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Abstract

Simulations of wave propagation in heterogeneous media and at high
frequencies are important in many applications such as seismic-, electro-
magnetic-, acoustic-, fluid flow problems and others. These are classical mul-
tiscale problems and often too computationally expensive for direct numerical
simulation. The smallest scales must be well resolved over a computational
domain represented by the largest scale and this results in a very high com-
putational cost. We develop and analyze numerical techniques based on the
heterogeneous multiscale method (HMM) framework for such wave equations
with highly oscillatory solutions uε where ε represents the size of the small-
est scale. In these techniques the oscillatory microscale is approximated on
small local microproblems of size ε in spatial and time directions. The so-
lution of the microproblems are then coupled to a global macroscale model
in divergence form utt = ∇ · F where the flux F is obtained from the mi-
croproblems. The oscillations can either originate from fluctuations in the
velocity coefficients or from high frequency initial and boundary conditions.
We have developed algorithms that couple micro and macroscales for both
these cases. The choice of macroscale variables is inspired by the analytic
theories of homogenization and geometrical optics respectively. In the first
case local averages u ≈ uε are used on the macroscale. In the second case,
phase φ and energy are natural macroscopic variables. There are two major
goals of this research. One goal is to develop and analyze algorithms for sim-
ulating multiscale wave propagation with low computational complexity, and
even independent of ε for finite time problems. This is seen in many examples
in one, two and three dimensions. The other goal is to use wave propagation
as a model to better understand the HMM framework. An example in this
direction is simulation with oscillatory wave field over long time. The disper-
sive effects that then occur is well approximated by a HMM method that was
originally formulated for finite time where added accuracy is required but no
explicit adjustment to include dispersion, an evidence of the robustness of the
method.
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Sammanfattning

Simulering av högfrekventa vågor i heterogena material är viktigt i många
tillämpningar, till exempel seismologi, elektromagnetism, akustik och ström-
ningsmekanik. Dessa tillämpningar är exempel på klassiska multiskalproblem
och har typiskt en för hög beräkningskostnad, i form av datortid och minne,
för en direkt numerisk simulering. De minsta skalorna i problemet måste va-
ra upplösta över ett område som representeras av dom största skalorna och
detta innebär en hög beräkningskostnad. Vi har utvecklat och analyserat nu-
meriska metoder för vågekvationer med snabbt oscillerande lösningar uε där
ε representerar storleken på den minsta skalan. Metoderna är baserade på
ramverket heterogena multiskalmetoden (HMM). I dessa metoder approxime-
ras den hastigt oscillerande mikroskalan med små lokala mikroproblem av
storleksordning ε i tids- och rumsriktning. Lösningen till mikroproblemen är
kopplade till en global modell på makroskalan i divergensform utt = ∇·F , där
flödet F ges av mikroproblemen. De hastiga oscillationerna kan härröras från
snabba variationer i hastighetsfältet, begynnelsevillkor eller randvillkor. Vi
har utvecklat algoritmer som kopplar mikro- och makroskalor i bägge fallen.
Valet av makroskalvariabler inspireras av de analytiska metoderna homoge-
nisering och geometrisk optik. I det första fallet används lokala medelvärden
u ≈ uε på makroskalnivån. I det andra fallet är fas φ och energi bra val av
makroskalvariabler. Det finns två huvudmål med vår forskning. Ett mål är att
utveckla och analysera algoritmer för simulering av vågproblem med multipla
skalor med låg beräkningskostnad (om möjligt, oberoende av ε) för problem
över begränsad tid. Vi visar numeriska resultat från multiskalproblem i en,
två och tre dimensioner. Det andra målet är att att använda vågutbredning
som en modell för att bättre förstå HMM ramverket. Ett exempel på det-
ta är simulering med oscillerande hastighetsfält över lång tid. Efter lång tid
så uppträder dispersion. Vi har demonstrerat att vår HMM-metod, som ur-
sprungligen var formulerad för begränsad tid, även kan appliceras på detta
fall. För att få den rätta dispersionen krävs högre noggrannhetsordning, men
metoden ändrar inte form. Detta visar på metodens robusthet.
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Preface

The thesis contains an introduction, one short abstract, four full length papers and
a technical report containing relevant algorithms and computer codes.
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Introductory Chapters

1





Chapter 1

Goals

The main goal in this thesis is to better understand a new class of multiscale meth-
ods developed for high frequency wave propagation. Multiscale wave propagation
problems are of both theoretical and practical importance. Many applications re-
lating to wave propagation is multiscale by nature, and arises in areas from seismic
problems, electromagnetic waves, acoustics, and fluid flow- problems. The methods
are developed within the framework of heterogeneous multiscale methods (HMM).
One of our two main goals has been to give the multiscale and wave community
a better understanding of the problems and what challenges remains to be solved
for reliable and efficient numerical methods for multiscale wave propagation prob-
lems. The second goal has been to illustrate new multiscale methods based on the
HMM framework. We have been interested in the development, analysis and test-
ing of these methods. Hopefully we can give some inspiration to others to develop
more complicated HMM methods based on key ideas suggested here: how to choose
macroscopic variables, setup a micro problem, and how to describe the interchange
between micro and macro variables. But not only that, but also how to address
intricate questions such as consistency between macro and micro scales. We will
see how this is a key factor in the HMM method for wave propagation over long
time.

Part I of this thesis is organized as follows: First is a discussion on wave propa-
gation problems without any special considerations about scales or how to reduce
computational effort. This is followed by a discussion on multiscale problems from
a general perspective and a discussion about multiscale wave propagation problems
where I and my co-authors make an argument for our contribution to this field.
Thereafter, we give a summary of our papers on this subject. Papers I & II consid-
ers multiscale waves traveling in a highly oscillatory media for a finite time whereas
papers III & IV discuss how our method can be tuned to resolve multiscale waves
traveling long distances for long time. In this case dispersive effects must be taken
into account. In Chapter 5 we give a summary of paper V and our work for high
frequency waves. In this regime the material is smooth and our HMM method is

3
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modeled from ideas in geometrical optics. In Chapter 6 we discuss ideas that can be
added to the work we have done on the subject of numerical methods for multiscale
wave propagation. Part II of this thesis contains the six included papers.



Chapter 2

Background

Waves are an important subject in physics. Many physical phenomena shows a
wavelike behavior. The linear wave equation is a partial differential equation which
is widely used in fields such as acoustics, elasticity and electromagnetism. The
theory of the wave equation was first developed in these areas. The linear wave
equation has shown great success as an approximation for compressible fluids in
such cases when viscosity, heat conduction and nonlinearities are neglected. In this
thesis we will consider the linear wave equation. The aim in this chapter is to give
some background theory to the concepts related to linear and multiscale waves;
methods for such problems; and three mathematical models for different regimes of
multiscale wave propagation. We will also describe a concept of a certain type of
local smoothing operators, which will be frequently used in our multiscale methods.

2.1 Waves

The linear partial differential equation,

utt(x, t)−∇ · (A(x)∇u(x, t)) = 0, Ω× R, (2.1)

with initial data,

u(x, 0) = u0(x), ut(x, 0) = u1(x), ∀x ∈ Ω, (2.2)

is a widely used mathematical model for wave propagation. The domain Ω is the
entire Rd for a pure initial value problem or a subset of Rd for an initial boundary
value problem. In the latter case, the typical boundary conditions for u are periodic,
reflecting or non-reflecting. The solution u(x, t) will describe the wave at position x
in space t in time. The parameter A describes the local wave speed squared. As we
said in the introduction, the wave equation is a good mathematical model for many
wave like phenomena that occur in nature. It is used as one of the fundamental equa-
tions in acoustics, optics, seismology, electromagnetic waves, quantum-mechanics

5



6 CHAPTER 2. BACKGROUND

and fluid dynamics. In each case u and A will describe the physical properties of
the problem. The model (2.1) was first studied by Jean le Rond d’Alembert, Leon-
hard Euler, Daniel Bernoulli and Joseph Louis Lagrange. d’Alembert formulated
the solution for this problem in one dimension when A(x) = c2 is constant, in a
particularly simple form,

u(x, t) = 1
2 (u0(x− ct) + u0(x+ ct)) + 1

2c

∫ x+ct

x−ct
u1(s) ds. (2.3)

The wave equation has several useful mathematical properties and we will list
a few of the most important things we will use later:

Energy is preserved: solutions u preserves a quantity denoted as the energy of
the solution,

E(x, t) = 1
2 |ut(x, t)|

2 + |A(x)|
2 |∇u(x, t)|2, (2.4)

in the sense that ∫
E(x, t) dx =

∫
E(x, 0) dx, ∀t ∈ R. (2.5)

This holds true if A decays fast enough as |x| → ∞ or if we have a periodic problem
where both u and A are periodic in x.

Linearity: The linearity of the wave equation implies, for two given solutions to
(2.1) denoted v1(x, t) and v2(x, t), that any linear combination of v1 and v2 will
also solve the wave equation, where the solution u(x, t) is of the form,

u(x, t) = αv1(x, t) + βv2(x, t), α, β ∈ R, (2.6)

with the initial data,{
u(x, 0) = αv1(x, 0) + βv2(x, 0),
ut(x, 0) = α(∂tv1)(x, 0) + β(∂tv2)(x, 0),

∀x ∈ Ω. (2.7)

Finite speed of propagation: Information travels with a finite speed in the
wave equation. In the solution formula (2.3) the constant c is the speed of which
information propagates. A crude estimate for the maximum speed cmax for a non-
constant A is to take cmax = sup

√
|A(x)|. We will use this fact later to estimate

the speed of waves arising from boundary conditions.

2.2 Numerical Multiscale Problems and Methods

When we seek to find a solution to a problem, we need a defined method to solve
this problem. But to apply a general problem solving method we need the problem
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statement to be well defined. Thus, we shall start our discussion by asking: What
is a multiscale problem? A definition with only examples is not terrible useful so
Weinan et. al. [17, 18] defined:

A multiscale problem is a problem where one can make use of special
features in the problem.

They continued and defined four types of multiscale problems:

Type A: Problems that contain isolated defects or singularities such as cracks, dis-
locations, shocks and contact lines. For these problems the microscopic
models is only necessary near defects or singularities. Further away it is
adequate to use the macroscopic models. The micro-macro coupling is
localized.

Type B: Problems that require “first-principle-based” constitutive modeling. One
example is the homogenization problem for elliptic equations of the type

−∇ · (Aε∇U) = f. (2.8)

Under fairly general conditions that amount to scale separation for the
coefficient Aε, it can be shown [7], that the effective macroscale model
take the form,

−∇ · (Ā∇U) = f, (2.9)

where Ā is called the homogenized coefficient. We will return to this
theory in Section 2.4. The HMM method for this problem would provide
Ā from microscale simulations at a cost much lower than solving the entire
problem with Aε.

Type C: Problems with a mixed character between type A & type B problems.

Type D: Problems that exhibits self-similarity in scales. For instance problems in
statistical physics, fractals or turbulent transport.

It is stressed that one can define more types of multiscale problems, than those
examples above.

It is typically very computationally costly to solve multiscale problems by tra-
ditional numerical techniques. The smallest scale must be well represented over a
domain, which is determined by the largest scales. For wave propagation the smaller
scales may originate from high frequencies or from strong variations in the wave
velocity field. We will focus on the latter case. Examples of such variable velocity
problems are seismic wave propagation in subsurface domains with inhomogeneous
material properties and microwave propagation in complex geometries.

A new class of numerical multiscale methods couples simulations on macro and
micro scales [17, 37]. We are using the framework of the heterogeneous multi-
scale method (HMM) [17, 18, 16]. In HMM a numerical macro scale method gets
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necessary information from micro scale models that are only solved on small sub-
domains. This framework has been applied to a number of multiscale problems,
for example, ODEs with multiple time scales [31], elliptic and parabolic equations
with multiscale coefficients [19, 45, 1], kinetic schemes [18] and large scale MD
simulation of gas dynamics [40]. Other potential applications of the specific HMM
method we will develop are in seismic-, acoustic-, electromagnetic- or and other
wave propagation problems in cluttered domains.

The Heterogeneous Multiscale Method

The heterogeneous multiscale method [17, 18] is a general framework for designing
multiscale method and not a method itself. The name heterogeneous should em-
phasize that the models at different scales are allowed to be different as it often
is in real world applications. The HMM framework provides a template for new
methods for multiscale problems.

In the HMM framework, the general setting of a multiscale problem is the
following: we assume that there exist two models, a micro model f(uε, dε) = 0
describing the full problem and a coarse macro model F (U,D) = 0. The micro
model is accurate but is expensive to compute by traditional methods. The macro
model gives a coarse scale or low frequency solution U , which is assumed to be a
good approximation of the microscale solution uε and is less expensive to compute.
The model is however incomplete in some sense and requires additional data. We
assume that F (U,D) = 0 can still be discretized by a numerical method, called the
macro solver. A key idea in the HMM method is to provide the missing data D
in the macro model using a local solution to the micro model. The micro model
solution uε is computed locally on a small domain with size proportional to the
microscale. The initial data and boundary conditions, represented by dε, for this
computation are constrained by the macroscale solution U .

The HMM framework consists of two main components:

1. Selection of a macroscopic equation and solver. In this step we ignore that that
the model is incomplete in some sense and we discretize the macroscopic PDE
as if all quantities where known.

2. Estimating missing macroscale data D using microscale model. This step con-
tains the following components:

(a) Constrained microscale simulation: Formulate d = d(U) to obtain boundary
and initial conditions to the microscopic problem. The operator which maps
U into dε is called a reconstruction operator in the HMM terminology.

(b) Data processing: Use the solution uε of the previous step to obtain D =
D(uε). The function that maps uε to D is called a compression operator in
the HMM terminology.
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2.3 Multiscale Waves

Suppose we have a wave equation formulated as an initial value problem,{
uεtt −∇ · (Aε∇uε) = 0, Ω× [0, T ε],
uε(x, 0) = uε0(x), uεt (x, 0) = uε1(x), ∀x ∈ Ω,

(2.10)

on a smooth domain Ω ⊂ RN , |Ω| = O(1) and generally with boundary conditions.
The mathematical model (2.10) used to describe a multiscale wave propagation

problem has εmarked on almost all quantities. This is to indicate that this quantity
can directly depend on ε in some way. We will focus on three different types of
problems of this form:

a) Non-oscillatory initial data (u0 and u1); finite T = O(1); and a positive Aε. We
call this the homogenization regime. The mathematical multiscale model called
homogenization is described in detail in Section 2.4.

b) Same as above but T ε → ∞ as ε → 0. We will show in Section 2.5 that the
mathematical model presented in the homogenization section is not sufficient to
describe the dispersive character of the solution in the case when Aε is oscillatory.

c) In the last case we take A and T without ε dependence. The initial data uε0 and
uε1 depends on ε. We call this regime the high frequency regime. The effective
models for this kind of multiscale wave propagation problem (high frequency
problem) is described in Section 2.6.

We consider variations on these models in Section 6.
Computing the full solution to (2.10) with standard direct methods such as finite

differences [32], finite elements [10], finite volume [39], discontinuous galerkin [14]
or by spectral methods [11, 54] is costly. They are all computational costly to use
because the smallest scales must be resolved over a much lager domain Ω. Instead
of trying to obtain a complete solution we will create a HMM process which has a
reduced computational complexity and gives a coarse scale solution without a full
resolution of the high frequency scales proportional to ε. However, this coarse scale
solution incorporates fine scale effects.

