
Algorithms and Codes for Wave Propagation

Problems

Henrik Holst
KTH Royal Institute of Technology

School of Computer Science and Communication
Department of Numerical Analysis

SE-100 44 Stockholm

November 14, 2011

Abstract

This technical report is a summary of selected numerical methods for
multiscale wave propagation problems. The main topic is the discussion
of finite difference schemes, kernels for computing the mean value of oscil-
latory functions and how to compute coefficients in an effective equation
for long time wave propagation.

1 Introduction

In this technical report we will describe some of the numerical codes written in
Matlab [10], Sage [12] and Maple [9] while working on multiscale wave propaga-
tion problems, [2, 5, 6, 4]. The intention is not to give a complete description of
all codes that we have used, but to provide students and new researchers in the
field with a few “tried and tested” ideas to start out with. This report also acts
as a forward pointer and appendix to the papers mentioned above, co-authored
with Prof. Björn Engquist and Prof. Olof Runborg.

The common denominator for our work has been the wave equation, written
in what we call “flux form”,{

utt −∇ · f = 0, Ω× [0, T],

u(x, 0) = u0(x), ut(x, 0) = u1(x), ∀x ∈ Ω,
(1)

with Ω-periodic boundary conditions. We assume that Ω ⊂ Rd is a d-dimensional
cube. We will classify (1) into four types depending on which numerical and
mathematical method used:

DNS : We assume that u has oscillations of order ε. The oscillations can be due
to fast variations in Aε where f = Aε∇u, or due to high frequency initial
data of order 1/ε. DNS is an acronym for direct numerical simulation
borrowed from computational fluid dynamics (CFD).

HOM : The approximate solution to (1) where we approximated an oscillatory
flux f = Aε∇u with f = Ā∇u. The coefficient Ā is the homogenized

1

(HOM) coefficient of Aε with no fast oscillations, [1]. This model does
not need as many grid points as the DNS computation since the solution
will not be oscillatory on the ε scale. However, this model is only valid
for T = O(1) with respect to ε. We will refer to T = O(1) as finite time
problems.

EFF : The approximate solution to (1) for T = O(ε−2). We will refer to
problems with such T as long time problems. In this long time problem,
in one dimension, it is not enough to approximate f = Aεux by f = Āux.
We need to add an additional term to the flux,

f = Āux + ε2βuxxx,

which captures the dispersive behavior of the solution, [11, 4, 6, 7]. We
will discuss this dispersive wave equation (e.g., effective equation (EFF))
more in Section 2.2.

HMM : A heterogeneous multiscale method (HMM) solution. The equation (1)
is discretized on a coarse grid. The evaluation of f on the discrete grid
points are based on computations of micro problems over micro boxes
of size proportional to ε. In the micro problems the full wave equation
is solved, as described in DNS above. The macroscopic fluxes are then
evaluated by computing the mean value of f = Aε∇u inside each micro
box. The HMM method accurately captures the coarse scale solution up
to T = O(ε−2), [3].

In [4] we developed a HMM method where left and right going energy where
natural choices of coarse scale variables. The two macroscopic variables satisfied
a pair of advection equations which we discretized with an upwind scheme. The
implementation was done in a similar fashion as for the wave equation where
the fluxes are computed by from micro problems.

2 Finite difference methods for the wave equa-
tion

The numerical scheme used to discretize (1) is a method of lines (MOL) method
[8]. The flux f is discretized on uniform grid with M discrete points (excluding
related boundary conditions) in lexicographical ordering. In time, we use a three
point second order central difference approximation,

utt ≈
un+1
m − 2unm + un−1

m

∆t2
, ∆t =

T

N
.

The discrete system takes the form,

un+1
m = 2unm − un−1

m +
∆t2

∆x
D · fnm, (2)

where 1
∆xD · f

0
m is a discrete approximation of ∇ · f at t = 0. We will use the

notation 1
∆xDu

n
m for the discrete approximation of ∇u. The flux f lives on a

spatially staggered grid, shifted one half grid point in one coordinate direction.

2

Staggered grids are a common technique in numerical schemes for conservation
laws, [8]. In Section 6 we give a detailed description of the finite difference
schemes used for one, two and three dimensional problems, as well as a finite
difference scheme which has a smaller phase error. That scheme is especially
well suited long time problems, T = O(ε−2), where we want as little numerical
dispersion as possible to avoid contaminating the correct dispersive behavior of
the solution.

2.1 Initial time step

In the two-step method (2) we need to provide u−1
m (or u1

m) with another method
than the suggested two-step method. We will compute u−1

m with the one-step
approximation,

u−1
m = u(xm, 0)−∆tut(xm, 0) +

(−∆t)2

2
utt(xm, 0) + O(∆t3)

≈ u0(xm)−∆tu1(xm) +
∆t2

2∆x
D · f0

m.

2.2 Dispersion analysis for one-dimensional problems.

In [6] and [4] we want to find the dispersive solution of the long time wave
equation in one dimension, where f in (1) is of the form,

f = Āux + ε2βuxxx.

