
Appears in the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp 231–238, Beijing, China 2005.

Using SVM for Efficient Detection of Human Motion

Josef Grahn

School of Computer Science and
Communication

KTH (Royal Institute of Technology)
SE–100 44 Stockholm, Sweden

grahn@kth.se

Hedvig Kjellström∗

Department of IR Systems
Division of Sensor Technology

Swedish Defence Research Agency
SE–164 90 Stockholm, Sweden

hedvig@foi.se

Abstract
This paper presents a method for detection of humans in
video. Detection is here formulated as the problem of clas-
sifying the image patterns in a range of windows of different
size in a video frame as “human” or “non-human”. Com-
putational efficiency is of core importance, which leads us
to utilize fast methods for image preprocessing and classi-
fication. Linear spatio-temporal difference filters are used
to represent motion information in the image. Patterns of
spatio-temporal pixel difference is classified using SVM,
a classification method proven efficient for problems with
high dimensionality and highly non-linear feature spaces.
Furthermore, a cascade architecture is employed, to make
use of the fact that most windows are easy to classify, while
a few are difficult. The detection method shows promising
results when tested on images from street scenes with hu-
mans of varying sizes and clothing.

1. Introduction
Fast and robust detection of humans in video is made in-
creasingly possible by the recent development in computa-
tional power. This technology is interesting for, e.g., auto-
motive applications and automation of visual surveillance.

Our aim in this paper is a method for detection of humans
in video, with a low error rate, using standard hardware and
software. Furthermore, the detection might be used to ini-
tialize a human tracker, which means that the computations
must be done in the time interval between two video frames.
Surveillance video is usually recorded at a rate of between
10 and 30 Hz.

Detection of humans in a video frame can be reformu-
lated as the problem of classifying a range of windows of
different position and scale in the frame as “human” or
“non-human”. Several thousand windows need to be classi-
fied in each frame. Figure 1 shows an example of a detec-
tion result.

∗Formerly Hedvig Sidenbladh

Figure 1: The result of a detection. The three windows classified
as “human” (of about 15000 windows investigated) are marked
with rectangles in the image.

To manage this in real-time, three aspects must be taken
into regard:

The computational efficiency of the image preprocess-
ing. We employ a combination of spatio-temporal differ-
ence images, suggested by Viola et al. [16]. Due to their
linearity, these filter responses can be computed in a very
efficient manner.

The computational efficiency of the classifier. Since so
many windows are classified, the classification must be ex-
tremely fast. Furthermore, the patterns to be classified (i.e.,
the filter response in the windows) are high-dimensional,
and the part of feature space in which “human” patterns re-
side is of non-linear shape. We have chosen to employ sup-
port vector machines (SVM) [1, 4], proven efficient for this
type of classification problem. Another option, successfully
employed by Viola et al. [16], is AdaBoost.

The fact that most windows are easy to classify, while a
few are difficult to classify. To make use of this, we em-

1

ploy a cascade architecture [15]. A very fast but error-prone
linear SVM is used to classify all the thousands of windows
in the first step, and feed a smaller number of “possible hu-
man” classifications forward to the next step, and so forth.
In the last step, a slower SVM with high accuracy takes care
of the few difficult cases.

The SVM classifiers require large amounts of training
data. Accommodating to this, an interactive reinforcement
learning procedure was implemented, in which a user marks
detections as correct or not correct. This information is then
fed into the SVM, which is retrained with the new data.
This procedure allows for semi-automatic collection of ex-
amples, a tiresome task if performed manually.

The rest of the paper is organized as follows. In Sec-
tion 2, related work is presented. The detection framework
is formalized in Section 3, followed by a description of the
classification method in Section 4. The training of the SVM
is treated in Section 5. Thereafter, experimental results are
presented in Section 6. The paper is concluded with a dis-
cussion and suggestions for future work.

