more appropriate for tracking. Parameterized methods also

have advantages for gait analysis and recognition.

Bayesian methods for tracking 3D human motion have been

used previously in [15,19,26,42,53,54]. In these methods,

temporal curves learned with PCA can be thought of as providing

a prior probability distribution over valid human motions. Given

the high dimensionality of the human body, this prior constrains

the possible motions to lie on a far lower dimensional manifold.

This makes the problem of pose estimation with Monte Carlo

sampling techniques more tractable. Further illustrating the value

of PCA-based models of human motion, recent work has explored

using these models and deterministic optimization methods to

recover 3D motion from video [59,60].
3. Human motion data

In this work, we develop a modeling procedure for periodic

motion sequences. By definition, periodic motion is composed

of repetitive cycles which constitute a natural unit of statistical

modeling and which must be identified in the training data prior

to building a model. For example, Fig. 2 illustrates one

particular cycle of a walking sequence. Frequently, this

segmentation is carried out manually in an error-prone and

burdensome procedure (see, for example, [45,65]). In this
n-capture data (torso motion and relative joint angles).



Fig. 3. Time-series representation of the angles in the walking sequence. We show the left shoulder (lshx, lshy, lshz), elbow (lelb), hip (lhpx, lhpy, lhpz), and knee

angles (lkne). Note regions of missing data (e.g. between approximately time instants 300–400 and after 500).

1 The data Zi is not to be confused with the reference coordinate Zj for limb j

in Fig. 1.
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section, we present alignment algorithms that segment the data

automatically. Based on this alignment, the mean and the

principal components of the cycle data are computed as a

statistical model.

3.1. Motion-capture data

Three-dimensional human motion data were collected

using a commercial Vicon motion-capture system. Four

subjects (professional dancers) performed a variety of

activities while wearing retro-reflective markers. Commer-

cial software was used to reconstruct the 3D trajectories of

the markers and the relative joint angles of the limbs over

time; see Fig. 2 for an example of one walking sequence.

Eight walking sequences (two per subject) were recorded at

a sampling frequency of 120 frames/second and the lengths

of the sequences range from about 500 to 5000 frames. It is

important to emphasize that the modeling techniques

suggested in this paper can be applied to a much wider

range of repetitive motions.

For the purpose of our analysis, we focus on the 19 relative

joint angles describing the limb motion over time (refer to

Fig. 1). In doing so we eliminate any global position

information though this could be modeled as well. In Fig. 3

we show a subset of eight of these 19 time-series that

characterize the left body-half.

Formally, we let Ti denote the length of the ith motion

sequence and we use tZ1,.,Ti as a time index. Similarly,

mZ19 is the number of angles in each motion sequence

and aZ1,.,m indicates a particular angle. The ith motion
sequence can be written as1

ZiðtÞh fzi;aðtÞja Z 1;.;mg for t Z 0;.;Ti:

Associated with each sequence we have the indicator set

Ii;a h ft 2f1;.;Tigjzi;aðtÞ is not missingg:

That is, Ii,a is a set of time indices that labels non-

missing pieces of information in zi,a and we have one such

set for each sequence i and for each angle a. Missing

observations arise frequently in our data set because some

markers may be occluded by other body parts during

portions of a motion. This is very common, even in high-

quality commercial data. The capturing system reports an

angle of zero for some of the position coordinates in this

case. Typically occlusions last for several frames, which

prevents the imputation of interpolated values using

neighboring observations.

Next, we describe a procedure to estimate alignment

parameters that segment periodic motion sequences into

cycles. There are several ways to approach this issue in

principle (see, for example [46]). For the data described in

Section 3.1, however, it seems particularly relevant that the

procedure handles missing observations and that it produces

reliable estimates even for the relatively short human motion

sequences we have at our disposal, consisting of only 3–4

cycles per sequence. The procedure consists of two steps. For



Fig. 4. Wrapped walking cycles for the left knee angle. Left: a near-optimal cycle length of pZ125 results in a strong signal to noise ratio (signallkneZ254.3). Right:

