
Provably Correct Runtime Monitoring∗

Technical Report

Irem Aktug Mads Dam Dilian Gurov

Royal Institute of Technology (KTH), Sweden
{irem,mfd,dilian}@csc.kth.se

February 5, 2008

Abstract

Runtime monitoring is an established technique to enforce a wide range of program
safety and security properties. We present a formalization of monitoring and monitor
inlining, for the Java Virtual Machine. Monitors are security automata given in a
special-purpose monitor specification language, ConSpec. The automata operate on
finite or infinite strings of calls to a fixed API, allowing local dependencies on parameter
values and heap content. We use a two-level class file annotation scheme to characterize
two key properties: (i) that the program is correct with respect to the monitor as a
constraint on allowed program behaviour, and (ii) that the program has a copy of the
given monitor embedded into it, through a state abstraction function that yields state
changes at prescribed points according to the monitor’s transition function. As our
main application of these results we present a concrete inliner, and use the annotation
scheme to show its correctness. For this inliner, correctness of the level II annotations
can be decided efficiently using a standard wp annotation checker, thus allowing on-
device checking of inlining correctness in a proof-carrying code setting.

1 Introduction

Program monitoring is a firmly established and efficient approach to enforce a wide range of
program security and safety properties [14, 6, 9, 8, 15, 13, 16, 19, 18, 12]. Several approaches
to program monitoring have been proposed in the literature. In “explicit” monitoring,
target program actions are intercepted and tested by some external monitoring agent [14,
15, 13, 16]. A variant, examined by Schneider and Erlingsson [9], is monitor inlining,
under which target programs are rewritten to include the desired monitor functionality,
thus making programs essentially self-monitoring [5, 8, 4]. This eliminates the need for a
runtime enforcement infrastructure which may be costly on small devices. Also, it opens
the possibility for third party developers to use inlining as a way of providing runtime
guarantees to device users or their proxies. This, however, requires that users are able to
trust that inlining has been performed correctly. In this work we propose a formalization
of monitoring and monitor inlining as a first step towards addressing this concern.

We focus on monitors as security automata that operate on calls to some fixed API from
a target program given as an abstract Java Virtual Machine (JVM) class file. Automaton

∗This work was funded by the IST-STREP-27004 S3MS project.

1

transitions are allowed to depend locally on argument values, heap at time of call and (nor-
mal or exceptional) return, and return value. Our main contributions are characterizations,
in terms of JVM class files annotated by formulas in a suitable Floyd-like program logic, of
the following two conditions on a program:

1. That the program is policy-adherent.

2. The existence of a concrete representation of the monitor state inside the target
program itself, as an inlined monitor which is compositional, in the sense that ma-
nipulations of the monitor state do not cross method call boundaries.

The annotations serve as an important intermediate step towards a decidable annotation
validity problem, once the inliner is suitably instantiated. Compositionality allows validity
to be checked per method. This is uncontroversial, and satisfied by all inliners we know of.

By these characterizations, the verification of a concrete monitor inliner reduces to proof
of validity of the corresponding annotations. For practical monitors, this is not a difficult
task. We illustrate this by describing a monitor inliner for which we prove correctness.
We also sketch how, for this inliner, the annotations can be completed to produce a fully
annotated program for which validity can be efficiently decided, and can thus be used by a
standard bytecode wp checker in a proof-carrying code setting to certify monitor compliance
to a third party such as a mobile device.

Related Work A closely related result in this direction is the recent work on type-
based monitor certification by Hamlen et al [11]. That work mainly focuses on per-object
monitoring as compared to the “per-session” model considered in this paper. Also, their
results are restricted to one particular inliner, whereas we give a characterization of a whole
class of compositional inliners.

Our results can be seen as providing theoretical underpinnings for the earlier work
by Schneider and Erlingsson [8]. The PoET/PSLang framework developed by Erlingsson
represents monitors as Java snippets connected by an automaton superstructure. The
code snippets are inserted into target programs at suitable points to implement the inlined
monitor functionality. This approach, however, makes many monitor-related problems such
as policy adherence and correctness undecidable. To overcome this, we base our results
on a restricted monitor specification language, ConSpec [2].