2. Related Work
Most methods for human detection aim at detecting human
appearance. Cues used are edges [7, 9], wavelet responses
[11], color distributions [3], background subtraction [8] or
a combination of multiple cues such as depth information,
color and neural-net models of face patterns [5]. The de-
tection is often used as an initialization step to tracking
[3, 5, 8]. However, if it is possible to estimate image mo-
tion (which is most probably not the case if the camera is
mounted on a car [7], for instance), this is a very powerful
cue to human presence in the image.

An approach based on motion is presented by Song et
al. [14]. Here, feature points from two consecutive images
in a sequence are compared to the corresponding points on
a 2D kinematic model of a human. This approach does not
entirely rely on motion information since there is an under-
lying assumption that one can find features corresponding
to specific positions on the body. Viola et al. [16] use in-
stead a filter-based approach to motion pattern recogntion.
Using five filters for motion in different directions they are
able to detect walking humans in low image resolution with
a very low error rate. We use the spatio-temporal filters of
Viola et al. in our detection, but SVM for classifying the
filter responses, instead of AdaBoost as they do. Optical
flow is another representation of image motion. Sidenbladh
[13] uses SVM and optical flow patterns for detection. The
model-based method of Fablet and Black [6] instead com-
pares dense flow patterns with a generative model of human
flow appearance. The method recovers both pose, orienta-
tion and position in the image.

SVM has proven to be an effective method for non-linear

classification in high-dimensional spaces such as ours. The
method has previously been used for face detection [12]
and gender classification [10]. Pedestrian detection using
SVM from appearance cues such as edge segments in the
image [9], optical flow [13] or wavelet responses [11] has
also been reported.

3. Detection
Informally, our method is supposed to find rectangular ar-
eas, windows, of different sizes containing humans in an
image from a sequence. This can be expressed more for-
mally as follows.

3.1. Formalization of the Detection Problem
The input to the method is a number of consecutive frames
from an image sequence of images. Let the variable At

denote such a set of frames, which we henceforth will call a
snapshot. For our purposes, the snapshot At consists of the
two frames at time t and t + 1, but it could well be a longer
sequence of images.

If we assume a fixed aspect of the image windows to be
tested, any window can be described using three parame-
ters: horizontal position x, vertical position y and scale s.
We then have a space K containing all candidates (x, y, s)
that may mark a human.

The system can thus be seen as to, given a snapshot At,
produce an indicator function g : K → ±1, which is an ap-
proximation of some true function gT . The system is hence
in itself a function f(At) with the set of all possible func-
tions g(x, y, s) as its range. In other words, f(At) is the
function that generates positions and scales for all detected
humans in the snapshot At, while g is a function that returns
1 if there is a human at position (x, y, s), −1 otherwise.

3.2. Requirements
The problem has now become to find a suitable function f .
A good f should have the following properties.

1. The average time it takes to evaluate f should be low.

2. The average time it takes to evaluate g should be low.

3. The probability for a false positive classifica-
tion should be low. That is, P (g(x, y, s) =
1 | gT (x, y, s) = −1) should be low.

4. The probability for a false negative classifica-
tion should be low. That is, P (g(x, y, s) =
−1 | gT (x, y, s) = 1) should be low.

The exact probabilities in the third and fourth require-
ment are determined by the application. Generally, the false
positive and false negative ratio are inversely correlated. If

2

the system is otherwise tuned to its best accuracy, modi-
fying it to be more restrictive towards signaling a hit, will
produce fewer false alarms, but will make it miss more true
occurrences.

3.3. Cascade Detection
The first and second requirement above may seem redun-
dant. However, the execution time of g varies significantly
depending on the complexity of the classifier used. Simple,
e.g. linear, classifiers take less time, but display a higher
false positive ratio than more complex classifiers.

A cascade architecture [15] is therefore utilized to clas-
sify samples. Several classifiers with increasing complex-
ity constitutes the cascade, where each stage classifies the
samples as to be either “not human” or “possibly human”.
If a sample is determined not to contain a human being, it
is thrown out immediately, saving valuable execution time
for other samples. Samples that pass through all stages are
considered to contain humans.

