
�������� ��	
�����

Non-Parametric Hand Pose Estimation with Object Context

Javier Romero, Hedvig Kjellström, Carl Henrik Ek, Danica Kragic

PII: S0262-8856(13)00065-6
DOI: doi: 10.1016/j.imavis.2013.04.002
Reference: IMAVIS 3234

To appear in: Image and Vision Computing

Received date: 5 January 2012
Revised date: 26 January 2013
Accepted date: 11 April 2013

Please cite this article as: Javier Romero, Hedvig Kjellström, Carl Henrik Ek, Danica
Kragic, Non-Parametric Hand Pose Estimation with Object Context, Image and Vision
Computing (2013), doi: 10.1016/j.imavis.2013.04.002

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.imavis.2013.04.002
http://dx.doi.org/10.1016/j.imavis.2013.04.002


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Non-Parametric Hand Pose Estimation with Object

Context

Javier Romeroa, Hedvig Kjellströmb, Carl Henrik Ekb, Danica Kragicb

aPerceiving Systems Department, Max Planck Institute for Intelligent Systems, 72076 Tübingen,

Germany
bCVAP/CVAS, KTH, SE-100 44 Stockholm, Sweden

Abstract

In the spirit of recent work on contextual recognition and estimation, we present

a method for estimating the pose of human hands, employing information about

the shape of the object in the hand. Despite the fact that most applications of

human hand tracking involve grasping and manipulation of objects, the major-

ity of methods in the literature assume a free hand, isolated from the surround-

ing environment. Occlusion of the hand from grasped objects does in fact often

pose a severe challenge to estimation of hand pose. In the presented method,

object occlusion is not only compensated for, it contributes to the pose estima-

tion in a contextual fashion; this without an explicit model of object shape. Our

hand tracking method is non-parametric, performing a nearest neighbor search in

a large database (100 000 entries) of hand poses with and without grasped ob-

jects. The system operates in real time, is robust to self occlusions, object occlu-

sions and segmentation errors, and provides full hand pose reconstruction from

monocular video. Temporal consistency in hand pose is taken into account, with-

out explicitly tracking the hand in the high-dim pose space. Experiments show

the non-parametric method to outperform other state of the art regression meth-

ods, while operating at a significantly lower computational cost than comparable

model-based hand tracking methods.
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1. Introduction

Human pose estimation is an important task for applications such as teleoper-

ation and gaming, biometrics and prosthesis design, and human-robot interaction.

However, accurate 3D reconstruction of human motion from images and video

is a highly non-trivial problem, characterized by high-dimensional state spaces,

fast and non-linear motion, and highly flexible model structures [2]. All this is

applicable to hand reconstruction as well as full body reconstruction [3, 4, 5, 6].

However, while a full body pose estimator encounters additional challenges from

e.g. clothing, a hand pose estimator has to deal with other but equally demanding

issues: similarity in appearance between different parts of the hand (e.g. different

fingers), and large self occlusion.

An important aspect of hand pose estimation is that humans are frequently

interacting with objects. This is the case in the majority of the application areas

mentioned above. The grasped object is often occluding a large part of the hand –

for a plausible example, see Figure 1, left.

Despite this, researchers have up to now almost exclusively focused on esti-

mating the pose of hands in isolation from the surrounding scene, e.g. [7, 8, 9,

10, 11]. As illustrated in Figure 1, top and middle, this will be inadequate if the

observed hand interacts closely with objects during estimation.

Object-contextual hand pose estimation has been addressed in a generative

manner in two recent works. In [12] the authors show that the hand pose can be

reconstructed robustly despite the object occlusion. In [13], this is taken one step

further, with explicit reconstruction of the object in 3D. By enforcing physical

constraints on the hand pose from the object 3D surface and vice versa, the two

pose estimation processes guide each other.

In contrast to [12, 13], we take a discriminative approach to object-contextual

hand pose estimation. The main contribution of this paper is a method for estimat-

ing human hand pose, employing contextual information about the shape of the

object in the hand. Neither the hand nor the object are explicitly reconstructed; the

hand and the object are instead modeled together, encoding the correlations be-

tween hand pose and object shape in a non-parametric fashion. In spirit of recent

methods for contextual recognition and estimation, e.g. [3, 14, 13, 6], the object

occlusion thereby helps in the hand pose reconstruction.

