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We consider the wave equation in a medium with a rapidly varying speed of propagation. We construct a multiscale scheme
based on the heterogeneous multiscale method, which can compute the correct coarse behavior of wave pulses traveling in the
medium, at a computational cost essentially independent of the size of the small scale variations. This is verified by theoretical
results and numerical examples.

1 Introduction

We consider wave propagation in heterogeneous media modeled by the scalar wave equation

utt = ∇ ·Aε(x)∇u, x ∈ R
d, t > 0, (1)

with initial data u(0,x) = f(x), ut(0,x) = g(x). The coefficient matrix Aε(x) ∈ R
d×d is positive definite uniformly in x

and is highly oscillatory with a wave length on the scale O(ε). We will be studying the case when g and f are smooth and
ε � 1. This case is difficult to treat with standard finite difference methods because the ε-scale must be resolved. At least the
order of N ∼ ε−(1+d) points is needed to include all the details of the problem in space and time.

The heterogeneous multiscale method (HMM) is a framework for treating this type of computationally challenging prob-
lems. The ε-microscale is only resolved locally but the correct macroscale can still be computed. The purpose of this pre-
sentation is to analyze the analytically well known case of hyperbolic homogenization in order to increase the understanding
of multiscale approximation techniques. For references see the original HMM paper [1] as well as [2], [3] and, for a related
framework for multiscale computations, [4].

2 Heterogeneous multiscale method

In HMM one does not attempt to resolve all details of the problem (1). Instead one focus on a macroscale problem: Let û be
the coarse part of u, e.g. a local average, and assume it satisfies a PDE, with an effective flux F̂ , of the form:

ûtt = ∇ · F̂ (x,∇û). (2)

In HMM, the effective flux F̂ is unknown and determined by solving problems on the micro-scale (defined in more detail
below). The inspiration is homogenization theory, where it can be shown that if Aε is ε-periodic, then u → û as ε → 0. The
limit function û will satisfy (2) with F̂ = Ā∇û, where Ā is a constant matrix.

The HMM algorithm we use here is based on a central finite difference scheme fitted in the framework described in [1]. It
is similar to the schemes in [3], for parabolic equations, and in [5] for the one dimensional advection equation.
A more detailed description of the HMM algorithm follows:

1. Discretize (2) with a centered difference scheme on a Cartesian grid. In 2D we have (see Figure 1.1):

Un+1
i,j = 2Un

i,j − Un−1
i,j +

(ΔT )2

ΔX

[
Fi+1/2,j − Fi−1/2,j

]
+

(ΔT )2

ΔY

[
Gi,j+1/2 −Gi,j−1/2

]
,

where Fi,j and Gi,j are the discrete x- and y-components of the effective flux F̂ (x) evaluated at xi,j .

2. To compute the macro flux F̂ (x) on half points as seen in Figure 1.1, solve a micro problem parametrised by values Un
i,j

around x. The micro problem consists of solving (1) over Iδ = [x−δ/2, x+δ/2]× [y−δ/2, y+δ/2], δ ∼ ε, with linear
initial data u0(x) = σ(1)x + σ(2)y, together with periodic boundary conditions for uε − u0. The coefficients σ(1) and
σ(2) is the normal of a plane, approximating the macro solution over Iδ , more precisely: σ(1) = (Ui+1,j − Ui,j)/(Δx)
and σ(2) = (Ui,j+1 − Ui,j−1 + Ui+1,j+1 − Ui+1,j−1)/(4Δy) for the flux components Fi+1/2,j and Gi+1/2,j . Other
fluxes are computed analogously.
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Fig. 1.1: Discretization on the macro level. The grid points
appear as circles and the small squares indicate where the
fluxes are computed.
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Fig. 1.2: Convergence of micro-scale flux as
function of time scale τ/ε.

3. Evaluate the macro scale flux F̂ (x) as a time and space average of the Aε∇u over the box Iδ and in time from 0 to τ ∼ ε.

F̂ (x) ≈ F̃ (x) :=
1
|Iδ|τ

∫ τ

0

∫
Iδ(x)

K(x)Aε(x)∇u(t,x) dxdt

The volume of the box is |Iδ| = δ2. Special consideration has to be taken when choosing τ . It should not be too big
with respect to δ and Aε. If waves from the boundary contaminate the sampling, chosen inside Iδ , the convergence
will be damaged or completely destroyed. We have proved that if u0(x) is linear and Aε(x) = A(x/ε), then F̃ (x) =
Ā∇u0 +O (

ε
δ + ε

τ

)
, where Ā is the homogenized Aε operator.

3 Numerical results

In Figure 1.2 we see the average flux F̃ as a function of the upper limit τ/ε. We can see that it has an oscillating behavior.
To improve the convergence speed, we use an integrating kernel K(x) = 1

3

(
1− x2

)
, with support over [−1, 1], as described

in [6]. The solid horizontal line at y ≈ 0.46 corresponds to the homogenized coefficient.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 Comparison between fully resolved solution (left), the solution to a homogenized Ā operator (middle) and HMM solution (right).
The coefficient used is Aε(x) =

`
1.1 + sin(2π x

ε
)
´
I with initial data ∼ e−100((x−0.5)2+(y−0.5)2), ε = 10−3. The figure is a snapshot

at t = 0.25. On the macro scale we discretize with ΔT = 1/128, ΔX = ΔY = 1/32; and on the micro scale with Δt = ε/64,
Δx=Δy=ε/16. Note that the solution from an arithmetic average of Aε over Iδ , i.e. Aavg = 1.1 I, is completely wrong in this case, with
equal wave propagation speed in all directions; it misses the anisotropic character of the exact solution.
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