an incorrect cycle length results in no clear alignment; e.g. pZ150 (signallkneZ0.4527).
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each motion sequence, we first estimate its cycle length, p,

using a wrapping procedure; second, we estimate an offset

parameter, o, which describes the relative shift of that sequence

using an iterative algorithm. In practice, these parameters vary

due to different speeds and different starting positions of the

individuals in the capture sequence. Based on p and o, the

individual motion sequences can be transformed into a

common reference domain for further analysis.
2 Alternative estimation approaches based on spectral analysis cannot easily

be applied due to the missing data. Even if there were no missing observations,

the statistical efficiency of these estimates might be low due to the relatively

small number of frames per period. That is, the conditions of the Sampling

Theorem may not be fulfilled so as to guarantee a sufficiently small

approximation error.
3.2. Estimation of the cycle length

To illustrate the effect of choosing the correct cycle length p

consider the ‘wrapping’ procedure shown in Fig. 4 which shows

the left knee angle during several walking cycles. Each candidate

value p defines a segmentation of the original time-series into a

sequence of segments that can be represented in the common

domain {1,.,p}. Formally, let the ‘projection index’ associated

with p be defined according to xpðtÞh t mod p, so that xp ‘folds’

the original sequence into the domain {1,.,p}. For each

k2{1,.,p} we will consider all those elements of Zi that are

non-missing and that are projected onto k. The indices of these

elements are collected in the sets Ii;aðkÞh fj2Ii;ajkZxpðjÞg for

kZ1,.,p. Also, let jIi,a(k)j be the cardinality of Ii,a(k). Then the

mean of the observations mapped onto k and the overall mean of

sequence i can be written as

�zi;aðkÞh
1

jIi;aðkÞj

X
j2Ii;aðkÞ

zi;aðjÞ; �Zi h
1

jIi;aj

X
j2Ii;a

zi;aðjÞ:

The following magnitudes measure the signal- and the noise-

content of the projected sequence:

noisei;aðpÞh

P
j2Ii;a

ðzi;aðjÞK�zi;aðxpðjÞÞÞ
2

jIi;ajKp
(1)

signali;aðpÞh

Pp
kZ1

ð�zi;aðkÞK �ZiÞ
2

ðpK1Þp=jIi;aj
(2)

Specifically, noisei,a is an estimate of the average square

deviation of the aligned cycles from the mean cycle, �zi;a; it can be

interpreted as the variation in the data that is not explained by �zi;a.
On the other hand, signali,a is an estimate of the mean variation of

the mean cycle, �zi;a, with respect to the overall mean, �Zi, and

measures the signal intensity. Both noisei,a and signali,a are

normalized so as to account properly for the degrees offreedom of

the estimates and to produce estimates whose expectation is

independent of p. Because it is natural to favor values of p that

produce simultaneously high signal- and low noise-contributions,

we combine (1) and (2) into the ‘signal-to-noise ratio’2:

snriðpÞh
X

a

signali;aðpÞ

noisei;aðpÞ
: (3)

In our algorithm we try candidate values for p in a suitable

range and choose the maximum with respect to (3) as our estimate

of the cycle-length. Note that (3) comprises the accumulated

contributions from all angles in our data set. In Fig. 5 we show the

individual signal-to-noise ratios for a subset of the angles as well

as the accumulated signal-to-noise ratio (3) as functions of p. Note

the sharp peak of these values around the optimal cycle length pZ
126. The peak around the optimal value is more expressed in

some sequences than in others. While the variance in the angles

differs for each joint, the maximal peak remains the same. For

example, the left Z hip angle (lhpz) varies much less than the hip Y

angle and the resulting signal-to-noise ratio for the Y-axis is eight

times that of the Z-axis. Note also that the signal-to-noise ratio of

the artificially generated white noise series in the first row is

approximately constant, warranting the unbiasedness of our

approach with respect to changing values of p.