There are two reasons for exploring discriminative hand pose estimation with

object context. Firstly, while generative estimation approaches commonly are
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Discriminative (no
occlusions)

Discriminative
(with objects)

Generative (model
and occlusions)

Figure 1: Hand pose estimation is traditionally approached in two different manners,

either with a generative model (top) or using a discriminative approach (middle). With

a generative model, a model of the hand is maintained, and the image of the model is

evaluated against the observed image. In a discriminative approach, the image generation

process is not explicitly modeled; instead, a (parametric or non-parametric) mapping from

image to pose is learned from training examples. If objects are not taken into regard in

the modeling process, both these approaches have significant problems predicting in sce-

narios where large portions of the hand are occluded. In the generative case (top), there

is too little image evidence to compute an informative likelihood. In the discriminative

case (middle), the learned mapping can not take the object occlusion into regard, and will

return an erroneous estimate. Our method (bottom) addresses this problem, by exploit-

ing contextual information in the scene such as object-hand interaction. Due to this we

can reliably predict pose in scenarios with significant occlusion. We would like to point

out that our model is not limited to scenarios where an object is being manipulated but

equally valid to estimate a free hand. Objects can also be taken into regard in a generative

framework; see Section 2.
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more accurate, discriminative approaches are commonly more robust and com-

putationally efficient; this is discussed further in Section 2. In, e.g., robotic and

gaming applications, computational speed is critical, making discriminative ap-

proaches attractive. It is therefore valuable to investigate the possibility of esti-

mating hand pose discriminatively in the context of objects.

Secondly, apart from the purely physical object constraints on the hand pose

[13], there is also a functional correlation between object shapes and the manner

in which they are grasped by a hand [15]. Thus, all physically possible ways of

grasping an object are not equally likely to occur during natural object manipula-

tion activities. Probability densities over hand pose conditioned on object shape

can be encoded (in a non-parametric manner) in our discriminative method, while

it is more difficult to encode this information in a generative model based method.

Figure 1, bottom row illustrates our approach. In our non-parametric method,

pose estimation essentially corresponds to matching an observed hand to a very

large database (100 000 entries) of hand views. Each instance in the database de-

scribes the articulation and the orientation of the hand. The configuration of a new

(real) image can then be found using an approximate nearest neighbor approach,

taking previous configurations into account.

In our system, the database contains hands both with and without grasped ob-

jects. The database depicts grasping hands including occlusion from objects with

a shape typical for this kind of grasp; this encodes functional correlations be-

tween object shape and the articulation of the grasping hand. The occlusion shape

is strongly correlated to grasping type which further has a strong dependency with

the hand articulation. Since the underlying assumption is that appearance similar-

ity can be related to similarity in hand pose the object shape contributes to the

hand pose estimation.

In many scenarios it is hard to differentiate between the palm and the dorsal

(“back-hand”) side of the hand. However, the object is much more likely to oc-

clude the palm rather than the dorsal side of the hand. This gives insight on why

object knowledge can be exploited in order to resolve the ambiguities typically as-

sociated with hand pose estimation. The rest of the paper is organized as follows:

In Section 2 the relations to related work are discussed. The probabilistic estima-

tion framework is then outlined in Section 3. The non-parametric hand model is

described in Section 4, while Section 5 describes how inference is done over this

model. Experiments in Section 6 show the non-parametric method to outperform

other state of the art regression methods. We also show qualitative reconstruction

results for a number of synthetic and real test sequences.
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2. Related Work

In this section we review related work on object-contextual non-parametric

hand pose estimation. For a general review on human motion estimation we refer

the reader to [2] and for hand pose estimation in specific to [16]. Further, we will

discuss the main difference, both with respect to accuracy and performance, of

generative and discriminative methods in the context of hand pose estimation.

2.1. Object-Contextual Hand Pose Estimation

As discussed in the introduction, hand pose estimation can be addressed in

a generative or a discriminative manner. Object-contextual hand pose estimation

has been addressed in a generative manner in two recent works. In [12] the authors

show how the hand pose can be reconstructed robustly despite the object occlu-

sion. The hand is observed using RGB-D image data. To achieve robustness to

partial occlusion of the hand from objects, the hand is modeled as a Markov ran-

dom field connecting segments corresponding to the different bones of the hand

skeleton. In this way, the non-occluded segments can guide the pose estimation

of the occluded ones.

In [13], this is taken one step further, with explicit tracking of the object in 3D.

By enforcing physical constraints on the hand pose from the object 3D surface and

vice versa, the two pose estimation processes guide each other. A multi-camera

system is used to estimate both the pose of the hand and the object with framerates

between 0.5 and 2 Hz.

2.2. Generative and Discriminative Pose Estimation

As outlined in the introduction inference of hand pose from images have either

been done using generative or discriminative methods. In contrast to [12, 13], we

take a discriminative approach to object-contextual hand pose estimation. Over

the next paragraphs we outline and discuss the main difference between gener-

ative model-based estimation methods and discriminative regression estimation

methods to motivate our approach.