Our Contribution
The goal of our research is to better understand the HMM process using the ex-
ample of wave propagation and also to derive computational techniques for future
practical wave equation applications. We hope that our work can lead to efficient
and practically methods for multiscale wave propagation problems.

One contribution is a convergence proof in the multidimensional case that in-
cludes a discussion on computational complexity. The analysis is partially based on
the mathematical homogenization theory, [7, 13]. This theory gives the macro scale
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limit equations as ε → 0. The numerical methods apply to a more general class
of problems for which the explicit form of the homogenized equation may not be
known. A central contribution is the development and testing of numerical HMM
techniques in one, two and three space dimensions. Our second contribution is the
exploration of HMM methods for simulation of multiscale wave propagation over
long time. The effective equation for long time is different from the finite time
homogenized equation. Dispersive effects enter, and the effective equation must be
modified [49]. It is interesting to notice that our HMM approach with just minor
modifications accurately captures these dispersive phenomena.

The third major contribution is a new multiscale method for high frequency
waves. The new method gives comparable results to geometrical optics (GO) [28]
when a is smooth but our method is more general than GO. Our HMM method
gives the correct reflected and transmitted energy in the case when a has a jump on
the microscale. The HMM method formulates a coupled system for left and right
going energy Et + Fx = 0 where the flux F is computed from either the material
a when a is smooth, or by solving a microproblem where GO fails. Our methods
bears some resemblance to the transfer-matrix method, which is used in optics and
acoustics to analyze the propagation of electromagnetic or acoustic waves through
a stratified (layered) medium [9].

2.4 Homogenization of the Wave Equation

The goal of classical homogenization is finding limiting equations and solutions
to a wide range of problems with a suitable “scale”, denoted here by ε, which is
allowed to pass to zero in the limit. In the setting of composite materials, consisting
of two or more mixed constituents, homogenization theory gives the macroscopic
properties of the composite. The macroscopic properties are often different than
the average of the individual constituents that makes up the composite [13]. When
the scale in the micro structure ε goes to zero, the homogenized equations and
the homogenized solution can be used as an approximation of the full equation
typically with an accuracy of order O(ε). Homogenization is a good idea also
from a numerical perspective. The homogenized equation is often easier to solve
numerically than the full equation which might have fast oscillations depending on
the microscale composition.

The homogenized wave equation in d-dimensions can in certain cases be com-
puted analytical by replacing uε in the PDE with a multiscale expansion on the
form

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · where y = x

ε
(2.11)

and where all functions are Y -periodic, Y = [0, 1]d, in their y argument. By plug-
ging the series (2.11) into (2.10) and collecting equal powers of ε we can form a
system of equations for u0, u1, . . . The solution u0 is what we call the homogenized
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solution in the cases where the formal multiscale expansion agrees with strict ho-
mogenization theory. It can be shown that u0(x, y) = u0(x) and u0 does not depend
on ε. We also often denote u0(x) by ū(x). This method gives the correct solution
in most cases but not always. Also the multiple-scale series method does not di-
rectly provide a rigorous proof since there is nothing a priori that says that the
right hand side of (2.11) converges to uε. Other homogenization techniques that
generalizes classical homogenization include 2-scale convergence, Γ-convergence and
G-convergence. We refer to [46, 43, 3, 13, 35, 47, 41, 30, 44] for further details about
these other techniques.

We consider the multiscale wave equation (2.10) in d-dimensions, formulated as
an initial value problem. We assume that Aε(x) = A(x, x/ε) where A is, symmetric,
positive definite and locally Y -periodic. By locally Y -periodic we mean that A(x, y)
is periodic with respect to y ∈ Y if x is held fixed. A classic result [7], shows that
the solution to the equation (2.12) will converge to the solution of the homogenized
wave equation, {

utt −∇ ·
(
Ā∇u

)
= 0, Ω× [0, T ],

u(x, 0) = u0(x), ut(x, 0) = u1(x), ∀x ∈ Ω,
(2.12)

as ε → 0 and for fixed T . We assume the variation in the initial data u0 and u1
is comparable to the slow scale, but this is not a necessary condition as we show
in Section 2.4. The matrix Ā is independent of ε, symmetric, positive definite and
the elements can be computed with explicit formulas. In the one-dimensional case,
the matrix Ā is equal to the harmonic average of Aε over one cell Y ,

Ā(x) =
(∫ 1

0

dy
A(x, y)

)−1

. (2.13)

In a d-dimensional setting Ā is given implicitly by the relations [13, Proposition
6.8],

Āij =
∫
Y

∇ŵei ·A∇ŵej dy, 1 ≤ i, j,≤ N, (2.14)

where ŵλ (1 ≤ λ ≤ d) is defined as

ŵλ := −χ̂λ + λ · y, (2.15)

and χλ (1 ≤ λ ≤ d) are the unique solutions to the cell problem,
−∇ · (A(y)∇χ̂y) = −∇ · (Aλ), on Y ,∫
Y

χ̂λ = 0, χ̂λ Y -periodic.
(2.16)

In a typical situation A is not precisely periodic, so the theory above does not apply.
Still there might exist an equation of the form (2.12) which gives a smooth solution
u, with no ε-scale, that is a good approximation of uε. However, there may not be
a known expression for Ā in that case. This will be the foundation for our HMM
method we will describe later on.
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Classical Theorem: Homogenization of the Wave Equation
Let us show a typical rigorous result about homogenization of the wave equation.
Suppose the wave equation is given on the form

uεtt −∇ · (Aε∇u) = hε Ω× [0, T ],
uε = 0 ∂Ω× [0, T ],
uε(x, 0) = uε0(x) ∀x ∈ Ω,
uεt (x, 0) = uε1(x) ∀x ∈ Ω.

(2.17)

Here Aε(x) = A(x/ε) where A ∈ L∞(Ω)N×N is symmetric, Y -periodic, bounded
and positive definite uniformly in x, i.e., there exists constants c > 0 and d > 0
independent of x such that

λTAε(x)λ ≥ c‖λ‖2 ∀λ ∈ RN ,
‖Aε(x)λ‖ ≤ d‖λ‖ ∀λ ∈ RN .

(2.18)

We consider solutions to a variational form of (2.17)

Find uε ∈ W2 such that

〈uεtt, v〉H−1(Ω),H1
0 (Ω) +

∫
Ω
Aε(x)∇uε(x, t)∇v(x) dx

=
∫

Ω
hε(x, t)v(x) dx D′(0, T ), ∀v ∈ H1

0 (Ω)

uε(x, 0) = uε0(x) ∀x ∈ Ω,
uεt (x, 0) = uε1(x) ∀x ∈ Ω.

(2.19)

where
W2 =

{
v : v ∈ L2(0, T ;H1

0 (Ω)), v′ ∈ L2(Ω× [0, T ])
}
. (2.20)

Then one can show the following theorem. The proof is classical and can be found
in [13] and [7].

Theorem 1. Suppose that hε ∈ L2(Ω× [0, T ]), uε0 ∈ H1
0 (Ω), and uε1 ∈ L2(Ω). Let

uε be the solution of (2.19) with Aε defined as above. Assume that i) uε0 ⇀ u0 weakly in H1
0 (Ω)

ii) uε1 ⇀ u1 weakly in L2(Ω)
iii) hε ⇀ h weakly in L2(Ω× [0, T ]).

(2.21)

Then, one has the convergences (in the topology of pointwise convergence),
i) uε ⇀ ū weakly* in L∞(0, T ;H1

0 (Ω))
ii) uεt ⇀ ūt weakly* in L∞(0, T ;L2(Ω))
iii) Aε∇uε ⇀ Ā∇ū weakly in L2(Ω× [0, T ])N .

(2.22)
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where ū is the solution of the homogenized problem:
ūtt −∇ · (Ā∇u) = h Ω× [0, T ],
ū = 0 ∂Ω× [0, T ],
ū(x, 0) = u0(x) ∀x ∈ Ω,
ūt(x, 0) = u1(x) ∀x ∈ Ω,

(2.23)

and Ā is constant, symmetric, positive definite and given by (2.14), (2.15) and
(2.16).

2.5 Effective Equation for Long Time Wave Propagation

In this section we will describe a theory for appreciative solutions to the long time
wave equation, {

uεtt −∇ · (Aε∇uε) = 0, Ω× [0, T ε],
uε(x, 0) = u0(x), uεt (x, 0) = u1(x), ∀x ∈ Ω,

(2.24)

where T = O(ε−2) and Ω-periodic boundary conditions on uε.
In the classical homogenization theory for the wave equation the homogenized

solution ū satisfies a homogenized PDE (2.12). The solution ū is a good approxima-
tion to the exact solution uε such that ‖uε(t, ·)−ū(t, ·)‖L2 = O(ε), up to a fixed time
T independent of ε. In the long time equation (2.24), the homogenized solution is
not able to describe the dispersion that might occur in the exact solution uε due to
the fast oscillations in Aε. Here the term dispersion refers to frequency-dependent
effects in the wave propagation.

Let us illustrate the dispersive effects by an example. We consider a one-
dimensional example where we solved (2.24) with ε = 0.01 and{

Aε(x) = A(x/ε), A(y) = 1.1 + sin 2πy,
u(x, 0) = exp(−100x2) + exp(−100(1− x)2), ut(x, 0) = 0,

(2.25)

over Ω = [0, 1] with periodic boundary conditions. The corresponding homogenized
equation, valid up to T = O(1), will have Ā =

√
0.21. Since we have periodic

boundary conditions, the solution to the corresponding homogenized equation will
be periodic in time with period 1/

√
Ā ≈ 1.47722. We will compute the solution to

(2.25) for 1, 10 and 100 periods. We see in Figure 2.1 that after 100 periods there is
an O(1) error between the true solution uε and the homogenized solution ū which
thus fails to capture the dispersive behavior of the solution after long time. In [49],
Santosa and Symes derived an equation for which approximates uε which have a
L2 error of order O(ε) + O(ε3t). We call their equation the effective equation for
long time wave propagation. Their theory extends the effective model (2.12) with
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Figure 2.1: Finite difference computation of (2.25) at T = 1.47722, T = 14.7722
and T = 147.722 (1, 10 and 100 periods of the homogenized solution) and the cor-
responding homogenized solution (circles). As we can see the homogenized solution
does not capture the dispersive effects that occur.

additional terms, from T = O(1) up to time T = O(ε−2). In one dimension for
Aε(x) = A(x/ε) and A(y) is 1-periodic, the effective equation has the form,

{
utt − Āuxx − βε2uxxxx = 0, Ω× [0, T ε],
u(x, 0) = u0(x), ut(x, 0) = u1(x), ∀x ∈ Ω,

(2.26)

where Ā is the same Ā as in homogenization theory and β is a functional of A.
Santosa and Symes provided a formula for β in their theory only when Aε(x) =
A(x/ε), with no slow variations. In this case both β and Ā will be constant. They
did not consider the case when Aε(x) = A(x, x/ε) has both slow and fast variations.
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Analysis of the Effective Equation for Long Time Wave
Propagation
In this section we will derive the expression for the effective equation (2.26) and
also give a way to compute β from A(y). In one dimension and for Aε(x) = A(x/ε)
and A is 2π-periodic, Santosa and Symes gives the following expression for β,

β = Ω1Ω3

12π2 , (2.27)

where the constants Ω1 and Ω3 are functions of the tensor A [49, (36, 37)]. The
constants Ω1 and Ω3 are then computed from the expressions

Ω2
1 =Ā,

Ω3

π2 =3Ω3
1

2π3

∫∫∫
Ψ

dy dsdr
A(r) + 3Ω5

1
2π3

∫∫∫
Ψ

dy dsdr
A(y)A(r)

−Ā

[
1

Ω1
+ 3Ω1

π2

∫∫
Ψ′

dy dr
A(r) −

3Ω3
1

4π4

(∫∫
Ψ′

dy dr
A(r)

)2
]
,

Ψ ={0 ≤ y ≤ 2π, 0 ≤ r ≤ y, 0 ≤ s ≤ r}, Ψ′ = {0 ≤ y ≤ 2π, 0 ≤ r ≤ y}.
(2.28)

In [34] we provide a Maple code which computes the above integral given A(x, y)
where A is 2π-periodic in y.

We will now derive (2.26) and an expression for β. Let us first give some
definitions: Let ω2

m and ψm be the eigenvalues and eigenfunctions of the shifted
cell (eigenvalue) problem [7, pp. 614],{

− (∂y + ik)A(y) (∂y + ik)ψ(y, k) = ω2(k)ψ(y, k), Y × Y,
ψ(y, k) is Y -periodic in y,

(2.29)

where Y = [0, 1]d, i =
√
−1 and k ∈ Rd. Let vm(x, k) be the scaled Bloch-waves,

vm(x, k) = ψm(x/ε, εk) exp(ik · x), (2.30)

which satisfies
− ∂x

(
a
(x
ε

)
∂xvm

)
= 1
ε2ω

2
m(εk)vm. (2.31)

The functions Um and f̂m are defined as the projection of uε and f on vm,

Um(k, t) =
∫
uε(x, t)v∗m(x, k) dx, f̂m(k) =

∫
f(x)v∗m(x, k) dx. (2.32)

Throughout this section we assume that the initial data f(x) is a band limited
function. The following theorem from [49] then states that if we expand the solution
to the wave equation in the basis given by {vm}, the terms with m ≥ 1 are bounded
by O(ε) in L2 uniformly in time.
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Theorem 2 (Santosa & Symes). Suppose uε solves (2.24) with u1(x) = 0 and
expand

uε(x, t) =
∫
Y/ε

U0(k, t)v0(x, k) dk +
∞∑
m=1

∫
Y/ε

Um(k, t)vm(x, k) dk. (2.33)

Then ∫
R3

∣∣∣∣∣
∞∑
m=1

∫
Y/ε

Um(k, t)vm(x, k) dk

∣∣∣∣∣
2

dx ≤ Cε2. (2.34)

Here C is independent of ε and t but depends on the H2-norm of the initial data f
and the L∞-norm of a and ∇a.