3.3. Estimation of the offset parameter

The folding procedure described above computes an

estimate of the optimal cycle length p(i) for each sequence

and stores these values in an array of length n. In our second

step, we use this array to align multiple sequences in a common

domain by rescaling each individual sequence i according to
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Fig. 5. Signal-to-noise ratio of a representative set of angles as a function of the candidate period length. We show the same angles as in Fig. 3. The top series

corresponds to a white noise signal. The bottom series shows the accumulated signal-to-noise ratio (3). The minimum overall variation was obtained for pZ126,
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Fig. 6. Iterative algorithm for the computation of the optimal offset parameters.
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p(i) and by shifting it according to an offset parameter o(i).

More specifically, for each i we define the following mapping

of the time-series index tZ0,.,Ti into the domain [0, 1]:

ziðtÞh
ðtKoðiÞÞmod pðiÞ

pðiÞ
:

Then we construct offset estimates o(1), o(2),.,o(n) so as to

allow for the best approximation of the time-series in terms of a

common reference model, r(t), where t2[0, 1]. In other

words, for each i we require that the time-series zi,a(t) deviates

as little as possible from its reference value, r(zi(t)). We need a

separate reference model ra(t) for each angle a and each of

these models belongs to a pre-specified class of functions, R.

As a measure of deviation between zi,a(t) and r(zi(t)) we use

their squared distance.

There are two technical issues complicating this strategy.

First, because the motion sequences are typically asynchronous

after rescaling using the estimated cycle-lengths, we have to

adapt our definitions of the reference signal and of the noise

level to a continuous-time framework. Second, we are facing a

computational problem. An exhaustive search for the optimal

offset-combination requires O
Qn
iZ1

pðiÞ

� �
evaluations of the

signal-to-noise criterion, which is clearly infeasible in practice.

Instead, we suggest the iterative procedure illustrated in Fig. 6

to compute an approximate solution. We initialize the offset

values to zero in Step 1, and we define the reference signal ra in

Step 2 so as to minimize the deviation with respect to the

aligned data. Note that missing data are discarded for
estimation. Next, we choose the offsets of all sequences so

that they minimize the prediction error with respect to the

reference signal (Step 3). By contrast to the exhaustive search,

this operation requires only O
Pn
iZ1

pðiÞ

� �
comparisons. Because

the solution of the first iteration may well be suboptimal, we

construct an improved reference signal using the current offset

estimates, and use this signal in turn to improve the offset

estimates. Repeating these steps, we obtain an iterative

optimization algorithm that is terminated if the improvement

falls below a given threshold (Step 4). Since Steps 2 and 3 both

decrease the prediction error, it is clear that the algorithm

converges.

Fig. 7 shows eight sequences of a walking motion, aligned

using this procedure. As a function class for the reference signal,



Fig. 7. Aligned representation of eight walking sequences (blue). The red curve denotes repetitions of the periodic regression spline estimate (convergence after five

steps).
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R, we chose periodically constrained regression splines in our

implementation, i.e. the zeroth, first, and second derivatives of the

spline are designed so as to coincide at the boundaries (for details,

see Appendix A). Without these constraints, the concatenated

reference signal in Fig. 7 would be discontinuous at the transitions

between cycles.
3.4. Transformation into reference domain

Next, we use this aligned representation to transform the

data into a new reference domain. This step is necessary

because even though the data are aligned in Fig. 7, they are still

sampled asynchronously due to the different alignment

parameters of each sequence. The goal of the synchronization

is to represent the data in a matrix of fixed size that will be the

basis of our principal component algorithm in Section 4. Note

also that using the algorithm of Section 3.3 we effectively

estimated a continuous-time model of the mean curve (the red

curve) in Fig. 7. For synchronization we will estimate

continuous-time models for each cycle of the individual

time-series (the blue curves) and then transform this

model into a new reference domain. We will denote

the transformed cycle data as ‘motion segments’ and we will

use the reference domain f0;.;Tg. The sequence zi,a contains

KiZ dðTi KoðiÞÞ=pðiÞeC1 cycles for o(i)s0 which are labeled

~zk;a. Here, kZ1,.,K ranges over the combined segments from

all sequences iZ1,.,n and KZ
Pn
iZ1

Ki. (We also count the

partially filled ‘ends’ on the left and on the right, which are
filled up with missing data labels.) ~zk;a and ~Ik;a denote the kth

segment and the corresponding indicator set, respectively, i.e.
~Ik;a contains the indices of the non-missing elements of ~zk;a. As

a function estimate, we compute a (unconstrained) regression

spline estimate in the domain [0, 1] for each kZ1,.,K and for

each angle:

fk;a :Z arg min
f2S

X
j2~Ik;a

~zk;aðjÞKf
j

pðiÞ

� �� �2

:

