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ABSTRACT

We present a probabilistic approach to modeling violin bow-
ing gestures, for the purpose of synthesizing violin sound
from a musical score. The gesture models are based on
Gaussian processes, a principled probabilistic framework.
Models for bow velocity, bow-bridge distance and bow
force during a stroke are learned from training data of recorded
bowing motion. From the models of bow motion during a
stroke, slightly novel bow motion can be synthesized, vary-
ing in a random manner along the main modes of variation
learned from the data. Such synthesized bow strokes can
be stitched together to form a continuous bowing motion,
which can drive a physical violin model, producing nat-
uralistic violin sound. Listening tests show that the sound
produced from the synthetic bowing motion is perceived as
very similar to sound produced from real bowing motion,
recorded with motion capture. Even more importantly, the
Gaussian process framework allows modeling short and
long range temporal dependencies, as well as learning la-
tent style parameters from the training data in an unsuper-
vised manner.

1. INTRODUCTION

The aim of the current study is to develop natural sounding
violin sound synthesis, which includes the characteristics
of human performance. Our thesis is that this is accom-
plished by modeling the music-production process as accu-
rately as possible: The player reads the musical score and
interprets the piece as a sequence of events linked by the
musical structure. The interpretation involves planning a
sequence of control gestures, each producing a single note
or a short sequence of notes.

Two aspects on sequences of sound-producing gestures
can be noted.

I) The exact shape of the control gestures depend on
the individual interpretation of the musician, based
on the knowledge of the style of the composition. It
follows that it is desirable to be able to control per-
formance style in a synthesized performance (e.g.,
from baroque to romantic violin playing style).
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II) Each control gesture, corresponding to a single note
or a short sequence of notes, depends on a range of
other gestures preceding and following after the cur-
rent gesture.

Both these aspects are captured by a probabilistic frame-
work which can represent a set of generic bow motion ges-
tures which together define a performance of a piece of
music as well as important modes of variation. This is fur-
ther discussed in Sec. 2.

As a basis for this framework, we propose to use Gaus-
sian processes (GP) [1], see Sec. 3. In this paper we present
a pre-study where GPs are trained with recorded bow mo-
tions in the same manner as Bezier curves in related work
[2–4]. The results indicate the GPs have the same descrip-
tive power as the Bezier curves. A listening test presented
in Sec. 4 shows that the violin sound produced from syn-
thetic bow motions is perceived as very similar to the sound
produced from real bow motion, recorded with motion cap-
ture.

Furthermore, we suggest in Sec. 5 that GP provides a
solid mathematical framework for addressing the issues
of individual performances and the style of playing in a
principled manner. Our thesis is that a GP framework will
make the best use of recorded bow motion gestures. Such
dependencies reflect variations in player interpretation and
modes of performance based on composition style.

2. BACKGROUND

Bow motion studies. Recently, Demoucron and Schoonder-
waldt have studied bow motion in violin performance us-
ing motion capture methods and a robust method for sens-
ing bow force [5–7]. Their work resulted in a large database
of calibrated motion capture measurements of main and
secondary bowing parameters of the performances of pro-
fessional violinists (see Figure 1). Major results of their
analyses were to establish the bow control strategies that
players use when changing the dynamic level and timbre,
and playing on different strings [8, 9].

Demoucron also developed a parametric description of
bouncing bowing patterns (spiccato) based on the recorded
data. Bow control data generated by his analytical models
were used to drive a physical model of the bowed string [5].
The results showed that the realism of the synthesis in-
creases significantly when the variation in control parame-
ters reflect real violin performance. Again the coordination
of the variations in the control parameters is a key to realis-
tic violin sound. The conclusion drawn was that modeling
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Figure 1. Example of a full set of bow control gestures for the first 18 notes of a Bach partita. From top: Transversal bow position, bow
velocity, bow-bridge distance, bow force, bow acceleration, tilt, inclination, skewness, string played/bowing direction. From [6].



instrument control parameters is as important as modeling
the instrument itself.