See [49] for a proof.
We denote the first term in (2.33) by u0 and note that f̂0(k) has compact support

if f(x) is band limited, see [49]. Then, for some fixed L,

u0(x, t) = 1
2

∫
Y/ε

f̂0(k)v0(x, k) exp(±iω0(εk)t/ε) dk (2.35)

= 1
2

∫ L

−L
f̂0(k)ψ0(x/ε, εk) exp(ikx+ iω0(εk)t/ε) dk. (2.36)

We now Taylor expand ψ0 in the second argument and use the fact that ψ0(x, 0) ≡ 1.
This gives

u0(x, t) = 1
2

∫ L

−L
f̂0(k)(ψ0(x/ε, 0) +O(εk)) exp(ikx+ iω0(εk)t/ε) dk (2.37)

= 1
2

∫ L

−L
f̂0(k) exp(ikx+ iω0(εk)t/ε) dk +O(ε). (2.38)

Next we Taylor expand ω0(εk) around k = 0 and use that the facts that ω0(0) = 0
and that by symmetry all odd derivatives of ω2

0(k) at k = 0 are zero,

ω0(εk) = ω0(0) + εkω′0(0) + ε2k2

2! ω′′0 (0) + ε3k3

3! ω
(3)
0 (0) +O(ε4k4) (2.39)

=: ω̃0(εk) +O(ε4k4), (2.40)

and plug this expansion into the expression for u0,

u0(x, t) = 1
2

∫ L

−L
f̂0(k) exp(ikx+ i[ω̃0(εk) +O(ε4k4)]t/ε) dk +O(ε) (2.41)

= 1
2

∫ L

−L
f̂0(k) exp(ikx+ iω̃0(εk)t/ε) dk +O(ε3t) +O(ε) (2.42)

=: ũ0(x, t) +O(ε3t) +O(ε). (2.43)
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Let us now differentiate the leading term ũ0(x, t) twice with respect to t,

∂ttũ0(x, t) = 1
2

∫ L

−L
− 1
ε2 (ω̃0(εk))2

f̂0(k) exp(ikx+ iω̃0(εk)t/ε) dk (2.44)

and upon expanding the square of ω̃0 under the integral we obtain

∂ttũ0(x, t) =− 1
2

∫ L

−L

[
ε−2ω0(0)22ε−1kω0(0)ω′0(0) (2.45)

+ 1
2k

2 (2ω0(0)ω′′0 (0) + 2(ω′0(0))2) (2.46)

+ 1
6εk

3
(

2ω0(0)ω(3)
0 (0) + 6ω′0(0)ω′′0 (0)

)
(2.47)

+ 1
24ε

2k4
(

8ω′0(0)ω(3)
0 (0) + 6(ω′′0 (0))2

)
(2.48)

+ 1
6ε

3k5
(
ω′′0 (0)ω(3)

0 (0)
)

+ 1
36ε

4k6(ω(3)
0 (0))2

]
× (2.49)

f̂0(k) exp(ikx+ iω̃0(εk)t/ε) dk. (2.50)

We now again use the facts that ω0(0) = 0 and that by symmetry all odd derivatives
of ω2

0(k) are zero when evaluated at k = 0. Then the expression for ∂ttũ0 simplifies
to

∂ttũ0(x, t) =− 1
2!

∫ L

−L

[1
2k

2 ∂
2ω2

0(k)
∂k2

∣∣∣∣
k=0

+ 1
4!ε

2k4 ∂
4ω2

0(k)
∂k4

∣∣∣∣
k=0

+ ε3k5R1 + ε4k6R2

]
f̂0(k) exp(ikx+ iω̃0(εk)t/ε) dk

= 1
2!
∂2ω2

0(k)
∂k2

∣∣∣∣
k=0

∂xxũ0(x, t)− ε2 1
4!
∂4ω2

0(k)
∂k4

∣∣∣∣
k=0

∂xxxxũ0(x, t)

− iε3R1∂xxxxxũ0(x, t)− ε4R2∂xxxxxxũ0(x, t), (2.51)

where R1 and R2 are some real numbers. This is approximated in [49] with the
PDE

ũtt = Āũxx + βε2ũxxxx, (2.52)

where

Ā = 1
2!
∂2ω2

0
∂k2

∣∣∣∣
k=0

, β = − 1
4!
∂4ω2

0
∂k4

∣∣∣∣
k=0

. (2.53)

The remaining m ≥ 1 terms in (2.33) are as we said uniformly bounded by O(ε)
in L2-norm, so that we can use ũ ≈ ũ0 as an O(ε) approximation up to the time
t = O(ε−2).
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2.6 Geometrical Optics

In this section we will give a brief outline of the theory of classical geometrical
optics (GO). GO considers single wave solutions to{

uεtt −∇ · (a2∇uε) = 0, Ω× [0, T ],
uε(x, 0) = uε0(x), uεt (x, 0) = uε1(x), ∀x ∈ Ω,

(2.54)

of the form,

uε(x, t) = exp(iφ(x, t)/ε)
∞∑
k=0

Ak(x, t)(iε)k := exp(iφ(x, t)/ε)A(x, t). (2.55)

By inserting (2.55) into (2.54) and collecting terms with equal powers of ε, we
obtain equations for the unknowns φ and Ak. The equation for the phase φ is the
so called eikonal equation and the equations for the amplitudes Ak are transport
equations. The geometrical optics approximation is common in electromagnetic,
elastic and acoustic wave propagation [27].

The (formal) series expansion in (2.55) is called a WKB approximation or the
WKB method [36]. It is a general method to find approximations to highly oscillat-
ing solutions of (linear) partial differential equations where the coefficients vary in
space. The WKB method is named after the three physicists Wentzel, Kramers, and
Brillouin, who jointly developed it in 1926. The expansion itself does not in general
converge, but can still provide us with insight on how to pick good approximations
to the solution uε.

In the one-dimensional case, we have
uεt = exp(iφ/ε)

[
iφt
ε
A+At

]
= iφt

ε
uε + exp(iφ/ε)At,

uεx = exp(iφ/ε)
[
iφx
ε
A+Ax

]
= iφx

ε
uε + exp(iφ/ε)Ax,

(2.56)

and 
uεtt = exp(iφ/ε)

[
Att + iφtt

ε
A+ 2iφt

ε
At −

φ2
t

ε2A
]
,

uεxx = exp(iφ/ε)
[
Axx + iφxx

ε
A+ 2iφx

ε
Ax −

φ2
x

ε2 A
]
,

(2.57)

which gives us that,

∂x(a2uεx) = 2aa′uεx + a2uεxx = exp(iφ/ε)

×
[

2iaa′φx
ε
A+ 2aa′Ax + a2Axx + ia2φxx

ε
A+ 2ia2φx

ε
Ax −

a2φ2
x

ε2 A
]
. (2.58)
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By plugging in the expansions of uεtt and ∂x(a2uεx) into (2.54) and collecting powers
of ε we get a set of equations of the form:

1
ε2 : −φ2

tA0 + a2φ2
xA0 = 0, (2.59)

i

ε
:
φttA0 + 2φt(A0)t − φ2

tA1 − 2aa′φxA0 − a2φxxA0

−2a2φx(A0)x + a2φ2
xA1 = 0,

(2.60)

εk :
(Ak)tt − (a2(Ak)x)x + 2φt(Ak+1)t − 2a2φx(Ak+1)x

+ (φtt − (a2φx)x)Ak+1 +Ak+2(−φ2
t + a2φ2

x) = 0,
k ≥ 0. (2.61)

The equation for 1/ε2 gives us the eikonal equation

φ2
t − a2φ2

x = 0 ⇔ φt = ±aφx. (2.62)

We use the fact that −φ2
tA1 + a2φ2

xA1 = 0, to get the equation corresponding to
the i/ε terms,

φttA0 + 2φt(A0)t − 2aa′φxA0 − a2φxxA0 − 2a2φx(A0)x = 0, (2.63)

which can be expressed as,

(A0)t = −φtt + 2aa′φx + a2φxx
2φt

A0 + a2φx
φt

(A0)x

= (a2φx)x − φtt
2φt

A0 ± a(A0)x,

= ±a
′

2 A0 ± a(A0)x,

(2.64)

where we used the fact that,

φtt = (±aφx)t = ±a(φt)x = ±a(±aφx)x
= aa′φx + a2φxx = (a2φx)x − aa′φx = (a2φx)x ∓ a′φt. (2.65)

As the final step, to get the equation on conservative form, we multiply both sides
with 2A0,

2A0(A0)t = ±a′A2
0 ± 2aA0(A0)x = ±(aA2

0)x. (2.66)

The same computations can be made by matching terms for εk (k ≥ 0),

(Ak+1)t = ±a
′

2 Ak+1 ± a(Ak+1)x −
(Ak)tt − (a2(Ak)x)x

2φt
, (2.67)

and by multiplying with 2Ak+1 we get the conservative form,

(A2
k+1)t = ±(aA2

k+1)x −
(Ak)tt − (a2(Ak)x)x

φt
Ak+1. (2.68)



20 CHAPTER 2. BACKGROUND

In conclusion, we have,
φt ± aφx = 0,
(A2

0)t ± (aA2
0)x = 0,

(A2
k+1)t ± (aA2

k+1)x + (Ak)tt − (a2(Ak)x)x
φt

Ak+1 = 0, k ≥ 0.
(2.69)

where the ± sign should be matched, either we have a plus sign or we have a minus
on all equations at the same time. The initial data given by uε0(x) = A(x, 0)eiφ(x,0)/ε

leads to the initial conditions:
φ(x, 0) = ±ε

i
log
(

uε(x, 0)
|uε(x, 0))|

)
,

A2
0(x, 0) = |uε(x, 0)|2,

A2
k+1(x, 0) = 0, k ≥ 0.

(2.70)

Remark 3. In the one-dimensional case the fact that the initial data for the phase
solves φx(x, 0) = ±1/a(x) implies that the solution to the eikonal equation (2.62)
is very simple, namely φ(x, t) = φ(x, 0)± t. The solution will have a plus sign for
the right going phase and a minus sign for the left going phase. We call this kind
of φ a matched phase for a(x).

2.7 Kernels

In this section we will describe a way to compute averages of oscillatory variables
in an efficient way. For the sake of simplifying the notation we will describe the
case for one dimensional time and space dependent variables vε. All arguments can
be extended to any number of dimensions in space.

In the HMM methods we will construct, there is often reason to sample some
locally periodic quantity vε = v(x, x/ε, t, t/ε), where v(x, ξ, t, ϕ) is periodic in ξ and
ϕ. Assuming the period is one in both ξ and ϕ, we can obtain the local mean value
by v̄(x, t) =

∫∫
v(x, ξ, t, ϕ) dξ dϕ of vε, over one period. Note that all integrals are

taken over R if the bounds are not specified.
We will compute v̄ using a numerical method. If we know the periodicity of vε

in both ξ and ϕ we can compute v̄ with spectral accuracy by the trapezoidal rule.
The situation becomes harder when we don’t know the exact period in one or both
oscillatory variables. Suppose we have vε over some domain (x, t) ∈ [−η, η]× [−τ, τ ]
where both η and τ are of order ε. We have,∣∣∣∣v̄ − 1

4ητ

∫ τ

−τ

∫ η

−η
vε(ξ, s) dξ ds

∣∣∣∣ ≤ C ( εη + ε

τ

)
. (2.71)
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In general η and τ will be proportional to εγ for some real number γ. This mean
value computation can be seen as a convolution,

1
4ητ

∫ τ

−τ

∫ η

−η
vε(ξ, s) dξ ds = 1

ητ

∫∫
χD

(
ξ

η

)
χD

(ϕ
τ

)
vε(x− ξ, t− ϕ) dξ dϕ,

(2.72)

=
∫∫

Kη(ξ)Kτ (ϕ)vε(x− ξ, t− ϕ) dξ dϕ (2.73)

=: (Kvε)(x, t), (2.74)

where D = [−1, 1], Kη(x) = (1/η)K(x/η), Kτ (t) = (1/τ)K(t/τ), K = χD and χD
is the scaled characteristic function for the domain D,

χD(s) =
{

1
|D| , s ∈ D,
0, otherwise.

(2.75)

We will from here on assume that we use the same kernel K for both time and space
variables and that η ∼ τ with respect to ε. We will extend the idea of smoothing
vε with a kernel K to a general class of kernels K:
A kernel K ∈ Kp,q should satisfy the following conditions:

∫
R
K(s) ds = 1, suppK = [−1, 1],∫

R
siK(s) ds = 0, 1 ≤ i ≤ p,

diK(s)
dsi = 0, 0 ≤ i ≤ q, for both s = −1 and s = 1.

(2.76)

From [31] we have the following result:

Theorem 4. Let Xε(t) = X(t, tε ), where X is 1-periodic in the second variable
and ∂rX(t,s)

∂tr is continuous for r = 0, 1, . . . , p − 1. For any K ∈ Kp,q there exists
constants C1 and C2, independent of ε and η such that,

|(Kη ∗Xε)(t)− Y (t)| ≤ C1

(
ε

η

)q
+ C2η

p, (2.77)

where Kτ (x) = (1/τ)K( tτ ) and Y (t) =
∫ 1

0 X(t, s) ds.

The convergence rate in (2.71) with respect to η and τ improves if we use a kernel
K ∈ Kp,q with compact support and that is q times continuously differentiable.
Define the scaling KΩ(x) := 1

ΩK( xΩ ). We have,∣∣∣∣v̄(x, t)−
∫∫

Kη(ξ)Kτ (ϕ)vε(x− ξ, t− ϕ) dξ dϕ
∣∣∣∣

= |v̄(x, t)− (Kvε)(x, t)| ≤ C
((

ε

η

)q
+
( ε
τ

)q
+ ηp + τp

)
. (2.78)
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We have chosen to work with the kernel space Kp,q which contains functions that
are polynomials on [−1, 1] and zero outside [−1, 1]. We also demand that the kernel
functions are q times continuously differentiable and zero on the boundary and with
p zero moments, i.e.,

∫
K(x)xi dx = 0, 1 ≤ 1 ≤ p, and with integral

∫
K(x) dx = 1.

One can show that all kernels K in Kp,q are of the form

K(x) = (1− x2)q+1P (x), (2.79)

where P (x) is a degree p polynomial. We have supplied a code in [34] which
computes the coefficients of P in K(x) = (1 − x2)q+1P (x) for any K ∈ Kp,q. An
example why it is important for the numerical accuracy to factorize the polynomial
on the form K(x) = (1− x2)q+1P (x) is shown in Tab. 2.1.

Remark 5. We will often make use of the fact that the operator K commutes with
∂t and ∂x. We observe that,

∂tKvε =
∫∫

Kη(ξ)Kτ (ϕ)∂tvε(x− ξ, t− ϕ) dξ dϕ = Kvεt , (2.80)

and similarly for ∂x.

PPPPPPPPN
K(x)

14 terms︷ ︸︸ ︷
7475.95 · · ·x28 + · · · (1− x2)q+1P (x)

10 6.0572e-04 6.0572e-04
20 1.5465e-07 1.5467e-07
40 2.2333e-10 2.6219e-10
80 3.6733e-11 8.3822e-14
160 4.8612e-11 1.1102e-16

Table 2.1: A table of the quadrature error |1 − ∆x
∑N
i=0K(xi)| as a function of

the grid size N for two ways of evaluating the integral of the same polynomial
K ∈ K9,9. The polynomial evaluations are done with Horner’s method with the
Matlab built-in function polyval. We clearly see that there is a great benefit in
using the factorized K from a numerical perspective. The 28 degree polynomial K
has only even powers of xi, but has very large coefficients. The large coefficients
and the number of terms makes it difficult to evaluate K accurately. The expected
convergence rate is spectral.

Remark 6. It is possible to find functions with infinite q. In [31] a kernel Kexp is
given, where p = 1 and q is infinite:

Kexp(x) =
{
C0 exp

(
5

x2−1

)
, |x| < 1,

0, |x| ≥ 1,
(2.81)
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where C0 is chosen such that
∫
Kexp(x) dx = 1. This kernel is suitable for problems

where Aε is of the form Aε(x) = A(x/ε).