This design exploits the fact that the vast majority of
samples are negative, and that most of these can easily be
determined to be that. Thus, the cost of classifying the fewer
difficult samples is amortized over the entire set of samples.

4. Classification
We now treat the classification of a particular window
(x, y, s) in the snapshot At. This is equivalent to the func-
tion g as defined in Section 3.1.

4.1. Image Preprocessing
Firstly, to achieve scale invariance, Laplacian pyramids are
constructed from both frames in the snapshot At. The scale
parameter s indicates from which pyramid level the image
window (x, y, s) should be extracted.

From now on, the following terminology will be used
[16]. Let It be the image window in position and scale
(x, y, s) at frame t. The same windows translated slightly
to the right, to the left, up, and down are then denoted I→t ,
I←t , I↑t , and I↓t , respectively.

Spatiotemporal difference filters can now be defined
from these images as

Ft = |It − It+1| , (1)

F ↑t = |It − I↑t+1| , (2)

F ↓t = |It − I↓t+1| , (3)
F←t = |It − I←t+1| , (4)
F→t = |It − I→t+1| . (5)

These filters contain information about the motion in the
image. An alternative representation could be optical flow.
Flow would represent the motion in a more compact way in

terms of number of dimensions in the feature space, lead-
ing to an easier classification problem [13]. However, be-
sides being more computationally demanding, the optical
flow computation may also introduce errors which would
inflict on the classification [16].

The function g could be defined from any combination
Gt of these filters. Here, we investigate two combinations.

Difference image. The simplest combination filter is the
temporal difference only, i.e.,

Gt = Ft . (6)

Thus, the resulting image will contain information about
how much the intensity has changed between the two
frames. Examples of responses from this filter are shown
in Figure 2a.

The drawback of this combination is that it does not con-
tain very much information. On the positive side, an SVM
classifier using this filter will be fast, due to the low num-
ber of dimensions in the feature space (which is the window
height times the window width). This filter is thus suitable
for the first steps in the classification cascade.

Integral difference image. Viola et al. [16] and have
successfully used a combination of all difference filters in
Equations (1)-(5), which is inspired by the integral image
of Viola and Jones [15]. Connecting to this terminology,
we call this combination,

Gt = [Ft, F
↑
t , F ↓t , F←t , F→t] , (7)

integral difference image, which besides information about
intensity change contains information about motion in four
directions. Figure 2b shows responses from this filter.

A disadvantage of this filter is that it has many sampling
points, hence many dimensions in feature space. This will
make the SVM classification more computationally expen-
sive. However, since the filter is a more informative descrip-
tion of the image motion, the classification will be more
accurate than with the difference filter. Thus, the integral
difference filter is suitable for the last stages in the classifi-
cation cascade.

Filter responses as points in feature space. Henceforth,
the filter responses Gt are considered to be on vector form;
in practice, all columns of all difference images in the filter
response are concatenated to one vector. Furthermore, the t
subscript is dropped for notational purposes.

4.2. Support Vector Machines
As discussed in Section 3.1, our binary classifier can be ex-
pressed as a function g : <n → ±1 that maps patterns G

3

(a) Difference (b) Integral difference

Figure 2: Filter responses. For each type of filter, the left column
contains positive examples and the right negative examples.

onto their correct classification z as z = g(G). In the case
of an SVM, the function g takes the form [1, 4]

g(G) =
N∑

i=1

ziαik(G, Gi) + b , (8)

where N is the number of training patterns, (Gi, zi) is train-
ing pattern i with its classification, αi and b are learned
weights, and k(., .) is a kernel function. Here, we use both
linear functions k(G, Gi) = G − Gi and radial basis func-
tions (RBF) k(G, Gi) = e−‖G−Gi‖/2σ2

. The patterns for
which αi > 0 are denoted support vectors.

The surface g(G) = 0 defines a hyperplane through the
feature space as defined by the kernel k(., .). The weights
αi and b are selected so that the number of incorrect classifi-
cations in the training set is minimized, while the distances
from this hyperplane to the support vectors are maximized.