Organization The document is structured as follows. Section 2 presents the JVM model
used in this paper. Sections 3 and 4 introduce the automaton model in concrete and
symbolic forms, the ConSpec language, and relations between the three. Section 5 gives an
account of monitoring by interleaved (co-) execution of a target program with a monitor,
and establishes the equivalence of policy adherence and co-execution. In Section 6, the two
annotation levels are presented, and the main characterization theorems are proved. In
Section 7 the inliner and its correctness proof are sketched. We also sketch how to produce,
for this inliner, fully annotated programs with a decidable validity problem. Finally, in
Section 8 we conclude and discuss future work.

2

2 Program Model

We assume the reader to be familiar with Java bytecode syntax, the Java Virtual Machine
(JVM), and formalisations of the JVM such as [10]). Here we only present components of
the JVM, that are essential for the definitions in the rest of the text.

Classes and Types Fix sets of class names c ∈ C, method namesm ∈M, and field names
f ∈ F. A primitive type in the set PrimType is either int, string, or Unit, the latter used
for methods that do not return a value. A type τ ∈ Type is either a primitive type or an
object type, determined by a class name c and we let γ ∈ (Type)∗ range over tuples of types.
Each object type determines a set of fields and methods defined for that type through its
class declaration. The class declarations induce a class hierarchy, and we write c1 <: c2 if
c1 is a subclass of c2. If c defines m (declares f) explicitly, then c defines (declares) c.m
(c.f). We say that c defines c′.m (declares c′.f) if c is the smallest superclass of c′ that
contains an explicit definition (declaration) of c.m (c.f). Single inheritance ensures that
definitions/declarations are unique, if they exist.

Values Each type τ ∈ Type determines a set ‖τ‖ of values. Val denotes the set of all
values. Values of types int and string are integers and strings, values of PrimType are the
primitive values PrimVal , and void is the single member of ‖Unit‖. Values of object type
are (typed) locations ` ∈ Loc, mapped to objects by a heap h ∈ H = Loc ⇀ O. The partial
function type : (`, h) 7→ C returns the type of location ` in heap h, if ` ∈ Dom(h), and is
otherwise undefined (i.e. ⊥). The structure of objects in O is not further specified here. It
suffices to assume that if h : ` 7→ o ∈ O then h(`) determines a field h(`).f whenever f is
declared in the class to which the object type of ` is associated.

Methods Method definitions are modelled as an environment Γ taking method references
to their definitions. Where possible, Γ is elided. To simplify notation, method overloading
is not considered, so a method is uniquely identified by a method reference of the form
M = (c,m). For a method (c.m), (c.m) : γ → τ if γ is the list of argument types and τ is
the return type of the method. A method definition is a pair (P,H) consisting of a method
body P and an exception handler array H. A method body P is a partial function from ω
to the set of instructions such that ADDRP = Dom(P) has the form {1, . . . , n} for some
n ∈ ω. We use the notation M [L] = I to indicate that Γ(M) = (P,H) and P (L) is defined
and equal to the instruction I. The exception handler array H is a partial map from integer
indices to exception handlers. An exception handler (b, e, t, c) catches exceptions of type c
and its subtypes raised by instructions in the range [b, e) and transfers control to address
t, if it is the topmost handler that covers the instruction for this exception type.

Machine Configurations A configuration of the JVM is a pair C = (R, h) of a stack R
of activation records and a heap h. For normal execution, the activation record at the top
of the execution stack has the shape (M, pc, s, f), where

• The program counter pc is an index into the currently executing instruction array, i.e.
it is a member of Dom(P) where P is the body of the currently executing method.
The configuration C is calling, if P (pc) is an invoke instruction, and it is returning
normally, if P (pc) is a return instruction.

• The operand stack s is the stack of values (= primitive values or locations) currently
being operated on.

3

• The local variables lv is a mapping of variables to values, preserving types.

For exceptional configurations C the top frame has the form (b)e where b is the location of
an exceptional object. Then, C is returning exceptionally, and C is returning if C is either
returning normally or exceptionally.