We will consider two numerical schemes and analyze the phase error related to
the exact phase given from f above. For the analysis we will consider f as an
exact quantity given from a piecewise third order interpolation polynomial p
interpolating u on a uniform grid, as in [6]. We assume that,

f =
(
Ā∂x + βε2∂xxx

)
p, (3)

where the polynomial pm−1/2 is defined in a neighborhood around the stag-
gered grid points xm−1/2, the same grid point where fnm−1/2 is defined. The
interpolation polynomial pm−1/2 is of the form,

pm−1/2(x) = cm1 + cm2(x− xm−2) + cm3(x− xm−2)(x− xm−1)

+ cm4(x− xm−2)(x− xm−1)(x− xm),

where the coefficients cmn are given by,

cm1 = um−2,

cm2 =
um−1 − um−2

∆x
,

cm3 =
um − 2um−1 + um−2

2∆x2
,

cm4 =
um+1 − 3um + 3um−1 − um−2

6∆x3
.

The first scheme is of the form,

un+1
m = 2unm − un−1

m +
∆t2

∆x

(
fnm+ 1

2
− fnm− 1

2

)
, (4)

3

and the second scheme is of the form,

un+1
m = 2unm − un−1

m +
∆t2

24∆x

(
−fnm− 3

2
+ 27fnm+ 1

2
− 27fnm− 1

2
+ fnm− 3

2

)
. (5)

The first scheme is good for finite time problems and the second scheme is suited
for long time wave propagation problems. We define the following quantities,

λ =
√
Ā

∆t

∆x
, ρ =

√
β

Ā

ε

∆x
,

and

c1 =
λ2

24
, c2 =

λ2

242
, d = 24ρ2.

The first scheme, expanding in terms of unm, is of the form,

un+1
m = 2unm − un−1

m

+ c1
(
−unm+2 + 28unm+1 − 54unm + 28unm−1 − unm−2

)
+ c1d

(
unm+2 − 4unm+1 + 6unm − 4unm−1 + unm−2

)
,

and is second order accurate in both time and space. The second scheme is of
the form,

un+1
m = 2unm − un−1

m

+ c2
(
unm+3 − 54unm+2 + 783unm+1 − 1460unm

+783unm−1 − 54unm−2 + unm−3

)
+ c2d

(
−unm+3 + 30unm+2 − 111unm+1 + 164unm − 111unm−1

+30unm−2 − unm−3

)
,

and is also second order in time and space. Both the schemes have the stability
condition,

|gi| ≤ 1, g2
i = (2 + cipi(v))gi − 1, i = 1, 2,

where gi is called the amplification factor for scheme i. The polynomial p1(v)
for the first scheme (4) is given by{

p1(v) = Av2 +Bv + C,

A = 4(d− 1), B = −8(d− 7), C = 4(d− 13),

and for the second scheme (5), the polynomial p2(v) is given by
p2(v) = Av3 +Bv2 + Cv +D,

A = −8(d− 1), B = 120

(
d− 9

5

)
, C = −216

(
d− 65

9

)
, D = 104 (d− 13) .

In [4] we proved stability for (5) in terms of ε, Ā, β, ε, ∆t and ∆x:

Theorem 1. The finite difference scheme (5) applied to the effective equation
(1) with 1-periodic boundary conditions and f as in (3), is stable for ∆t and
∆x such that

ε

∆x
≤

√
7Ā

24β
,

4

and

∆t

∆x
≤ 24√

Ā

√
h

(
24ε2β

∆x2Ā

)
,

where

h(x) =


1

784− 112x
, 0 ≤ x < 21

5
,

x2 − 2x+ 1

128
(
2(x2 − x+ 1)3/2 − 2x3 + 3x2 + 3x− 2

) , 21

5
≤ x ≤ 7.

It is a fact that the schemes (4) and (5) are non-dissipative, see [13, 6],
meaning that the amplification factor g satisfies that |g| = 1. The major source
of concern is therefore the numerical phase error with respect to the exact phase.
We will study the phase error for the two schemes above in relation to the exact
phase, given below. The solution to (1) with f as in (2.2), is of the form,

u(x, t) =
1√
2π

∫ ∞
−∞

û+(ω)eiω(x+t
√
Ā−βε2ω2) + û−(ω)eiω(x−t

√
Ā−βε2ω2) dω,

where û+ and û− are given from the initial data, [13]. To simplify the analysis
we assume that the initial data is such that û+ = 0 and we have a right going
wave. The Fourier transform of u satisfies

û(ω, t+ ∆t) = e−i∆tω
√
Ā−βε2ω2

û(ω, t).

We define the phase speed φ for frequency ω as

φ(ω) =

√
Ā− βε2ω2,

and the numerical phase speed α is defined by, [13]

g = |g|e−i∆tα(ω),

where g is the amplification factor of the numerical scheme.
We show a dispersion plot for the exact phase and the two numerical phases

for the schemes (4) and (5) in Figure 1, where we have used the following
parameters: 

ε = 0.01, Aε(x) = 1.1 + sin
2πx

ε
,

Ā =
√

0.21, β = 0.01078280318,

H =
1

150
, K =

H

2
.

2.3 Matrix formulation

We have chosen to use a matrix formulation for our finite difference solvers.
Matlab is very efficient on sparse matrix times vector operations and it is sim-
ple to produce discrete difference operators as sparse matrices. In Table 3 we
demonstrate the technique described below.

