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Abstract

It has been shown that acoustic-to-articulatory inversion, i.e. estimation of the articulatory configuration from the corresponding
acoustic signal, can be greatly improved by adding visual features extracted from the speaker’s face. In order to make the inversion
method usable in a realistic application, these features should be possible to obtain from a monocular frontal face video, where the
speaker is not required to wear any special markers. In this study, we investigate the importance of visual cues for inversion. Experiments
with motion capture data of the face show that important articulatory information can be extracted using only a few face measures that
mimic the information that could be gained from a video-based method. We also show that the depth cue for these measures is not crit-
ical, which means that the relevant information can be extracted from a frontal video. A real video-based face feature extraction method
is further presented, leading to similar improvements in inversion quality. Rather than tracking points on the face, it represents the
appearance of the mouth area using independent component images. These findings are important for applications that need a simple
audiovisual-to-articulatory inversion technique, e.g. articulatory phonetics training for second language learners or hearing-impaired
persons.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Acoustic-to-articulatory inversion, i.e. estimation of the
articulatory configuration from the corresponding acoustic
signal, can be considered as one of the greatest challenges
in speech technology research. The applications of a work-
ing inversion method are many. A reliable and robust
inversion method would provide a major breakthrough in
computer assisted language learning, as automatic articula-
tory feedback could be given on the student’s pronuncia-
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tion (Engwall et al., 2006). Furthermore, it could be
beneficial in speech coding and recognition, by transform-
ing complex acoustic feature vectors to slowly varying
articulatory parameters.

However, important problems need to be solved en route
towards robust inversion. The greatest obstacle in acoustic-
to-articulatory inversion is probably the non-unicity of the
inverse solutions; the same sound could have been gener-
ated by not one, but a range of articulatory configurations.
It has been shown (Yehia et al., 1998; Jiang et al., 2002) that
important information regarding the tongue position may
be gained from 3D marker data of the speaker’s face. More-
over, the face motion is to a degree conditionally indepen-
dent of the acoustic information given the articulation,
which means that the face gives additional information
about the articulatory configuration, not encoded in the
speech signal. A way to address the non-unicity problem
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is thus to infer the articulatory configuration from both
speech and visual information, i.e. to perform audiovisual-

to-articulatory inversion.
Articulatory features, such as jaw position, mouth open-

ing and lip rounding and protrusion, should ideally be
extracted from a video of the subject’s face, not relying
on either markers on the face or calibrated stereo. How-
ever, if monovideo is to be a viable solution, the improve-
ment of the inversion results compared to acoustic only
case needs to approach that of marker tracking. At
KTH, we have investigated different variants of visual-to-
articulatory and audiovisual-to-articulatory inversion
(Engwall and Beskow, 2003; Engwall, 2005; Engwall,
2006; Kjellström et al., 2006). In this article, we present
the common general approach, and compare the perfor-
mance of different types of visual data. We also study dif-
ferent methods for mapping the visual and acoustic signal
to the articulatory configuration. Taking the results in pre-
vious studies (Yehia et al., 1998; Jiang et al., 2002) as a
starting point, we want to investigate the following five
issues:

(1) Does information from the face aid the inversion,
even if only a small number of points are tracked?

(2) Is 3D data required for these points or is a 2D frontal
view sufficient?

(3) Is it beneficial to employ a non-linear mapping
between the audiovisual and the articulatory data as
opposed to a linear mapping?

(4) How does a video-based face feature extraction algo-
rithm perform compared to marker tracking?

(5) How should the acoustic and visual information be
combined to achieve the best inversion results?

There are two approaches to inversion: a generative
analysis-by-synthesis approach (Maeda, 1994; Bailly and
Badin, 2002; Ouni and Laprie, 2002), and a discriminative
approach (Yehia et al., 1998; Jiang et al., 2002).

The inversion problem has mostly been addressed by the
generative approach, i.e., an articulatory model is used to
create a feature description of all possible sounds (Maeda,
1994; Ouni and Laprie, 2002). Inversion from acoustic data
to an articulatory description is then performed by match-
ing the acoustic data to the synthesized output of the
model, using a lookup in an articulatory codebook. Like
all generative approaches, inversion-by-synthesis is compu-
tationally demanding, and requires a generative model of
the tongue and vocal tract. This approach put high
demands on the quality of the synthesis (or else discrepan-
cies might result from the synthesis rather than the inver-
sion), and is currently mainly applicable to vowels.

In the discriminative approach, which we follow, the
quantitative association of visio-acoustic and articulatory
data of the tongue is determined statistically (Yehia
et al., 1998; Jiang et al., 2002). In this case, articulatory
parameters are related to the speech and/or visual signals
using regression. Both Yehia et al. (1998) and Jiang et al.
(2002) found rather high correlation between acoustic,
facial and vocal tract data. While both these studies used
linear regressors, we investigate non-linear alternatives as
well. The downside of the discriminative approach is that
it requires large volumes of labeled training data.

For our experiments, simultaneous visual (both video
and 3D marker positions), acoustic and articulatory data
are collected. The data acquisition is detailed in Section 2.

We first investigate how different elements of face
motion contribute to the inversion. To investigate to what
extent depth information contributes to the inversion, we
perform experiments (Section 5.1) with three sets of marker
data; the full 3D positions, sparse ‘‘stereo” data mimicking
what could be recovered from unmarked stereo video of
the lips, and ‘‘monocular” 2D data that would be possible
to extract from unmarked monocular lip images. The three
datasets are more closely described in Section 3.3. In short,
we find that depth information does not contribute signif-
icantly to the inversion, and that even though the full data-
set gives the best results, important improvements are also
obtained using a few measures from the lip configuration
only.