Here, S is the class of functions that can be expressed as

linear expansions of the basis vectors f1,.,fK defined in

Appendix A. This gives a representation of the segments in a

continuous domain. Next, we define the reference domain f0;

.;Tg and we transform the data into the reference domain

according to fk,a:

�zð1Þk;aðjÞ :Z fk;a

j

T

� �
for j Z 0; 1;.;T:

The superscript (1) is to distinguish the original data from

various approximations in intermediate computing

steps described below. For the principal component analysis,

it is convenient to rearrange the data in �zð1Þk;a in matrix

format. We define the following design matrix for this

purpose:

Xð1Þ Z

�zð1Þ1;1ð0Þ . �zð1Þ1;1ðTÞ . �zð1Þ1;mð0Þ . �zð1Þ1;mðTÞ

« « « « « « «

�zð1ÞK;1ð0Þ . �zð1ÞK;1ðTÞ . �zð1ÞK;mð0Þ . �zð1ÞK;mðTÞ

0
BB@

1
CCA:
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That is, each row of X(1) is a concatenation of the segments

corresponding to the angles aZ1,.,m and the rows of X(1)

correspond to the index kZ1,.,K. Below we use the

symbols �zðNÞ
k;a and X(N) to refer to the same data depending on

whether we prefer to describe a processing step using vector

or matrix format.
4. Principal component analysis

Next, we derive a statistical model of the repetitive cycles in

Fig. 7. For example, in 3D-animation, it may be desirable to

model a mean motion and systematic deviations from the mean

to assign personalities to virtual characters. Similarly, in

motion tracking we wish to identify motion sequences that

deviate from the mean and for activity recognition we must

represent the unique characteristics of a person’s motion and

the natural variability.

As a more comprehensive description of the underlying

probability distribution, we use the principal components of the

synchronized time-series data. Here, an important question is

whether to compute the principal components jointly over all

the angles or individually for each angle. Clearly this decision

depends on the amount of dependence between the individual

angles in a particular type of motion. For repetitive

sequences—in particular for walking—the individual angles

are typically highly dependent, suggesting the joint modeling

approach.

A new algorithm to estimate the principal components is

shown in Fig. 8. The algorithm addresses the problems of

previous approaches, which do not account for missing data

or enforce continuity across cyclic movemes. In our

approach, the data segments �zð1Þk;a defined above undergo a

sequence of processing stages. We use the notation �zðNÞ
k;a , NZ

1,.,6 to denote the intermediate results of this stage-wise

computation, and we interpret �zð1Þk;a as the first element of this

sequence. Similarly, X(N) is the design matrix at stage N,
Fig. 8. Functional PCA algorithm with data imputat
which is composed of the data in �zðNÞ
k;a , kZ1,.,K, aZ1,.,m.

Our algorithm addresses several difficulties: first, because of

the missing data in X(1), we cannot simply use a standard

singular value decomposition (SVD) to obtain the principal

components. As an alternative approach, we use an iterative

approximation scheme suggested recently by [24,57] in the

context of analyzing Gene Expression Arrays. Specifically,

we alternate between an SVD step (2–5) and a data

imputation step (Step 6), where each update is designed so

as to decrease the matrix distance between the original data

and their reconstruction. As an additional complication, we

cannot compute the SVD directly because the principal

components obtained in this manner could be non-periodic or

even discontinuous. A pragmatic approach is to project the

data onto a smooth and periodic basis prior to carrying out

the SVD (Step 2). We choose a Fourier basis for this

purpose, and we truncate the high-frequency components by

keeping only the 20 leading coefficients. This gives a new

coefficient matrix X(3). Next, we compute the optimal rank-q

approximation to X(3) using a complex SVD in Steps 3 and 4,

and we reconstruct the signal in the original domain in Step

5. In Step 6 we use the reconstructed values as improved

estimates for the missing data in X(2), and then we repeat

Steps 2–5 using these improved estimates. This iterative

process is continued until the performance improvement falls

below a given threshold.