5

0 0.5 1 1.5 2 2.5 3
0.4

0.45

0.5

0.55

0.6

0.65

fn

m+1
2

−fn

m− 1
2

H

−fn

m+3
2

+27fn

m+1
2

−27fn

m− 1
2

+fn

m− 3
2

24H

φ(Hξ)

Figure 1: Dispersion plot over 0 < Hξ ≤ π of the exact phase and the two
numerical schemes in the example in Section 2.2.

6

The two-step schemes we consider, (4) and (5), can be written on matrix
form. We have, for all grid points not subject to boundary conditions, I 0 0

0 I 0
−F 0 I


︸ ︷︷ ︸

=B

un+1
m

unm
fn+1
m

 =

2I −I ∆t2

∆xD·
I 0 0
0 0 0


︸ ︷︷ ︸

=A

 unm
un−1
m

fnm

 , (6)

and denote ynm =
[
unm un−1

m fnm
]
. The initial step y0

m is given from initial
data and B and A are square sparse matrices with the diagonal blocks of size
corresponding to the unknowns we are time stepping. The flux operator Funm
should be a discrete flux f , which we assume will be linear in u. For the four
different regimes: DNS (also high freq. initial data), HOM, EFF and HMM we
have, 

F = 1
∆xA

εD, (DNS),

F = 1
∆xAD, (DNS; high freq. initial data),

F = 1
∆x ĀD, (HOM),

F = 1
∆x ĀD + ε2β

∆x3D
(3), (EFF),

F = 1
∆x F̃ (xm−1/2, x)Ix + · · · , (HMM),

where F̃ (xm−1/2, Q) is the mean value of the solution of the (corrected) HMM
micro problem, cf. [4], in the point xm−1/2 with initial data Q. The matrix Ix
projects the four closest grid points um−2, . . . , um+1 around the point xm−1/2

on a linear polynomial. Higher order projection operators Ix2 , . . ., are defined
analogously. The matrix Aε is a M ×M matrix,

Aεij =

{
Aε(xi−1/2), i = j,

0, otherwise,

and Ā and β are defined analogously. As before, difference operators 1
∆x (D·)

and 1
∆xD are discrete approximations of (∇·) and ∇, taken at a staggered grid

in space and periodic boundary conditions. The matrix 1
∆x3D

3unm is finite dif-
ference approximation of the third derivative of u. All finite difference matrices
are computed with the Matlab code spfd in Table 1. In Table 2 we demonstrate
a simple use-case of spfd and result in Figure 2.

The periodic boundary conditions for unm are implemented with the two
matrices,

unint = P ↓un, un = P ↑unint,

where unint is the interior points of the numerical solution unm. We want unm to
hold the solution including the boundary conditions. The projection operators
are used to be able to hold a solution over the entire domain Ω to easily plot
the entire solution without worrying about applying boundary conditions. Note
that we have always used periodic boundary conditions in our computations.

The following of this section will be specific for one dimensional problems.
To time step the solution in the usual way we define two projection operators
which adds and removes the leftmost value un0 . The projection operators P ↑ :
RM → RM+1 and P ↓ : RM+1 → RM are represented by a (M + 1) ×M and

7

M × (M + 1) matrix respectively,

P ↑ij =


1, i = 1 and j = M,

1, i > 1 and i− 1 = j,

0, otherwise,

P ↓ij =


0, j = 1,

1, i = j + 1,

0, otherwise.

We can more easily understand what P ↑ and P ↓ does on a pair of grid functions,

P ↑


u1

u2

...
uM

 =


uM
u1

...
uM

 , P ↓


u0

u1

...
uM

 =


u1

u2

...
uM

 .

2.3.1 Handling nonlinear terms

We consider the Burgers equation, in one dimension,ut + ∂xf = 0,

f(u) =
1

2
u2,

(7)

with smooth initial data and periodic boundary conditions. If we discretize (7)
with upwind scheme,

un+1
m = unm −

∆t

∆x

(
Fnm − Fnm−1

)
, m = 1, 2, . . . ,M,

Fn+1
m =

1

2
(un+1
m)2.

(8)

We have a nonlinear term (un+1
m)2 appearing in the computation of Fn+1

m . We
handle this by adding an additional term to the time step recurrence relation
(6),

1

2
D diag(yn+1)Cyn+1︸ ︷︷ ︸

new quadratic term

+Byn+1 = Ayn. (9)

Now we have in each time step, a nonlinear equation on the form H(yn+1) = 0,
where H(x) = 1

2D diag(x)Cx + Bx − b where b = Ayn. We will use a simple
Newton iteration for this job with the start guess yn. We note that the Jacobian
J(x) of H is

J(x) = diag(Dx)C +B,

thus, the Newton iteration will take the form,

b = Ayn,

x0 = yn,

Hk =
1

2
D diag(xk)Cxk +Bxk − b

Jk = C diag(Dxk) +B,

∆k = (Jk)−1Hk,

xk+1 = xk −∆k.

8

We iterate until ‖∆k‖/‖Hk‖ is smaller than a specified tolerance.
The matrix formulation of the form (9) for our scheme (8) will be,

1

2

[
0 0
−I 0

]
︸ ︷︷ ︸

=D

[
un+1 0

0 Fn+1

]
︸ ︷︷ ︸

=diag(yn+1)

[
I 0
0 0

]
︸ ︷︷ ︸

=C

[
un+1

Fn+1

]
+

[
I 0
0 I

]
︸ ︷︷ ︸

=B

[
un+1

Fn+1

]
=

[
I −∆t

∆xD
0 0

]
︸ ︷︷ ︸

=A

[
un

Fn

]
.