The results hence suggest that it should be possible to
improve articulatory inversion using an approach not rely-
ing on 3D reconstruction of face features. We therefore
also evaluate an approach for extraction of face informa-
tion without explicit marker tracking (Section 5.3).

A number of methods have been presented for extract-
ing non-rigid motions of face articulations from video.
One approach is to reconstruct the surface of the face in
3D. The estimation of a non-rigid shape in 3D from a mon-
ocular video sequence is of course underconstrained, but
the 3D reconstruction can be constrained using assump-
tions about temporal and spatial smoothness (Ahlberg,
2001; Torresani and Hertzmann, 2004). Additional robust-
ness is gained from propagation of information both for-
ward and backward in time (Torresani and Hertzmann,
2004), which however is prohibitive in a real-time applica-
tion such as ours.

An approach more commonly used for speech inversion
and recognition is to not explicitly model the depth infor-
mation, but instead use a 2D model. Many methods rely
on extracting the lip contours (Bregler and Konig, 1994;
Kaucic and Blake, 1998; Dupont and Luettin, 2000;
Matthews et al., 2002; Seymour et al., 2005). The lip coun-
tours are modeled using snake-like methods (Kaucic and
Blake, 1998; Seymour et al., 2005) or data driven PCA
methods (Bregler and Konig, 1994; Dupont and Luettin,
2000; Matthews et al., 2002). Alternatively, the shape and
appearance of the whole face can be modeled using, e.g.,
Active Appearance Models (AAM) (Cootes et al., 2001).
When employed for articulatory inversion (Katsamanis
et al., 2008), an AAM improved the inversion results on
the dataset presented in Section 2 by 25%.

A third option is to not explicitly estimate the shape at
all, and just model the appearance. Saenko et al. (2005)
do not detect lip contours, but instead employ a cascade
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of support vector machines. Each stage in the cascade par-
titions lip images according to speaking/non-speaking,
closed/narrow/medium/wide, rounded/unrounded, etc.
This approach is very robust and enables separation
between a small set of spoken commands without the use
of acoustic information. However, the approach renders
a quite coarse representation which is unsuitable for
visual-to-articulatory inversion.

We also take this approach of not explicitly modeling
the lip or face shape. Non-rigid tracking of an articulated
face inevitably introduces some errors, due to image noise
and necessary simplifications in the model compared to the
real face. We wish to investigate how well we can do with-
out modeling shape at all, i.e., avoiding the tracking of face
articulation altogether. The articulatory information is rep-
resented in terms of the independent components
(Hyvärinen et al., 2001) of the lip image. A similar
approach using PCA is used by Bregler and Konig (1994)
and Matthews et al. (2002). Details of our lip tracking
approach can be found in Section 3.4.

Mappings from the visual and acoustic features to the
articulatory features are learned using either linear or
non-linear regression (Section 4). These two types of
regression methods are compared in the experiment in Sec-
tion 5.2. We also explore two different approaches for com-
bining acoustic and visual data, early and late fusion
(Section 5.3). The inversion is found to improve between
20% and 44% when adding the extracted face parameters
to the acoustic information.
2. Data acquisition

2.1. Subject and corpus

The subject was a female speaker of Swedish, judged as
highly intelligible by hearing-impaired listeners.

The corpus consisted of 135 symmetric VC1{C2C3}V
words (henceforth referred to as VCV words) where
V = [a, I,f] and C = [p, t,k,b,d,g, f, s, , ,m,n, , l, r,=, Ç,� ,
v, j, h, jk, rk, pl, bl, kl, gl, fl, pr, br, kr, gr, kt, nt, tr, dr, fr, st, sp,
sk, sl, str, spr, skr, skl] and 178 short sentences (4–5 words,
RC

Fig. 1. Placement of EMA and motion capture markers for data collection. (a)
of markers used for 3D motion capture of points in the face. (c) Position of E
7–9 syllables). Each VCV word appeared only once in the
training set, but some consonants vary in voicing only
([p] vs. [b], [t] vs. [d] and [k] vs. [g]). In the sentences some
words appear several times, but each sentence is unique.
The sentences have a simple structure (subject, predicate,
object) and ‘‘everyday content”, such as ‘‘Kappan hänger
i garderoben” (The coat hangs in the wardrobe) or ‘‘Laget
förlorade matchen” (The team lost the game). They fol-
lowed a rationale for audiovisual speech perception tests
(MacLeod and Summerfield, 1990) and were adapted to
Swedish by Öhngren.
2.2. Measurement setup

The midsagittal position of points on the tongue, jaw
and upper lip were recorded simultaneously with the audio
signal, 3D points on the subject’s face and video of the sub-
ject’s face.

The video had a frame-rate of 25 Hz, and each frame
had a resolution of 768� 576 pixels (Fig. 1a).

Fig. 1b shows the positions of the 25 facial markers used
in the motion capture. The 3D positions of the 4 mm large
markers were tracked at 60 Hz using four infrared cameras
in the MacReflex system from Qualisys, which has a spatial
accuracy of well below 1 mm. An additional three fixed
markers (on the headmount in Fig. 1a) were used to adjust
for head movements. In the reduced datasets (Section 3.3),
the positions of only five markers are maintained: J = jaw,
RC = right lip corner, LC = left lip corner, LL = lower lip
edge and UL = upper lip edge (Fig. 1b). Arrows indicate if
horizontal or vertical movement was used in the monovi-
sion dataset.

