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Abstract

Applying machine learning in the health-care domain has shown promising results
in recent years. Interpretable outputs from learning algorithms are desirable for
decision making by health care personnel. In this work, we explore the possibility
of utilizing causal relationships to refine diagnostic prediction. We focus on the
task of diagnostic prediction using discomfort drawings, and explore two ways
to employ causal identification to improve the diagnostic results. Firstly, we use
causal identification to infer the causal relationships among diagnostic labels which,
by itself, provides interpretable results to aid the decision making and training of
health-care personnel. Secondly, we suggest a post-processing approach where
the inferred causal relationships are used to refine the prediction accuracy of
a multi-view probabilistic model. Experimental results show firstly that causal
identification is capable of detecting the causal relationships among diagnostic
labels correctly, and secondly that there is potential for improving pain diagnostics
prediction accuracy using the causal relationships.

1 Introduction

Using pain or discomfort drawings for diagnostic purposes has shown to be effective both in medical
science [5, 4, 3] and machine learning [15]. Pain drawings have a long history in the health care
system and the first research paper on the use of it was published in 1949 [8]. It is used in many clinics
and especially in the assessment of spine-related pain [7, 14, 2, 13]. Figure 1 shows an example of
a discomfort drawing (a modern version of the original pain drawing) and its assessed diagnostic
labels. The drawing is filled out by the patient who shadows those parts of the body where he/she
experiences discomfort. Health-care personnel then assess the drawing to decide on diagnosis or
further examinations. The drawing has also been used as an input for diagnostic prediction using
machine learning methods which is the focus of this paper [15].

Identifying causal relationship [12] among diagnostic labels is extremely useful. The diagnostic
labels in Figure 1 includes symptom diagnoses, pattern diagnoses and psychophysiological diagnoses.
The labels describe the symptoms, while pattern diagnosis and psychophysiological diagnosis explain
the underlying cause of the symptoms. However, these labels are presented in an independent way
since it is just the snap-shot of a single patient. With access to a large number of cases, the causal
relationship among these labels could be identified, providing a medical knowledge-graph of the
relationship between symptoms and causes. Firstly, this causal graph by itself would be valuable
for the decision-making and education of health care personnel – e.g., a clinician can get support in
interpreting a pain drawing by using the causal graph as a template to look for likely causes of the
observed symptoms. Secondly, the causal graph can be employed to make better automatic diagnostic
prediction from pain drawings – e.g., by using the identified relationships to refine the prediction
results from other machine learning models [15].

Our work explores utilizing causal identification algorithms to refine the diagnostic prediction and
interpretation using discomfort drawings. Our contribution is two-fold:
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Symptom diagnoses: Neck discomfort, B Scapula discomfort,
R Shoulder impingement, Interscapular discomfort, B Medial
elbow discomfort, Lumbago, R Thumb discomfort, B Adductor
tendonitis, R Front thigh discomfort, B PFS, B Calf discomfort, R
Shin discomfort, R Calcaneal pain, R Arch discomfort

Pattern diagnoses: B C7 Radiculopathy, B L1 Radiculopathy, B
L5 Radiculopathy, R S1 Radiculopathy, R C6 Radiculopathy

Psychophysiological diagnoses: DLI C6-C7, DLI L4-L5, DLI L5-
S1, DLI S1-S2, DLI S2-S3

Figure 1: A discomfort drawing (left) and assessment from a medical expert (right). R stands for right side, L
for left side and B for bilateral. PFS refers to patellofemoral pain syndrome and DLI to disco-ligament injury.

• We employ a causal identification algorithm, the Peter-Clark (PC) algorithm [11, 10], to
determine the causal relationship among diagnostic labels.

• We add a post-processing step to a diagnostic prediction algorithm, the Inter-Battery Topic
Model (IBTM) [16], using the identified causal graph to enhance both the detection accuracy
and the interpretability of the result.

We present our method in Section 2, experiments in Section 3, and discuss future work in Section 4.