This is achieved by solving the optimization problem [1, 4]

Maximize :

LD ≡
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

zizjαiαjk(Gi, Gj) (9)

subject to :

0 ≤ αi ≤ C ,
N∑

i=1

ziαi = 0 . (10)

The constant C affects the tolerance to incorrect classifica-
tions. Using the optimal parameters αi, Eq (8) with any
support vector (xi, yi) as indata can be used to find b.

For a thorough description of the SVM theory, see [1, 4].

SVM parameters. One of the benefits of the SVM, com-
pared to many other inductive learners, is that few param-
eters must be set manually. Consequently, the parameter
space that must be explored to find the optimal set-up is rel-
atively small.

The first parameter is the choice of kernel. Secondly,
kernel specific parameters appear. The RBF kernel requires
the stiffness σ to be set. Apart from kernel specific param-
eters, there are the penalties for incorrect classifications of
positives Cp and negatives Cn, respectively.

SVM complexity. The computational complexity of an
SVM classification step depends on the type of kernel. For a
linear kernel, the complexity is O(dim(G)). It is therefore
desirable from an computational efficiency point of view to
keep the number of dimensions in the patterns G as low
as possible. Classification with a linear kernel is extremely
fast but inexact, therefore suitable for early stages in the
cascade.

If an RBF kernel is used, the complexity rises to
O(Ni dim(G)) where Ni is the number of support vec-
tors. Ni depends on dim(G) as well as on the stiffness and
penalty paramters in the SVM. To achieve a fast classifica-
tion, one should strive to keep Ni as low as possible. The
RBF kernel requires more computation time than a linear
kernel but renders a more exact classification. It is therefore
suitable for the final cascade step.

It is important to note that the error rate of the classifi-
cation, which also depends on dim(G) and Ni, is of im-
portance as well as speed (Section 3.2). Tradeoffs between
computational efficiency and classification accuracy have to
be made, both with the choice of kernel and when setting
other SVM parameters.

5. Training the SVM
As noted in [13], a large number of training examples are
required for an SVM to be able to classify human motion
patterns. To allow for efficient gathering of examples, a tool
for interactive learning was implemented.

4

5.1. Acquisition of Training Examples
Obtaining a profusion of video recordings containing hu-
mans is a trivial task, having access to a large city and a
digital video recorder. The problem is instead to mark the
humans in the video material.

Extracting negative examples requires much less effort,
although the process cannot necessarily be completely au-
tomated. After all, we are interested in negative examples
from the environment where we later on intend to use the
system to detect positive occurrences, whence we should
prepare for the risk of these occurring while we collect the
negatives. But still, only a very small amount of human
supervision is needed.

Interactive marking tool. To accommodate the goal, an
interactive marking tool was constructed. Using this tool,
an operator can step through and view a recorded image
sequence. Using the mouse, markers can be placed where a
training examples should be extracted.

Classifier feedback. Once an initial collection of exam-
ples have been obtained, it is possible to train a SVM which
can be used to extract new examples, which are presented
to the user for rejection or confirmation.

The procedure has two advantages. First, it quickens
the process of collecting positive examples. Secondly, by
collecting the samples that are misclassified by the SVM,
one can be certain to obtain examples that are useful from a
learning point of view. While it is easy to gather abundant
negative examples randomly, few of them give the SVM
trainer additional knowledge of the shape of the set [12].

Overlearning is of course the great danger with this sort
of feedback procedure.

5.2. Training and Test Data
The video material used in the experiments consist of three
30 second 25 Hz sequences recorded in the daytime at three
different locations. The camera is located on street level,
approximately one metre above ground. The sequences in-
clude both distant humans as well as humans right in front
of the camera. In many cases, the humans walk towards or
away from the camera.

The sequences are split in half, where the first half is
used for training and the second for testing. The same per-
son is never present in both test and training sequences.