Tongue points were measured with the electromagnetic
articulography (EMA) system Movetrack (Branderud,
1985), with 4� 1:5 mm coils glued onto the tongue, jaw
and lips, as shown in Fig. 1c. The coils on the upper lip
and upper incisor were used to align the motion capture
data with the EMA data, to create a common 3D dataset.
The three coils on the tongue (T1–T3, approximately 8, 20,
52 mm from the tip, respectively) and the coil on the jaw
(JW) were used in the inversion experiments. Details of
LC

UL

LL

J

Frontal face video used for markerless face feature extraction. (b) Position
MA coils used for estimation of the articulatory configuration.
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the recording procedure can be found in Beskow et al.
(2003).

3. Data processing

3.1. Speech acoustics

The audio signal was originally sampled at 16 kHz, and
a resampling to match the different types of visual data was
hence needed.

For correlation with the 60 Hz motion capture data, the
audio signal was divided into frames of length 24 ms with a
frame shift of 16.67 ms. Each acoustic frame was pre-
emhasized and multiplied by a Hamming window. A
covariance-based LPC algorithm (Sugamura and Itakura,
1986) was then applied to generate 16 line spectrum pairs
(LSP). LSP coefficients were used, following (Yehia et al.,
1998; Jiang et al., 2002), as they are closely related to the
formant frequencies and the vocal tract shape. In total,
after resampling, there were 5090 frames of speech in the
VCV corpus.

To enable correlation with the 25 Hz PAL video stream,
a lower resoluted version of the VCV corpus described
above was also created, by resampling with linear interpo-
lation. It should be noted that the 25 Hz VCV dataset thus
was a factor 2.4 smaller than the 60 Hz VCV dataset, with
2101 frames.

A frame k of the speech signal is henceforth denoted ak.
It is a vector of length 17, consisting of the 16 LSP coeffi-
cient and the RMS amplitude at timestep k.

3.2. EMA data and articulatory parameters

The EMA data was resampled to 60 Hz and spatially
aligned with the facial markers, to create a coherent data
set of face and tongue movements. A 25 Hz version of
the EMA data was also created to cohere with the PAL
video stream, by resampling with linear interpolation. This
25 Hz dataset was also a factor 2.4 smaller than the corre-
sponding 60 Hz dataset.

The EMA positions tk can be mapped to the corre-
sponding articulatory parameters of a tongue model f T

(Engwall, 2003). The 3D tongue model was derived from
a statistical analysis of 3D MR images of one Swedish sub-
ject producing a corpus of 13 vowels in isolation and 10
consonants in three symmetric VCV contexts. Parameter
values for jaw height (JH), dorsum raise (TD), body raise
(TB), tip raise (TT), tip advance (TA) and tongue width
(TW) are set based on the horizontal and vertical positions
of the three tongue coils (T1–T3) and jaw coil (JW) in the
midsagittal plane at each timestep k:

sk ¼ f TðtkÞ; ð1Þ
where sk is a vector of the seven articulatory parameters.

The parameter values are estimated using a global opti-
misation to minimize the difference in position between the
measured EMA coils and corresponding virtual markers in
the model. The optimisation relies on a goodness of fit
between real and virtual marker positions, while preserv-
ing the tongue volume and keeping the parameter values
within the allowed range defined by the MRI data. The fit-
ting procedure is described in detail in Beskow et al.
(2003).

The benefit of estimating the articulatory parameters sk

rather than the EMA coil positions tk from the visual and
acoustic signals is that the parameters have an articulatory
relevance; a qualitative investigation may hence be made
on the amount and type of articulatory information (place
and degree of constriction, movement of different articula-
tors, etc.) that can be recovered from the audiovisual data.
Jiang et al. (2002) grouped different CV syllables based on
the consonant place and manner of articulation and found
some statistical differences between the groups, but did not
investigate the significance on the articulatory level.

The resulting parameter trajectories are shown in Fig. 2,
where it can be seen that the parameter values are to some
extent clustered due to vowel context. This is particularly
true for the jaw opening (JH), where all three contexts
are distinct. For the body raise (TB), the [a] context sepa-
rates from the other two, for the dorsum (TD) and tongue
tip (TT) raise, the [f] context is different and for tongue
advance (TA), the [I] context is distinct. The inversion
results will therefore be influenced more by the estimation
of the vowels than the consonants and it will hence be nec-
essary to analyze not only the global estimation success
(correlation coefficients and RMS error), but also in terms
of articulatory features for the reconstruction of the
consonants.

3.3. 3D motion capture data

The full motion capture dataset (FQ) contained 3D posi-
tion of all 25 markers (Fig. 1b), i.e. 75 measures. A frame
of full motion capture data is denoted qk. To simulate the
feature information that could be gained from markerless
computer vision methods, two reduced sets were generated
from FQ:

The monovision dataset (MV) contains only data that
could readily be recovered from a frontal image of the face:
the vertical movement of markers on the jaw (J), upper lip
(UL) and lower lip (LL) and the horizontal movement of
markers in the right (RC) and left (LC) lip corners, i.e. five
measures (Fig. 1b). The sparsity of the feature points sim-
ulates the effect of removing the markers and relying on
markerless feature extraction. A frame of monovision data
is denoted qM

k .
To study how important depth cues are for the inver-

sion, the stereovision dataset (SV) was created. Apart from
the five measures of the MV dataset, it also contains the
horizontal protrusion of the MV markers, in total 10 mea-
sures. It simulates features that could be recovered from a
3D articulated tracking system such as the ones presented
in Ahlberg (2001), Torresani and Hertzmann, 2004. Let
qS

k be a frame of stereovision data.
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Fig. 3. By tracking the upper part of the face through a sequence, a
stabilized sequence of the mouth region can be extracted. The upper part
of the face undergoes relatively small appearance changes, the largest
being eye blinks. This makes it more advantageous to track than the lip
region itself.