2 Method
Our method of refining diagnostic prediction is presented in this section. The method is summarized
in Figure 2. The baseline model is IBTM (left panel) [16] as used in [15]. IBTM is a latent variable
model that learns a joint embedding θ of the discomfort drawing w and the diagnostic label a. Thus,
it can be used for diagnostic prediction given an unseen discomfort drawing. Using training data,
we identify a causal graph demonstrated in the middle panel. We present the causal identification
method in Section 2.1 with results from the data. At test time, we predict the diagnostic labels for an
unseen pain drawing with IBTM. We then refine the predicted labels in the causal graph and obtain
the final structured output as in the right panel in Figure 2. We present this procedure in Section 2.2.

2.1 Causal Identification
The causal graph should be structured as a directed acyclic graph (DAG), where the relationships
between the three types of diagnostic labels can be identified. The properties of a DAG is that all edges
must be directed from one node to another and that the graph does not allow any cycles, meaning that
there can not exist a path from one node that leads to itself [6]. With some other constraints on the
DAG, e.g., that interventions on a cause variable does not change the generating process from this
cause to its effect, the DAG has a causal interpretation and represents causal relations between the
variables [9, 11].

To learn a DAG from data, a constraint-based search algorithm such as the PC (Peter-Clark) algorithm
[11, 10] can be used. This algorithm starts from an undirected graph and performs a sequence of
independence and conditional independence tests, and based on this builds an equivalence class, which
may contain more than one DAG that shares the same independence and conditional independence
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Figure 2: The method. The left panel shows the IBTM which is a multi-view latent space model that predict
diagnostic labels given input. The middle panel demonstrates a causal graph which is learned from training data.
The prediction is then used as the input for this causal graph to refine the result. The last panel demonstrates the
final output, which is a subgraph instead of independent labels.
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Figure 3: Subgraph of diagnostic labels from Tetrad displaying the causal structure between DLI L4-L5, L5
radiculopathy, and patellofemoral pain syndrome (PFS) and right shinbone discomfort. We do not show the full
graph due to space limit.

relations in the data. As long as the conditional independence facts are known for the data, the PC
algorithm can efficiently output such a equivalence class for both discrete and continuous data [1, 10].

We make the following additional constraints in the causal search (in additional to the independence
and conditional independence constaints discovered from data): the diagnostic labels are separated
into three categories, causes C (the psychophysiological diagnostic labels), reasons R (the pattern
diagnostic labels) and symptoms S (the symptom diagnostic labels), where C, R and S are sets of
these diagnoses. We also assume that these categories are structured as C → R → S, so that C
has a direct cause on R and that R directly causes S. Edges are forbidden within each individual
set. We found that with those additional constraints, the output of PC was a DAG, with all edges
oriented. Figure 3 shows a subgraph from a DAG built in Tetrad [1] with samples of the available
diagnostic labels. The results tells that a disco-ligament injury at segment L4-L5 has a direct effect
on the L5 nerve radiculopathy on both sides of the body. An injury on the left side of the nerve
causes patellofemoral pain syndrome (PFS) on both sides of the body, while an injury on the right
side causes discomforts on the right shinbone. Such a result is consistent with the distribution and
connectivity of the nerves in the human body, indicating that the algorithm correctly identified the
causal relationship among diagnostic labels in the dataset.

2.2 Refine Predictive Results using Causal Graph
The probability of each diagnostic label is predicted using IBTM. The conditional probability from
cause to effect is obtained from the causal identification step. Given the learned DAG, we can then
straightforwardly estimate the conditional distribution of each variable conditioning on its parents (or
direct causes) from the given data.