Theorem 1. The Functional Principal Component Algorithm

in Fig. 8 monotonically minimizes the matrix distance

between the normalized design matrix and its reconstruction,

kX(2)KX(5)k.

Proof. It is clear that the data imputation Step 6 decreases the

reconstruction error because the differences between the

imputations of missing values are set to zero. Steps 2–5 project

X(2) onto the linear subspace spanned by the low-frequency

Fourier basis. To see this, note that the Steps 2 and 5 can be
ion and enforcement of smoothness constraints.
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Fig. 9. Left: Mean and the four leading principal components of the left hip-angle during walking, estimated from eight sequences. The singular values

corresponding to these principal components are 892.0, 410.5, 362.2, 290.6, 255.3. Right: The same data for the left elbow. The singular values of these data are

631.8, 513.3, 430.0, 356.8, 246.8.

3 http://www.cs.brown.edu/people/black/3Dtracking.html.
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written alternatively as matrix multiplications

Xð3Þ Z Xð2ÞB and Xð5Þ Z Xð4ÞBT Z USqVTBT:

Here, ~BZ ðB;BtÞ describes the angle-wise Fourier transform

and B is the submatrix of ~B that corresponds to the first 20

coefficients. Bt determines the remaining coefficients and is

orthogonal to B, i.e. BTBtZ0. Because the Fourier basis is

orthonormal, B and Bt satisfy the conditions BTBZI and

BT
tBt Z I, respectively. The reconstruction error can be

decomposed as follows:

jjXð5ÞKXð2Þjj2 Z jjðXð5ÞKXð3ÞÞBjj2 C jjðXð5ÞKXð2ÞÞBtjj2

Z jjUSqVT BT BKXð2ÞBjj2 C jjUSqVT BT Bt

KXð2ÞBtjj2 Z jjUSqVT KXð2Þjj2 C jjXð2ÞBtjj2:

(5)

The first term in (5) is the rank-q reconstruction error of X(2),

which is minimized by the values of U, S, and V computed in

Step (4). Hence X(5) is the optimal rank-q approximation of X(2)

within the class of matrices whose row-space is spanned by the

rows of B. In other words, X(5) is a orthogonal projection of X(2)

with respect to k$k and the second term in (5), which is

independent of U, S, and V, corresponds to the residuals of this

projection. Because X(5) minimizes kX(5)KX(2)k, it is superior

to the X(5) from the previous iteration in particular. Hence both

the data imputation and the SVD steps reduce kX(5)KX(2)k

which gives the desired result. ,

In Fig. 9 we show the mean and the four principal

components for various body angles estimated from the

walking data. Because a common mean was computed for

different individuals in this figure, the principal components

can be interpreted as the main sources of variation between

different individuals. In Fig. 10 we show the same principal

components using different means for different individuals.

Hence, the principal components characterize variations within
different realizations by one and the same individual in this

case. An intuitive way to interpret these data is by using

animation. Here we add a relatively large multiple of each

component to the mean cycle and visualize the resulting

motion sequence. Corresponding movies are available on the

World Wide Web3; they can be interpreted in terms of specific

characteristics of some individuals in the experiment. Another

interesting experiment is to artificially generate new motion

sequences by using different random combinations of the

principal components. Sequences generated in this manner are

also available on our web site.
5. Application: motion tracking in video sequences

In this section, we briefly overview an application of the

principal component model for the tracking of human motion

in monocular video sequences. This example illustrates how

the learned statistical model of human motion can be exploited

to capture the prior probability of human motion for specific

activities. Since our primary focus in this work is not on

tracking but on the modeling aspects of human motion, we

shall not discuss the details here; instead, we refer the reader

interested in details to [52,53].