3 Coefficients for the long time wave equation

The code in this section computes the coefficients for the one-dimensional effec-
tive equation for long time wave propagation, [4, 6]. This effective equation is
of the form (1),

f = Āux + ε2βuxxx.

Suppose that Aε(x) = A(x, x/ε) where A(x, y) is 2π-periodic in y. The coeffi-
cient Ā will be the homogenized coefficient, the same as,

Ā(x) =

(
1

2π

∫ 2π

0

dy

A(x, y)

)−1

with x being held fixed. Santosa and Symes gave another explicit nested tripple
integral also for β when A(x, y) = A(y). We “extended” their idea by the
same idea as for homogenized equation, by freezing the slowly varying variable
x = x0 and do the computation as if A depended only on y. We present a
Maple code in Table 4 which computes the coefficients Ām− 1

2
= Ā(xm− 1

2
) and

βm− 1
2

= β(xm− 1
2
) for m = 1, 2, . . . ,M for the grid point xm− 1

2
= (m − 1

2)∆x

on a uniform grid ∆x = 2π/M . Note that the integral is computed numerically,
as Maple is usually unable to give β in an exact symbolic form.

4 Local average kernel

In the multiscale methods we have developed, we often use a kernel to accelerate
the convergence of mean value computations of oscillatory functions fε(x) =
f(x, x/ε), where f(x, y) is periodic in y. The convergence rate in the mean
value computation,

1

2η

∫ η

−η
fε(x) dx→ f̄(x),

ε

η
→ 0,

can be accelerated by using a smooth kernel K from a function space Kp,q and
taking

1

η

∫ η

−η
K (x/η) fε(x) dx→ f̄(x)

ε

η
→ 0.

The theory of such local averaging kernels are described in [4] and [6], with a
short summary here: we say that K ∈ Kp,q if K has compact support on [−1, 1]

9

and is q times continuously differentiable and the following p moment conditions
are fulfilled: ∫

R
K(x)xi dx = δi, 0 ≤ i < p.

We will compute the coefficients ap−1, ap−2, . . . , a0 in the polynomial factor P (x)
of degree p− 1 in the polynomial kernel K, factorized on the form,

K(x) =

{
(1− x2)q+1P (x), −1 ≤ x ≤ 1,

0 otherwise.

These p conditions gives us an equation system for ap−1, ap−2, . . . , a0 of the form
Ax = b, where

Aij =
∫ 1

−1
xi(1− x2)q+1xp−1−j dx,

bi = δi,

xi = ap−1−i,

0 ≤ i, j < p.

The elements in A will be rational numbers, thus the equation system Ax =
b involves only rationals. We can solve this linear equation system exact in
Sage, which features an exact solver for system of equations over rationals. The
computed coefficients ap−1, ap−2, . . . , a0, will have a minimal numerical error on
the order of ∼ 10−16 when loaded into Matlab, which uses 64-bit IEEE floating
point as default.

The code in Table 5 show a Sage code which computes a set of Matlab
ASCII matrices containing the P (x) polynomial coefficients, stored in Matlab
polynomial ordering, cf. help polyval.

5 Code listings

In this section we show the Matlab, Sage and Maple codes discussed in the text.

10

function S = spfd(varargin)

% S=SPFD(NX ,SI ,SC), 1d sparse FD op.,

% S=SPFD(NX ,SI ,NY ,SJ ,SC), 2d sparse FD op.,

% S=SPFD(NX ,SI ,NY ,SJ ,NZ ,SK ,SC) 3d sparse FD op..

%

% A second order scheme for d^2/ dx^2 in 1d and M grid points:

% DX =1/M, S=SPFD(M, -1:1 ,[1 -2 1]/ DX ^2).

%

switch nargin

case 3

S = spfd1(varargin {1}, varargin {2}, varargin {3});

case 5

S = spfd2(varargin {1}, varargin {2} ,...

varargin {3}, varargin {4}, varargin {5});

case 7

S = spfd3(varargin {1}, varargin {2} ,...

varargin {3}, varargin {4} ,...

varargin {5}, varargin {6}, varargin {7});

otherwise

error(’wrong argument count ’)

end

function S = spfd1(nx,si ,sc)

nsc = length(sc); a = 0; b = 0; N = nsc*nx;

iv = zeros(1,N); jv = zeros(1,N); sv = zeros(1,N);

for i = 1:nx

a = b + 1; b = b + nsc;

kij = repmat(i,[1 nsc]);

ksc = 1 + mod(i+si -1,nx);

iv(a:b) = kij; jv(a:b) = ksc; sv(a:b) = sc;

end

S = sparse(iv,jv,sv);

function S = spfd2(nx,si ,ny,sj,sc)

nsc = length(sc); a = 0; b = 0; N = nsc*nx*ny;

iv = zeros(1,N); jv = zeros(1,N); sv = zeros(1,N);

for j = 1:ny, for i = 1:nx

a = b + 1; b = b + nsc;

kij = repmat(sub2ind ([nx ny],i,j) ,[1 nsc]);

kx = 1 + mod(i+si -1,nx);

ky = 1 + mod(j+sj -1,ny);

ksc = sub2ind ([nx ny],kx ,ky);