H. Kjellström, O. Engwall / Speech Communication 51 (2009) 195–209 199
3.4. Video data

The subject was wearing white markers for the 3D
motion capture system, but they were not employed in
the lip parameter extraction. This is further discussed in
Section 3.4.3 below.

3.4.1. Stabilization of the mouth

The subject’s mouth was first stabilized in the image by
rigid tracking of the upper part of the face, which usually
displays less deformation than the mouth area (similar to
previous work by Shdaifat and Grigat (2005)). Face detec-
tion and tracking is a well understood problem in the com-
puter vision field (Yang et al., 2002). Thus, when
employing the inversion method in a realistic system, the
face can be robustly found in the image and tracked over
time using an existing method in the literature.

Here, since our data was captured under controlled
lighting conditions with the subject facing the camera, a
template based 2D method was used (Fig. 3):

The face pose yk in frame k is a vector consisting of five
parameters; position, size and orientation of a rectangle
over the upper part of the face (above the mouth) in the
image. Let fk be the pattern within the rectangle in frame k.

The standard deviation rf of face patterns has been
learned from a number of short sequences of face patterns.
It reflects the variation in different parts of the face; for
example, the variation in the eye region is higher than on
the cheeks, due to eye blinks.
A template face pattern f0 is first manually extracted
from a template frame by clicking on the eyes and mouth.
A probability density function over pose yk is then esti-
mated in each frame k of a sequence by iteratively minimiz-
ing k fk�f0

rf
k using a particle filter (Isard and Blake, 1998;

Doucet et al., 2001). In the first frame of the sequence,
the pose value is assumed to be normally distributed over
the state-space, which corresponds to initially searching
over a wide range of possible poses.

The face was tracked in all sequences using the above
method. After spatial down-sampling, a 33� 23 pixel video
of the mouth was obtained. We use mk to denote the mouth
frame at timestep k.
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3.4.2. Low-dimensional representation of the mouth

A low-dimensional representation of the mouth was
learned according to the following. Consider a set of N

mouth images mk. Subtract a template image m0 with neu-
tral lip pose (Fig. 4a) from mk, the R, G and B bands sub-
tracted separately. The difference image can be represented
as a column vector xk ¼ mk �m0 of size d, with X ¼
½x1; . . . ; xN �. A projection of these vectors onto a base
C ¼ ½c1; . . . ; cn�, where n 6 N ; n 6 d can be expressed as
X � CV where V is a parameter matrix in the subspace
defined by C. The base C should be selected to represent
the data set X as well as possible.

This can be done in a number of ways, of which two are
principal component analysis (PCA) (Bregler and Konig,
1994; Dupont and Luettin, 2000; Matthews et al., 2002)
and independent component analysis (ICA) (Hyvärinen
et al., 2001). Using PCA, C is selected so that the columns
represent the n largest principal components (eigenvectors)
Fig. 4. ICA base for lip images. (a) Template m0. (b–z) The first 25 indep
xk ¼ mk �m0.
of the data set. In ICA, C is instead selected as the n most
informative statistically independent components of the
dataset – a more compact representation of the dataset
than PCA. In our study we hence employed ICA (Fig. 4).

Fig. 4b–z show the first 25 independent components
learned from N ¼ 472 difference images of dimensionality
d ¼ 33� 23� 3. The independent component separation
was implemented in Matlab using the FastICA package
(Hyvärinen, 2005) with a radial basis kernel of variance 5.

All difference frames xk in the training set were now pro-
jected onto the learned subspace C. With n ¼ 50 and
d ¼ 33� 23� 3, we obtained a sequece of vectors vk which
were approximate representations of the mouth images mk

(Fig. 5).

3.4.3. The white motion capture markers

The subject was wearing reflective markers for the 3D
motion capture system. These markers were not used in
endent components ci learned from a set of N ¼ 472 difference images



Fig. 5. ICA representation. (a) Original frame mk , sound /I/. (b) Reconstruction of the same frame m0 þ Rn
i¼1vk;ici, using n ¼ 50. (c) Original frame mk ,

sound . (d) Reconstruction of the same frame m0 þ Rn
i¼1vk;ici, using n ¼ 50.
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the visual parameter extraction, neither in the stabilization
nor in the ICA learning. However, the markers clearly
affected the component base (Fig. 4b–z).

The question is do the markers improve the results? The
reconstructions in Fig. 5b and d indicate that the markers do
not help in reconstruction; only four of the markers in
Fig. 5a and none of the markers in Fig. 5c were recon-
structed properly in Fig. 5b and d, respectively. Moreover,
since our method does not rely on tracking of individual fea-
tures around the mouth, but rather on a holistic representa-
tion of the mouth pattern, it would even be possible that the
markers cause the ICA method to fail to represent some
information about shadowing and teeth visibility, leading
to a mouth representation with less expressive power.

We hence consider that the results presented below rep-
resent a fair estimation of what may be achieved with
audiovisual inversion for an unmarked face, rather than
a special case of marker tracking.

4. Inversion

For inversion, we want to learn functions f that map
acoustic data ðakÞ and/or visual data ðvk; qkÞ to estimated
articulatory parameters ðŝkÞ. The set of training triples
ðak; vk; skÞ and ðak; qk; skÞ can be used to learn these func-
tions. In all experiments, the training data was employed
in a jackknife fashion: The training set was divided on an
utterance level into 10 equally large parts. One part in turn
was removed from the training data and used as the test
set, while the mapping functions were learned from the 9
others. This gave estimates ŝk for all training frames, with
no overlap between training and test sets.

All our inversion experiments handle separate frames,
which means that context information and continuity of
articulatory trajectories are not used.