In our approach to tracking, the goal is to estimate the joint

angles of the body and its 3D pose given a sequence of 2D

image measurements, Jth{Jt,.,J1}. Of course, 2D image data

is insufficient in general to infer 3D information exactly. As an

approximation, we interpret the human 3D poses as unobserved

variables, ft, in a state-space model and we treat the image data

Jt as observations. Here the principal components serve to

define a low-dimensional representation of the human 3D

poses, which is particularly important to reduce the compu-

tational burden and to incorporate prior information. Such

http://www.cs.brown.edu/people/black/3Dtracking.html
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Fig. 10. Left: Mean and the four leading principal components of the left hip-angle during walking, estimated from eight sequences. The singular values

corresponding to these principal components are 497.5, 465.9, 365.1, 273.9, 211.8. Right: The same data for the left elbow. The singular values of these data are

698.7, 542.5, 390.4, 285.4, 206.2.
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additional information regarding the type of motion that can be

expected in a video sequence is crucial to simplify the complex

tracking task.

Formally, let qðtÞh ðqaðtÞjaZ1;.;mÞ be a random vector

summarizing the relative joint angles at time t; in other words,

the motion sequence, Zi(t), at time t is now interpreted as the ith

realization of q(t). Under the modeling assumptions of the SVD

in Fig. 8, q(t) can be written in the form

qðtÞ Z ~mðjtÞC
Xq

kZ1

ct;kvkðjtÞ;

where vk is the Fourier inverse of the kth column of V in (4),

rearranged as a T!mKmatrix; similarly, ~m denotes the

rearranged mean vector m in Fig. 8. vk(j) is the jth column of

vk, and the ct,k are time-varying coefficients. jt 2f0;TK1g

maps absolute time onto relative cycle positions or phases, and

rt denotes the speed of the motion such that

jtC1Z ðjt CrtÞmod T. Also, let ctZ(ct,1,.,ct,q) denote a

vector of the q linear coefficients and let t
g
t and q

g
t represent

the global 3D translation and rotation of the torso. Then body

positions are characterized by the state-vector

ft Z ðct;jt; rt; t
g
t ; q

g
t Þ

T :

The dynamics of a state-space model are described by the

densities:

pðftjftK1Þ “Transition Model”

pðJtjftÞ “Observation Model”:

In other words, the transition model, or transition density,

p(ftjftK1) characterizes the random change in ft from time

tK1 to t, and the observation model, p(Jtjft), characterizes the

generation of images. Details of these densities are described in

[41,52,53]. In tracking, interest at time t focuses on the

conditional distribution p(ftjJt). This is because we would like

to recover the probability distribution over the 3D body poses
given the sequence of previous images. One possibility is to

compute p(ftjJt) recursively using the prediction and filtering

equations:

pðftjJtK1Þ Z

ð
pðftjftK1ÞpðftK1jJtK1ÞdftK1 (6)

pðftjJtÞfpðJtjftÞpðftjJtK1Þ: (7)

(6) and (7) can be evaluated in closed form provided the

transition and the observation models are linear with Gaussian

noise. Unfortunately, the observation equation resulting from

the generative image model is highly non-linear so that we

have to resort to approximate inference for filtering. We use a

particle filter for this purpose where p(Jtjft) is represented as a

weighted set of particles, or samples, where each sample

represents the pose of the body in terms of the parameters of the

learned body model. Tracking is achieved by propagating these

particles in time (e.g. [23,28]).

To illustrate the method we show an example of tracking a

walking person in a cluttered scene. On an Ultra 1 Sparc station

the CCC implementation ran at a rate of approximately 1

frame/min. To visualize the posterior distribution we display

the projection of the 3D model corresponding to the expected

value of the model parameters. All parameters were initialized

with a Gaussian prior at time tZ0.

Fig. 11 shows the tracking results for frames 0–50 of a

walking sequence. Note that the legs of the model are better

aligned with the image data than the arms. This is probably due

to the fact that the arms are more often occluded by the torso,

and thus more prior driven than the legs. Note also that the

subject was not present in the training data. The small training

set may lack sufficient variation to capture the motion of the

test subject.