Machine Transitions We assume a transition relation −→JVM on JVM configurations.
Such an operational semantics can be found for instance in [10]. An execution E of a pro-
gram (class file) P is then a (possibly infinite) sequence of JVM configurations C1C2C3 . . .
where C1 is an initial configuration consisting of a single, normal activation record with an
empty stack, no local variables, M as a reference to the main method of P , pc = 1, Γ set up
according to P , and for each i ≥ 1, Ci −→JVM Ci+1. We restrict attention to configurations
that are type safe, in the sense that heap contents match the types of corresponding loca-
tions, and that arguments and return/exceptional values for primitive operations as well as
method invocations match their prescribed types. The Java bytecode verifier serves, among
other things, to ensure that type safety is preserved under machine transitions (cf. [17]).

API Method Calls The only non-standard aspect of −→JVM is the treatment of API
methods. We assume a fixed API for which we have access only to the signature, but not the
implementation, of its methods. We therefore treat API method calls as atomic instructions
with a non-deterministic semantics. This is similar to the approach taken, e.g., in [20]. In
this sense, we do not practice complete mediation [].When an API method is called either
the pc is incremented and arguments popped from the operation stack and replaced by
an arbitrary return value of appropriate type, or else an arbitrary exceptional activation
record is returned. Similarly, the return configurations for API method invocations contain
an arbitrary heap, since we do not know how API method bodies change heap contents.

Our approach hinges on our ability to recognize such method calls. This property is
destroyed by the reflect API, which is left out of consideration. Among the method invoca-
tion instructions, we discuss here only invokevirtual; the remaining invoke instructions
are treated similarly.

3 Security Policies and Automata

Let T be a program for which we identify a set of security relevant actions A. Each execution
of T determines a corresponding set Π(T) ⊆ A∗ ∪ Aω of finite or infinite traces of actions
in A. A security policy is a predicate on such traces, and T satisfies a policy P if P(Π(T)).

The notion of security automata was introduced by Schneider [21]. Here, we view a
security automaton over alphabet A as an automaton A = (Q, δ, q0) where Q is a countable
set of states, q0 ∈ Q is the initial state, and δ : Q×A ⇀ Q is a (partial) transition function.
All q ∈ Q are viewed as accepting. A security automaton A induces a security policy
PA ⊆ 2A∗∪Aω

through its language LA by PA(X)⇔ X ⊆ LA.
In this study, we focus on security automata which are induced by policies in the Con-

Spec language (see Section 4) and therefore are named ConSpec automata. The security
relevant actions are method calls, represented by the class name and the method name
of the method, along with a sequence of values that represent the actual arguments. We
partition the set of security relevant actions into pre-actions A[⊆ C×M ×Val ∗ ×H and
post-actions A] ⊆ RVal × C ×M × Val ∗ × H × H, corresponding to method invocations
and returns. Both types of actions may refer to the heap prior to method invocation,
while the latter may also refer to the heap upon termination and to a return value from

4

RVal = V al ∪ {exc} where exc is used to mark exceptional return from a method call1.
The partitioning on security relevant actions induces a corresponding partitioning on the
transition function δ of ConSpec automata.

4 ConSpec: A Contract Specification Language

In this section, we introduce the policy specification language ConSpec [2]. ConSpec is
strongly inspired by PSLang, which was developed by Erlingsson and Schneider [7] for
runtime monitoring. However, ConSpec is more restricted: a guarded-command language
is used for the updates where the guards are side-effect free and commands do not contain
loops. ConSpec supports expressing security requirements on different levels, like multiple
executions of the same application, and on the executions of all applications of a system,
besides requirements on all objects of a particular class and on single executions of an
application, which can be expressed by PSLang. Notice that, we focus on policies on a
single execution of an application in this work.