iv(a:b) = kij; jv(a:b) = ksc; sv(a:b) = sc;

end , end

S = sparse(iv,jv,sv);

function S = spfd3(nx,si ,ny,sj,nz ,sk,sc)

nsc = length(sc); a = 0; b = 0; N = nsc*nx*ny*nz;

iv = zeros(1,N); jv = zeros(1,N); sv = zeros(1,N);

for k = 1:nz, for j = 1:ny, for i = 1:nx

a = b + 1; b = b + nsc;

kij = repmat(sub2ind ([nx ny nz],i,j,k) ,[1 nsc]);

kx = 1 + mod(i+si -1,nx);

ky = 1 + mod(j+sj -1,ny);

kz = 1 + mod(k+sk -1,nz);

ksc = sub2ind ([nx ny nz],kx,ky,kz);

iv(a:b) = kij; jv(a:b) = ksc; sv(a:b) = sc;

end , end , end

S = sparse(iv,jv,sv);

Table 1: Matlab routine spfd.m for one, two and three dimensional periodic
problems.

11

xmin = 0, xmax = 1, nx = 50

si = -1:0, sc = [-1 1]

L = xmax - xmin , dx = L/nx

x = xmin + (1:nx)’*dx;

xm = xmin + (1:2:2* nx) ’*(dx/2);

u = sin ((2*pi/L)*x);

X2 = spdiags(xm.^2,0,nx ,nx);

D = spfd(nx,si ,sc/dx);

vx = X2*(D*u);

ux = (2*pi/L)*xm .^2.* cos ((2*pi/L)*xm);

abs_err = max(abs(ux-vx))

plot(xm ,vx,’x’,xm ,ux,’o’)

grid on, legend(’numerical ’,’exact ’,’location ’,’northwest ’)

Table 2: Simple demonstration of spfd.m where we compute f = x2ux for a
smooth function u on a uniform grid xj−1/2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

5

6

7

numerical
exact

Figure 2: Result plot from the code in Table 2. The maximum absolute error
(abs err) is 4.0431e-03.

12

eps =0.01 ,c=sqrt(sqrt (.21)),Tmax =1/c

M=1600 ,N=4000, axis_ =[0 1 -.1 1.1], plot_every_nth =10

dx=1/M,dt=Tmax/N,lambda=dt/dx,rho=eps/dx

A_func=@(x)1.1+ sin(2*pi*x/eps)

%A_func=@(x)repmat(c^2, size(x));

u0_func=@(x)exp (-100*(mod(x,1) -0.5) .^2);

u1_func=@(x)zeros(size(x));

%ue_func=@(x,t)0.5*(u0_func(x+c*t)+u0_func(x-c*t));

x=(0:M) ’*dx;xi=x(2: end);xm =(1:2:2*M-1) ’*(dx/2);

I=speye(M,M);

Dm=spfd(M,[0 -1],[1 -1]);

Dp=spfd(M,[1 0],[1 -1]);

Aop=spdiags(A_func(xm),0,M,M);

Fop=Aop*Dm;

Pdown=[sparse(M,1) speye(M,M)];

Pup=[sparse(1,M-1) 1; speye(M,M)];

p=[1 M+1 2*M+1];q=[M 2*M 3*M];

pe=[1 M+2 2*M+2];qe=[M+1 2*M+2 3*M+1];

u=Pup*u0_func(xi);

f=1/dx*Fop*(Pdown*u);

uold=Pup*(u0_func(xi)-dt*u1_func(xi)+(dt ^2/(2* dx))*Dp*f);

y=[u;uold;f];

A=sparse (3*M,3*M);B=speye (3*M,3*M);

Ppre=blkdiag(Pdown ,Pdown ,I);

Ppost=blkdiag(Pup ,Pup ,I);

B(p(3):q(3),p(1):q(1))=-(1/dx)*Fop;

A(p(1):q(1),p(1):q(1))=2*I;

A(p(1):q(1),p(2):q(2))=-I;

A(p(1):q(1),p(3):q(3))=(dt^2/dx)*Dp;

A(p(2):q(2),p(1):q(1))=I;

for n=1:N

y=Ppost*(B\(A*(Ppre*y)));

if (mod(n,plot_every_nth)==0) ||(n==N)

plot(x,y(pe(1):qe(1)))

axis(axis_),drawnow

end

end

Table 3: An illustration of how we setup and use the matrix formulation in
Section 2.3.

13

M := 100;

rho := y -> 1;

mu := y -> 11/10 + sin(y);

dx := 2*Pi/M:

avg := (f:: procedure) -> (1/(2* Pi)*integrate(f(x),x=0..2*Pi)):

inv := (f:: procedure) -> (x -> 1/f(x)):

for m from 1 to M do

x0 := (m-1/2)*dx:

c2 := 1/(avg(rho)*avg(inv(mu))):

Omega1 := sqrt(c2):

p1 := Integrate(rho(y)*Integrate(inv(mu)(s)*

Integrate(rho(r),r=0..s),s=0..y),y=0..2*Pi):

p2 := Integrate(inv(mu)(y)*Integrate(rho(s)*

Integrate(inv(mu)(r),r=0..s),s=0..y),y=0..2*Pi):

p3 := Integrate(rho(y)*Integrate(inv(mu)(r),r=0..y),y=0..2*Pi):

d := 3* Omega1 ^3/(2* Pi^3) * p1

+ 3* Omega1 ^5* avg(rho)^2/(2* Pi^3) * p2

- 1/avg(inv(mu))*(1/ Omega1 + 3* Omega1/Pi^2 * p3

- 3* Omega1 ^3/(4* Pi^4) * p3^2):