Accuracy. An important advantage of generative approaches is their (potential)

accuracy, which is only limited by the precision of the hand model and the com-

putational time available. In contrast, the accuracy of our discriminative non-

parametric approach is fundamentally limited by the design of the database; it is

not computationally tractable, using any approximation, to add enough new sam-

ples to the database in order to reach the accuracy of a generative tracker.

5
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Initialization and error recovery. However, one disadvantage of generative mod-

els is their inherent local character. In most cases, the posterior distribution over

the state space is highly multi-modal. The estimation procedure must therefore

have a good prior state estimate. This can represent a problem in the initialization

of the method. The tracking procedures in [12] and [13] were manually initialized.

Another inherent problem of locality with generative models is the recovery

from errors; when the pose of a frame is wrongly estimated, subsequent frames

will try to adapt such erroneous estimation to new frames. Since the temporal

propagation model by nature is local, the method will then lose track.

Discriminative methods explore their full precomputed and discrete domain

completely and independently every frame. This allows them to explore more effi-

ciently broader sets of parameters compared to generative methods. In our system

we encourage locality by using a temporal consistency model, see Section 5.2.

However, since the likelihood in our model is sampled on a broad range of param-

eters, hypotheses from new parts of the pose space are continuously picked up,

ensuring that the tracker can recover from errors easily.

The locality of model-based solutions can be specially problematic for hand

pose estimation because hand movements in real sequences can be very fast (5m/s

translational and 300 deg /s rotational speed of the wrist [16]), breaking the local-

ity assumption.

Computational efficiency. The joint estimation of hand and object pose in [13]

presents another problem: computational load. The results shown with real se-

quences use eight cameras and the estimation time is 2 seconds per frame after

speeding-up computations on the GPU. Decreasing the number of cameras (and

therefore the quality) can speed-up the system up to 3 Hz. In [12] a running time

of 6 seconds per frame is reported, although it is potentially parallelizable in a

GPU.

In contrast, our discriminative method runs in real-time, implemented in C++

on a single CPU core. This allows other processes to run concurrently either

in other CPUs or in the GPU, which is valuable for applications in robotics or

gaming.

2.3. Non-Parametric Hand Pose Estimation

Other hand pose estimation systems have used databases of hand views in a

non-parametric manner [7, 8, 11, 17]. As discussed in the introduction, none of

the three previously mentioned systems mentioned how to handle or take advan-

tage from occlusions, and the experiments showed hands moving freely without
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any object occlusion. The main difference between our system and previous ap-

proaches is that we exploit contextual information, such as objects to estimate the

pose of the hand.

In [11], the application of a specially designed glove circumvents several prob-

lems associated with hand-pose estimation, making the problem as well as the ap-

proaches significantly different. An evolution of that system can be found in [17],

where the authors track the hands without the need of gloves. However, they can

only track a very limited range of hand poses and movements.

The system described in [7] performs classification of human hand poses

against a database of 26 basic shapes. This is adequate for their intended ap-

plication, automatic sign language recognition. In contrast, our method aims to

perform continuous hand pose estimation rather than isolated single-frame pose

classification, which means that we can exploit temporal smoothness constraints

to disambiguate the estimation.

The work from [8] can be regarded as the most similar to our work. However,

like the two other approaches, they only take freely moving hands into regard.

3. Probabilistic Framework

We begin by explaining the notation used throughout the paper. At a specific

time instant t, let xt be the articulated hand pose and yt the corresponding image

observation.

Given a specific image observation yt, we wish to recover the associated pose

parameters xt generating the visual evidence. Formally we will refer to the rela-

tionship between the pose and the image space as the generative mapping f ,

yt = f (xt). (1)

The task of pose estimation is to estimate the inverse of the generative mapping,

either as a point estimate by modelling the inverse as a function, as in [18], or by

a probabilistic method by estimating p(xt | yt) which have the potential to handle

a multi-modal estimate.

In the case of hand pose estimation, this is known to be a highly ill-conditioned

problem, since the image features are ambiguous; the same image observation y

might origin from a wide range of different poses x, making the likelihood density

multimodal [19]. In order to proceed, several different approaches have been sug-

gested: generative models [20, 12, 13] which directly model f , approaches which

rely on multiple views [9], or methods that exploit the temporal continuity in pose

over time [20, 21].