ConSpec Policy Example Assume method Open of class File is used for creating files
(when argument mode has value “CreateNew”) or for opening files (mode is “Open”), either
for reading (argument access is “OpenRead”) or for writing. Assume further that method
Open of class Connection is used for opening connections, that method AskConnect is
used for asking the user for permission to open a connection and that this latter method
returns true in case of approval. Now, consider the security policy, which allows applications
to access existing files for reading only, and requires, once such a file has been accessed,
applications to obtain approval from the user each time a connection is to be opened. The
policy also does not allow the application to execute further if a file opening operation raises
an exception. This policy can be specified in ConSpec as follows:

SCOPE Session

SECURITY STATE

bool accessed = false;

bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM

mode.equals("CreateNew") -> { skip; }

mode.equals("Open") && access.equals("OpenRead") -> { accessed = true; }

EXCEPTIONAL File.Open(string path, string mode, string access)

PERFORM

FALSE -> { skip; }

AFTER bool answer = GUI.AskConnect()

PERFORM

answer -> { permission = true; }

!answer -> { permission = false; }

BEFORE Connection.Open(string type, string address)

PERFORM

!accessed || permission -> { permission = false; }

We first specify that the policy applies to each single execution of an application. The
security state is represented by the boolean variables accessed and permission, which
are intended to record whether an existing file has been accessed and whether there is
an obtained permission. The example policy contains three event clauses that state the

1We disregard the exceptional value since we do not, as yet, put constraints on these in ConSpec policies.

5

conditions for and effect of the security relevant actions: call to the method File.Open,
exceptional return from the method File.Open, call to the method Connection.Open and
normal return from the method GUI.AskConnect. The event of an event clause is iden-
tified by the signature of the method mentioned in the clause. The types of the method
arguments are specified along with representative names, which have the event clause as
their scope. The modifiers BEFORE and AFTER mark whether the call of or the normal
return from the method specified in the event clause is security relevant. If the exceptional
return from a method is considered security relevant, then this is specified by the modifier
EXCEPTIONAL. For each event, there can exist at most one event clause per modifier
in the policy. In order to determine if the policy allows an event, the guards of the cor-
responding event clause is evaluated top to bottom using the current value of the security
state variables and the values of the relevant program variables. If none of the conditions
hold for the current event, it is a violating event and no more security relevant events are
allowed by the policy.

ConSpec Expressions The security state variables of ConSpec are restricted to strings,
integers and booleans. Expressions can access object fields and use standard arithmetic and
boolean expressions. Strings can be compared for equality or prefix. The sets of expressions
and boolean expressions of ConSpec are Exp and BoolExp, respectively.

The formal semantics of ConSpec policies is defined in terms of symbolic security au-
tomata, which in turn induce ConSpec automata. Fix a set Svar of security state variables
and a set Var of program variables.

Definition 4.1 (Symbolic Security Automaton). A symbolic security automaton is a tuple
As = (qs, As, δs, Inits), where:

(i) qs = Svar is the initial and only state;

(ii) Inits : qs → Val is an initialization function;

(iii) As = A[
s ∪A

]
s is a countable set of symbolic actions, where:

A[
s ⊆ C ×M× (Type × V ar)∗ are symbolic pre-actions, and

A]
s ⊆ {({PrimType ∪ C} × V ar) ∪ Unit ∪ {exc}} × C ×M × (Type × V ar)∗ are

symbolic post-actions;

(iv) δs = δ[
s ∪ δ

]
s is a symbolic transition relation, where:

δ[
s ⊆ A

[
s × BoolExp × (qs → Exp) and

δ]
s ⊆ A

]
s × BoolExp × (qs → Exp)

are the symbolic pre- and post-transitions, respectively.

ConSpec policies and symbolic automata are two very similar representations. The set
of security state variables of a ConSpec policy is the state of the symbolic automaton. Each
sra clause gives rise to one symbolic action, and each guarded command of the clause gives
rise to a symbolic transition consisting of the sra itself, the guard of the guarded command
in conjunction with negations of the guards that lie above it in the clause, and the effect
of the guarded command. The updates to security state variables, which are presented as
a sequence of assignments in ConSpec, are captured in the automaton as functions that
return one ConSpec expression per symbolic state variable, determining the value of that
variable after the update. In fig. 1 we illustrate the construction on the earlier example,
using ”a” for accessed and ”p” for permission.

6

conn_open:

ask_user:

conn_open:

file_open:

file_open:

{ a,p }

file_open_exc:

PSfrag replacements

mode.equals("CreateNew") ? [p 7→ p, a 7→ a]

!mode.equals("CreateNew") && mode.equals("Open") && access.equals("OpenRead") ?

answer.equals("Yes") ?