Chapter 3

Summary of Paper I and II: HMM
for Finite Time Wave Propagation
Problems

In Paper I and II we consider the following multiscale wave propagation problem:{
uεtt −∇ · (Aε∇uε) = 0, Ω× [0, T ],
uε(x, 0) = u0(x), uεt (x, 0) = u1(x), ∀x ∈ Ω,

(3.1)

where uε is Ω-periodic; the initial data and time T is independent of ε; and Aε is
uniformly positive and symmetric.

When Aε is of the form Aε(x) = A(x, x/ε) and A(x, y) is 1-periodic in y, we
observe that the solution uε appears to converge to some solution ū. It is also a well
known fact that, in the limit, ε→ 0, the solution to (3.1) will approach the solution
to another PDE, a homogenized PDE (cf. Section 2.4). This fact is illustrated in
Figure 3.1. In [21, 24], which we will summarize in this chapter, we developed a
multiscale method for the wave equation (3.1) in one, two and three dimensions.
The method can easily be extended to higher dimensions as well. We prove that our
method converges to the homogenized solution in a setting where homogenization is
applicable. We demonstrate that our HMM method give the correct results in cases
where the homogenized PDE is unknown. It should be noted that even though our
numerical methods use ideas from homogenization theory they do not solve the
homogenized equations directly. The goal is to develop computational techniques
that can be used when there is no known homogenized equation available. The
closed form of the homogenized equation may not be available, for example due to
non-periodic coefficients. In the research presented here the homogenized equations
are actually available and could in practice self be numerically approximated. We
have chosen this case in order to be able to develop a rigorous convergence analysis
and to have a well-understood environment for numerical tests.

25
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Figure 3.1: A series of solutions for different ε at T = 1 for the wave equation with
Aε(x) = 1.1+sin 2πx

ε over the domain Ω = [0, 1]; initial data u0(x) = exp(−100(x−
0.5)2), u1(x) = 0; and periodic boundary conditions.

3.1 HMM for the Wave Equation

We will formulate a general HMM framework for the wave equation, (3.1). We
follow the same strategy as in [1] for parabolic equations and in [48] for the one-
dimensional advection equation. We assume there exists a macroscale PDE of the
form {

utt −∇ · F (x,∇u) = 0, Ω× [0, T ],
u(x, 0) = u0(x), ut(x, 0) = u1(x), ∀x ∈ Ω,

(3.2)

where u is Ω-periodic. The assumption on (3.2) is that u ≈ uε when ε is small. In
the pure homogenization case we would have F = Ā∇u, but we will not assume
knowledge of a homogenized equation. Instead we will solve the PDE (3.1), only
in a small time and space box, with initial data depending on x and ∇u, and from
that solution extract a value for F . The form of the initial data for this micro
problem will be determined from the local behavior of u.
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In the next chapter we will give an condensed description of the HMM algorithm,
found in Algorithm 4.2.

Macro Model Discretization
We discretize (3.2) using central differences with time step K and spatial grid size
H in all directions,

Un+1
m = 2Unm − Un−1

m + K2

H

d∑
k=1

(
eTk F

n
m+ 1

2 ek
− eTk Fnm− 1

2 ek

)
,

Fnm− 1
2 ek

= F (xm− 1
2 ek

, Pnm− 1
2 ek

), 1 ≤ k ≤ d,
(3.3)

where Fn
m± 1

2 ek
is the vector F evaluated at point xm± 1

2 ek
. The quantity Pn

m± 1
2 ek

approximates ∇u(tn, xm± 1
2 ek

). In Figure 3.2 we show an example of the numerical
scheme for P in two dimensions. The macro discretization H and K is supposed
to be fine enough to capture all information on the macroscopic scale. We refer to
[24, 34] for further details about the numerics and implementation.

Micro Problem and Reconstruction Operator
The evaluation of Fn

m− 1
2 ek

in each grid point is done by solving a micro problem
to fill in the missing data in the macro model. Given the parameters xm− 1

2 ek
and Pn

m− 1
2 ek

, we solve a corresponding micro problem over a small micro box Y ε,
centered around xm− 1

2 ek
. In order to simplify the notation, we make a change of

variables x − xm− 1
2 ek
7→ x and t − tn 7→ t. This implies that Aε(x) 7→ Aε(x +

xm− 1
2 ek

). The micro problem has the form,{
vεtt −∇ · (Aε∇vε) = 0, Y ε × [−τ, τ ],
vε(x, 0) = (Pnm− 1

2 ek
) · x, vεt (x, 0) = 0, ∀x ∈ Y ε. (3.4)

The micro box size should be of order ε, i.e., both τ and diamY ε are O(ε) since the
computational cost of solving (3.4) should be small compared to solving the entire
wave equation (3.1), as noted in [18],

cost of multiscale method
cost of microscale solver on entire domain � 1. (3.5)

We note that the solution vε is an even function with respect to t, i.e., vε(x,−t) =
vε(x, t), due to the initial condition vεt (x, 0) = 0. Thus, it is only needed to solve
(3.4) for positive t.

Compression Operator
After we have solved for vε for all Y ε × [−τ, τ ] we approximate

Fnm− 1
2 ek
≈ F̃ (xm− 1

2 ek
, Pnm− 1

2 ek
), (3.6)
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x
ij

x
i+1,j

x
i,j+1

F
i+1/2,j

G
i,j+1/2

Figure 3.2: The numerical scheme (3.3) for P in two dimensions. The two com-
ponents of F in two different positions are given by Fi+1/2,j and Gi,j+1/2. The
U points involved in computing Fn

m+ 1
2 e2

= Gi,j+1/2 and ∇u ≈ Pn
m+ 1

2 e2
are indi-

cated by filled circles. Note that the squares are where either (Aε11∂x + Aε12∂y)uε
or (Aε21∂x +Aε22∂y)uε are computed, and not the full gradient Aε∇uε.

where function F̃ is the mean value of fε = Aε∇vε over [−η, η]d × [−τ, τ ] and
[−η, η]d ⊂ Y ε. The approximation can be improved with respect to the size of ε/τ
and ε/η, by computing a weighted average of fε. We consider kernels K ∈ Kp,q
described in Section 2.7. We use kernels of this sort to improve the approximation
quality for the mean value computation,

F̃ (xm− 1
2 ek

, Pnm− 1
2 ek

) =
∫∫

Kτ (t)Kη(x)fεk dxdt, (3.7)

where
fεk(x, t) = Aε(x+ xm− 1

2 ek
)∇vε(x, t) (3.8)

and the multi-variable kernel Kη(x) is defined as,

Kη(x) = Kη(x1)Kη(x2) · · ·Kη(xd), (3.9)

using the single valued kernel Kη, still denoted by Kη. The domain Y ε is chosen
such that [−η, η]d ⊂ Y ε and sufficiently large for information not to propagate into
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the region [−η, η]d. Typically we use

Y = [−ymax, ymax]d, ymax = η + τ
√

sup ‖Aε‖2, (3.10)

cf. discussion about micro solver boundary conditions in [48]. In this way we do
not need to worry about the effects of boundary conditions. Note therefore that
other types of boundary conditions could also be used in (3.4).

Remark 7. The weighted integrals in Section 3.1 are computed numerically with
the trapezoidal rule in time and the midpoint rule in space.

Remark 8. In our implementation, the micro problem (3.4) is solved with the
same numerical scheme as the macro problem (3.3) with a discrete approximation
of fε = Aε∇vε [24].

3.2 Elements of the Method

In the following two sections we will consider the computational complexity of the
method we just described as well as convergence. This is done in a restricted setting
where we can compare with a known macroscopic equation from homogenization.

Computational Cost
We will now discuss an alternative to computing (3.7) on-the-fly in the macro solver.
In some cases, when the dimension and the number of parameters in the problem
are few, a sequential coupling can prove to be more efficient. We stress that the
algorithm suggested here does not require precomputing and all analysis are made
for on-the-fly computations.

Let us assume that the time step is proportional to ε in all direct solvers. Using
a direct solver for (3.1) on the full domain implies a cost of order ε−(d+1). The
total cost for on-the-fly HMM is of the form (cost of micro problem)×Md where

Md ∼
1
K
· 1
Hd

(3.11)

is the number of micro problems needed to be solved. The cost of a single micro
problem is of the form (τ/ε) × (η/ε)d. We assume kernels with τ, η ∼ ε and
that Md does not depend on ε. With these assumption our HMM method has a
computational cost independent of ε. The constant can, however, still be large as
it is proportional to Md which depends inversely on K and Hd. Fortunately the
computational cost of the HMM process can be reduced significantly. We observe
that the function F̃ (x, p) in (3.7) is linear in p. It is in fact composed of three linear
operations:

1. Compute initial data v(x, 0) = p · x and vt(x, 0) = 0.

2. Solve vεtt −∇ · (Aε∇vε) = 0 for −τ ≤ t ≤ τ .
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3. Compute average F̃ =
∫∫

KτKηf
ε dxdt where fε = Aε∇vε.

The first operation is clearly a linear operation. In step two we compute a solution
to a linear PDE, therefore this step is linear as well. Computing the integral average
in step three is also a linear operation.

As a corollary we can apply the HMM process to a smaller number of micro
problems and form linear combinations of those for any given F̃ computation. More
precisely, after precomputing F̃ (x, ei), i = 1, 2, . . . , d we can compute F̃ for fixed
x ∈ Ω and any p ∈ Rd,

F̃ (x, p) =
d∑
i=1

piF̃ (x, ei), (3.12)

where pi is the ith coefficient in p in the basis e1, e2, . . . , ed. In conclusion, by
precomputing the micro problems F̃ (xm, ei) in (3.12) we only need to solve d micro
problems in each macro grid point xm. There is no need to solve any micro problems
again in the next macro time step. The complexity is as before O(1) in ε, but now
Md ∼ d/Hd which means a smaller constant not depending on the number of time
steps. Note that this works if Aε does not depend on t. If Aε depends on t or is
nonlinear in u it would in general not be as cost effective to precompute F̃ .

Remark 9. In fact, if Aε is ε-periodic and the macro grid is such that xm = r (
mod ε), where r is constant and independent of m, we only need to solve d micro
problems in total, i.e., Md = d. In this case, the total cost is independent of both ε
and the macro grid sizes H, K.

Remark 10. The flux computations in the macro scheme suggested here is embar-
rassingly parallel in space. This fact has been exploited by the authors in a Message
Passing Interface (MPI) code. We think that it would be possible to implement the
same algorithm in a general purpose GPU environment and see a good utilization
of the hardware.

Convergence Theory
In this section we apply the HMM process to the problem (3.1) with Aε(x) = A(x/ε)
whereA is a Y -periodic symmetric positive matrix and show that it generates results
close to a direct discretization of the homogenized equation (2.12). We will show a
convergence result for smooth (i.e., C∞) solutions and data. In particular we show
that

F̃ (x, p) = F (x, p) +O
((

ε

η

)q)
. (3.13)

The functions F̃ and F are defined in (3.7) and (3.2) respectively and we note that
in this case F (x, p) = Āp. The integer q depends on the smoothness of the kernel
used to compute the weighted average of fε in (3.7).
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We will formulate the problem in the setting of elliptic operators. For the
analysis we solve the micro problem (3.4) over all of Rd{

vεtt −∇ · (Aε∇vε) = 0, Rd × [−τ, τ ],
vε(x, 0) = p · x, vεt (x, 0) = 0, ∀x ∈ Rd.

(3.14)

Note that this gives the same F̃ as in (3.7) if we choose a sufficiently large box Y ε.

Theorem 11. Let F̃ (x0, p) be defined by (3.7) where vε solves the micro problem
(3.14) exactly, Aε(x) = A(x/ε) and A is Y -periodic and C∞. Moreover suppose
K ∈ Kp′,q, u0 and u1 are C∞ and τ = η. Then for p 6= 0,

1
p

∣∣F̃ (x0, p)− F (x0, p)
∣∣ ≤ C ( ε

η

)q
, (3.15)

where C is independent of ε, η, p and q. Furthermore, for the numerical approx-
imation given in (3.3) in one dimension, with H = nε for some integer n and
smooth initial data, we have the error estimate

|Unm − ū(xm, tn)| ≤ C(T )
(
H2 + (ε/η)q

)
, 0 ≤ tn ≤ T, (3.16)

where ū is the homogenized solution to the corresponding homogenized equation.

The proof can be found in [24].

Convergence Study with Respect to Choice of Kernel
We investigate the effect of the choice of kernel on the solution of the wave equation
on a micro box of order ε. We use Aε(x) = A1(x/ε) and Aε(x) = A2(x, x/ε) where
A1(y) = 1.1 + sin(2πy) and A2(x, y) = 1.1 + 1

2 (sin 2πx + sin 2πy). We compare
our numerical results to the theoretical bounds in Theorem 11. On problems with
both fast and slow scales, which is not directly covered by Theorem 11, we see a
(slow) growth of the error as τ, η → ∞ consistent with the general approximation
result in Theorem 4. In Figure 3.3 and 3.4 we present convergence results for the
approximate flux F̃ in terms of η/ε = τ/ε. We have plotted (ε/η)q and ηp with
dashed lines.

3.3 Numerical Results

We will present a numerical computation for a 2d problem of the form{
uεtt −∇ · (Aε∇uε) = 0, Ω× [0, T ],

uε(x, 0) = e−10(x1−0.5)2
+ e−10(x2−0.5)2

, uεt (x, 0) = 0, ∀x ∈ Ω,
(3.17)

and Ω-periodic boundary conditions; ε = 0.1; ∆x = 0.02; ∆t = 0.005 for the macro
solver (HMM) and the direct solver for the homogenized equation (denoted HOM).
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Figure 3.3: Convergence results, error |F̃ − F̄ | plotted against η/ε (τ = η) for fixed
ε = 0.01 and where Aε = A1 with only fast scales. The dashed line corresponds to
the (ε/η)q term in Theorem 11. The bottom figure shows results for the exponential
kernel (see Remark 6) and indicates super algebraic convergence rate.

For the micro solver and exact (DNS) solver we use; 64 points per wavelength for
∆x; ∆t = 0.25∆x; and a kernel K ∈ K9,9. We use the material Aε(x) = A(x, x/ε),

A(x, y) =
[
a(y1) 0

0 a(y1)

]
, a(ξ) = 1.1 + sin 2πξ, (3.18)

where the corresponding homogenized Ā will be constant and of the form,

Ā =
[√

0.21 0
0 1.1

]
. (3.19)

We present a snapshot from T = 0.5 in Figs. 3.5, 3.6 and 3.7 for DNS, HOM and
HMM computation.
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Figure 3.4: Convergence results, error |F̃ − F̄ | plotted against η/ε (τ = η) for fixed
ε = 0.01 and where Aε = A2 with both fast and slow scales. The dashed line with
negative slope corresponds to the theoretical bound from the first term in Lemma
1 and the dashed line with positive slope corresponds to the ηp term.
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Figure 3.5: DNS solution of the 2d problem Section 3.3.
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Chapter 4

Summary of Paper III and IV:
HMM for Long Time Wave
Propagation Problems

In paper III and IV we developed a HMM method for the wave equation for long
time, {

uεtt −∇ · (Aε∇uε) = 0, Ω× [0, T ε],
uε(x, 0) = u0(x), uεt (x, 0) = u1(x), ∀x ∈ Ω,

(4.1)

where T = O(ε−2) and Ω-periodic boundary conditions. The solution of the ho-
mogenized problem (2.12) can be used as an approximation to (4.1) when ε is small
and for finite time T ε = O(1). However, here we assume that T ε = O(ε−2), what
we will call long time. As we saw in Section 2.5 another effective equation is re-
quired to capture the dispersive effects that generally is seen in the solution after
long time. The dispersive effects are not captured by the standard homogenized
wave equation. We described in Section 2.5 an equation by Santosa and Symes
[49] which models the dispersive effects that occur after long time. Their effective
equation in one-dimension and long time is of the form,

{
utt − Āuxx − βε2uxxxx = 0, Ω× [0, T ε],
u(x, 0) = u0(x), ut(x, 0) = u1(x), ∀x ∈ Ω,

(4.2)

where Ā is the same as as before and given by classical homogenization theory. The
new coefficient, β, is a functional of A and models the dispersion effects generated
by the microscale in Aε but its effect is only seen after long time. It should be
noted that (4.2) is not well-posed since β > 0. However, one can solve a regularized
equation as we discussed in Section 2.5.