In parts of the cycle where large occlusion occurs (frame 30)

the model has little image information, and starts to drift off

the person. However, it recovers when a larger part of the body



Fig. 11. Tracking of person walking, based on a particle filter with 10,000 samples. The two upper rows show frames 0, 10, 20, 30, 40, 50 in the sequence with the

projection of the expected model configuration overlaid. The lower row shows the expected 3D configuration in the same frames.
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is visible (frame 40). Video animations of these results can be

found online at http://www.cs.brown.edu/people/black/

3Dtracking.html.

For the interested reader, it is worth contrasting our

stochastic Bayesian estimation method with a recent determi-

nistic approach, which uses the same types of PCA models

for tracking but exploits deterministic optimization methods

[59,60].
6. Conclusion

Fields as diverse as graphics, gait recognition, and

rehabilitation medicine require representations of cyclic

human motions for synthesis or analysis and many of these

methods rely on hand-crafted PCA representations. The

approach described here provides an automated method for

learning these periodic human motions from training data.

Statistical methods are presented for detecting the length of the

periods in the data, segmenting it into cycles, and optimally

aligning the cycles. We also presented a novel principal

component analysis technique for modeling the motion curves.

The method copes with missing data and enforces smoothness

between the beginning and ending of a motion cycle. The

principal components serve to define a state-space model for

the tracking of human motion in video sequences. We have

demonstrated results for tracking a person in a cluttered image

sequence but the method is applicable to any synthesis or

analysis problem involving cyclic motions.
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Appendix A. Periodic regression splines

We consider a regression spline estimate in the domain

[0, 1] with fixed knots �xk 2f0:1; 0:2;.; 0:9g. The regression

spline, f(x), is a linear expansion of the basis functions

fk(x), kZ0,.,K (for details, see Section 3.2.5 in [45]):

f0ðxÞh1; f1ðxÞhx; f2ðxÞhx2; f3ðxÞhx3;

fkC3ðxÞh ðxK �xkÞ
3
C:

These basis functions are summarized in the function

F(x)h(f1(x),.,fK(x))T so that f(x)ZF(x)Tb using a KC1

vector of coefficients b. Our objective is to enforce

boundary constraints of the form f (i)(0)Zf (i)(1) for iZ0,

1, 2 where f(i)(x) is the ith derivative of f(x) at x. We

formulate these constraints using matrix notation as

http://www.cs.brown.edu/people/black/3Dtracking.html
http://www.cs.brown.edu/people/black/3Dtracking.html
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CTb Z 0

where

CT h

0 f1ð0ÞKf1ð1Þ . fKð0ÞKfKð1Þ

0 f
ð1Þ
1 ð0ÞKf

ð1Þ
1 ð1Þ . f

ð1Þ
K ð0ÞKf

ð1Þ
K ð1Þ

0 f
ð2Þ
1 ð0ÞKf

ð2Þ
1 ð1Þ . f

ð2Þ
K ð0ÞKf

ð2Þ
K ð1Þ

0
BB@

1
CCA:

Note that C is a (KC1)!3 matrix, and consider the

singular value decomposition

C Z USVT Z ðU1 U2 Þ
S1 0

0 0

 !
VT

1

VT
2

 !
:

Here S1 corresponds to the part of S with non-zero diagonal

entries. Next, observe that CTbZV1D1UT
1 b equals zero if

and only if UT
1 bZ0. Using UUTZI, we can rewrite f(x) as

follows:

f ðxÞ Z FðxÞTb Z FðxÞTUUTb

Z ðFðxÞTU1 FðxÞTU2 Þ
UT

1 b

UT
2 b

 !
Z FðxÞTU2UT

2 b

Z ~FðxÞT ~b:

Hence f(x) is also the solution of an unconstrained

regression using the transformed basis vector
~FðxÞZFðxÞTU2. The computation of the coefficient vector
~bZUT

2 b is straightforward using this transformation.
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