Suppose we have obtained the prediction produced by IBTM. IBTM predicts each of the outputs
separately, ignoring the dependence relationships among them. As a consequence, it does not make
full use of the dependence information in the data and the result is to be improved. Given the good
performance of IBTM in single-output prediction, however, to achieve better predictions, it is sensible
to leverage 1) the predicted marginal distributions for all outputs by IBTM and 2) the relationships
among the variables implied by the qualitative DAG structure and the quantitative conditional
distributions. In other words, we can further update the prediction from IBTM, pIBTM (x), with the
causal relationships given by graph G. The probability for node x is denoted by p(x) and these are
initialized with the pIBTM (x). For each time step t, we iterate through all of the nodes and update
its neighboring nodes x′ with learning rate ε. The procedure of post-refining the predictive result is
summarized in Algorithm 1.

Algorithm 1 Update MPDs p(x) in causal graph G.
for all nodes x ∈ G do

p(0)(x)← pIBTM (x)
end for
for t = 1, . . . , τ do

for all nodes x ∈ G do
for all neighbours(x) = x′ do

Compute p(t)∗(x′) using x and conditional probabilities between them.
p(t)(x′)← ε p(t)∗(x′) + (1− ε) p(t−1)(x′)

end for
end for

end for
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Figure 4: F-measures averaged over five random data splits with respect to 20 iterations of updating the causal
graph, where IBTM was trained with K = 30 (left) and K = 50 (right). Two different update rates ε are used,
and the black dashed line is the averaged results from IBTM.

3 Experiments
We present our preliminary experimental results on refining diagnostic prediction. We use the same
pain drawing dataset and parameter settings as in [15]. The dataset consists of 174 pain drawings
and 280 diagnostic labels, where 150 of them are symptom diagnoses (S), 61 are pattern diagnoses
(R) and 69 are pyschophysiological diagnoses (C). We split the dataset randomly in two halves for
training and testing. As in [15], the number of diagnostic labels to predict is determined by mean
shift clustering for every test drawing.

We run the updating procedure for 20 time steps and average the F-measure over all test examples
on each iteration. We demonstrate the results with update rate ε = 0.01 and ε = 0.003 in Figure 4.
IBTM was trained with the number of topics K = 30 (left) and K = 50 (right). The results show an
increasing trend in the beginning iterations when ε = 0.003 and ε = 0.01 when K = 30.

Table 1 shows an example where the causal graph post-processing enhances the IBTM results. We
see that R Calcaneal pain was not reported by IBTM because the probability was not high enough.
On the other hand, with causal refining, the probability of Right Calcaneal pain increases, because it
is highly probable when S1 Rdc is diagnosed. With our method, the result can be visualized to the
clinician as a subgraph in the causal graph (omitted here due to space limitation).

4 Discussion
In this work, we employ a causal identification method, PC, to determine the causal relationship
among various diagnostic labels. The identified causal graph is highly interpretable and is used to
refine results from a diagnostic prediction model, IBTM.

Our future work extends in two directions. Firstly, we will explore ways to visualize such causal
graphs to medical students as an education tool, and to visualize subgraphs to clinicians, to enhance
interpretability of automatic diagnostic results. Secondly, while our current automatic prediction
method employs causal reasoning in a post-processing manner where IBTM and a casual graph are
learned separately, we will in future work focus on structured prediction where casual reasoning is
integrated into the machine learning model in an end-to-end training manner.

Table 1: Example of unseen discomfort drawing (left), predicted diagnostic labels (middle) and resulting
F-measures (right). Predictions made by IBTM are followed after Prd IBTM, the refined predictions are after
Prd DAG and ground truth labels after GT. Successfully predicted labels are marked in blue, otherwise in red.

5 Prd IBTM: L Calcaneal pain;

DLI L5-S1; L S1 Rdc; R S1 Rdc; L C2 Rdc;

5 Prd DAG: L Calcaneal pain; R Calcaneal pain*;

DLI L5-S1; R S1 Rdc; L S1 Rdc;

6 GT: Lumbago; R Calcaneal pain*; L Calcaneal pain;

DLI L5-S1; R S1 Rdc; L S1 Rdc;

F1 IBTM
72.73%

F1 DAG
90.91%

Diff.
18.18%
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