Violin synthesis from score information. A next step
is using the acquired knowledge to learn computer mod-
els that produce violin sound (or rather, violin bowing ges-
tures) given a musical score. Two approaches can be found
in the literature: Reinforcement learning, where the com-
puter model learns to perform bowing gestures (i.e., pro-
duce time sequences of bow motion parameters) under su-
pervision of a human teacher, and supervised learning, where
the computer model is trained with a set of recorded ges-
tures, correlated with a musical score.

A reinforcement learning approach has been reported re-
cently [10], where a generative model of bow motion is
trained much in the same way as children learn to play ac-
cording to the Suzuki school: The bow velocity and bow-
bridge distance are preset using plain score information,
while the range of bow forces producing a successful sound
is learned using discriminative classifiers with human feed-
back judging the tone quality. Although a very interesting
approach – the model can after four hours of training play
like a Suzuki student with one year of experience – this is
not a feasible approach to professional level violin sound
synthesis.

A more time-efficient alternative is thus to directly show
the model successful gesture examples, using a supervised
learning approach. A recent, very ambitious collection of
works from the Music Technology Group at Universitat
Pompeu Fabra, Barcelona, deals with the task of automat-
ically generating naturally-sounding violin performances
from an annotated score [2–4]. Their approach is to re-
trieve samples of control gesture parameters from a data-
base and concatenate them according to the score includ-
ing instrument-specific annotations. The database is ob-
tained from motion capture recordings of real violin per-
formances, which have been segmented and classified into
different groups for single notes with specific features (bow-
ing style, dynamic level, context). All bow control gesture
samples are parametrized using Bezier curve segments. For
synthesis, the task of selecting the proper gesture sample in
the database for each note in the score is based on an elabo-
rated cost function which takes into account the deviations
in duration and dynamic level between the stored samples
and the specifications for the note in the score. The se-
lected samples are stretched and concatenated and used to
drive a simple physical model of the violin.

The obtained degree of realism in sound demonstrates the
potential of gesture control of violin synthesis – it is in-
deed possible to simulate this extremely complex dynam-
ical process. In the work presented here, we continue this
path, using a supervised learning approach.

However, two aspects remain unaddressed in the Barcelona
work, corresponding to aspects I and II discussed above.

I) No means exist to steer the performance style during
synthesis. The grouping of the gesture examples ac-
cording to bowing style (legato, spiccato etc.), dy-
namic level, and context give some possibility of
style control, but more ubiquitous style variations

(e.g., baroque vs. romantic playing style) are not cap-
tured – the model simply generates the ”mean” per-
formance in the database, given a certain score. This
is however possible to accommodate in a probabilis-
tic framework, such as the one proposed in this pa-
per. The GPs capture the entirety of the numerous
training curves comprehensively. It not only cap-
tures the average curve shape but also captures the
different modes of variation in the training set. From
a trained GP, slightly novel instances of synthetic
bow motion can be generated, preserving the gen-
eral shape and variances in the training set.

II) No means exist to model long-term gesture correla-
tions. The curves are stitched together so that a co-
herent and physically plausible motion is generated.
However, there is no way of selecting curves de-
pending on gestures more than one time-step away.
This is however possible to accommodate by adding
extensions to our proposed framework. This is fur-
ther discussed in Sec. 5.

3. MODELING BOWING GESTURES

Figure 2 gives an overview of the sound generating pro-
cess. The score is viewed as a sequence of notes, each
belonging to a note class defined by note value (duration),
pitch, dynamic level, articulation, and bowing style. The
strategy is to transform the notes in the score to a sequence
of generic bow control gestures, each representing one note.
The control gestures are then concatenated and used to
drive a physical model of the bowed violin.

Gesture modeling using Gaussian processes. We model
mapping 2 in Figure 2 using GPs in a manner similar to
how Maestre et al. [3] use Bezier curves. The added value
of the GPs is that not only the mean curves are captured
by the model, but also the typical variations among train-
ing examples. This enables learning of style parameters, as
discussed above. Furthermore, the GP is non-parametric,
meaning that no analytical form is imposed on the data –
in other words, we do not risk introducing erroneous as-
sumptions in the model [1].