We first test linear regression in the experiments in Sec-
tion 5.1 and then compare the results to a non-linear
regression method in Section 5.2.

4.1. Linear regression

A straight-forward method to learn a mapping function
from a state-space y (e.g., speech parameters a) to another
state-space x (e.g., tongue positions t) is linear regression
(Yehia et al., 1998; Jiang et al., 2002). In a linear regressor,

x̂ ¼ f LinðyÞ ¼ T XY y; ð2Þ
where T XY is an estimator matrix, learned from K training
examples as

T XY ¼ XYTðYYTÞ�1
; ð3Þ

X ¼ ½x1; . . . ; xK � is an m by K matrix where each column is
an m-dimensional out-parameter example, and Y ¼ ½y1;
. . . ; yK � is an n by K matrix where each column contains
the corresponding n-dimensional in-parameter example.

4.2. Non-linear regression

The mapping from audiovisual to articulatory param-
eters can be expected to be non-linear, which means that
a linear regressor fails to capture some aspects of the
mapping. On the other hand, a non-linear regressor has
more degrees of freedom and requires more training data
to perform well. The choice between non-linear and lin-
ear regressor depends thus on the expected non-linearity
of the mapping, and the size of the training set. In our
experiments we have tested support vector machines
(SVM) (Cristianini and Shawe-Taylor, 2000), relevance
vector machines (RVM) (Tipping, 2001) and artificial
neural networks (ANN) (Petersen, 1997) for non-linear
regression. The results for the different types of non-lin-
ear regression methods are qualitatively similar, and we
therefore concentrate on one non-linear method, the
ANN.

A neural regressor with a quadratic cost function from
the DTU toolbox (Petersen, 1997) was used. This regressor
is a two-layer feed-forward neural network with hyperbolic
tangent sigmoidal functions for the hidden layer (five hid-
den units were used, as this yielded the best results in initial
preliminary tests) and a linear output layer. The weights
were optimized with a maximum a posteriori approach
and the network was trained using a quasi-Newton code
for unconstrained optimization. Hereafter, the ANN
regressor is denoted

x̂ ¼ f ANNðyÞ: ð4Þ
Each parameter in the vector x̂ was estimated with a sep-

arate regressor.

4.3. Fusion of audio and video

There are two approaches to fusing two modalities y and
z (e.g. speech ak and video vk) in an inversion function;
early and late fusion.
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An early fusion approach is to simply concatenate the
training vectors as

x̂Early ¼ f YZð½ayT; zT�TÞ; ð5Þ

where a ¼ �rY

�rZ is a normalizing scale factor, �rY and �rV being
the mean standard deviations in the y and z datasets. This
approach makes no assumptions about the statistical
(in)dependence of y and z, but has the disadvantage that
the dimensionality of the state-space is high.

Late fusion instead performs regression separately for
the two modalities, combining the results as

x̂Late ¼ CY f Y ðyÞ þ CZf ZðzÞ; ð6Þ

where CY and CZ are diagonal matrices whose respective

elements are
ðqY

i Þ
2

ðqY
i Þ

2þðqZ
i Þ

2 and
ðqZ

i Þ
2

ðqY
i Þ

2þðqZ
i Þ

2, qY and qZ being the

correlations between true out-data x and the reconstruc-
tions x̂Y ¼ f Y ðyÞ and x̂Z ¼ f ZðzÞ; respectively. The late fu-
sion assumes independence between the y and z channel
given the data, an assumption that is not true in our case
of speech and video data. However, the late fusion deals
with lower-dimensional state-spaces than the early fusion.

Both these approaches were used in our study. The
results are presented in Section 5.3.

5. Results

The quality of the reconstruction is evaluated by com-
paring the estimates of the parameter values, ŝk, with the
true articulatory data sk for the same frame. Our evalua-
tion is mainly based on correlation coefficients, but articu-
latory analyses of the resulting tongue shapes in the
articulatory model are also performed.

5.1. Introducing visual cues in the inversion

These experiments were carried out in order to study
what could be gained from introducing visual cues in the
inversion. The three motion capture corpora described in
Section 3.3 were used and four different linear inversion
functions were learned,

ŝk
AO ¼ f Lin;AOðakÞ; ð7Þ

ŝk
AMV ¼ f Lin;Early;AMVðak; q

M
k Þ; ð8Þ

ŝk
ASV ¼ f Lin;Early;ASVðak; q

S
k Þ; ð9Þ

ŝk
AFQ ¼ f Lin;Early;AFQðak; qkÞ; ð10Þ

where Lin = linear regression, Early = early fusion, AO =
audio cues only, AMV = audio + monovision motion cap-
ture data, ASV = audio + stereovision motion capture
data, and AFQ = audio + full 3D motion capture data.

5.1.1. Acoustic only inversion

The correlation between the original tongue data sk and
that estimated from the acoustic signal only, ŝk

AO, is mod-
erate, as shown by the white bars in Fig. 6. The correlation
is substantially lower than that found by Jiang et al. (2002)
for CV syllables (mean 0.78) and by Yehia et al. (1998) for
sentences of English (mean 0.61) and Japanese (mean 0.60).
It should however be noted that both Jiang et al. (2002)
and Yehia et al. (1998) used four (or five) repetitions of
each utterance, while we use only one. In their case, alter-
native repetitons of the test utterances were included in the
training set. In our case, the consonant part of each VCV
word appear three times (once for each context), but the
coarticulatory influence of the surrounding vowels makes
the three occurences differ more in the articulation.