From the training sequences, 1005 positive and 1434
negative examples are extracted and used to train the SVM.

5.3. Parameter Optimization
During training, the SVM parameter space is explored by
a grid search. Initially, a sparse grid over a vast range of
values is used. The limits of this grid are chosen based on
theoretical arguments; for example, the limits of the kernel

Figure 3: The left image shows all samples considered positive
by the stages of the cascade. The right images shows the same
image, but with overlapping samples merged.

stiffness are imposed by the high frequency camera noise on
one hand, and the extension of the set of all samples on the
other. In other words, the kernel needs to be stiff enough,
so that the radial basis is significantly larger than the size of
typical perturbations induced by the camera noise. The ba-
sis should also be small enough not to eclipse the entire set
of samples with a single RBF. Promising areas are thereafter
investigated further, using a finer grid.

The number of support vectors varies between 500 and
1000 depending on the parameters, with approximately the
same number of positive and negative support vectors.

6. Experiments
In this section, experimental results are presented. Different
parameter settings, kernels and preprocessing settings are
compared in terms of the false positive and false negative
ratio. Computation time for the different steps of a cascade
is also measured.

6.1. Notes about Measuring Error
It should be noted that, when negative training examples are
collected using classifier feedback as decribed in Section
5.1, the resulting set of examples will be harder to classify
than an average example generated uniformly over K. For
training purposes, this is desired since it reduces the training
time by focusing on important examples. However, if these
examples were used for validation, they would yield unfair
results. To get more accurate results, the system is validated
exclusively on randomly generated negative examples.

Furthermore, as a postprocessing step in each level of
the cascade, detections with significant overlap are merged

5

10-4 10-3 10-2 10-1 100
10-3

10-2

10-1

100

False positive ratio

Fa
ls

e
ne

ga
tiv

e
ra

tio

Linear
RBF

Figure 4: False negative and false positive rate of a range of pa-
rameter configurations. Different markings represent different ker-
nels.

(Figure 3). During the course of a cascade, 8% of the detec-
tions are removed by merging.

6.2. Comparing Kernels
The performance of the linear and RBF kernels are first
compared. Figure 4 shows the false positive and false neg-
ative ratio, using a number of parameter configurations, fil-
ters and filter sizes for each kernel. The shape of the differ-
ent markers indicate which kernel that was used.1

Examining the plot, it is obvious that the RBF kernel is
the superior kernel, with regard to accuracy. However, it is
more computationally expensive than the linear kernel.

6.3. Comparing Filters
The two filter combinations suggested in Section 4.1 are
then compared. Figure 5 presents the different error ratios
achieved for different parameter configurations, kernels and
filter sizes. Different filters have different markers.

Combining the information in Figures 4 and 5 shows
that the lowest false negative ratios are reached using the
combination difference filter/RBF kernel, while the low-
est false positive ratios are reached with integral difference
filter/RBF kernel. The same false negative ratio can be
reached with the combination difference filter/linear lernel,
which is fast, as with integral difference filter/RBF kernel,
which is more computationally demanding.

The conclusions that can be drawn from this is that
the difficult cases in the late stages of the cascade should

1Since all parameters are varied, the plot can be percieved as a “ROC
cloud”, in analog to a ROC curve where one parameter is varied.

10-4 10-3 10-2 10-1 100
10-3

10-2

10-1

100

False positive ratio

Fa
ls

e
ne

ga
tiv

e
ra

tio

Difference
Integral Differe

Figure 5: False negative and false positive rate of a range of pa-
rameter configurations. Different markings represent different fil-
ters.

be classified using the combination integral difference fil-
ter/RBF kernel which results in very low false negative ra-
tios. However, in the early stages, a difference filter should
be used since the classification is faster, and results in the
same amount of, or even fewer, missed detections.

6.4. Comparing Filter Resolutions
Figure 6 shows error ratios achieved using two different fil-
ter resolutions, 4 × 8 and 12 × 24 pixels respectively. For
each size, results for different parameter configurations, fil-
ters and kernels are shown. Different filter sizes have dif-
ferent markers.