7
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In this paper, our objective is a highly efficient method for situations where

model-based generative approaches are inapplicable due to their computational

complexity. Further, multiple views are not available in most applications.2 We

thus take the latter approach and exploit temporal continuity to disambiguate the

pose. The pose space is assumed to be Markovian of order one, i.e., the pose

xt depends only on the pose at the previous time step xt−1. The estimation task

thus reduces to find the pose xt that maximizes p(xt | yt, xt−1) which decomposes

as follows,

arg max
xt

p(xt | yt, xt−1) = arg max
xt

p(xt|yt)p(xt|xt−1) (2)

In this paper we take a non-parametric approach, with an implicit likelihood

model represented by a large database of images and their corresponding poses,

see Figure 2. To perform inference, we use a truncated approach where we approx-

imate the distributions in Equation (2) using local models. As shown in Figure 2,

one time-step of inference is carried out as follows:

• Given an image observation yt, a set of weighted pose hypotheses Xt =

{xi
t,w

i
t} are drawn from the model as the nearest neighbors to the image

observation in feature space. These constitute a sampled approximation of

the observation likelihood p(xt | yt). This is described in further detail in

Section 5.1.

• From the weighted nearest neighbors of the previous time step, a function

g(xt) approximating the temporal model p(xt | xt−1) is computed. This is

described in further detail in Section 5.2.

• Weights w∗it are now computed as w∗it = g(xi
t) ∗wi

t. The weights are normal-

ized to sum to 1 for all samples in Xt.

• The pose estimate is the most probable sample from the database given the

observation and the previous estimates. With our weighted nearest neighbor

approach, this is approximated by x̂t = xk
t , where k = arg maxi w∗it .

In the next section we describe how the proposed implicit database model is

created and represented.

2It should be noted that it is straight-forward in the present approach to employ image evidence

from several camera views, or alternatively from RGB-D imagery. This is also discussed in the

Conclusions.
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yt

p(xt | yt)

feature space

p(xt | xt−1)

pose space

×

∝ p(xt | yt, xt−1)

pose space

{xi
t−1
,w∗i

t−1
}

{xi
t,w
∗i
t }

RESULT

Non-parametric model

Figure 2: Schematic figure of the non-parametric temporal pose estimation framework.

Given an image observation yt, a set of pose hypotheses Xt are drawn from the model.

Each hypothesis is given a temporal likelihood based on consistency with the hypothesis

in the previous frame. The final estimate is the pose associated with the largest probability.

4. Non-Parametric Model Representation

In order to obtain the non-parametric model, we need to acquire a training

data set of poses and associated image appearances (x, y) that can be assumed to

“well” represent the problem, i.e., that includes poses that are expected to occur

in a specific application domain. As our approach is non-parametric, there is

no explicit parametrization of the image-to-pose mapping, as the relationship is

implicitly parametrized by the database itself.

Generating such a database of natural images poses a formidable challenge, as

it would need to capture the variations in pose and image appearance at a sufficient

resolution in order to make accurate pose estimation possible. However, with

recent advances in Computer Graphics we can use a rendering software such as

9
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Figure 3: The left image shows an example from the database. The right image shows the

associated image feature descriptor y. Prior to extracting the feature descriptor the object

is segmented from the image, resulting in a “hole” at the corresponding position in the

descriptor. This encodes the correlation between pose and object in a more robust manner

compared to if the internal edges of the object would also contribute to the descriptor.

Poser, which is capable of generating high-quality images of hands efficiently.

The idea of acquiring large sets of training data using this approach is not new

and has proved to be very successful for pose estimation [22, 4].

The composition of the database used in this paper is motivated by our re-

search aim: understanding human interaction with objects, [23, 24, 14]. We select

33 different grasping actions according to the taxonomy presented in [15] (see

one example in Figure 3, left). Further, each action is applied to a set of ba-

sic object shapes on which the grasp would naturally be applied. Each action is

then discretized into 5 different time-steps. In order to make our approach view-

independent we generate samples of each instance from 648 different view-points

uniformly located on the view-sphere. This results in a database of over 100 000

instances , which we assume samples the problem domain well.

4.1. Data Collection

Images are extremely high-dimensional objects, making it infeasible both in

terms of storage and modeling to use the original pixel representation. In this

paper we therefore apply a two stage feature extraction approach with the aim

to remove variance not related to pose from the image. In the first stage the

hand is segmented from the image using skin color thresholding [25]; this also

10
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removes the object being grasped and the parts of the hand occluded by the ob-

ject. This stage assumes the object is not skin-colored. The system should be

robust to objects with small skin-colored patches, since the effect should be sim-

ilar to segmentation noise as explored in 6.1. Uniformly skin-colored objects are

not considered in our approach. This assumption can be relaxed in different ways

that compromise certain features of our system and go beyond the scope of this

paper, for example model-based object tracking (but the system would lose the

ability to handle unknown objects) or movement-based object tracking (under the

assumption of the person and object being the only moving parts of the scene).

Having extracted the hand from the image, the dimensionality is further reduced

by representing the image as the response to an image feature.