To corroborate that the correlation coefficients give an
indication of how well the entire VCV corpus is recon-
structed, rather than how good it is for the much more fre-
quent vowels [a, I,f], a baseline correlation was calculated.
For this baseline, it was assumed that the vowels were
always reconstructed as the correct vowel prototype (each
parameter in the vowel frames was assigned its mean value
for that vowel), while the reconstruction of consonants was
random (each parameter in the consonant frames was
assigned its mean value over all consonants in the corpus).
The baseline correlation for the VCV words was 0.53.

Since the correlation of the acoustic-to-articulatory
inversion is not higher than the baseline correlation, it
can be argued that the acoustic only estimation will be
unsuccessful, at least if the training and test data are less
similar than in our case.
5.1.2. Acoustic inversion supported by face measures
Large improvements were achieved when the acoustic

input data was supplemented with face data, as shown in
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Fig. 6. The improvement from audio only inversion to
audio and full 3D motion capture data (AFQ) inversion
is 50% for the VCV words and 70% for the sentences. How-
ever, even a more limited support from the facial data,
using the five articulatory measures in the MV set gives
an important increase, of 35% for the VCV words and
38% for the sentences. Adding the horizontal protrusion
of the five markers, as in the SV set, does not give any
improvement over the MV set. This indicates that depth
information is not essential for audiovisual-to-articulatory
inversion, and that the relevant information can be readily
retrieved from monocular frontal face video without 3D
reconstruction. On the other hand, the substantially higher
correlation for AFQ indicates that relevant information in
the face is not limited to the mouth region.
Table 1
Correlation coefficients for the articulatory parameters in the inversion
using audio only (AO) and audio plus five face measures (AMV)

JH TB TD TT TA

VCV AO 0.62 0.45 0.55 0.54 d0.62e
VCV AMV d0.94e 0.58 0.68 d0.72e b0.66c
VCV MVO b0.93c 0.47 0.62 b0.67c 0.52
Sent AO 0.45 0.31 0.32 0.33 d0.50e
Sent AMV d0.85e 0.40 0.40 0.45 b0.55c
Sent MVO b0.80c 0.24 0.30 0.38 0.37

The result is compared to the estimation from only the five measures
(MVO). A linear estimator is used in all cases. Braces indicate that either
the acoustic or the facial data had a dominant influence.

Fig. 7. Midsagittal contours reconstructed from EMA measures (solid line), es
(dashed line). Only the articulatory parameters of the tongue were applied, whi
considered as fixed.
5.1.3. Articulatory analysis

The articulatory analysis focused on what improvement
the facial measures can contribute in the articulatory
inversion.

Table 1 shows the importance of the audio signal and
facial data for different articulatory parameters. The facial
measures (MVO) provided the most information to recover
the movements of the jaw (JH) and of the tongue tip raising
(TT), while the audio (AO) contributed the most to the
horizontal position of the tongue tip (TA). The largest syn-
ergetic increase gained by combining the two sources was
for the front-back movement of the tongue body (TB)
and the velar arching of the tongue (TD).

When grouping the VCV depending on manner of con-
sonant articulation, the largest increase when the facial
data was added was for fricatives (64%) followed by nasals
(53%). The increase for stops was significantly lower (29%)
and for the approximate-tremulant group /l, j,h, r/, the
facial data actually decreased the performance (�12%),
mainly due to the fact that a linear estimation is unable
to handle the combination of a lowered jaw and a raised
tongue tip for /r, l/, since this goes against the general ten-
dency in the corpus that the movement of the jaw and ton-
gue tip are positively correlated.

Fig. 7 illustrates some of the general aspects of the MV

supported linear inversion. The five facial measures
improved the estimation of the tongue tip position signifi-
cantly and permitted to find e.g., alveolar closures
(Fig. 7a). The estimation of manner of articulation was
hence improved, even if the place of articulation was not
timated from audio only (dotted line) and from the audiovisual AMV case
ch means that the upper lip, palate, velum, pharyngeal wall and larynx are
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always recovered for post-alveolars (Fig. 7b). The facial
measures were unable to contribute to a better inversion
of the tongue tip for articulations for which it was posi-
tioned very independently of the jaw, as for /r, l/
(Fig. 7c). It was further found that the facial data was a
poor estimator of the dorsum part of the tongue
(Fig. 7d). It even occured that the facial information con-
tributed to a better estimation of the tongue tip position,
but at the same time made the recovery of the dorsum part
worse (Fig. 7e).

5.2. The linearity of the mapping functions

The purpose of this experiment was to investigate
whether the audiovisual-to-acoustic inversion could be
improved by replacing the linear regressor with a non-lin-
ear estimation method. For the experiment, four different
functions were learned

ŝk
Lin;AO ¼ f Lin;AOðakÞ; ð11Þ

ŝk
ANN;AO ¼ f ANN;AOðakÞ; ð12Þ

ŝk
Lin;AV ¼ f Lin;Early;AMVðak; q

M
k Þ; ð13Þ

ŝk
ANN;AV ¼ f ANN;Early;AMVðak; q

M
k Þ; ð14Þ

where Lin or ANN = linear or ANN regression, AO = au-
dio cue only, and AMV = audio + monovision.