Omega3 := Pi^2 * d / avg(rho):

alpha[m] := evalf [17](Omega1 ^2);

beta[m] := evalf [10](- Omega1*Omega3 /(3*2^2* Pi^2));

end do:

f := fopen("alpha_beta.mat", WRITE , TEXT):

for m from 1 to M do

fprintf(f,"%25.16E%25.16E%25.15E\n",

(m-1/2)*dx,alpha[m],beta[m]):

end do:

fclose(f):

Table 4: Maple code for computing the coefficients in the effective equation.
The function ρ is an “undocumented feature”. Anything but ρ ≡ 1 should be
considered untested. In our experiments we have always used ρ(x) = 1. Note
that the period of ρ and µ is assumed to be 2π-periodic in y, not 1.

14

assume K(x) := (1-x^2) ^(q+1)*P(x) where

P(x) = a1*x^(p -1) + a2 x^(p -2) + ... + ap

for p in range (1,20,2):

for q in range (-1,20,2):

A = matrix(QQ,p,p)

rhs = vector(QQ,p)

for i in range(0,p):

for j in range(0,p):

expr = (x^i*(1-x^2)^(q+1)*x^(p-1-j))

A[i,j] = expr.integrate(x,-1,1)

rhs [0] = 1

unknowns = A\rhs

name = ("olofrkern_p =%i_q=%i.mat" % (p,q))

f = open(name ,"w+")

for i in range(0,p):

str = "{0:25.16E}\n".format(float(unknowns[i]))

f.write(str)

f.close()

print "done with: p=",p,",q=",q

Table 5: Sage code to compute the coefficients of P (x) in the kernel K(x) =
(1 − x2)q+1P (x) ∈ Kp,q. The coefficients are stored in Matlab ordering, i.e.,
coefficients of the polynomial comes in descending powers.

15

6 Numerical schemes

Here we give a detailed description of the finite difference methods used for the
macro and micro solvers used to solve wave propagation problems. The solvers
are designed for one, two and three dimensions in finite time. We also describe
a second order accurate scheme used for long time wave propagation problems.
This scheme better captures the dispersive effects that are important in such
problems. We have chosen to present the schemes in a HMM method context
where we have a macro solver with an unknown flux f (computed via micro
problems) and micro solver with a known flux f = Aε∇u. The macro solvers
can also be used as a solver when f is in fact known. In the case of finite time
problems (HOM class) we have f = Āu and for the effective equation for long
time (EFF class) we have f = Āux + βε2uxxx.

6.1 1D scheme

The finite difference scheme on the macro level has the form
Un+1
m = 2Unm − Un−1

m +K2Y nm,

Y nm =
1

H

(
Fnm+ 1

2
− Fnm− 1

2

)
,

Fnm±1/2 = F (xm±1/2, P
n
m±1/2),

where Pnm−1/2 = 1
H

(
Unm − Unm−1

)
. The micro level scheme defined analogously:

un+1
m = 2unm − un−1

m + k2ynm,

ynm =
1

h

(
fnm+1/2 − f

n
m−1/2

)
,

fnm−1/2 = am− 1
2

unm+1 − unm
h

,

fnm+1/2 = am− 1
2

unm − unm−1

h
.

6.2 2D scheme

A two dimensional problem is discretized with the following schemes: The finite
difference scheme on the macro level

Un+1
m = 2Unm − Un−1

m +K2Y nm,

Y nm =
1

H

(
F

(1)

m+ 1
2 e1
− F (1)

m− 1
2 e1

)
+

1

H

(
F

(2)

m+ 1
2 e2
− F (2)

m− 1
2 e2

)
,

Fnm± 1
2 ek

= F (xm± 1
2 ek

, Pnm± 1
2 ek

),

(10)

where Pn
m+ 1

2 ek
is given by (see Figure 3)

Pnm+ 1
2 e1

=
[

1
H (Um+e1 − Um) 1

2H

(
Um+e2+Um+e2+e1

2 − Um−e2
+Um−e2+e1

2

)]T
,

Pnm+ 1
2 e2

=
[

1
2H

(
Um+e1

+Um+e1+e2

2 − Um−e1
+Um−e1+e2

2

)
1
H (Um+e2 − Um)

]T
.

16

x
ij

x
i+1,j

x
i,j+1

F
i+1/2,j

G
i,j+1/2

Figure 3: The numerical scheme (10) for P in two dimensions. The two compo-
nents of f in two different grid points are given by Fi+1/2,j and Gi,j+1/2. The
U points involved in computing Fn

m+ 1
2 e2

= Gi,j+1/2 and ∇u ≈ Pn
m+ 1

2 e2
are indi-

cated by filled circles. Note that the squares are where either (Aε11∂x +Aε12∂y)u
or (Aε21∂x +Aε22∂y)u are computed, and not the full gradient Aε∇u.