A large amount of work within Computer Vision has been focused on devel-

oping different image features [26, 27, 28]. An ideal image feature should be

robust to segmentation errors, sensitive to non-textured regions and fast to com-

pute. We compare the performance of Histogram of Oriented Gradients (HOG)

[29] features and features based on distance transform [30] for different parame-

ter settings. For a number of different feature options, the following experiment

is performed: The feature is computed for every database entry. The entries are

removed from the database one at a time, and the 50 nearest neighbors (NN) ex-

tracted from the database. The mean is taken of the Euclidean distance in pose

space between all query entries and their found nearest neighbor number 1, 2, ...,

50. This distance is the same as the error of a non-parametric pose estimation

– a dense database and a good feature would give small distances, while a sparse

database and a non-informative feature would give large distances. Figure 4 shows

the cumulative mean pose error of nearest neighbor number 1–50, for 9 different

feature alternatives.

Based on the result shown in Figure 4, an 8 × 8 × 8 HOG feature is selected,

resulting in a 512 dimensional image representation, see Figure 3, right.

Our motivation is to exploit contextual information of the grasped object when

estimating the hand pose; the object contains a significant amount of information

about the pose (and vice versa). In a learning based framework, which assumes

having a training data set which describes the problem domain well, the natural

inclination is that the model would be limited to handle objects which are included

in the database. Such a model would have to be of a size that would render it in-

feasible to use. However, in our model the object is removed (assuming it is not

uniformly skin-colored). This means the occluding shape of the object affects the

representation while the internal edges of the object do not, see Figure 3. This

representation can robustly be extracted from the image and is capable of gener-

11
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NN joints 8|8|8 pyr 8|8|4 hognh 8|8|16 4|4|8 16|16|8 dist edge

1 0.61 1.32 1.29 7.59 3.57 1.42 1.57 1.39 1.64 2.07

2 0.87 2.04 1.99 8.27 5.05 2.19 2.44 2.15 2.51 3.14

3 1.08 2.55 2.51 8.64 5.97 2.73 3.05 2.68 3.13 3.88

4 1.26 2.94 2.89 8.89 6.58 3.14 3.50 3.08 3.58 4.41

5 1.42 3.25 3.20 9.07 7.03 3.46 3.85 3.39 3.93 4.81

6 1.55 3.50 3.45 9.21 7.38 3.72 4.14 3.65 4.21 5.12

7 1.65 3.71 3.66 9.32 7.66 3.94 4.37 3.86 4.45 5.38

8 1.74 3.89 3.84 9.59 7.89 4.12 4.58 4.05 4.65 5.60

9 1.81 4.05 4.00 9.81 8.10 4.29 4.76 4.21 4.82 5.79

10 1.87 4.19 4.14 9.99 8.27 4.43 4.91 4.35 4.98 5.96

Figure 4: Average (across nearest neighbors) of the mean pose error of non-parametric

pose estimation using different image features. The curves show the cumulative Euclidean

distance between the query pose and its nearest neighbor number 1-50 in the database.

joints is the ground truth error in pose space, acquired by taking the nearest neighbors

in the pose space directly. This is a lower bound on the error and shows the density of

our database. The curves hogAxAxB show the error when using HOGs with A × A non-

overlapping cells and a histogram of B bins (see Figure 3 for an example of an 8 × 8 × 8

HOG). The suffix pyr indicates that the HOG feature includes lower resolution cells (1 ×

1, 2 × 2, . . . , A × A). The suffix nh means normalized holes: the histogram is normalized

to sum to one (i.e., removing information on how large part of the cell is covered by skin

colored areas). The curve dist32x32 shows the error when images are represented by

their distance transform subsampled to 32 × 32 pixels. The edge curve shows the error

when using the chamfer distance between edge maps extracted from the images. The

result indicates that an 8 × 8 × 8 HOG with pyramidal resolution HOG gives the lowest

error, but 8 × 8 × 8 HOG provides very similar performance with lower dimensionality.

It is also interesting to note the importance of a sufficient number of bins, as it shows the

bad results obtained by 8 × 8 × 4 HOG.

alizing over different objects. As we will show in the experimental section, this

sufficiently models the correlation between hand and object allowing estimation

in scenarios with severe occlusion.

Having acquired a low-dimensional efficient representation y of the image as

described above, the database is completed by associating each image yi with its

corresponding pose parameters xi. The pose vector x is composed of the rotation

matrix of the wrist w.r.t. the camera and the sines of the joint angles of the hand.