It is obvious from the results that the lower resolution
performs worse in terms of error rate. Again, a tradeoff has
to be made between performance and computational cost.

6.5. Typical Misclassifications
Incorrect classifications can roughly be divided into four
categories, which are described below. It should be noted
that the occurrence of misclassification can be limited con-
siderably with interactive learning as described in Section
5.1. Furthermore, the images below should not be seen as
representative of the detection method. An example of a
successful detection can be seen in Figure 1.

False positives around humans. The invariably most
common misclassifications are incorrect positives produced
in the vicinity of a correctly classified single human. These
exist both as slightly translated and possibly upscaled mark-
ers, covering most of the person plus some of the back-
ground, or, more frequently, as downscaled markers cov-
ering moving body parts. When the pedestrian is close to

6

10-4 10-3 10-2 10-1 100
10-3

10-2

10-1

100

False positive ratio

Fa
ls

e
ne

ga
tiv

e
ra

tio

4x8
12x24

Figure 6: False negative and false positive rate of a range of pa-
rameter configurations. Different markings represent different fil-
ter resolutions.

the camera, a single moving arm or leg can often result in a
number of false hits. Figure 7a shows a typical example.

False positives between humans. When multiple hu-
mans walk in a group in close proximity to each other, addi-
tional false hits are often generated in the spaces that form
in-between the humans. An example of this phenomenon is
shown in Figure 7b.

Other false positives. Occasionally, false positive classi-
fications are generated unrelated to any occurrences of hu-
mans. These false hits occur around specific areas of mov-
ing objects such as the rear of a car, or at human-like shapes
as the windows in Figure 7c. This type of misclassification
is relatively rare.

False negatives. Although less common than false posi-
tives, there are of course also incorrect false classifications;
that is, humans that are not detected. An image where this
has occurred is shown in Figure 7d.

6.6. A complete cascade
In this section, the performance and behavior of a complete
cascade is studied. The classification was carried out on an
Intel Pentium 4 processor with a clock frequency of 2 GHz.
The operating system used was Gentoo Linux with a version
2.4 vanilla kernel. The classifier was implemented in C++
using the LibSVM library, version 2.8 [2].

We can see from Table 1 that the vast majority of the
possible positions are discarded at the first cascade stage.
At the same time, the majority of the execution time was
spent in the last stage. This corresponds to the intuition the

the majority of the positions are easy to classify, while a
small minority require more advanced classification.

7. Conclusions
A method for detection of humans in video was presented.
To achieve maximal computational efficiency, fast spatio-
temporal difference filters were used together with SVM
classifiers. Furthermore, to make use of the fact that most
classification cases in the detection procedure are easy,
while a few are hard, a cascade architecture with increas-
ingly complex SVM classifiers was utilized. The classifiers
were trained with video from different street scenes, and ex-
periments on detection accuracy were performed with the
same type of data.

In the current implementation, the method does not meet
the real-time demands (Section 6.6). A typical cascade
takes in total 3.3 seconds, of which 2.2 seconds are spent
on image preprocessing. However, several things could be
done to speed up the detection:

Preprocessing. Effort has not been put down on optimiz-
ing the code for computing the filter responses. The prepro-
cessing step could essentially be implemented in hardware,
thus taking very little computational effort. As a compari-
son, another implementation of the same preprocessing step
by Viola et al. [16] requires 0.15 seconds.

Using parts of the integral difference. The results in
Section 6.3 indicate that while the extra information stored
in the integral difference image leads to a much lower false
positive ratio, it does not also lead to a lower false negative
ratio, compared to the difference image. The reason could
be that the 5 times higher dimensionality of the integral dif-
ference images makes the SVM classifier deteriorate, since
many of the dimensions do not contain valuable informa-
tion.2 Non-informative dimensions could for example be
the F ↑t and F ↓t images, which then contributes negatively to
the performance even though the extra information from the
F←t and F→t images contributes positively. Therefore, the
effects of using only parts of the integral difference image
should be investigated.