The models are trained with motion capture recordings
from the database of Schoonderwaldt and Demoucron [7].
We use the bow velocity (V), bow-bridge distance (D), and
bow force (F) data from two different professional violin-
ists playing sequences of detaché notes in forte (f), mezzo-
forte (mf), and piano (p), on each of the four strings. The
recorded sequences are segmented into strokes (by detect-
ing bow velocity zero crossings), and all segments are re-
sampled to a length of n = 125 points, equal to 2.08 s
with a sampling frequency of 60 Hz. Figure 3, left graph
in each subfigure, show segmented and length-normalized
mf curves corresponding to down-bow and up-bow, respec-
tively.

In total, 6 models are learned: f down-bow, f up-bow, mf
down-bow, mf up-bow, p down-bow, and p up-bow. There
arem = 16 training examples for each model. Each model
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Figure 2. The violin sound generating process. Mapping 1 is well defined, the musical score is simply a coding scheme for the sequence
of gestures in the plan. For mapping 3, we use the system developed by Demoucron [5]. The focus of the work here is mapping 2, the
generative process of continuous bow motion from the sequence of gestures extracted from the score.

has three dimensions (V, D, F) which are modeled indepen-
denty from each other – in practice, there are three separate
GPs for each model; for V, D, and F, respectively (for mf
examples, see Figure 3(a,c,e) or (b,d,f)).

A GP is defined as follows (for a more detailed explana-
tion, see [1]): View the training curves for a certain GP (for
examples, see the left graph in each subfigure of Figure 3)
as an array of tuples [(xi, ti)] where i ∈ [1,mn] (i.e., one
tuple for each point on each training curve). Assume the
data to be spatio-temporally Gaussian distributed:

[x1, . . . , xmn] ∈
N (µ([t1, . . . , tmn]), k([t1, . . . , tmn], [t1, . . . , tmn])) (1)

where µ(t) = 1
m

∑
j:tj=t xj , the mean value of x at time

step t, and k(t, t′), the covariance between values x at
timesteps t and t′. We use a stationary squared exponential
covariance function:

k(t, t′) = exp(−‖t− t
′‖

2σ2
) (2)

where σ is the characteristic time dependency length in
the GP x(t), and is learned from the data. A natural ex-
tension would be to use a non-stationary function, with a
time-varying characteristic length σ(t). For example, the
velocity is by definition 0 at the beginning and end of each
bow stroke; this would be learned with a time-varying σ(t).
We use the GP implementation by Lawrence [11]. Further
extensions are discussed in Sec. 5.

Figure 3, right graph in each subfigure, show the GPs
learned from the training data in the same subfigure. From
these GPs, novel curves with the same characteristics, but
with some stochasticity, can be sampled from the learned
mean µ(t) and covariance k(t, t′).

The output of the mapping 2 model is a sequence of syn-
thetic bow control curves. The choice of dynamics (f – mf
– p) and the bowing, are selected according to the notation
in the sheet. One V, D, F curve is then sampled for each
note (or sequence of notes played with one bow) in the mu-
sical sheet, and stretched to the right duration as indicated
in the sheet. The curves are then stitched together, forming
a coherent synthetic bow motion.

4. LISTENING TESTS

The naturalness of the curves generated from the Gaussian
processes was evaluated using a listening test. Violin notes
were synthesized using real bow control gestures from the

database [7], and artificial gestures from the Gaussian pro-
cesses, respectively, and compared to check if they were
perceived as significantly different. The focus of the eval-
uation was not on the realism of the generated sounds as
such, rather on the naturalness of the underlying bow mo-
tion. This aspect required listeners with extensive own ex-
perience of string playing. In order to make a fair compar-
ison, all violin sound stimuli were synthesized in an iden-
tical manner (see Figure 2, mapping 3), using the bowed-
string model developed by Demoucron [5]. The model,
which is implemented using modal synthesis, gives a re-
alistic bowed string sound when controlled by calibrated
bow control gestures.