5. Inference

As shown in Equation (2), the conditional probability density over hand pose

xt is factorized into two different terms, an observation likelihood p(xt | yt) and a

12
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Figure 5: The plot shows the prediction error (left) and average query time (right) as a

function of database size (as percentage of the full database size) for finding the nearest

neighbor in the database. 10% of the original database is set aside for testing, resulting in

a full database of around 90 000 instances. Two approximate methods, LSH and FLANN,

are compared with an exhaustive search as baseline. The left plot shows that LSH per-

forms slightly better than FLANN in terms of accuracy. The right plot shows the query

time increasing linearly for the exhaustive search while the approximate methods being

sublinear, and FLANN being faster than LSH in absolute terms.

temporal consistency model p(xt | xt−1). Below we discuss these two models in

more detail, and show how the pose xt is estimated from the observation yt using

the implicit database model.

5.1. Observation

The pdf p(xt | yt) is approximated by indexing into the database of hand poses

using the image representation yt, and retrieving the nearest neighbors in the space

spanned by the set of database features Y. Due to the size of the database, an exact

NN approach would be too computationally intensive. We therefore consider ap-

proximate methods. We compare Locality Sensitive Hashing (LSH) [31] and Fast

Library for Approximate Nearest Neighbors (FLANN) [32], see Figure 5, and de-

cide to use LSH in our experiments as it shows an attractive trade-off between

computational complexity and prediction accuracy.

LSH projects the feature space into multiple hash tables. The hash tables

are designed so that if two feature vectors are close in feature space, their corre-

spondent hashes are the same (or at least similar in Multi-probe LSH, [31]). The

parameters required by this algorithm are the number of hash tables to build L and

the number of nearby hashes to probe T . The rest of the parameters are optimized
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offline for a required percentage of true K-nearest neighbors R. We set those val-

ues to L = 10, T = 50 and R = 95% empirically. Each LSH query yt returns an

approximation to the K nearest neighbors (in our case K = 500). Each retrieved

KNN yi
t is associated a weight wi

t from a spherical Gaussian density,

wi
t = N(yi

t | yt, σyI) , (3)

with standard deviation σy is set by experimental evaluation. This encodes our

belief that the image feature representation is locally smooth and reduces the effect

of erroneous neighbors from the LSH algorithm.

Each image feature in the database, y j is associated with a pose x j. The

poses {xi
t} corresponding to the ǫNN {yi

t} can thus be retrieved. Together with

the weights, they form the set {xi
t,w

i
t} which is a sampled non-parametric approx-

imation of p(xt | yt).

5.2. Temporal Consistency

As described in Section 3, the temporal consistency constraint p(xt | xt−1) is

modeled as a parametric function g. It is used as a conditional prior to reweight

the sampled distribution {xi
t,w

i
t} approximating p(xt | yt).

We assume that our model is getting observations densely enough in time such

that the trajectory with respect to both the pose and view spaces vary smoothly.

The naïve modeling approach would thus be to penalize estimates by their devi-

ation in pose space to the previous estimate x̂t−1. This model implicitly assumes

that the temporal likelihood distribution p(xt | xt−1) is uni-modal. The uni-modality

assumption can introduce unnecessary errors in the prediction since x̂t−1 might not

be the best candidate due to ambiguities (several poses can share a similar appear-

ance) or estimation errors. A more sensible approach is to make use of all the

hypotheses Xt−1 = {x
i
t−1
,w∗i

t−1
} in the previous time instance and propagate them

through time. We can do so by modeling the conditional distribution p(xt | xt−1)

using a kernel density estimation (KDE) approach [33], where the density is mod-

eled as a mixture of Gaussian kernels centered in xi
t−1

and weighted by w∗i
t−1

. This

enables propagation of a potentially multi-modal distribution in time, making the

temporal model significantly more flexible and expressive, allowing us to repre-

sent temporary ambiguities, resolving them further ahead in time.

As we will show in Section 6, having a strong temporal model allows us to

perform prediction in noisy scenarios where the image observations are uncertain.
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Figure 6: Pose estimation using the non-parametric method (PNP) in comparison to three

different regression techniques (LSQ, RVM, GP). As a baseline, the true nearest neighbor

pose error (NN Pose) is shown, as well as the pose error of the nearest neighbor in feature

space, not taking temporal information into regard (NN Feature). The plots show the

average error with increasing segmentation noise, normalized with respect to the true

nearest neighbor pose error. The error measure in the left plot is the Euclidean distance

in the pose space spanned by x. The error measure in the right plot is proportional to the

Euclidean distance in the space spanned by the 3D positions of all finger joints.