The correlation between these estimates and the original
articulatory parameters sk is shown in Fig. 8a. The ANN
estimation outperforms the linear and the audiovisual
inversion outperforms the audio only for both linear and
non-linear regression. It can be noted, however, that the
linear estimation benefits more from complementarity of
the visual information for the VCVs, narrowing the gap
to the ANN estimation almost completely, with a 42%
increase in correlation for the linear estimation but only
a 24% increase for the ANN. For the sentences, this is
not the case, as the increase is similar, 59% for the linear
and 61% for the ANN.
VCV Sentences
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Fig. 8. The correlation between estimated and actual parameter values and th
Comparisons are made for audio only (AO) and early fusion of audio and s
networks (ANN) estimations.
The RMS error (Fig. 8b) gives a slightly different pic-
ture. For the sentences, the ANN estimation is slightly bet-
ter than the linear and the audiovisual slightly better than
the audio only for both types of estimation, which corrob-
orates the results of the correlation coefficients. For the
VCV words, however, the RMS error increases when visual
input is added. This is probably due to overfitting, caused
by the increase in the state-space when visual data is added
and the fact that the training set is too small for the higher
dimensionality. It may hence be advisable to use late fusion
of audio and visual data for the non-linear regression, if the
training set is small. The problem is further discussed in
Section 5.3. Two baselines were calculated for the RMS
error. The first is that between the actual and the mean ton-
gue shape over the entire corpus, which is 3.3 mm for the
VCV words and 3.2 mm for the sentences. This baseline
is a measure of what could be achieved by doing nothing
in the regression and simply guessing at the mean shape
in each frame. A second baseline was calculated for the
VCV words, in a similar manner as described for the corre-
lation coefficients in Section 5.1, by assigning each param-
eter its mean value for the correct vowel in the vowel
frames, while setting each parameter in the consonant
frames to its mean value over all consonants. This baseline
indicates the error achieved by estimating the vowels cor-
rectly, without attempting to reconstruct the consonant
articulations. The second baseline is 2.8 mm.

Apart from the difference for the sentence corpus, it
would appear that the gain from using a non-linear estima-
tion is only marginal for the audiovisual case, but an anal-
ysis of the reconstructed tongue shapes nevertheless gives a
different view. The non-linear regression can be considered
superior, since the tongue shapes are ‘‘closer” to the actual
shape from an articulatory point of view, i.e., relevant fea-
tures, such as place and manner of articulation are esti-
mated better. This is in particular true for alveolars,
retroflexes and [l], since the tongue tip raising is correctly
reconstructed. The case of [l] is especially troublesome for
VCV Sentences
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parse motion capture data (Early AV), using the linear (Lin) and neural
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the linear estimation, due to the non-linear relation
between the jaw and tongue tip positions, as noted above.
The only exceptions for which the non-linear method is not
clearly better are [r], which is as problematic for both meth-
ods, and [k], where the ANN estimation successfully recon-
structs a velar consonant, but without the stop closure,
hence making the tongue shape resemble the fricative [ ].

5.3. Markerless feature extraction

Ultimately, one would of course like the visual input to
the inversion to be markerless, since markers compromise
the usability of a system employing the inversion method.
In this experiment, we evaluated the markerless features
described in Section 3.4 for inversion. All the experiments
in this section were performed using the 25 Hz VCV data-
set. For these experiments, eight different inversion func-
tions were learned

ŝk
Lin;AO ¼ f Lin;AOðakÞ; ð15Þ

ŝk
ANN;AO ¼ f ANN;AOðakÞ; ð16Þ

ŝk
Lin;VO ¼ f Lin;VOðvkÞ; ð17Þ

ŝk
ANN;VO ¼ f ANN;VOðvkÞ; ð18Þ

ŝk
Lin;Early;AV ¼ f Lin;Early;AVðak; vkÞ; ð19Þ

ŝk
ANN;Early;AV ¼ f ANN;Early;AVðak; vkÞ; ð20Þ

ŝk
Lin;Late;AV ¼ f Lin;Late;AVðak; vkÞ; ð21Þ

ŝk
ANN;Late;AV ¼ f ANN;Late;AVðak; vkÞ; ð22Þ

where Lin or ANN = linear or ANN regression, Early or
Late = early or late fusion, AO = audio cue only, AO =
markerless video cues only and AV = audio + markerless
video.

Fig. 9 shows the correlation and RMS error between the
true and reconstructed articulatory parameters.
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Fig. 9. The correlation between estimated and actual parameter values and the
the 25 Hz VCV dataset. Comparisons are made for audio only (AO), early fusio
AV), using the linear and neural networks (ANN) estimations.
The AO inversion performance is lower here than in the
previous experiments with the VCV dataset, i.e., the corre-
lation is lower and the RMS error is higher. The reason is
most probably that the 25 Hz VCV dataset is a factor 2.4
smaller than the 60 Hz VCV; parameter combinations
occurring only for a very short time have then been aver-
aged out and are not present in the training data. This
means that the performance of the audiovisual inversion
can not be compared in absolute terms to the AMV perfor-
mance in the previous sections. Instead, we compare rela-
tive improvements from the respective AO inversion
results.

With this measure, it can be concluded that using linear
regression, the improvement in correlation when adding
the visual cue (44%) exceeds the improvement of AMV
over AO (Fig. 8, 40%) and is almost at par with the
improvement when adding full motion capture data to
the recognition (Fig. 6, 50%). From this, we draw the con-
clusion that our proposed method for extracting informa-
tion from face video is effective for articulatory inversion.

In the ANN case, the improvement in correlation when
adding the visual cue (20%) is slightly lower than that of
AMV over AO (Fig. 8, 24%). Given the better performance
of the linear estimators, this could have to do with the fact
that the dataset is smaller, and at the same time, the dimen-
sionality of the data is higher in the AV case (57 dimen-
sions) than in the AMV case (23 dimensions), leading to
a larger state-space. This causes the ANN to overfit to
the specific training data to a higher degree. Heuristically,
the training data simply fail to cover a state space of too
high dimensionality.

