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Multiscale methods for the wave equation
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We consider the wave equation in a medium with a rapidly varying speed of propagation. We construct a multiscale scheme
based on the heterogeneous multiscale method, which can compute the correct coarse behavior of wave pulses traveling in the
medium, at a computational cost essentially independent of the size of the small scale variations. This is verified by theoretical
results and numerical examples.
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1 Introduction
We consider wave propagation in heterogeneous media modeled by the scalar wave equation
ugy = V- A% (x)Vu, x e R t>0, Q)

with initial data «(0, x) = f(x), u:(0,x) = g(x). The coefficient matrix A°(x) € R?*4 is positive definite uniformly in x
and is highly oscillatory with a wave length on the scale O(e). We will be studying the case when g and f are smooth and
e < 1. This case is difficult to treat with standard finite difference methods because the e-scale must be resolved. At least the
order of N ~ ¢~(1*+4) points is needed to include all the details of the problem in space and time.

The heterogeneous multiscale method (HMM) is a framework for treating this type of computationally challenging prob-
lems. The e-microscale is only resolved locally but the correct macroscale can still be computed. The purpose of this pre-
sentation is to analyze the analytically well known case of hyperbolic homogenization in order to increase the understanding
of multiscale approximation techniques. For references see the original HMM paper [1] as well as [2], [3] and, for a related
framework for multiscale computations, [4].

2 Heterogeneous multiscale method

In HMM one does not attempt to resolve all details of the problem (1). Instead one focus on a macroscale problem: Let @ be
the coarse part of u, e.g. a local average, and assume it satisfies a PDE, with an effective flux F', of the form:

Gy = V - F(x, V). )

In HMM, the effective flux £ is unknown and determined by solving problems on the micro-scale (defined in more detail
below). The inspiration is homogenization theory, where it can be shown that if A¢ is e-periodic, then « — @ ase — 0. The
limit function @ will satisfy (2) with F' = AV, where A is a constant matrix.

The HMM algorithm we use here is based on a central finite difference scheme fitted in the framework described in [1]. It
is similar to the schemes in [3], for parabolic equations, and in [5] for the one dimensional advection equation.
A more detailed description of the HMM algorithm follows:

1. Discretize (2) with a centered difference scheme on a Cartesian grid. In 2D we have (see Figure 1.1):

n+1 n n—1 (AT)Q (AT)Q
Uit =207 = Uiy + "Ry Bz — Fiapog] + 21y [Gigry = Gl

where F; ; and G, ; are the discrete z- and y-components of the effective flux F'(x) evaluated at ; ;.

2. To compute the macro flux F(x) on half points as seen in Figure 1.1, solve a micro problem parametrised by values U;";
around x. The micro problem consists of solving (1) over Is = [t — /2,2 +6/2] x [y — /2,y + /2], § ~ &, with linear
initial data ug(x) = ocMa + o(?)y, together with periodic boundary conditions for u® — u. The coefficients o(1) and
o(?) is the normal of a plane, approximating the macro solution over I5, more precisely: o) = (U1 ; — Ui ;)/(Ax)
and 0@ = (U; j41 — U j—1 + Uis1,j+1 — Uig1,j-1)/(4Ay) for the flux components F; /5 ; and G4/ ;. Other
fluxes are computed analogously.
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Fig. 1.1: Discretization on the macro level. The grid points Fig. 1.2: Convergence of micro-scale flux as
appear as circles and the small squares indicate where the function of time scale 7 /.

fluxes are computed.

3. Evaluate the macro scale flux £'(x) as a time and space average of the A=V« over the box I5 and in time from 0 to 7 ~ ¢.

. 1 T c
F(x)~ F(x) := 167’/0 o K(x)A® (x)Vu(t,x) dxdt

The volume of the box is |I5] = §2. Special consideration has to be taken when choosing 7. It should not be too big
with respect to § and A=. If waves from the boundary contaminate the sampling, chosen inside I5, the convergence
will be damaged or completely destroyed. We have proved that if uo(x) is linear and A°(x) = A(x/¢), then F(x) =
AVug + O (5 + £) , where A is the homogenized A operator.

3 Numerical results

In Figure 1.2 we see the average flux F as a function of the upper limit 7/e. We can see that it has an oscillating behavior.
To improve the convergence speed, we use an integrating kernel K (x) = % (1 — xQ), with support over [—1, 1], as described
in [6]. The solid horizontal line at y ~ 0.46 corresponds to the homogenized coefficient.
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Fig. 1 Comparison between fully resolved solution (left), the solution to a homogenized A operator (middle) and HMM solution (right).
The coefficient used is A°(x) = (1.1 4 sin(2r2)) T with initial data ~ e~ 100(>=0-9)"+u=0-5") o — 10=3, The figure is a snapshot
at ¢ = 0.25. On the macro scale we discretize with AT = 1/128, AX = AY = 1/32; and on the micro scale with At = /64,
Az=Ay=¢e/16. Note that the solution from an arithmetic average of A° over Is, i.e. A.ve = 1.11, is completely wrong in this case, with
equal wave propagation speed in all directions; it misses the anisotropic character of the exact solution.
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