6. Experiments

We perform three sets of experiments using the proposed method. First we

compare our non-parametric approach to a baseline of other state-of-the-art re-

gression algorithms. In order to make an evaluation in terms of a quantitative

error this experiment is performed using synthetic data where the joint configu-

ration is known. Synthetic data also allows us to control the amount of noise in

the images. Both our method and the baseline methods are evaluated in terms

of robustness towards noise in the image observations. In the second set of ex-

periments we evaluate our method in a qualitative manner on synthetic sequences

with added image noise. The third set of experiments is performed on challenging

real-world sequences.

Videos of the real experiments can be seen at http://www.youtube.com/watch?v=RzenV-ma8Io.

6.1. Baseline

We compare our method to a set of regression models. In specific, we use

Least Square Linear Regression (LSQ), the Relevance Vector Machine (RVM)

[34] and Gaussian Process regression (GP) [35] to model the mapping from input
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(a) α = 0.5% (b) α = 3.3% (c) α = 5%

Figure 7: Artificial corruption of the segmentation of the synthetic test data. The corrup-

tion is performed as follows: A partial segmentation is created by randomly removing α

percentage of the pixels from the segmentation. The morphological operators of erosion

and dilation are then applied this partial segmentation in order to propagate the noise over

the image. Examples of increasing segmentation noise are shown.

features y to pose x, approximating the likelihood p(x | y) (no temporal informa-

tion is included here). Each of these models have previously, with significant

success, been applied to pose estimation [22, 9, 36] for both hands and full body

pose.

All above models are based on a fundamental assumption that the mapping f −1

from image to pose takes functional form; LSQ assumes linear form, while RVM

and GP can model more flexible mappings. We compare these three methods to

the suggested approach on four different synthetic sequences with varying degrees

of added image noise, see Figure 7. Neither the poses nor the objects in the test

sequences are present in the database.

As can be seen in Figure 6, left, the linear LSQ regression results in a very

large error indicating that the relationship between feature and pose is inherently

non-linear. The RVM and the GP are unable to model the mapping and do in fact

always predict the same pose: the mean pose in the training data, irrespectable

of image observation. In other words, this means that the appearance-to-pose

mapping f −1 is under-constrained and does not take functional form. However,

the non-parametric approaches are capable to model in such scenarios. From the

results we can see that an exact nearest neighbor estimate in the feature space

(without temporal information) results in a worse result compared to the mean
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(a) Original pose (b) Error 5.33◦ (c) Error 1.65◦ (d) Error 1.58◦

Figure 8: Four different hand-poses are shown. The right-most image corresponds to

the ground truth pose and the remaining images are estimates of the ground-truth. The

estimates are ordered according to decreasing joint angle error. This clearly exemplifies

how badly joint angle error corresponds to the quality of the estimate. This is because

the norm in joint space assumes each dimension to contribute equally to the quality of the

prediction. Therefore it does not reflect the hierarchical structure of the hand where error

higher up in the chain (such as in the last two examples) effects the position of every joint

further down the chain compared to the first prediction where the errors are concentrated

closer to the finger tips.

pose distance in the data set, while our approach performs significantly better –

also indicating that the mapping is non-unique. The dashed red line shows the

results of an exact nearest neighbor in the pose space and is therefore a lower

bound on the error of our method as it shows the resolution of the database.

The norm in joint space is not easily interpretable in terms of quality of the

prediction as it does not respect the hierarchical structure of the hand, see Figure

8. Therefore, the right plot of Figure 6 shows the same mapping results, but with

an error norm in terms of finger joint 3D positions. This shows even clearer how

well our suggested method performs. With very little noise we are close to the

exact NN lower bound, with increasing segmentation error asymptotically moving

towards the mean.

Note that 5% error corresponds to a very weak segmentation, see Figure 7.

Further, our approach significantly outperforms the exact nearest neighbor in fea-

ture space (without temporal information). This clearly indicates how important

temporal information is in order to disambiguate the pose.

To summarize, the results clearly show that the mapping from image features

to pose is both highly non-linear and non-unique (multi-modal). This implies that

it cannot be modeled using a functional approach.
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Figure 9: Qualitative results of our approach applied to synthetic data. The top and the

fourth row show the ground truth pose, the second and the fifth row show the segmentation

from which the image features are computed. The segmentation has been corrupted by

artificial noise with α = 0.5% as explained in Figure 7. The third and last row show

the corresponding predictions from our system. The two grasping sequences are applied

to two different objects, in the first sequence a book and in the second a ball. We show

the predicted hand-pose but also the object that is associated with the specific pose in the

database.

6.2. Synthetic

In order to evaluate the qualitative performance of our method in a controlled

scenario, we applied the model to image sequences with a controlled noise level.

The results are visualised in Figure 9.

The estimated pose over the two sequences is accurate while the associated

object varies. This validates our assumption that objects generalize over pose and

provide important contextual information.