37
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4.1 HMM for the Wave Equation

We will now describe a HMM method for the wave equation (4.1) which will give
useful solutions in two regimes. The first regime is when T is fixed and independent
of ε. The other regime is when T ε = O(ε−2) and T ε → ∞ as ε → 0. We will call
this the long time regime and the problem itself a long time wave propagation
problem. Here we will consider the one dimensional wave propagation problem.
Many of the results can be shown to hold in a d-dimensional setting. We have in
previous work shown higher dimensional results, both theoretical and numerical.
We demonstrated in [24, 25], summarized in Chapter 3, that our HMM captures the
same solution as homogenization (when applicable). In this paper we will primarily
investigate how our HMM method handles the long time problem. The microscopic
variations in the medium introduces dispersive effects in the macroscopic behavior
of the solution which becomes notable after long time. Our goal is to show that our
HMM method can capture the dispersion with less computational cost than just
resolving the full equation.

The HMM method we suggest here is described in three separate steps. We
follow the same strategy as in [1] for parabolic equations and in [48] for the one-
dimensional advection equation. See [21], [24] and [2] for additional details and
proofs. In step one we give the macroscopic PDE (i.e., F (U,D) = 0 in the HMM
framework) and a corresponding numerical discretization. In step two we describe
the microproblem. The initial data for the microproblem is based on local macro-
scopic data. Finally, in step three we describe how we approximate F from the
computed microproblem by taking a weighted average of its solution.

We consider (4.1) in a one dimensional setting,

{
uεtt − ∂x(Aεuεx) = 0, Ω× [0, T ε],
uε(x, 0) = u0(x), uεt (x, 0) = u1(x), ∀x ∈ Ω.

(4.3)

where Ω ⊂ R is an interval of the form [a, b] and uε(x, t) is Ω-periodic in x. Moti-
vated by the theory in 2.5 we suppose there exists a corresponding macroscale PDE
of the form,

{
utt − ∂xF = 0, Ω× [0, T ε],
u(x, 0) = u0(x), ut(x, 0) = u1(x), ∀x ∈ Ω,

(4.4)

where u is Ω-periodic and F = F (x, u, ux, uxx, uxxx). The assumption on (4.4)
is that u ≈ uε when ε is small. In the pure homogenization case we would have
F = Āux, and for the effective equation (2.26) we would have F = Āux + βε2uxxx,
but we will not assume knowledge of the exact form of a homogenized equation or
any other effective equation.
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Macro Model Discretization

We discretize (4.4) using central differences with time step K and spatial grid size
H in all directions,

Un+1
m = 2Unm−Un−1

m + K2

24H

(
−Fnm+3/2 + 27Fnm+1/2 − 27Fnm−1/2 + Fnm−3/2

)
. (4.5)

where Fn
m− 1

2
is F evaluated at xm− 1

2
. The scheme is second order in K and fourth

order in H. We choose to use a fourth order scheme in space because it has better
dispersive properties. This allow us to avoid some of the numerical dispersion that
pollutes the numerical solution. We will cover how F is computed in the description
of the micro problem and refer to [34] for implementation details about the macro
model discretization and a dispersion analysis.

Micro Problem and Reconstruction Operator

The evaluation of F in each grid point is done by solving a micro problem to fill in
the missing data in the macro model. Given the parameters x′ and an initial data
Q(x), we solve {

vεtt − ∂x(Aε(x+ x′)vεx) = 0, Y ε × [−τ, τ ],
vε(x, 0) = Q(x+ x′), vεt (x, 0) = 0, ∀x ∈ Y ε,

(4.6)

where vε is Y ε-periodic and Q depends on the macroscopic state {unm}, assum-
ing x′ = xm−1/2, it is typically a piecewise third order polynomial interpolating
unm−2, . . . , u

n
m+1 in xm−2, . . . , xm+1. Note that we have made a change of variables

to center Y ε around x′ via x − x′ 7→ x and t − t′ 7→ t. We keep the sides of the
micro box Y ε of order ε. We will discuss the choice of Y ε and Q below.

Compression Operator

After we have solved for vε for all Y ε × [−τ, τ ] we approximate F by a weighted
average of the microscopic flux fε = Aε(x + x′)vεx over [−η, η] × [−τ, τ ] where
[−η, η] ⊂ Y ε. We choose η sufficiently small for information not to have propagated
into the region [−η, η] from the boundary of the micro box Y ε. More precisely, we
consider averaging kernels K described in 2.7. We then approximate

F ≈ F̃ (x′, Q) = K(fε)(0, 0) =
∫∫

Kτ (t)Kη(x)fε(x, t) dxdt, (4.7)

where fε(x, t) = Aε(x + x′)vεx(x, t) and vε solves (4.6). The choice of kernel has
been discussed in Section 2.7. Finally, we give a brief summary of the algorithm in
Algorithm 4.2.



40 CHAPTER 4. HMM FOR THE LONG TIME WAVE EQUATION

Motivation of the Method
Let us define u(x, t) = (Kuε)(x, t) as the course scale variation of uε. We will show
that u satisfy a PDE of the form utt − ∂xF = 0. We consider the wave equation
(4.3). After applying the local averaging operator K,

Kuεtt −K(∂xAεuεx) = 0, (4.8)

and by using the commutation property on ∂tK = K∂t and ∂xK = K∂x, we arrive
at

∂tt(Kuε)− ∂x(KAεuεx) = 0. (4.9)
Thus, the PDE we seek for u is of the form,{

utt − ∂xF = 0, F = KAεuεx, Ω× [0, T ε],
u(x, 0) = (Kuε)(x, 0), ut(x, 0) = ∂t(Kuε)(x, 0), ∀x ∈ Ω,

(4.10)

and where u is Ω-periodic in x. A problem that arises in (4.10) is the initial
conditions. Assume we have uε(x, 0) = x3. Then it turns out that (Kuε)(x, 0)
is not equal to x3. We have to make a correction to the initial data to make it
consistent with the initial data of uε. We will discuss this consistency condition
below in Section 4.2.

Remark 12. There is no need to consider vt 6= 0 in the micro problem. Take the
wave propagation problem of the form{

vεtt − ∂x(Aεvεx) = 0, Y ε × [−τ, τ ],
vε(x, 0) = v0(x), vεt (x, 0) = v1(x), ∀x ∈ Y ε,

(4.11)

with periodic boundary conditions in Y ε. We can split the initial conditions

vε(x, 0) = v0(x), ∂tv
ε(x, 0) = v1(x) (4.12)

into two parts vε = vε1 + vε2 where vε1 solves (4.11) with the initial conditions

vε1(x) = v0(x), ∂tv
ε
1(x, 0) = 0, (4.13)

and vε2 solves (4.11) with the initial conditions

vε2(x) = 0, ∂tv
ε
2(x, 0) = v1(x). (4.14)

The solution vε1 will be time symmetric, i.e., vε1(−t, x) = vε1(t, x), and the solu-
tion vε2 will be anti-symmetric in time, i.e., vε2(−t, x) = −vε2(t, x). Let K be defined
as the local averaging operator in Section 2.7, (Ku)(0, 0) =

∫∫
KηKτudtdx. We

have,
Kvε = K(vε1 + vε2) = Kvε1 +Kvε2 = Kvε1, (4.15)

since the mean value of vε2 over −τ ≤ t ≤ τ will be zero. With the same argument
we know that the mean value of fε = Aεvεx will be independent of the initial data
vεt (x, 0). Therefore we need only to consider vεt (x, 0) = 0.
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Remark 13. We use the same numerical scheme (3.3) to solve the micro problem
(3.4), with a uniform discretization k in time and h in space,

vn+1
m = 2vnm − vn−1

m + k2

24h

[
−fnm+ 3

2
+ 27fnm+ 1

2
− 27fnm− 1

2
+ fnm− 3

2

]
(4.16)

where fn
m− 1

2
is computed as,

fnm− 1
2

=
Aε(xm− 1

2
+ x′)

24h
[
−vnm+1 + 27vnm − 27vnm−1 + vnm−2

]
. (4.17)

Remark 14. The weighted integrals in Section 4.1 are computed numerically with a
trapezoidal rule in time and a midpoint rule in space which features spectral accuracy
for integrals of periodic and compact functions. This is a well known result widely
used and at the basis of several integration techniques such as those described in
[42].

Remark 15. We can reduce the computational cost of the HMM process even
further if the function F̃ in (4.7) is linear in some of its arguments. We can then
apply the HMM process to a smaller number of micro problems and form linear
combinations of those for any given F̃ computation. If F̃ depends on u or t it
might not be beneficial to precompute F̃ this way. See [24] for further details.

4.2 Elements of the Method

Now we will describe three important factors in the HMM method: 1) Consistency,
in the sense of HMM: between macroscopic solution, reconstruction operator, micro
problem and compression operator. 2) Convergence of the macroscopic scheme. 3)
Stability of the macroscopic scheme.

Consistency of the Micro Problem
An important aspect in our HMM method is that the initial data for the micro
problem is consistent with the current macroscopic state. In practice we approxi-
mate the macroscopic state with a third order polynomial U(x) which interpolate
the macroscopic grid values unm−2, . . . , u

n
m+1 in xm−2, . . . , xm+1. We should then

choose a polynomial Q(x) as initial data to (3.4) such that

U(x) = (Kvε)(0, x). (4.18)

To simplify the discussion we introduce the operatorM which maps the initial data
of (3.4) to (Kvε)(0, x). We hence seek Q such that

U(x) = (MQ)(x). (4.19)
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We will not be able to find a Q where this is satisfied exactly. However, in this
section we will show how to find Q given U such that this equality is satisfied to
high order in ε.

When the coefficient Aε(x) = A(x/ε) and A(y) is 1-periodic and Q is a third
order polynomial, we showed in [22] that,

(MQ)(x) = Q(x) + ε2γQ′′(x) + O(ε3), (4.20)

where γ is a constant depending on A. Hence, if we take Q = U we make a O(ε2)
error. For the long time problem we will need better accuracy. If we know γ we
can for instance take

Q(x) = U(x)− ε2γU ′′(x), (4.21)

and get an error less than O(ε3) in this simple case.
In the general case we will use the following procedure to correct the initial

data. We assume that Q(x) = c0 + c1x+ c2x
2 + c3x

3 and make that ansatz that

(MQ)(x) ' U(x) := c̃0 + c̃1x+ c̃2x
2 + c̃3x

3. (4.22)

Let cT =
[
c0 c1 c2 c3

]
, c̃T =

[
c̃0 c̃1 c̃2 c̃3

]
and xT =

[
1 x x2 x3].

Then Q(x) = xT c and U(x) = xT c̃. SinceM is a linear operator we can represent
it by a matrix M acting between the coefficients c and c̃,

c̃ = Mc. (4.23)

The correction matrix M can be computed by solving four micro problems with
initial data xj for j = 0, . . . , 3 (details can be found in [22]). With M we can solve
(4.23) to obtain c from c̃. We can then also compute the correct flux, without
solving more micro problems. For each of the four problems solved we record the
corresponding flux and denote it by fi. Moreover, we set

fT =
[
f0 f1 f2 f3

]
. (4.24)

Since the flux computation is also linear in the input c the computed flux from
Q(x) is simply

F (Q) = fT c, (4.25)

and given U = xT c̃, the corrected flux is

F̃ (U) = f̃
T

c̃, f̃ := M−Tf . (4.26)

For the case when Aε = A(x/ε) and A(y) is periodic we showed in [22] that the
correction in Q is precisely what is needed to make the corresponding corrected
flux F̃ agree with the flux of the effective equation. With some extra assumptions,
Theorem 3 and Theorem 4 in [22] shows that the uncorrected HMM flux is

F (U) = ĀUx + βε2Uxxx − ε2γĀUxxx +O(αq), (4.27)
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where γ is the same constant as in (4.20) and α = ε/η. The corrected flux, on the
other hand, is shown to be

F̃ (U) = ĀUx + βε2Uxxx +O(αq), (4.28)

which tends to the flux for the effective equation when the microbox size η gets
large in comparison to ε, hence when α→ 0.

In Algorithm 4.1 we show an condensed algorithm description how the correction
matrices is computed.

Convergence of the Macro Scheme
We proved in [24] that if we apply the HMM to the problem (4.1) with Aε(x) =
A(x/ε) where A is a Y -periodic symmetric positive matrix the HMM generates
results close to a direct discretization of the homogenized equation (2.12). In par-
ticular, we showed that for Q(x) = σ(x− x′),

F̃ (x′, Q) = F (x′, Q) +O
((

ε

η

)q)
. (4.29)

The function F̃ and F are defined in (3.7) and (3.2) respectively and we note that
here F (x′, Q) = ĀQ′(x′) = Āσ. The integer q depends on the smoothness of the
kernel used to compute the weighted average of fε in (3.7).

Theorem 16. Let F̃ (x′, Q) be defined by (3.7) where Q(x) = σ(x− x′); vε solves
the micro problem (3.4) exactly; Aε(x) = A(x/ε) and A is Y -periodic and C∞.
Moreover suppose K ∈ Kp,q, f and g are C∞ and τ = η. Then for σ 6= 0 and any
dimension,

1
|σ|
∣∣F̃ (x′, Q)− F (x′, Q)

∣∣ ≤ C ( ε
η

)q
, (4.30)

where C is independent of ε, η, p and q. Furthermore, for the numerical approx-
imation given in (3.3) in one dimension, with H = nε for some integer n and
smooth initial data, we have the error estimate

|Unm − ū(xm, tn)| ≤ C(T )
(
H2 + (ε/η)q

)
, 0 ≤ tn ≤ T, (4.31)

where ū is the homogenized solution to (2.12).