!answer.equals("Yes") ?

[p 7→ false, a 7→ a]

!a || p ?

FALSE ?

[p 7→ p, a 7→ true]

[p 7→ true, a 7→ a]

[p 7→ false, a 7→ a]

A[
s={file open, conn open}

[p 7→ false, a 7→ a]

[]

A]
s={ask user, file open exc}

file open=(File,Open,(string path, string mode, string access))

ask user=(string answer, GUI,AskConnect,())

conn open=(Connection,Open,(string type, string address))

file open exc=(exc,File,Open,(string path, string mode, string access))

Inits =[p 7→ false, a 7→ false]

Figure 1: Symbolic Automaton for the Example Policy

Symbolic automata determine ConSpec automata in the following way: Let As =
(qs, As, δs, Inits) be a symbolic automaton. The ConSpec automaton induced by A is the
automaton A = ((qs → Val)⊥, δ, Init s) over alphabet A, determined as follows:

• The post-actions of A are all tuples (v, c,m, v1 · · · vn, h
[, h]) such that there is a sym-

bolic post-action a]
s = (r, c,m, ((τ1 x1), . . . , (τn xn))) with vi : τi for all i : 1 ≤ i ≤ n,

and either r = τx and v : τ or else x = r ∈ {void , exc}. The pre-actions are defined
similarly.

• The post-transition function δ] is defined indirectly, by referring to the standard
denotational semantic functions for expressions e ∈ Exp and boolean expressions
b ∈ BoolExp such that JeK : (SVar → Val) → (Var → Val) → H → H → Val
and JbK : (SVar → Val) → (Var → Val) → H → H → Val , defined as expected.

Then, if δ]
s(a

]
s, b, E) in As, we define δ](q, a]) = q′ in A if and only if there exists an

interpretation I and heaps h[and h] such that Ja]
sK I h[h] = a], JbK q I h[h] = true,

and JE(v)K q I h[h] = q′(v) for all v ∈ SVar . The pre-transition function δ[is defined

similarly. In addition, given post-action a]
s, let B be the set of boolean expressions b

such that δ]
s(a

]
s, b, E) for some E. Then, for every state q ∈ Q, interpretation I, and

heaps h[and h], we define δ](q, a]) = ⊥ if Ja]
sK I h[h] = a] and JbK q I h[h] = false

for all b ∈ B.

It is not difficult to characterize the language of a ConSpec automaton obtained from a
symbolic ConSpec automaton As directly in terms of As itself.

5 Monitoring with ConSpec Automata

In this section we formalize the enforcement language of a ConSpec automaton as a set
of finite strings of security relevant actions. Each target transition can give rise to zero,
one, or two security relevant actions, namely, in the latter case, a preaction followed by a
postaction. Given the action set A, and the configurations C1 and C2, we define the secu-
rity relevant preaction, act [

A(C1), of the configuration C1, and the corresponding postaction

act]
A(C1, C2), as in the table below. If none of the conditions of the table hold, the corre-

sponding action is ε.

7

act[
P

(C) Condition

(c, m, s, hb)

C = ((M, pc, s · [d] · s′, lv) · R, h[)

M[pc] = invokevirtual c′.m, c defines type(d, h[).m, type(h[, d) <: c′

(c, m, s, h[) ∈ A[

act
]
P

(C1, C2) Condition

(void, c, m, s, h[, ha)

C1 = ((M, pc, s · d · s′, lv) · R, h[), C2 = ((M, pc + 1, s′, lv) · R, h]),

M[pc] = invokevirtual c′.m, c defines type(h[, d).m, type(h[, d) <: c′,

(void, c, m, s, h[, h]) ∈ A]

(v, c, m, s, h[, h])

C1 = ((M, pc, s · d · s′, lv) · R, h[), C2 = ((M, pc + 1, v · s′, lv) · R, h]),

M[pc] = invokevirtual c′.m, c defines type(h[, d).m, type(h[, d) <: c′,

(v, c, m, s, h[, h]) ∈ A]

(exc, c, m, s, h[, h])

