

3.2.2- Inlining Tool

Irem Aktug (KTH)

Document Number 3.2.2

Document Title Inlining Tool

Version 2.2.0

Status Final

Work Package WP 3.2

Deliverable Type Prototype

Contractual Date of Delivery 28/02/2008

Actual Date of Delivery 13/03/2008

Responsible Unit KTH

Contributors KTH

Keyword List Run-time Monitoring

Dissemination level PU

3.2.2 - Inlining Tool

Change History

Version Date Status Author (Unit) Description

1.0.0 21/9/2007 First Draft of M18 Irem Aktug (KTH)

2.0.0 10/3/2008 Working Copy of M24 Irem Aktug (KTH) Updated to include
new features such as
.jar file input and
changes in the com-
mand that runs the
inliner

2.1.0 12/3/2008 First Draft Irem Aktug (KTH) Minor changes

2.2.0 13/3/2008 Final Irem Aktug (KTH) Minor changes

S3MS - 27004 Version 2.2.0 Page 2 of 7

3.2.2 - Inlining Tool

Executive Summary

This report documents the inliner prototype for java bytecode programs. It describes:� how to download, install and use the tool and� how to access an online demo.

S3MS - 27004 Version 2.2.0 Page 3 of 7

3.2.2 - Inlining Tool

Contents

1 Introduction 5

2 Requirements 5

3 Obtaining and Installing the Inliner 5

4 Input to the Inliner 5

5 Running the Inliner 5

6 The Working of the Tool 6

7 Using the Output of the Inliner 6

8 An Online Demo 7

References 7

S3MS - 27004 Version 2.2.0 Page 4 of 7

3.2.2 - Inlining Tool

1 Introduction

This document describes how to install and run the inliner program developed at KTH. The inliner
inputs an arbitrary program in java bytecode, a policy written in ConSpec and information about the
security relevant parts of the API and outputs a modified version of the program that respects the
policy. ConSpec is a policy language developed in the course of S3MS. Further information about
ConSpec including its syntax and its semantics as security automata can be found in [1].

2 Requirements

The only requirement for running the inliner is to have JRE. WTK (Sun Java Wireless Tool Kit for
CLDC) should be installed for packaging the modified application (the output of the inliner), so that
it runs on a mobile device.

3 Obtaining and Installing the Inliner

The inliner consists of the file Inliner.jar and can be downloaded from the following url:

http : //csc.kth.se/irem/S3MS/Inliner/downloads/Inliner.jar

The downloads directory also contains the library files for API commonly used in mobile applications
(cldcapi10.jar,cldcapi11.jar,midpapi10.jar,midpapi20.jar,midpapi21.jar,wma20.jar). An alternative for ob-
taining relevant API archive files is to have WTK (Sun Java Wireless Tool Kit for CLDC) installed
in your system. The libs directory of this program includes archive files for various mobile API.
There is no installation procedure for the inliner. It is sufficient to save the file Inliner.jar to the same
directory as the untrusted application.

4 Input to the Inliner

The following files are input to the inliner:� Policy file: The policy should be written in ConSpec and should have scope Session.� Application files: All .class files of the untrusted application should be input to the inliner.
Notice that a mobile application is usually packed in a .jar file. Such an application can be input
to the inliner as it is or after unpacking (using the command jar xvf jarfile).� Library files: The archive (.jar) file for each API that is used in the application should be present
in the system.

The directory of the tool contains sample files for the above, at the end of this document we give
information on how one can use the above files to demo the execution of the tool.

5 Running the Inliner

The untrusted application should be placed in a subdirectory of the directory where the inliner is
saved. The policy file should be placed in the same directory with the inliner.
The inliner is executed by running the following command at the directory where the inliner resides:
java -jar Inliner.jar -lib libfile [-lib libfile ...] -policy policyfile -target targetfile [-target targetfile ...]
The policyfile is a text file containing a single ConSpec policy with scope Session. The libfiles are all
those .jar files that contain the declaration of a method used in one of the targetfiles. The targetfile

S3MS - 27004 Version 2.2.0 Page 5 of 7

3.2.2 - Inlining Tool

can be a .jar file or a .class file. If the class files are used, all class files of the application should be
input to the inliner.
For instance, for inlining the application in MailApp.jar stored in the same directory as the inliner,
for policy saved in file NoSMS.pol which mentions methods of the CLDC 1.1. API, we execute the
following command:
java -jar Inliner.jar -lib cldcapi11.jar -policy NoSMS.pol -target MailApp.jar