The micro level scheme is formulated as

un+1
m = 2unm − un−1

m + k2ynm,

ynm =
1

h

(
f

(1)

m+ 1
2 e1
− f (1)

m− 1
2 e1

)
+

1

h

(
f

(2)

m+ 1
2 e2
− f (2)

m− 1
2 e2

)
,

f
(1)

m+ 1
2 e1

=
a

(11)

m+ 1
2 e1

h

(
unm+e1 − u

n
m

)
+
a

(12)

m+ 1
2 e1

2h

(unm+e2 + unm+e1+e2

2
−
unm−e2 + unm+e1−e2

2

)
,

f
(1)

m− 1
2 e1

=
a

(11)

m− 1
2 e1

h

(
unm − unm−e1

)
+
a

(12)

m− 1
2 e1

2h

(unm+e2 + unm−e1+e2

2
−
unm−e2 + unm−e1−e2

2

)
,

f
(2)

m+ 1
2 e2

=
a

(21)

m+ 1
2 e2

2h

(unm+e1 + unm+e1+e2

2
−
unm−e1 + unm−e1+e2

2

)
+
a

(22)

m+ 1
2 e2

h

(
unm+e2 − u

n
m

)
,

f
(2)

m− 1
2 e2

=
a

(21)

m− 1
2 e2

2h

(unm+e1 + unm+e1−e2
2

−
unm−e1 + unm−e1−e2

2

)
+
a

(22)

m− 1
2 e2

h

(
unm − unm−e2

)
.

When approximating f
(2)

m− 1
2 e1

we take the average of unm±e2 and unm+e1±e2 to

approximate u(xm+ 1
2 e1±e2

, tn). Then we use those two averages to approximate

the y derivate of u at u(xm− 1
2 e1
, tn). The scheme is second order in both space

and time.

17

6.3 3D scheme

The macro scheme for the three dimensional problem is on the form
Unm = 2Unm − Un−1

m +K2Y nm,

Y nm =
1

H

(
F

(1,n)

m+ 1
2 e1
− F (1,n)

m− 1
2 e1

)
+

1

H

(
F

(2,n)

m+ 1
2 e2
− F (2,n)

m− 1
2 e2

)
+

1

H

(
F

(3,n)

m+ 1
2 e3
− F (3,n)

m− 1
2 e3

)
,

Fnm± 1
2 ek

= F (xm± 1
2 ek

, Pnm± 1
2 ek

),

where Pn
m+ 1

2 ek
is defined as,

Pnm+ 1
2 e1

=


1
H (Um+e1 − Um)

1
2H

(
Um+e2

+Um+e2+e1

2 − Um−e2
+Um−e2+e1

2

)
1

2H

(
Um+e3

+Um+e3+e1

2 − Um−e3
+Um−e3+e1

2

)
 ,

Pnm+ 1
2 e2

=


1

2H

(
Um+e1

+Um+e1+e2

2 − Um−e1
+Um−e1+e2

2

)
1
H (Um+e2 − Um)

1
2H

(
Um+e3+Um+e3+e2

2 − Um−e3+Um−e3+e2

2

)
 ,

Pnm+ 1
2 e3

=


1

2H

(
Um+e1+Um+e1+e3

2 − Um−e1+Um−e1+e3

2

)
1

2H

(
Um+e2+Um+e2+e3

2 − Um−e2+Um−e2+e3

2

)
1
H (Um+e3 − Um)

 .

18

The micro level scheme is a second order accurate scheme defined analogous
with the 2D scheme (6.2)

un+1
m = 2unm − un−1

m + k2ynm

ynm =
1

h

(
f

(1)

m+ 1
2 e1
− f (1)

m− 1
2 e1

)
+

1

h

(
f

(2)

m+ 1
2 e2
− f (2)

m− 1
2 e2

)
+

1

h

(
f

(3)

m+ 1
2 e3
− f (3)

m− 1
2 e3

)
f

(1)

m+ 1
2 e1

=
a

(11)

m+ 1
2 e1

h

(
unm+e1 − u

n
m

)
+
a

(12)

m+ 1
2 e1

2h

(unm+e1+e2 + unm+e2

2
−
unm+e1−e2 + unm−e2

2

)
+
a

(13)

m+ 1
2 e1

2h

(unm+e1+e3 + unm+e3

2
−
unm+e1−e3 + unm+e3

2

)
f

(1)

m− 1
2 e1

=
a

(11)

m− 1
2 e1

h

(
unm − unm−e1

)
+
a

(12)

m− 1
2 e1

2h

(unm+e2 + unm−e1+e2

2
−
unm−e2 + unm−e1−e2

2

)
+
a

(13)

m− 1
2 e1

2h

(unm+e3 + unm−e1+e3

2
−
unm−e3 + unm−e1−e3

2

)
f

(2)

m+ 1
2 e2

=
a

(21)

m+ 1
2 e2

2h

(unm+e1+e2 + unm+e1

2
−
unm−e1+e2 + unm−e1

2

)
+
a

(22)

m+ 1
2 e2

h

(
unm+e2 − u

n
m

)
+
a

(23)

m+ 1
2 e2

2h

(unm+e2+e3 + unm+e3

2
−
unm+e2−e3 + unm−e3

2

)
f

(2)

m− 1
2 e2

=
a

(21)

m− 1
2 e2

2h

(unm+e1 + unm+e1−e2
2

−
unm−e1 + unm−e1−e2

2

)
+
a

(22)