Smaller images. Another way of lowering the dimension-
ality of feature space is to lower the resolution of the fil-
ter response. The downside of this might be that the error
rate increases since the information content in the filter re-
sponses decreases (see Section 6.4).

Cascade. Thorough experimentation on the design of the
cascade must be carried out to determine the optimal com-
bination of cascade stages.

2Another effect is of course higher computational cost. Remember
from Section 4.2 that the computational complexity of the SVM is linearly
dependent on the dimensionality.

7

(a) Example of a false positive
around a human.

(b) Example of a false positive be-
tween two humans.

(c) A pair of windows in the facade in the
upper left portion of the image is incor-
rectly classified as a human.

(d) The person walking away from the camera is
not detected in this frame.

Figure 7: Examples of types of errors.

Table 1: Statistics of a cascade executed on a typical snapshot from one of the test sequences. A total of 14876 possible positions (x, y, s)
are examined in the first cascade stage.

Stage # Detections Passed % Detections Passed Time [ms] (Preprocessing/SVM) % Time
Diff, dim(It) = 4× 8, Linear 1287 8.7 708/1.46 21
Diff, dim(It) = 12× 24, Linear 404 2.7 598/1.06 18
Int diff, dim(It) = 12× 24, RBF 13 0.087 938/1102 61
Total 14876 2244/1105

Each of these options are worth investigating. Together,
they will most probably lead to a fast and robust real-time
method for human detection in video.

References
[1] C. J. C. Burges. A tutorial on support vector machines for

pattern recognition. Data Mining and Knowledge Discovery,
2(2):121–167, 1998.

[2] C-C. Chang and C-J. Lin. LibSVM: a library for support
vector machines, 2005,
http://www.csie.ntu.edu.tw/∼cjlin/papers/libsvm.pdf.

[3] D. Comaniciu and V. Ramesh. Robust detection and tracking
of human faces with an active camera. In IEEE International
Workshop on Visual Surveillance, 2000.

[4] N. Cristianini and J. Shawe-Taylor. An Introduction to Sup-
port Vector Machines. Cambridge University Press, Cam-
bridge, UK, 2000.

[5] T. Darrell, G. Gordon, M. Harwille, and J. Woodfill. Inte-
grated person tracking using stereo, color, and pattern recog-
nition. In CVPR, pages 601–609, 1998.

[6] R. Fablet and M. J. Black. Automatic detection and track-
ing of human motion with a view-based representation. In
ECCV, volume 1, pages 476–491, 2002.

[7] D. M. Gavrila. Pedestrian detection from a moving vehicle.
In ECCV, volume 2, pages 37–49, 2000.

[8] I. Haritaoglu, D. Harwood, and L. Davis. W4: Real-time
surveillance of people and their activities. PAMI, 22(8):809–
830, 2000.

[9] S. Kang, H. Byun, and S-W. Lee. Real-time pedestrian detec-
tion using support vector machines. International Journal of
Pattern Recognition and Artificial Intelligence, 17(3):405–
416, 2003.

[10] B. Moghaddam and M-H. Yang. Sex with support vector
machines. In Advances in Neural Information Processing
Systems 13, pages 960–966, 2001.

[11] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Pog-
gio. Pedestrian detection using wavelet templates. In CVPR,
pages 193–199, 1997.

[12] E. Osuna, R. Freund, and F. Girosi. Training support vector
machines: an application to face detection. In CVPR, pages
130–136, 1997.

[13] H. Sidenbladh. Detecting human motion with support vector
machines. In ICPR, volume 2, pages 188–191, 2004.

[14] Y. Song, X. Feng, and P. Perona. Towards detection of human
motion. In CVPR, volume 1, pages 810–817, 2000.

[15] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, volume 1, pages 511–
518, 2001.

[16] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians
using patterns of motion and appearance. In ICCV, pages
734–741, 2003.

8