Stimuli. Bow control gestures from the Gaussian pro-
cesses were compiled for pair of half notes played detaché
down-bow-up-bow (or up-bow-down-bow), and the arti-
ficial V, F and D curves were fed into the bowed-string
model. The length of the stimuli were 2 × 2.08 = 4.16 s.
These stimuli were compared with sounds generated by
feeding real motion capture recordings of V, F, D sequences
of half notes, also of length 4.16 s, from the database into
the same model. Two pitches were used, C4 and G5, played
on the G and D string, respectively, combined with two dy-
namic levels (mf and f). No vibrato was included. Two in-
dependent samples of bowing gestures for each of the four
cases were synthesized. A corresponding set of stimuli
was generated played up-bow-down-bow. In all, 16 stimuli
were generated from the GPs, and 32 from the database by
including recordings of two players.

A selection of four down-bow-up-bow cases (and corre-
sponding four up-bow-down-bow cases) from the Gaus-
sian process stimuli was made after selective listening. The
purpose of the selection was to limit the size of the lis-
tening test, and to include stimuli with different qualities
of the attack which normally occur in playing; perfect,
choked (prolonged periods) and multi-slip attacks. The
2× 4 stimuli from the Gaussian processes were combined
with the corresponding cases from two players. The lis-
teners judged each of the 3 × 8 stimuli three times, in all
72 responses. The stimuli were presented in random order,
different for each listener.

Procedure. Eight string players participated in the test;
one professional and seven advanced amateurs. Their mu-
sical training as violin players ranged between 7 and 19
years, and they had between 12 and 32 years of experience
of playing string instruments in general.
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Figure 3. GPs trained with motion capture recordings of half notes played detaché from the database in [6]. A bow stroke consists of
bow velocity (V), bow-bridge distance (D), and bow force (F) curves. The V, D, F curves are modeled independently from each other
in three GPs. There are separate models for up- and down-bow, and for forte (f), mezzoforte (mf), and piano (p). The figures show
models for mf: (a,c,e) The three GPs for down-bow. (b,d,f) The three GPs for up-bow. Left in each subfigure: Examples of training
data. Right in each subfigure: The GP learned from this training data. The shaded region indicates the standard deviation

√
k(t, t). Note

that the covariance is stationary (time independent). A natural extension would be to use a non-stationary function, with a time-varying
characteristic length σ(t).

The task of the listeners was to rate the naturalness of the
bow motion. They were explicitly instructed to not pay
attention to the general quality of the violin sound, but to
focus on the underlying bow motion by responding to the
question “How natural is the bow motion that produced
the notes you heard?” The response was given on a scale
from 0 (“artificial”) to 1.0 (“like a human player”) using
a slider on a computer screen. The stimuli could be re-
peated as many times as desired, but that feature was rarely
used. A short familiarization with the task including four
stimuli initiated each test session. The listeners were in-
formed about that the sounds could contain attacks of dif-
ferent quality and other noises which normally occur in
playing. They were neither informed about the origin of
the stimuli, nor about the purpose of the test.

Results. The results are summarized in Figure 4, show-
ing average ratings across all 72 stimuli for each of the
eight listeners. It is clear that the listeners had different
opinions about the general level of naturalness of the bow
gestures. Most listeners, however, gave an average re-
sponse midway between “artifical” (0) and “like a human”

(1.0), with a notable exception for Listener 7. The im-
portant result, however, is that the bow gestures generated
by the Gaussian processes were judged to be more natural
than the real gestures from the database by all but two lis-
teners (5 and 7). For Listeners 1 and 2, the preference for
the Gaussian processes was quite marked. The consistency
and repeatability in judgements appeared satisfactory as in-
dicated by the error bars.

A conservative interpretation of the results is that six out
of eight experienced string players did not hear any differ-
ence between synthesized violin notes generated by bow
gestures from Gaussian processes and real performances,
respectively. Two listeners perceived the Gaussian pro-
cesses bow gestures as more natural than the corresponding
real ones.

5. CONCLUSIONS

We presented a probabilistic approach to modeling vio-
lin bowing gestures, for the purpose of synthesizing vio-
lin sound from a musical score. The gesture models were
based on GP, a principled probabilistic framework. Models



Figure 4. Result of the listening test. Average scores for eight
listeners across all stimuli generated by bow gestures from the
Gaussian processes (dark blue) and from real bow gestures in the
data base (light grey). Error bars correspond to ±0.5 standard
deviation.

for bow velocity, bow-bridge distance and bow force dur-
ing a stroke were learned from training data of recorded
bowing motion. From the models of bow motion during
a stroke, slightly novel bow motion could be synthesized,
varying in a random manner along the main modes of vari-
ation learned from the data. Such synthesized bow strokes
could be stitched together to form a continuous bowing
motion, which was used to drive a physical violin model,
producing naturalistic violin sound. Listening tests showed
that the sound produced from the synthetic bowing motion
was perceived as very similar to sound produced from real
bowing motion, recorded with motion capture.