m− 1
2 e2

h

(
unm − unm−e2

)
+
a

(23)

m− 1
2 e2

2h

(unm+e3 + unm−e2+e3

2
−
unm−e3 + unm−e2−e3

2

)
f

(3)

m+ 1
2 e3

=
a

(31)

m+ 1
2 e3

2h

(unm+e1+e3 + unm+e1

2
−
unm−e1+e3 + unm−e1

2

)
+
a

(32)

m+ 1
2 e3

2h

(unm+e2+e3 + unm+e2

2
−
unm−e2+e3 + unm−e2

2

)
+
a

(33)

m+ 1
2 e3

h

(
unm+e3 − u

n
m

)
f

(3)

m− 1
2 e3

=
a

(31)

m− 1
2 e3

2h

(unm+e1 + unm+e1−e3
2

−
unm−e1 + unm−e1−e3

2

)
+
a

(32)

m− 1
2 e3

2h

(unm+e2 + unm+e2−e3
2

−
unm−e2 + unm−e2−e3

2

)
+
a

(33)

m− 1
2 e3

h

(
unm − unm−e3

)
6.4 1D scheme for long time

The finite difference scheme on the macro level
Un+1
m = 2Unm − Un−1

m +K2Y nm,

Y nm =
1

H

(
Fnm+ 1

2
− Fnm− 1

2

)
,

Fnm±1/2 = F (xm±1/2, P
n
m±1/2, Q

n
m±1/2, R

n
m±1/2),

19

where P , Q and R are defined via U ,
Pnm−1/2 =

−Um+1 + 27Um − 27Um−1 + Um−2

24H
= Ux(xm−1/2, tn) +O(H4),

Qnm−1/2 =
Um+1 − Um − Um−1 + Um−2

2H2
= Uxx(xm−1/2, tn) +O(H2),

Rnm−1/2 =
Um+1 − 3Um + 3Um−1 − Um−2

H3
= Uxxx(xm−1/2, tn) +O(H2).

The micro level scheme has better dispersive properties than the normal two
point divergence approximation, cf. Section 2.2,

un+1
m = 2unm − un−1

m + k2ynm,

ynm =
1

24h

(
−fnm− 3

2
+ 27fnm− 1

2
− 27fnm+ 1

2
+ fnm+ 3

2

)
,

fnm+ 3
2

=
am+ 3

2

24h

(
−unm+3 + 27um+2 − 27um+1 + um

)
,

fnm+ 1
2

=
am+ 1

2

24h

(
−unm+2 + 27um+1 − 27um + um−1

)
,

fnm− 1
2

=
am− 1

2

24h

(
−unm+1 + 27um − 27um−1 + um−2

)
,

fnm− 3
2

=
am− 3

2

24h

(
−unm + 27um−1 − 27um−2 + um−3

)
.

References

[1] Doina Cioranescu and Patrizia Donato. An Introduction to Homogeniza-
tion. Number 17 in Oxford Lecture Series in Mathematics and its Appli-
cations. Oxford University Press Inc., 1999.

[2] Björn Engquist, Henrik Holst, and Olof Runborg. Multiscale methods for
the wave equation. In Sixth International Congress on Industrial Applied
Mathematics (ICIAM07) and GAMM Annual Meeting, volume 7. Wiley,
2007.

[3] Björn Engquist, Henrik Holst, and Olof Runborg. Analysis of HMM for
one dimensional wave propagation problems over long time, 2011.

[4] Björn Engquist, Henrik Holst, and Olof Runborg. Multiscale methods for
one dimensional wave propagation with high frequency initial data. Tech-
nical report, School of Computer Science and Communication, KTH, 2011.
TRITA-NA 2011:7.

[5] Björn Engquist, Henrik Holst, and Olof Runborg. Multiscale methods for
the wave equation. Comm. Math. Sci., 9(1):33–56, Mar 2011.

[6] Björn Engquist, Henrik Holst, and Olof Runborg. Multiscale methods
for wave propagation in heterogeneous media over long time. In Björn
Engquist, Olof Runborg, and Richard Tsai, editors, Numerical Analysis
and Multiscale Computations, volume 82 of Lect. Notes Comput. Sci. Eng.,
pages 167–186. Springer Verlag, 2011.

20

[7] Agnes Lamacz. Dispersive effective models for waves in heterogeneous me-
dia. Math. Models Methods Appl. Sci., 21:1871–1899, 2011.

[8] R.J. LeVeque. Numerical Methods for Conservation Laws. Lecture Notes
in Mathematics. Birkhäuser Verlag AG, 1994. ISBN 9783764327231.

[9] Maplesoft. Maple 12 User Manual, 2008.

[10] MATLAB. 7.12.0.635 (R2011a). The MathWorks Inc., Natick, Mas-
sachusetts, 2011.

[11] Fadil Santosa and William W. Symes. A dispersive effective medium for
wave propagation in periodic composites. SIAM J. Appl. Math., 51(4):
984–1005, 1991. ISSN 0036-1399.

[12] W. A. Stein et al. Sage Mathematics Software (Version 4.2.1). The Sage
Development Team, 2009. http://www.sagemath.org.

[13] John C. Strikwerda. Finite Difference Schemes and Partial Differential
Equations (2nd ed.). SIAM, 2004. ISBN 0898715679.

21