6 The Working of the Tool

The inliner first reads the policy file and, if it is a valid ConSpec file, generates code for each event
clause in the policy. The policy file is read into an abstract syntax tree with the help of code generated
by the parser generator CUP (http://www2.cs.tum.edu/projects/cup/) and lexer generator JFlex
(http://jflex.de/). After the syntax tree has been generated, it is traversed using the visitor pattern.
Type checking and register allocation is performed as nodes are visited. A symbol table is maintained
during this phase, but is then discarded, because the type information and allocated register indices
(for local variables) is stored directly in the corresponding nodes of the syntax tree.
The next step is to ”compile” the policy, i.e. create a mapping from event clauses to java bytecode. At
runtime, the guards of an event clause should be evaluated from top to bottom, and the code for the
first guard that is true should be executed. If no guard is true, the program violates the policy and
an error message should be printed followed by termination of the program. The code for the guarded
commands of the policy can then be generated by evaluating the code for each guard in turn, jumping
to the next guard if the previous was false, and having code to terminate the program after the last
guard. Directly after the evaluation of each guard, the code for the body of the guarded command is
generated, followed by a jump past the termination code. The program is terminated by invoking the
System.exit() method.
Each method of each class to be inlined is disassembled. The instructions are then visited in turn until
an invoke instruction relevant to the policy is reached and it is replaced by the suitable instructions
to enforce the policy. When all instructions of a method have been visited, the code for the method is
assembled again. The reading and writing of class files is done with the ASM bytecode manipulation
framework (http://asm.objectweb.org/).
Finally, the security state class is generated. It is a public class containing only public static fields
corresponding to the security state variables of the policy. The code to initialize those fields is placed
in the static initialization method which is automatically invoked by the JVM when the class is loaded.

7 Using the Output of the Inliner

The inliner first creates the directory working and uncompresses both application and library files into
this directory. The application and library files are scanned before the program does any inlining, to
build a class hierarchy table in program’s memory. The application files are also used when producing
the inlined code.
The inliner creates the directory inlined/working/ as a subdirectory of the current directory. The
rewritten class files of the untrusted application are copied to this directory, preserving the directory
structure of the original files. These are placed under a directory named after the application, for
the above MailApp.jar the inlined program would be placed at inlined/working/MailApp/. Additionally,
this directory contains the new class file SecState.class which is used to keep the security state as the
modified program executes.
In order to run the modified application, the contents of the directory inlined/working/appname/
should be first be verified using the verifier of the WTK. Assuming that the executables of WTK are

S3MS - 27004 Version 2.2.0 Page 6 of 7

3.2.2 - Inlining Tool

in the user’s classpath, the following command can be used for this purpose:
preverify -classpath classpath -d targetdir inputdir | classfile [classfile ...]
The classpath should contain .jar files for all API used in the program, the same files input to the
inliner as libraries. A safe approach for mobile applications is to include all .jar files found in the WTK
library. The ”-d” option places the verified files to the target directory indicated by targetdir. The
inputdir is the directory that the inlined classes are in. In this case, it would be a directory ending
with inlined/working/appname/. It is crucial to give the path to the root directory of the application,
i.e. to include appname.
preverify -classpath cldcapi11.jar -d verifiedClasses inlined/working/MailApp
The final step for running the modified program is to recompress the verified files to a jar archive. This
can be done by executing the following command at the root directory of the modified (and verified)
application:
jar cvfm jarfile META-INF/MANIFEST.MF *
The produced jar file can then be run on a mobile device after updating the corresponding jad file to
reflect the new size of the jar file.

8 An Online Demo

An online demo is displayed on the following page:
http://www.csc.kth.se/irem/S3MS/Inliner/

References

[1] I. Aktug and K. Naliuka. ConSpec – a formal language for policy specification. In F. Piessens
and F. Massacci, editors, Proc. of The First International Workshop on Run Time Enforcement
for Mobile and Distributed Systems (REM’07), volume 197-1 of Electronic Notes in Theoretical
Computer Science, pages 45–58, Dresden, Germany, 2007

S3MS - 27004 Version 2.2.0 Page 7 of 7