Furthermore, the RMS error for Early, AV is higher in
the ANN case than in the linear case. The correlation for
Early AV was also lower than the correlation for Late
AV in the ANN case, while it is the other way around in
Linear ANN
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Table 2
Correlation coefficients for the articulatory parameters in the inversion
using audio only (AO) and audio and video (Early AV)

JH TB TD TT TA

Linear, AO 0.44 0.31 0.47 0.47 d0.57e
Linear, Early AV d0.92e 0.50 0.68 d0.72e b0.61c
Linear VO b0.92c 0.47 0.62 b0.68c 0.51
ANN, AO 0.73 0.36 0.53 0.61 0.61
ANN, Early AV d0.92e d0.46e 0.64 d0.71e 0.56
ANN, VO b0.90c b0.45c 0.59 b0.69c 0.54

The result is compared to the estimation from only the video parameters
(VO). The 25 Hz VCV dataset is used in all cases. Braces indicate that
either the acoustic or the facial data had a dominant influence.
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the linear case. Again, this was probably caused by ANN
overfitting.
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Fig. 10. Articulatory parameters for a number of consecutive time frames over
estimated from audio only (dotted line) and from AV early fusion (dashed lin
A conclusion to be drawn from this is that more training
data probably would lead to a significant improvement in
Early AV performance in the ANN case.
5.3.1. Articulatory analysis

Table 2 shows the importance of the audio and video
signals for different articulatory parameters. The results
in the linear case are consistent with those in the VCV case
in Table 1. This supports the conclusion that the parame-
ters extracted from the video contains, not only as much
information as the 3D marker data, but the same type of
data.

Interestingly, except for the tongue advance (TA), the
video makes a larger contribution than the acoustic signal,
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the course of one VCV word, computed from EMA measures (solid line),
e), using the linear regressor.
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even for tongue positions further back, which are often
considered impossible to lipread.

In the ANN case, the Early AV correlation levels are
lower, again probably due to overfitting. Most notably,
the estimation of tongue advance (TA) actually is worse

than in the AO case.
The parameter variations throughout three different

VCV words shown in Fig. 10 (linear estimation) and
Fig. 11 (ANN) indicate that the qualitative improvement
when adding visual information is similar for the linear
and non-linear estimations. The tongue tip position (TT)
is better estimated both for the closure in [t] and the lower-
ing in [k], which is in accordance with the estimation from
motion capture data in Fig. 7. The reconstruction of the
velar closure in [k] is further improved through a better
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Fig. 11. Articulatory parameters for a number of consecutive time frames over
estimated from audio only (dotted line) and from AV early fusion (dashed lin
estimation of the parameters controlling the back part of
the upper tongue (TB and TD).

Fig. 11 also hints at a possible cause for the higher RMS
error for the ANN estimation, since its output is less
smooth with sudden changes, which may cause large errors
in occasional frames. This is a result of the fact that the
current estimation is made on separate frames without
any continuity constraints on the parameter trajectories.
Further improvement of the method should hence include
criteria to take adjacent frames into account. This is also
discussed in Section 6.

It should further be noted from the parameter trajecto-
ries that the surrounding vowels, which occur much more
frequently in the corpus than the consonants, are not better
reconstructed than the middle consonant. The differences
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between the actual and the estimated parameter trajectories
are evenly distributed through the word.

6. Discussion and conclusions

We have investigated how a discriminative inversion
procedure benefits from the introduction of visual cues
along with the acoustic information.

The study showed that improvements on the order of
35% can be achieved in acoustic-to-articulatory inversion
by adding a small number of articulatory measures of the
subject’s face; achieved using 3D motion capture, but
selected to mimick the information that could be extracted
from markerless video. These results were confirmed in
experiments with features actually extracted from video.

The analysis further indicated that the gain in audiovi-
sual-to-articulatory inversion when going from monovision
(full frontal video images) to stereovision (frontal and pro-
file images) is very small, at least for the measures extracted
in this study. Articulatory inversion supported by monovi-
sion would hence be as effective, even if stereovision may
have additional benefits in terms of robustness.

We also compared linear and non-linear regression and
found that a non-linear estimation using neural networks is
superior to a linear estimation, but that the difference in
reconstruction quality becomes much smaller if visual data
is added. If a linear estimation is used, our results indicate
that early and late fusion of the different modalities per-
form similarly. If, on the other hand, a non-linear estima-
tion is used, the best results may be achieved by
processing the audio and video streams separately and sub-
sequently fuse the inversion estimations.

As with speech recognition, temporal dependencies in
both the acoustic, visual and articulatory parameters can
be employed to improve the estimation. Temporal smooth-
ness constraints can be represented using, e.g., multi-
stream Hidden Markov Models. Using this approach,
Katsamanis et al. (2008) report a 60% correlation between
true and reconstructed tongue shape using audio only, a
7% improvement from our results on the same data.

As the relevant visual features can be extracted without
markers from frontal images from one videocamera, the
findings are important for applications that need a simple
audiovisual-to-articulatory inversion technique, e.g., artic-
ulatory phonetics training for second language learners
or hearing-impaired persons. An illustrative example of
this is the different Swedish fricatives [s, §, , ] which are
difficult for both non-native and hearing-impaired speak-
ers. Pronunciation errors of these fricatives may be difficult
to detect automatically from the acoustic signal only, but
they are more easily found from the tongue shapes recon-
structed from audiovisual data, since the places of articula-
tion differ more than the acoustic features. We have found
in a previous study (Engwall, 2006) that the estimation of
the place of articulation for the fricatives improves drasti-
cally if the MV data is used compared to audio only: from
35% to 70% for [s], 28% to 56% for [ ] and from 10% to
57% for [ ] for the linear estimation and from 81% to
85% for [s], 33% to 56% for [ ] and from 23% to 70%
for [ ] for the non-linear estimation.
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