Stability Analysis the Macro Scheme and Regularization
The stability of the long time effective equation (2.52) is a concern, since it is in fact
ill-posed. Thus, perturbations in the exact solution grows exponentially in time.
Since our HMM algorithm effectively discretizes (2.52) one must be concerned with
the stability of the method. In this section we show that as long as the macroscopic
discretization is coarse enough, it is indeed stable.
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Even though (2.52) is ill-posed, it can be used as an effective equation after
regularization. Since we are interested in low frequency solutions it should be
possible to use a regularized version of (2.52) where high frequencies are suppressed.
The equation could for instance be regularized with a low-pass filter Plow applied
at the macro level,

ũtt = Plow
(
Āũxx + βε2ũxxxx

)
, (4.32)

or by adding a small 6th order term,

ũtt = Āũxx + βε2ũxxxx + cε4ũxxxxxx, (4.33)

cf. (2.51).
Another regularization technique is to use large time and space grid sizes, which

can be seen as a type of low-pass filtering. This is what we do in our HMM. We show
here that this approach is stable when the coarse grid size H satisfies a standard
CFL condition and in addition H ≥ Cε, for some constant C. This explains why
our HMM is stable. Moreover, even with a coarse grid the macroscopic solution can
be computed accurately. In Figure 4.1 we show an example of a solution obtained
through a direct discretization of (2.52) on a coarse grid. The solution agrees very
well with a direct numerical simulation of the full wave equation.

We now apply standard von Neumann stability analysis [52] to show stability
of the macro scheme for periodic solutions,un+1

m = 2unm − un−1
m + K2

24H

(
−fnm+3/2 + 27fnm+1/2 − 27fnm−1/2 + fnm−3/2

)
,

fnm = (Ā∂x + βε2∂xxx)pnm(x)
∣∣
x=xm

,

(4.34)

used in the HMM algorithm for the 1d problem and long time. Here we denote unm
as the numerical approximation of u(xm, tn) and K is the time step and H is the
grid size. The scheme (4.34) is fourth order accurate with respect to K and second
order with respect to H. We define the interpolation polynomial pnm−1/2 of degree
three over four grid points unm−2, . . . , u

n
m+1 and assume a uniform grid.

Theorem 17. The finite difference scheme (4.34) applied on the effective equation
(2.52) with 1-periodic boundary conditions is stable, i.e.,∑

j

(unj )2 ≤ C(T )
∑
j

(u0
j )2 n = 1, 2, . . . , N, Nk = T, (4.35)

for some constant C(T ) independent of n, for K and H satisfying

ε

H
≤

√
7Ā
24β , (4.36)
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and

K

H
≤ 24√

Ā

√
h

(
24ε2β

H2Ā

)
, (4.37)

where

h(x) =


1

784− 112x, 0 ≤ x < 21
5 ,

x2 − 2x+ 1
128

(
2(x2 − x+ 1)3/2 − 2x3 + 3x2 + 3x− 2

) , 21
5 ≤ x ≤ 7.

(4.38)

The proof is found in [23].

Remark 18. Recently another effective equation which is also valid up to T ε =
O(ε−2) was discovered, [38]. The new equation is well-posed and of the form,

utt − Āuxx − ε2 β

Ā
uxxtt = 0, Y × [0, T ε], (4.39)

and with the same initial data as in (2.52). The scalars Ā and β are functions of
A(y) over one period. This effective equation, (4.39), is still in flux form as before,
utt − ∂xF = 0, where

F = Āux + ε2 β

Ā
uxtt, (4.40)

and where F now depends on on partial derivatives of u in t and x. The theory is
for Aε(x) = A(x/ε) where A(y) is 1-periodic in y. The same as in the theory by
Santosa and Symes [49].

Conclusions
We arrive at three conclusions from the analysis above:

1. The long time effective equation (2.52) is of the form

utt − ∂xF = 0, F = Āux + βε2uxxx. (4.41)

This fits into the assumed form of our macroscale PDE in (3.2), utt−∇·F = 0,
as in Section 2.4, and we do not need to change the HMM algorithm to reflect
a different macro model which incorporates dispersive effects.

2. The flux F contains a third derivative of the macroscopic solution. In order
to pass this information on to the micro simulation, the initial data must be
at least a third order polynomial. This explains why the linear initial data
used in the finite time HMM is not enough.
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3. Since we need to accurately represent also the second term in the flux F , the
error in the flux computation must be smaller than O(ε2). The error term for
F in Theorem 16 is of the form (ε/η)q. We thus need to chose q and η such
that (ε/η)q < ε2, or η > ε1−α with α = 2/q. Recalling that in the finite time
case we always take η ∼ ε, this hence explains why we need to have more
accurate kernels or bigger micro boxes in the long time case. We note that
in order to maintain a low computational cost we should have α small, which
can be obtained by taking a large q, i.e., a very regular kernel.

Algorithm 4.1 Precomputation of correction matrices A(m), 1 ≤ m ≤ M for the
HMM method for long time.
for m = 1→M do
x′ ← xm− 1

2
for i = 1→ 4 do
Initial data Q(x)← xi−1, i.e., ci = 1 and other cj = 0
Solve micro problem (3.4) uε for all (x, t) ∈ [−η, η]× [−τ, τ ]
Compute Yk ← K(uε)(∆k, 0) for some distinct ∆k around x = 0
Find a third degree polynomial that fits (∆k, Yk), which gives c̃.
A

(m)
ij = c̃j−1, 1 ≤ j ≤ 4

end for
end for

Algorithm 4.2 HMM algorithm for the long time wave equation. Uses microsolver
Algorithm 4.3

Discretize domain Ω into x0, x1, . . . , xm ∈ Ω and time [0, T ε] into t0, t1, . . . , tN
such that the grid xk is aligned with the macro grid, and the initial data is
resolved, and λ = ∆t

∆x satisfies the CFL condition amax
∆t
∆x ≤ 1.

Compute initial data u0
m = u0(xm) and u−1

m = u0(xm) +
k2

24h

[
−fn

m+ 3
2

+ 27fn
m+ 1

2
− 27fn

m− 1
2

+ fn
m− 3

2

]
.

OPTIONAL: Precompute fluxes
for n = 0, 1, . . . ,M do
Precompute fluxes as described in Algorithm 4.1 including the correction

end for
MAIN LOOP: Time step solution
for n = 0, 1, . . . , N do
Update un+1

m as in (4.5).
end for
IMPORTANT: If the precomputation step is ignored the correction is still
needed in each grid point, each time step.

.
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Algorithm 4.3 microsolver: Compute F̃ given x′ and Q(x).
Pick Y ε such that Y ε = [−ymax, ymax] and ymax = η + τ maxx∈Y ε

√
Aε(x).

Discretize Y ε into x0, x1, . . . , xM and time [−τ, τ ] into t0, t1, . . . , tN such that
ε

∆x = ρ (points per wave length measure) and λ = ∆t
∆x satisfies the CFL condition

amax
∆t
∆x ≤ 1.

Compute initial data (vε)0
m = Q(xm) and (vε)−1

m = vnm − ∆t2
2 D+F 0

m where F is
the numerical flux (4.17) and D+ is a forth order discretization of ∂x.
for n = 0, 1, . . . , N do
Compute vn+1

m according to Remark 13.
Compute Gn = ∆x

∑M
m=0Kη(xm)vnm.

end for
Compute F̃ = ∆t

∑N
n=−N Kτ (tn)Gn where t−n = tn and G−n = Gn.

4.3 Numerical Results

We present a final comparison based on the the wave equation (4.3) with the fol-
lowing parameters 

Aε(x) = 1.1 + sin 2πx
ε
,

Ā =
√

0.21, β ≈ 0.01078280318,

Ω = [0, 1], T = 100×
√
Ā

(4.42)

in Figure 4.1. For the micro problem we use 128 points per ε. The homogenized
and effective equation uses roughly 350 points for the discretization of Ω = [0, 1], as
many grid points as the stability allows us, cf. Section 4.2. See Figure 4.1 for a plot
of the three solutions: the exact, HMM and the solution of the effective equation
(EFF).
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Figure 4.1: Numerical result from a long time DNS computation (thin line) com-
pared to a direct discretization of the long time effective equation (2.52) with a
coarse grid (squares) and our HMM method (crosses).



Chapter 5

Summary of Paper V: HMM for
High Frequency Initial Data in
One Dimension

In this paper we consider the following form of the multiscale wave equation (2.10),
in one dimension,{

uεtt − ∂x(a2uε) = 0, Ω× [0, T ],
uε(x, 0) = uε0(x), uεt (x, 0) = uε1(x), ∀x ∈ Ω,

(5.1)

where uε is Ω-periodic.
Our HMMmethod for this problem [25] uses ideas from geometrical optics, deals

with non-oscillating a2(x) which is scalar, uniformly positive and Ω-periodic; finite
T = O(1); and where the initial data is oscillating with frequencies of order ε−1. In
Section 2.6 we described how uε can be approximated by uε ≈ exp(iφ(x, t)/ε)A(x, t)
where the phase φ and amplitude A are slowly varying functions of x,

φt + c|∇φ| = 0,

(A0)t + ∇φ · ∇A0

|∇φ|
+ c2∇2φ− φtt

2c|∇φ| = 0,

φ(x, 0) = ε

i
log uε(x, 0)
|uε(x, 0)| , A(x, 0) = |u0(x, 0)|2,

(5.2)

where the equation above describes a right going wave. Usually the direction of the
wave is determined by the initial conditions of the wave equation. It can also be a
bi-directional wave going both left and right on the real line.

Geometrical optics and asymptotic expansions of the solution uε to (5.1) have
given rise to many other numerical methods for highly oscillatory problems. Among
the more famous ones we have: ray tracing [6, 28] where the system is formulated as
a system of ODEs describing the phase and amplitude; and wavefront methods [28].

49
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The geometrical optics approach has been generalized in many directions. Since
there exists mathematical challenges in the GO model (e.g., caustics and focus
of rays) other mathematical models have been suggested. For instance a kinetic
model [28]; the segment projection method [29]; and Gaussian beams tracing rays
containing both amplitude and phase incorporated into one beam [53]. The effect
on boundary conditions is included in the geometrical theory of diffraction, [36].

We will demonstrate, by WKB expansions of some quantities of interest, re-
lated to the solution uε, that right and left going energy is a suitable macroscopic
interest since it is slowly varying in the leading terms whereas the amplitude |uε|
is oscillatory. Thereafter we describe the HMM method for the energy and the
related microproblem. We show an experiment similar to one experiment in [25]
which solves a multiscale problem of type A: we have a known macroscopic model
almost everywhere in the domain Ω except at two grid-points where a2 has a jump.
In this point we will use HMM micro problems to find out the correct behavior.

5.1 Asymptotic Expansions of Important Quantities

In this section we will consider waves going in both left and right directions. We
will show asymptotic expansions for the amplitude; scaled energy E; and the scaled
left and right going fluxes FL and FR.

Throughout this section we will use the WKB expansion of uε for bi-directional
wave propagation,

uε(x, t) = A(x, t)eiα(x,t)/ε + B(x, t)eiβ(x,t)/ε, (5.3)

where

A(x, t) =
∞∑
k=0

Ak(x, t)(iε)k, B(x, t) =
∞∑
k=0

Bk(x, t)(iε)k, (5.4)

and α and Ak solves the + version and β and Bk solves the − version of (2.69).
Hence, {

αt + aαx = 0,
βt − aβx = 0.

(5.5)

The phases α and β thus correspond to right and left going waves, respectively. We
use the notation z∗ for the complex conjugate of z and all integrals are taken over
R unless it is explicitly given.

Amplitude

In this section we want to describe the leading terms proportional to 1, ε and ε2

of the square amplitude of the solution uε to (5.1). By using the WKB expansion
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(5.3) we have,

|uε|2 =|A|2 + |B|2 + 2<
{
AB∗ei(α−β)/ε

}
=|A0 + iεA1 + O(ε2)|2 + |B0 + iεB1 + O(ε2)|2 + 2<

{
AB∗ei(α−β)/ε

}
.

(5.6)
We use the fact that,

<
{
AB∗ei(α−β)/ε

}
= <

{(
A0B0 + iεA1B0 − iεA0B1 + O(ε2)

)
ei(α−β)/ε

}
= A0B0 cos α− β

ε
+ ε(A0B1 −A1B0) sin α− β

ε
+ O(ε2), (5.7)

which gives us the result we are looking for,

|uε|2 =A2
0 +B2

0 + 2A0B0 cos α− β
ε

+

2ε(A0B1 −A1B0) sin α− β
ε

+ O(ε2).
(5.8)

The O(ε2) term in (5.8) will contain both oscillatory and slowly varying terms.
The O(1) and O(ε) terms are both oscillatory. The O(1) terms have mean value
A2

0 +B2
0 and the O(ε) terms have mean value zero.

Energy
We define the scaled pointwise energy E(x, t) for the solution uε to (5.1) as,

E(x, t) = ε2

2 |u
ε
t (x, t)|2 + ε2a2(x)

2 |uεx(x, t)|2. (5.9)

In this section we will compute the asymptotic expansion of E. For that we need
to compute the asymptotics of both |uεt |2 and |uεx|2. We have for |uεt |2,

|uεt |2 =
∣∣∣∣( iαtε A+At

)
ei
α
ε +

(
iβt
ε
B + Bt

)
ei
β
ε

∣∣∣∣2
=
∣∣∣∣ iαtε A+At

∣∣∣∣2 +
∣∣∣∣ iβtε B + Bt

∣∣∣∣2 + 2<
{(

iαt
ε
A+At

)(
iβt
ε
B + Bt

)
ei
α−β
ε

}

=
∣∣∣∣ iαtε (

A0 + iεA1 − ε2A2 + O(ε3)
)

+ (A0)t + iε(A1)t + O(ε2)
∣∣∣∣2

+
∣∣∣∣ iβtε (B0 + iεB1 − ε2B2 + O(ε3)

)
+ (B0)t + iε(B1)t + O(ε2)

∣∣∣∣2
+ 2<

{(
iαt
ε
A+At

)(
iβt
ε
B + Bt

)
ei
α−β
ε

}
.

(5.10)
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We now consider only the first term in the above expression,∣∣∣∣ iαtε (
A0 + iεA1 − ε2A2 + O(ε3)

)
+ (A0)t + iε(A1)t + O(ε2)

∣∣∣∣2
=
∣∣∣∣ iαtε A0 − αtA1 − iεαtA2 + (A0)t + iε(A1)t + O(ε2)

∣∣∣∣2
=
∣∣∣i(αt

ε
A0 + ε(−αtA2 + (A1)t)

)
− αtA1 + (A0)t

∣∣∣2 + O(ε2)

=
∣∣∣αt
ε
A0 + ε(−αtA2 + (A1)t)

∣∣∣2 + |−αtA1 + (A0)t|2 + O(ε2)

= α2
t

ε2 A
2
0 + 2αtA0(−αtA2 + (A1)t) + (−αtA1 + (A0)t)2 + O(ε2).

(5.11)

The second term is on the same form,
β2
tB

2
0

ε2 + 2βtB0(−βtB2 + (B1)t) + (−βtB1 + (B0)t)2 + O(ε2). (5.12)

The last term is expressed as,

2<
{(

iαt
ε
A+At

)(
iβt
ε
B + Bt

)
ei
α−β
ε

}
=

2<
{(

αtβt
ε2 AB

∗ +AtB∗t + i(αtAB∗t − βtAtB∗)
ε

)
ei
α−β
ε

}
. (5.13)

After a similar calculation for a2|uεx|2 we obtain

E = 1
2α

2
tA

2
0 + 1

2β
2
tB

2
0 + 1

2a
2α2

xA
2
0 + 1

2a
2β2
xB

2
0 + O(ε2)

+ <
{(
αtβt + a2αxβx

)
AB∗ + iε((αt + a2αx)AB∗t − (βt + a2βx)AtB∗)ei

α−β
ε

}
.