5.1 Future Work

The proposed framework built on GP allows for principled
extensions to address aspects I and II in Sec. 2. Capturing
aspect I requires models where style modes can be learned
from data. We propose to use Gaussian process latent vari-
able models (GPLVM) [11] which are an extension of GP,
and have been used extensively for modeling human be-
havior. Long-term dependencies (aspect II) can be mod-
eled using grammar-like models. We propose to use dy-
namic Bayesian networks (DBN) [12] where each node is
a GPLVM representing a gesture.

Fewer, parameterized, gesture classes. The number of
conceivable note classes is very large due to the combi-
nations of score characteristics: duration, pitch, dynamic
level, articulation, and bowing style. An example of a note
class would be [A4, quarter note, forte-level, sforzando
(accented), staccato (short) , preceded by a long note at
piano-level and followed by a rest (silence)]. One could
also add instrument-specific information, e.g., that the note
should be played in a down-bow on the D string. A com-
binatorial explosion of cases will emerge; the task of as-
signing a set of bow control gestures to each note class
will not be scalable, when going from a basic division into
few note classes based on a couple of broad characteris-
tics (e.g., high pitch, long note, loud) to a more detailed

description as in the example above.
In [3], 102 note classes were used even without including

pitch and duration among the note class properties. These
were handled later in the selection of a suitable sample of
bowing gestures from the generic gestures. A particular
concern in music performance is the strict timing imposed
by the note values and tempo given in score. The attack and
termination of a note cannot be stretched or compressed
much without changing the perceived quality [13].

We propose to use the experience of expert players to in-
vestigate to what extent the number of note classes can be
restricted. Bowing styles like detaché, legato, spiccato are
examples of note characteristics which definitively define
different note classes. Pitch, duration, dynamic level are
examples of characteristics which are possible to encode
as latent parameters in the GPLVM models. The context
dependence – which notes come before and after – may
also be possible to handle to a certain extent by controlling
the end constraints when sampling from the processes.

Learning ubiquitous style modes. The linear and well-
defined modes of variation described above are possible
to train in a supervised manner, since the training exam-
ples could be labeled with objective measures of volume
(dB), duration (s), pitch (Hz). However, style variations
such as baroque vs. romantic violin playing style are not
apparently observable in recorded bowing parameters. As
discussed in aspect I above, a highly desirable property of
a violin synthesizer is the possibility to control high-level
performance style parameters.

It is however possible to learn unobservable latent param-
eters from data using GPLVM [11]. Any level of supervi-
sion can also be included if such is available; for example,
a mode of variation corresponding to music style could be
learned from the data given that the examples were labeled
with baroque – Viennese classic – romantic – jazz etc. It
will be necessary to collect a wider range of data examples.

Learning phrases, bow planning, and other long time-
range dependencies. Addressing aspect II above, we will
then proceed to modeling dependencies between gestures
that are separated in time. This is necessary in order to
be able to represent phrase-based music interpretation (see
Sec. 2). Moreover, on a slightly shorter time scale, the fi-
nite length of the bow needs to be taken into account. This
will require a preplanning which takes many notes ahead
into account so that bow changes can take place at musi-
cally motivated instances, and that notes are played using
a ”natural” bowing direction (down-bow/up-bow). Related
to this question is the modeling of sound feedback in the
gesture production [5, 14]. Sound feedback is very impor-
tant for small modulations in bowing motion, e.g., during
spiccato.

To represent hierarchical dependencies and dependencies
between a whole sequence of gestures – a gestural ”gram-
mar” – we will employ Dynamic Bayesian Networks (DBN)
[12] which is the mathematically principled way of repre-
senting probabilistic dependencies between data segments
over time.
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