6.3. Real Sequences

In order to show the performance of our method in a real world manipulation

scenario, we let three different subjects, two men and one woman, manipulate

three different objects. The objects are not contained within the model. The results

are shown in Figure 10.

As can be seen from the results, our model is capable of accurately predicting

the pose of the hand. In each of the sequences the test hand shape and appearance
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is different from the database hand model, while there is no observable degrada-

tion in performance, showing that our model is robust to different hands. Further,

as neither of the manipulated objects are represented in the model this further sup-

ports the notion that grasps generalize over objects and that the objects’ influence

on the grasp provide important cues. This clearly shows that our system is capable

of exploiting such information.

A large portion of the dynamical models that have been proposed to the prob-

lem of pose estimation are based on auto-regressive models [37], which assumes

that the trajectory in time takes functional form. Even though our dynamical

model is parametric, it is based on hypotheses from the non-parametric ǫNN

model. This means that it is considerably more flexible and can recover from

bad estimates in situations where an auto-regressive model will fail. To highlight

this strength we tested our model to a set of highly challenging sequences with

fast non-linear motion and significant occlusion. This results in significant errors

in the visual features. In Figure 11 the results clearly show the strength of our

approach, as it is able to track in such scenarios, and recover from errors which

are difficult to avoid.

Further, we would like to highlight the efficiency of our algorithm. The method

was implemented in C++ and runs at 10 frames/second on one of the cores of a

four core 2.66GHz Intel processor. Its speed makes it applicable in many differ-

ent scenarios where pose estimation is an important source of information, and

integratable with other computing-intensive algorithms.

7. Conclusions

We present an efficient non-parametric framework for full 3D hand pose esti-

mation. We show through extensive experimentation that the proposed model is

capable of predicting the pose in highly challenging scenarios corrupted by sig-

nificant noise or with rapid motions. Further, our model is efficient and runs in

real-time on standard hardware.

The fundamental contribution is a system capable of exploiting contextual in-

formation in the scene from the interaction between the hand and a potential ob-

ject. We show how this information can be exploited in a robust manner, making

our system capable of generalizing the pose over different objects. This enables

the usage of a fast discriminative method to scenarios where only expensive gener-

ative methods previously would have been applicable. We employ a multi-modal

temporal model, allowing us to resolve ambiguities through temporal consistency.

Our model could easily be extended to simultaneously estimate both the hand pose
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Figure 10: Predictions of real world sequences. The three rows show three different

sequences where different objects are manipulated by different humans. In the first and

second sequences the subject is male while in the last one female. None of the objects

exist in the database. The first, third and fifth row show the input images with the skin

detection window highlighted. The remaining rows show the associated predictions. As

can be seen, the model correctly predicts the hand pose in each of the three different

sequences.

and the object shape by appending the inference scheme with a smoothness term

with respect to object.

In future work we would like to evaluate the possibility of exploiting a better

pose representation. This would make it possible to even further strengthen the

temporal model. In this paper we also assume that the observation model can be

modeled using a spherical Gaussian; this encodes an assumption of equal impor-

tance of the joint angles. This is unlikely to be true why we would like to explore

a likelihood model that better respects the correlation between quality of estimate

in joint space. This could potentially allow us to use additional hypotheses for

each estimate.

Another avenue of future work to investigate is exploitation of RGB-D data,

which would improve both the hand-background segmentation (currently based

on skin color) and the feature representation of hand shape (currently HOG).

Finally, as noted in Section 2, generative and discriminative approaches have

different merits. For applications requiring high accuracy, we therefore plan to run

our discriminative hand pose estimator in parallel with a more accurate but less ro-

bust generative tracking method, using the discriminative estimates to (re)initialize
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Figure 11: The above sequences shows two challenging examples. In the left sequence a

significant portion of the hand is occluded by the object. However, our proposed method

still manages to correctly estimate the pose of the hand. This clearly shows the strength

of jointly estimating the object and the pose rather than seeing them as independent. The

right sequence is an example where the subject manipulates the objects in a rapid fashion

in a highly non-linear manner. In such scenarios most dynamical models commonly ap-

plied in pose estimation will over smooth the solution or be unable to predict at all due to

being fundamentally auto-regressive approaches. Our model correctly predicts the pose in

the two first frame while the last estimate is erroneous. This error is an implication of the

Markov one assumption in our temporal model which thereby is not capable of modeling

inertia and therefor is unable to resolve the ambiguity in the image sequence.

the generative process.
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-We developed a system that estimates in real-time the articulated pose of the hand 

-Our approach is discriminative, with low computational load and fast error recovery 

-Our system is robust to occlusions, implicitly extracting information from them 

-The system is thoroughly evaluated with quantitative and qualitative experiments 
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