(5.14)

By using the fact that αt and βt solve (5.5) we have, αtβt = −a2αxβx. Hence,

E = a2α2
xA

2
0 + a2β2

xB
2
0 − ε sin(α−βε )

(
αtA0(B0)t − βt(A0)tB0

+ a2αxA0(B0)x − a2βx(A0)xB0

)
+ O(ε2). (5.15)

When α and β are matched with a this simplifies to

E = A2
0 +B2

0 − ε sin(α−βε )
(
αtA0(B∗0)t − βt(A0)tB0

+ a2αxA0(B0)x − a2βx(A0)xB0

)
+ O(ε2). (5.16)

The O(1) part in the WKB expansion (5.15) is non-oscillatory and the O(ε) and
O(ε2) part is oscillatory.
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Flux
In this section we will derive an advection equation corresponding to the scaled
energy E of the solution to (5.1). We will also compute asymptotic expansions for
the involved quantities. To derive the advection equation we note that,

∂t|z|2 = ∂t(zz∗) = ztz
∗ + zz∗t = 2<(zz∗t ). (5.17)

Therefore we can express the time derivate Et as

1
ε2Et = <(uεt (uεtt)∗) + a2<(uεx(uεxt)∗) (5.18)

= <(uεt∂x(a2(uεx)∗) + a2uεx(uεxt)∗) (5.19)
= <((uεt )∗∂x(a2uεx) + a2uεx(uεxt)∗) (5.20)
= <(∂x

(
(uεt )∗a2uεx

)
), (5.21)

= ∂x
[
a2<((uεt )∗uεx)

]
. (5.22)

This shows that the advection equation for the energy is in conservative form,

Et = ∂xF, (5.23)

where the flux F is of the form,

F = a2ε2<((uεt )∗uεx). (5.24)

Furthermore, we define the right- and left going fluxes FR and FL by

FR = −aε
2

4 |u
ε
t − auεx|2, FL = aε2

4 |u
ε
t + auεx|2, (5.25)

where we note that,

FL + FR = aε2

4
(
|uεt + auεx|2 − |uεt − auεx|2

)
(5.26)

= aε2

4
(
|uεt |2 + 2<(auεt (uεx)∗) + a2|uεx|2 − |uεt |2 + 2<(auεt (uεx)∗)− a2|uεx|2

)
,

(5.27)
= ε2a2<((uε)∗tuεx), (5.28)

which is the same flux as we defined in (5.24), hence F = FR + FL.
We give a motivation to the notation right- and left-going energy flux in the

following way: Suppose a is approximately constant in a O(ε) neighborhood of x0.
We can then use the d’Alembert solution formula and approximate,

uε ≈ uL + uR, (5.29)
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where uR and uL satisfies uRt + auRx = 0 and uLt − auLx = 0. The fact that,

uεt + auεx = uRt + auRt + uLt + auLx = uLt + auLx = 2auLx = 2uLt , (5.30)

implies that,

FL = aε2

4 |ut + aux|2 = aε2<(uLt (uLt )∗) = a2ε2<((uLt )∗uLx ). (5.31)

Similarly we have,

FR = −aε
2

4 |ut − aux|
2 = −aε2<((uRt )∗uRt ) = a2ε2<((uRt )∗uRx ). (5.32)

These are thus of the same form as (5.24) but with uε replaced by uL and uR.
Let us now derive, asymptotic expansions for the these fluxes. We have

uεt =
(
iαt
ε
A+At

)
eiα/ε +

(
iβt
ε
B + Bt

)
eiβ/ε (5.33)

and
uεx =

(
iαx
ε
A+Ax

)
eiα/ε +

(
iβx
ε
B + Bx

)
eiβ/ε. (5.34)

This shows that

uεt +auεx =
(
i(αt + aαx)

ε
A+At + aAx

)
eiα/ε+

(
i(βt + aβx)

ε
B + Bt + aBx

)
eiβ/ε.

(5.35)
We now apply (5.5) and expand in powers of ε,

|uεt + auεx|2 =
∣∣∣∣(At + aAx) eiα/ε +

(
2iaβx
ε
B + Bt + aBx

)
eiβ/ε

∣∣∣∣2 (5.36)

= |At + aAx|2 +
∣∣∣∣2iaβxε

B + Bt + aBx
∣∣∣∣2 (5.37)

+ 2<
{

(At + aAx)
(
−2iaβx

ε
B∗ + B∗t + aB∗x

)
ei(α−β)/ε

}
(5.38)

=O(1) +
∣∣∣∣2iaβxε

(B0 + O(ε)) + O(1)
∣∣∣∣2 (5.39)

+ 2<
{
−2iaβx

ε
(B0 + O(ε))((A0)t + a(A0)x + O(ε))ei(α−β)/ε

}
(5.40)

=4a2β2
xB

2
0

ε2 + 4aβx
ε

B0((A0)t + a(A0)x) sin(α−βε ) + O(1). (5.41)
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A similar calculation for |uεt − auεx|2:

|uεt − auεx|2 =
∣∣∣∣(−2iaαx

ε
A+At − aAx

)
eiα/ε + (Bt − aBx) eiβ/ε

∣∣∣∣2 (5.42)

=
∣∣∣∣−2iaαx

ε
A+At − aAx

∣∣∣∣2 + |Bt − aBx|2 (5.43)

+ 2<
{

(Bt − aBx)
(

2iaαx
ε
A∗ +A∗t − aA∗x

)
ei(β−α)/ε

}
(5.44)

=O(1) +
∣∣∣∣−2iaαx

ε
(A0 + O(ε)) + O(1)

∣∣∣∣2 (5.45)

+ 2<
{

2iaαx
ε

(A0 + O(ε))((B0)t − a(B0)x + O(ε))ei(β−α)/ε
}
(5.46)

=4a2α2
xA

2
0

ε2 + 4aαx
ε

A0((B0)t − a(B0)x) sin(α−βε ) + O(1). (5.47)

In conclusion,{
FR = −a3α2

xA
2
0 − εa2αxA0((B0)t − a(B0)x) sin(α−βε ) + O(ε2),

FL = a3β2
xB

2
0 + εa2βxB0((A0)t + a(A0)x) sin(α−βε ) + O(ε2).

(5.48)

We showed that F = FR +FL so the above computations also gives an asymptotic
expansion for the scaled flux F , therefore

F = a3 (β2
xB

2
0 − α2

xA
2
0
)

+ εa2 sin(α−βε )
(
βxB0((A0)t + a(A0)x)− αxA0((B0)t − a(B0)x)

)
+ O(ε2).

(5.49)

When α and β are matched with a this simplifies to,{
FR = −aA2

0 − εa2αxA0((B0)t + a(B0)x) sin(α−βε ) + O(ε2),
FL = aB2

0 + εa2βxB0((A0)t + a(A0)x) sin(α−βε ) + O(ε2),
(5.50)

and

F = a
(
B2

0 −A2
0
)

+ εa2 sin(α−βε )
(
βxB0((A0)t + a(A0)x)− αxA0((B0)t − a(B0)x)

)
+ O(ε2).

(5.51)

The O(1) and O(ε2) terms will be slowly varying as we see clearly from the com-
putations. The terms of order ε are oscillatory with mean value zero.
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Local Average and Kernels
For the scaled energy E and the scaled flux F , we arrived at asymptotic expansions
of the form,

Xε = X0 + ε sin
(
β−α
ε

)
f(x, t) + O(ε2), (5.52)

where f is a slowly varying function. The second term is thus highly oscillatory.
In general these kind of terms are undesirable and problematic from a numerical
perspective.

Suppose we want to compute X0 but only have Xε. We will be able to do that
to O(ε2) accuracy if we could average away the oscillatory part. We suggest that
we can reduce the oscillations by instead of taking a point sample of Xε(x, t) to
approximate X0(x, t), we compute the average,

X̄(x, y) = 1
4ητ

∫ x+η

x−η

∫ t+τ

t−τ
Xε(x+ ξ, t+ ϕ) dξ dϕ, (5.53)

for some choice of η and τ depending on the periodicity of the oscillations. This
idea can be improved even further by using a smooth kernel,

X̄(x, y) = 1
τη

∫∫
K( tτ )K(xη )Xε(x+ ξ, t+ ϕ) dξ dϕ =: (KXε)(x, t), (5.54)

denoted here as a local mean value, with a kernel K. We described kernels in Sec-
tion 2.7. We refer to [24] where we used this technique and [31] for a mathematical
description.

To apply Theorem 4 we need to be able to write the oscillatory term on the form
g(x, t, xε ,

t
ε ). We can for instance take g(x, t, ξ, ϕ) = sin(ξ/x)(α(x, t)−β(x, t))f(x, t),

and assuming α 6= β, we see that g is smooth in all variables. If α = β the
oscillatory term disappears completely. However, the function g is not 1-periodic
in ξ. Nevertheless, we observe the same dependence on η, τ as in Theorem 4 in our
numerical experiments, thus we expect it is possible to reduce the difference to,

|X0(x, t)− X̄(x, t)| = O(ε( εη )q) + O(ε( ετ )q) + O(εηp) + O(ετp) + O(ε2). (5.55)

Note that we can make the difference |X0−Xε| = O(ε2) by choosing the kernel
parameters η, τ, p and q as,

η, τ ∼ εγ , γ = 1
p
,

1
p

+ 1
q

= 1. (5.56)

The same idea can be applied to the square amplitude but we need to use a slightly
larger box η, τ ∼ εγ , where γ = 2

p .
We define the quantities,{

Ē = KE, Ā = K|uε|2,
F̄R = KFR, F̄L = KFL,

(5.57)
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and with the appropriate choices of K, η and τ we have the asymptotic expansions,{
Ē = a2α2

xA
2
0 + a2β2

xB
2
0 + O(ε2), Ā = A2

0 +B2
0 + O(ε2),

F̄R = −a3α2
xA

2
0 + O(ε2), F̄L = a3β2

xB
2
0 + O(ε2).

(5.58)

5.2 The Method

In this section we will describe our HMM method for the wave equation (5.1). We
will assume that the initial data is of the form,

uε0(x) = A(x)eiφ(x,0)/ε, and either uε1(x) = 0 or uε1(x) = − i
ε
uε0(x), (5.59)

where φ is matched with a, as in Remark 3. The scaled energy E at t = 0 is
asymptotically equal to 1

2A
2(x) + O(ε2).

We will first assume that the phase is matched with a as described in the end
of Section 2.6 in Remark 3. In Chapter 6 we will discuss how this assumption can
be avoided.

Macro Model and Discretizeation
We defined the scaled energy E for solutions of (5.1) as the sum of its kinetic energy
and potential energy in (5.9) and the local mean energy as Ē = KE in Section 5.1.
It is easy to show that ∂x and ∂t commutes with the local mean operator K defined
in (5.54). By applying the mean value operator K to (5.24) we obtain the following
left hand side,

K(Et) = ∂tKE = Ēt, (5.60)

and for the right hand side,

K∂xF = ∂xKF = ∂xF̄ . (5.61)

Thus, we have that
Ēt = ∂xF̄ . (5.62)

Inspired by this we choose our macroscopic variables as the local mean right and
left going energy ĒR and ĒL. They should satisfy that Ē = ĒR + ĒL and we
assume they solve the PDE:{

ĒRt − F̄Rx = 0, Ω× [0, T ],
ĒLt − F̄Lx = 0, Ω× [0, T ],

(5.63)

with initial data

ĒR(x, 0) = ĒL(x, 0) = 1
2(KE)(x, 0) = 1

2A
2(x) + O(ε2), ∀x ∈ Ω, (5.64)
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for the condition uεt (x, 0) = 0 and

ĒL(x, 0) = 0, ĒR(x, 0) = (KE)(x, 0) = A2(x) + O(ε2), ∀x ∈ Ω, (5.65)

for the condition uεt (x, 0) = − i
εu

ε
0(x). We have Ω-periodic boundary conditions in

x for both ĒR and ĒL. The fluxes F̄R and F̄L will be computed from a micro
problem based on the expression in Section 5.1.

We need to be careful when discretizing (5.63) in order to capture transmission
and reflection of energy around jumps in the material. We must consider the
discretized energy ER and EL as the ingoing energy to the grid point, e.g., ER
is the ingoing from left energy and travels from left to right. Similarly, EL is the
energy that travels from right to left. For the fluxes we argue as follows: The flux
FRR is the transmitted flux from the left going energy plus the reflected flux from
the left going energy. Moreover, FRL is the reflected flux from the right going energy
plus the transmitted flux from the right going energy. The quantities FLR and FLL
are defined analogously. We illustrate this in Figure 5.1 where we show a numerical
example for a jump. The fluxes are sampled for an inbound right ingoing energy
ER = 1, with zero ingoing left energy. Note that when a is smooth there will be
almost no reflection and only transmitted flux.

Based on this observation we choose to discretize (5.63) with an upwind scheme
for the right and left going energy ĒR and ĒL,{

(ĒR)n+1
m = (ĒR)nm − λ

(
(F̄RL )nm − (F̄RR )nm−1

)
,

(ĒL)n+1
m = (ĒL)nm − λ

(
(F̄LL )nm+1 − (F̄LR )nm

)
,

λ = ∆t
∆x. (5.66)

Next we will describe how to compute all the flux quantities in (5.66) above by
solving a micro problem with the macroscopic variables (ĒR)nm, (ĒR)nm, tn and xm
as input.

Reconstruction Operator and Micro Problem
In this section we describe the micro problem which shall provide the macro scheme
with the missing information, the flux. The micro problem will be of the form
(5.1) but without boundary conditions. The input to the micro problem are the
macroscopic variables xm, tn, (ĒR)nm and (ĒL)nm. We will use the notation ER :=
(ĒR)nm, EL := (ĒL)nm, for the ingoing energy from right and left respectively;
t′ := tn; and x′ := xm to make the notation simpler.

We make a change of variables in the micro problem such that x− x′ 7→ x and
t − t′ 7→ t. This implies that a(x) 7→ a(x + x′). The micro problem is formulated
as an initial value problem:

vεtt − ∂x(a2vεx) = 0, Y ε × [−τ, τ ],

vε(x, 0) =
√
ER exp (iα(x, 0)/ε) +

√
EL exp(iβ(x, 0)/ε),

vεt (x, 0) = − i
ε
vε(x, 0),

(5.67)
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where α, β are matched with a at t = 0,

α(x, 0) = −β(x, 0) =
∫ x

0

ds
a(s) . (5.68)

The micro box Y ε is chosen big enough so that effects from the boundary does
not reach inside the domain [−η, η] for time −τ ≤ t ≤ τ . Typically we use
Y ε = [−ymax, ymax] where ymax = η + τ max a. Other techniques for numerically
simulating infinite domains are standard absorbing boundary conditions (ABC) [26]
and perfectly matched layers (PML) [8, 15].

We shall now give a motivation to why we choose these initial conditions. In
the language of HMM the step ER, EL 7→ vε is called the reconstruction step. The
approximation should be such that vε satisfies the wave equation and vε has an
energy approximately the same as ER + EL.

The asymptotic solution vε to (5.67) can be written as a bi-directional wave,

vε(x, t) ' A0(x, t) exp(iα(x, t)/ε) +B0(x, t) exp(iβ(x, t)/ε). (5.69)

For a one way wave, going right B0 = 0 the local mean (scaled) energy of that
solution will then be equal to A2

0 + O(ε2). Similarly, for a left going one wave,
the local mean (scaled) energy will be equal to B2

0 + O(ε2). We therefore pick
A0 =

√
ER and B0 =

√
EL. The initial condition uεt is chosen to match (5.69).

Indeed,
vεt ≈

i

ε
A0 (αt exp(iα/ε) + βtB0 exp(iβ/ε)) , (5.70)

and by (5.5) and (5.69) we have that,

vεt (x, 0) = − i
ε
uε(x, 0). (5.71)

We use a Leapfrog finite difference scheme for (5.67). It is based on central
differences in both time and space. We use a uniform grid such that λ = ∆t/∆x is
constant. The scheme reads:

vn+1
m = 2vnm − vn−1

m + ∆t2

∆x

(
(avεx)nm+ 1

2
− (avεx)nm− 1

2

)
, 0 ≤ n < N,

where (avεx)nm± 1
2

= ±
am± 1

2

∆x
(
vnm±1 − vnm

)
.

(5.72)

Since we are using a two-step method we require a one-step method to initialize
the method. We have chosen to set

v−1
m = uε(xm, 0)︸ ︷︷ ︸

=vε0(x)

−∆t vεt (xm, 0)︸ ︷︷ ︸
=vε1

+∆t2

2 vεtt(xm, 0)︸ ︷︷ ︸
=∂x(a2vεx)

+O(∆t3), (5.73)

where ∂x(a2vεx) is discretized as above. See [34] for implementation details.
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Remark 19. Suppose we have a matched phase φ such that φx = 1/a and

φ(x, 0) = φ(x′, 0) + (x− x′)φx(x′, 0) + O((x− x′)2. (5.74)

Then it is possible, with little loss of asymptotic accuracy, to use an approximation
of the initial data in (5.67) of the form,

vε(x, 0) ≈
√
ER exp

(
i(x− x′)
εa(x)

)
+
√
EL exp

(
−i(x− x′)
εa(x)

)
. (5.75)

The error in the initial data with respect to the scaled energy ER and EL will be
proportional to ε instead of ε2.

Compression Operator
Once we have solved (5.67) for uε we obtain the macroscopic unknowns F̄R and
F̄L by computing the local mean in the point (x′, t′), which is just x = 0 and t = 0
in the local coordinate system,

F̄R ≈ −ε
2

4 K
(
a|uεt − auεx|2

)
, F̄L ≈ ε2

4 K
(
a|uεt + auεx|2

)
. (5.76)

The quantities uεt and uεx are thus needed to compute the fluxes. These are com-
puted from the discrete solution unm at time tn at xm with a second order finite
difference scheme:

(uεt )n+1
m = un+1

m − un−1
m

2∆t + ∆t ∂x(a2(xm)uεx(xm, tn)), 0 ≤ n < N,

uεx(xm, tn) =
unm+1 − unm−1

2∆x , 0 ≤ n ≤ N,
(5.77)

where ∂x(a2(xm)uεx(xm, tn)) is discretized in the same way as in the micro solver.
In the case when we have a jump or sharp variations in a we sample two values

for both F̄R and F̄L. One value on each side of the jump for each flux. This will
represent the ingoing and reflected energy corresponding to which side the inbound
energy comes from. To illustrate the idea we show in Figure 5.1 a micro problem
computation from the numerical example found in [25], where we have a jump in a
at x = 0.5.

Finally, an algorithm summary is found in Algorithm 5.1.

Remark 20. We note that we can precompute the micro problems by observing
that, for ~E =

[
ĒR ĒL

]T ,{
F̄R(xm, ~E) = ĒRF̄R(xm, e1) + ĒLF̄R(xm, e2),

F̄L(xm, ~E) = ĒRF̄L(xm, e1) + ĒLF̄L(xm, e2),
(5.78)
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Figure 5.1: The fluxes FL (left figure) and FR (right figure) visualized for an
incoming wave from the right, ER = 1, EL = 0. The material a (dashed line)
shows the jump in the middle of the microbox from a = 1 on the left side, down to
a = 1/3 on the positive right side. The two vertical dashed lines are the sampling
points where we compute the right FRR and left flux FRL . We see in the left figure the
reflection at the left side of the jump and in the right picture we see the transmission
to the right of the jump.

where
eT1 =

[
1 0

]
, eT2 =

[
0 1

]
. (5.79)

Thus it is enough to compute the matrices Sm for each grid point xm,

Sm =
[
F̄R(xm, e1) F̄R(xm, e2)
F̄L(xm, e1) F̄L(xm, e2)

]
, 0 ≤ m ≤M, (5.80)

i.e., solve one micro problem per macro grid point. We then formulate the flux
F̄ (xm, ~E) for some grid point xm as a linear mapping via the transfer matrix Sm,

F̄ (xm, ~E) =
[
F̄R(xm, ~E)
F̄L(xm, ~E)

]
= Sm ~E (5.81)

Note that for smooth a with |ax| small, S will be almost diagonal. In the case when
a has a jump we sample the flux on two places, to the left and to the right of the
jump, thus obtaining two different matrices for that grid-point, (SR)m and (SL)m.
One matrix for each side of the the jump. In the case when we cannot say for
sure where there is a jump we can choose to always compute both matrices for each
grid-point.
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Algorithm 5.1 HMM algorithm for the wave equation. Uses microsolver Algo-
rithm 5.2.
Discretize domain Ω into x0, x1, . . . , xm ∈ Ω and time [0, T ] into t0, t1, . . . , tN
such that the grid xk is aligned with the macro grid, and the initial data is
resolved, and λ = ∆t

∆x satisfies the CFL condition amax
∆t
∆x ≤ 1.

Compute initial data Ē0
m from ER and EL as in (5.67).

OPTIONAL: Precompute fluxes:
for n = 0, 1, . . . , N do
Precompute fluxes as described in Remark. 20.

end for
MAIN LOOP: time step solution:
for n = 0, 1, . . . , N do

(ĒR)n+1
m = (ĒR)nm − λ

(
(F̄RL )nm − (F̄RR )nm−1

)
(ĒL)n+1

m = (ĒL)nm − λ
(
(F̄LL )nm+1 − (F̄LR )nm

)
end for

Algorithm 5.2 microsolver: Compute F̃ given x′, ER and EL.
Pick Y ε such that Y ε = [−ymax, ymax] and ymax = η + τ maxx∈Y ε a(x).
Discretize Y ε into x0, x1, . . . , xM and time [−τ, τ ] into t0, t1, . . . , tN such that
ε

∆x = ρ (points per wave length measure) and λ = ∆t
∆x satisfies the CFL condition

amax
∆t
∆x ≤ 1.

Compute initial data (vε)0
m = ... and (vε)−1

m = ....
for n = 0, 1, . . . , n do
Compute (uε)n+1

m according to (5.72).
Compute auxiliary variables (uεt )nm and (uεx)nm as in (5.77).
Compute (GR)n as − ε

2

4
∫
Kηa|vεt − avεx| on

Compute (GL)n as ε2

4
∫
Kηa|vεt + avεx| on

end for
Compute FR = (KτGR)(ξ, ϕ).
IMPORTANT: If this macro grid point has a jump of width δ we use, instead
of a kernel and a point sampling at x = ±δ and at t = τ .
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5.3 Numerical Results

In this experiment we will consider a wave traveling through a constant medium
with a0 = 1 to the left of b0 = 0.45 and to the right of b1 = 0.55. In between
b0 ≤ x ≤ b1 we have a1 = 1/3. The material has a smooth jump from a0 ↔ a1 at
the points b0 and b1. The width of the jumps is denoted δ. We have constructed a(x)
as the square root of a2(x) where a2 is continuously differentiable for all 0 ≤ x ≤ 1.
The form of a2(x) is,

a2(x) =



a2
0 0 ≤ x < − δ2 + b0,

a2
0 + (a2

1 − a2
0)v
(

(x−b0)+ δ
2

δ

)
− δ2 + b0 ≤ x ≤ δ

2 + b0,

a2
1

δ
2 + b0 < x < − δ2 + b1 < x < δ

2 + b1

a2
1 + (a2

0 − a2
1)v
(

(x−b1)+ δ
2

δ

)
− δ2 + b1 ≤ x ≤ δ

2 + b1,

a2
0

δ
2 + b1 < x ≤ 1,

where 
a0 = 1, a1 = 1

3 ,

b0 = 0.45, b1 = 0.55,
δ = 0.0005, v(x) = −2x3 + 3x2.

(5.82)

Note that a2 is made 1-periodic outside Ω = [0, 1] in some suitable way. We show
a graph of a in Figure 5.6.

From theory we know that in the limit as δ → 0 the amplitude of the reflected
wave uεref will be of order γ|uεinc| where uεinc is the incident wave that hits the
discontinuity from the left and γ is the reflection coefficient given by [33],

γ = a0 − a1

a0 + a1
.

In the limit of our setup we have γ = 0.5, i.e., the reflected wave will be half the
amplitude of the incident wave.

The interesting part in this experiment is that geometrical optics (GO) fails to
capture this reflection effect. The coarse scale GO solution will travel through the
jump unaffected.

At the jump xm = 0.45 or xm = 0.55 we use 128 grid points per ε in the micro
problem to accurately capture the effects of the jump. For all other macro grid
points we use the analytical form that FR = aE and FL = −aE to compute the
fluxes. For the micro problem we used ε = 0.5 · 10−3, η = ε, τ = 2ε, λ ≈ 1. In
this example we did not use a kernel, instead we point sampled the fluxes at a fixed
x = ±η/4 with respect to the center of the micro box (seen in Figure 5.1).

The transmission matrices SR and SL at the jump at x = 0.45 are,

SR =
[
−0.75382 −0.082062

0 0.33333

]
, SL =

[
−1 0

0.24619 0.25127

]
, (5.83)
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Figure 5.2: The initial wave uε (real part) for numerical experiment 5.3.

and at the jump at x = 0.55 they are,

SR =
[
−0.25127 −0.24619

0 1

]
, SL =

[
−0.33333 0
0.082062 0.75382

]
. (5.84)

We present the initial data and the numerical results at t = 0 and at t = T in
Figure 5.2, 5.3, 5.4 and 5.5. We see that our numerical method accurately captures
the reflected energy on both left and right side of the middle obstacle which lower
wave propagation speed.
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Figure 5.3: Initial energy at t = 0 for numerical experiment 5.3. The energy on the
left side of the jump is right going, and the energy on the right side of the jump is
left going.
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Figure 5.4: Energy Ē at t = T for the numerical experiment 5.3. On each side of
the jump we see the energy that was reflected from the jump.
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Figure 5.5: Energy Ē at t = T for the numerical experiment 5.3 zoomed at left
reflection.
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to a = a0 at x = b1.





Chapter 6

Future Work

In this chapter we discuss ideas that can be added to the work we have done on
the subject of numerical methods for multiscale wave propagation.

6.1 Long Time Wave Propagation with Well-Posed
Macroscopic PDE

One issue related to our proposed HMM method for long time wave propagation,
e.g., where T ε = O(ε−2), is that it is based on an ill-posed model equation,

utt − ∂xF = 0, F = Āux + βε2uxxx, Ω× [0, T ε].

Even though the initial data is band limited, local truncation errors accumulate and
the numerical solution blows up. As we described in Section 2.5, the equation needs
to be regularized to be of any practical use. This raises a question of the methods
usability. For instance, in an engineering application it could prove difficult to
accurately determine correct choice of regularization. We have used a low-pass
filtering technique based on coarse grids and we speculate that determining the
correct grid size could be difficult in a real world application. To address this
problem, and as future work on HMM for long time wave propagation problems, it
would be interesting to try and use another method for the reconstruction of the
micro problem, using ux and uxtt instead of ux and uxxx. This approach would be
consistent with the well-posed equation in Remark 18,

utt − ∂xF = 0, F = Āux + ε2 β

Ā
uxtt = 0, Ω× [0, T ε].

6.2 High Contrast Problem

Wave propagation in periodic elastic composites with high contrast has been studied
by Smyshlyaev [50] in the context of non-classical homogenization of so called high

69
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contrast problems [12, 5, 51]. The setting is the following. We assume that Aε(x) =
A(x, x/ε) where A(x, y) is 1-periodic in y ∈ Y = [0, 1]d. Furthermore, assume that
A(x, y) = δ in a “porous cavity” in Y . Outside the cavity A is assumed to be
positive and independent of δ and ε. Smyshlyaev showed that in the limit as ε→ 0
and where the porosity is of so called “double porosity type” [4], e.g., δ = ε2, the
micro and macro scales are coupled in a non-trivial way. The effective equation in
this case will be two coupled wave equations. One equation over the macroscopic
domain Ω and one equation over a periodic cell Y .

6.3 Bloch Waves

So far we have only considered solutions of the wave equation where the material
Aε has fast variations of the order ε and the initial data is slowly varying; or the
material is smooth but the initial data is highly oscillatory. Another interesting
regime is when the variations in Aε is of the same order as the oscillations in the
initial data. The effective equation in this case will be the amplitude v, which solves
a non-oscillatory wave equation and is related to the oscillatory solution uε(x, t) by,

uε(x, t) = v(x, t) exp(iωt/ε)Ψ(x/ε),

where Ψ and ω are the Bloch function with its corresponding eigenvalue. One
important application related to this regime is the numerical simulation of meta
materials. Meta materials are artificial materials which gain their properties from
structure rather than composition, using small inhomogeneities to create effective
macroscopic behavior [20]. A big motivation behind the research on meta materials
are the “negative index of reflection” materials (NIM).

6.4 HMM for High Frequency Wave Propagation in Higher
Dimensions

In [23] we demonstrated an HMM method for high frequency wave propagation
problems in one dimension. The main new difficulty in higher dimensions, is the
fact that the solution in general is made up of any number of waves going in any
directions, not just two waves going backwards and forwards as in one dimension.

One way to treat this case is to explicitly keep track of the directions of the
waves and solve them individually. Each wave would have its own amplitude and
phase. These would be the macroscopic variables. The direction would correspond
to the gradient of the phase. To update the amplitudes and phases from the solution
of a micro problem one would need some filtering mechanism. The issue of how to
add new waves, which appear for instance at caustics, must also be addressed.

Another way to approach the multi-dimensional case would be to consider the
energy as a function of angle E = E(x, t, θ), representing the wave energy prop-
agating in the θ-direction, in analogue with the EL and ER energies for the one-
dimensional case. In the high frequency limit this energy function satisfies the
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Liouville equation
Et + v(x, θ) · ∇xE + d(x, θ)Eθ = 0,

where

v(x, θ) = a(x)(cos θ, sin θ), d(x, θ) = ∇a(x) · (sin θ,− cos θ).

The macroscopic equation would hence be set in one dimension higher than the
wave equation, but it would be independent of ε. In an HMM method E would be
discretized also in θ. The micro problems would still solve the wave equation.
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