C1 = ((M, pc, s · d · s′, lv) · R, h[), C2 = ((b)e · (M, pc, s′, lv) · R, h]),

M[pc] = invokevirtual c′.m, c defines type(h[, d).m, type(h[, d) <: c′,

(exc, c, m, s, h[, h]) ∈ A]

Check
from JVM
paper

We obtain the security relevant trace, srtA(w), of an execution w by lifting the operations

act [
A and act]

A co-inductively to executions in the following way:

srtA(ε) = ε srtA(C) = act [
A(C)

srtA(C1C2 · w) = act [
A(C1) · act

]
A(C1, C2) · srtA(C2 · w)

Then a target program T adheres to a policy P, if the security trace of each execution
of T is in the enforcement language of the corresponding automaton AP , i.e.

∀E ∈ Π(T). srtA(E) ∈ LAP

Monitor co-execution A basic application of a ConSpec automaton is to execute it
alongside a target program to monitor for policy compliance. We can view such an execution
as an interleaving w = (C0, q0)(C1, q1) · · · such that C0 and q0 is the initial configuration and
state of T and A, respectively, and such that for each consecutive pair (Ci, qi)(Ci+1, qi+1),
either the target (only) progresses:

Ci −→JVM Ci+1 and qi+1 = qi

or the automata (only) progresses:

Ci+1 = Ci and ∃a ∈ A. δ(qi, a) = qi+1.

In the former case we write (Ci, qi) −→JVM (Ci+1, qi+1), and in the latter case we write
(Ci, qi) −→AUT (Ci+1, qi+1). We can w.l.o.g. assume that at most one of these cases apply,
for instance by tagging each interleaving step.

The first projection function w ↓ 1 on interleavings w = (C1, q1)(C2, q2) · · · extracts the
underlying execution as follows:

((C1, q1)(C2, q2) · w
′) ↓ 1 =

{

C1(((C2, q2) · w
′) ↓ 1) C1 −→JVM C2

((C2, q2) · w
′) ↓ 1) otherwise

(C, q) ↓ 1 = C

To similarly extract automata derivations we use the (co-inductive) function extract
such that

extract((C1, q1)(C2, q2)w) = q1q2extract((C2, q2)w)

if (C1, q1) −→AUT (C2, q2),

extract((C1, q1)(C2, q2)w) = act [
A(C1)act

]
A(C1, C2)extract ((C2, q2)w),

if (C1, q1) −→JVM (C2, q2), extract(C, q) = act [
A(C), and extract(ε) = ε. We call such an

extracted sequence of automaton states and security relevant action a potential derivation.
Note that extract(w) may well be finite even if w is infinite.

8

Definition 5.1 (Co-Execution). Let E[= {qq′a[| q, q′ ∈ Q, a[∈ A[, δ[(q, a[) = q′},
E] = {a]qq′ | q, q′ ∈ Q, a] ∈ A], δ](q, a]) = q′}. An interleaving w is a co-execution if

extract(w) ∈ (E[∪E])∗ ∪ (E[∪E])ω

In other words, an interleaving is a co-execution, if the potential derivation it extracts
corresponds to a real derivation.

Theorem 5.2 (Correctness, Monitoring by Co-execution). The program T adheres to pol-
icy P if, and only if, for each execution C0C1 · · · of T there is a co-execution w for the
automaton AP such that w ↓ 1 = C0C1 · · · .

Proof. Proof can be found in Appendix B

6 Specification of Monitoring

We specify monitor inlining correctness using annotations in a Floyd-style logic for bytecode.
The idea behind our annotation scheme is the following. In a first annotation, referred to as
policy annotation (or level I), we define a monitor for the given policy by means of “ghost”
variables, updated before or after every security relevant action according to the symbolic
automaton induced by the given security policy. In a second annotation, referred to as
synchronisation check annotation (or level II), we add assertions that check at all relevant
program points that the actual inlined monitor (represented by global program variables)
is “in sync” with the specified one (represented by ghost variables).

6.1 Language of Ghost Annotations

Assertions Methods are augmented with annotations that determine assertions on the
extended state (current configuration and current ghost variable assignment), and actions
on ghost variables. Let g range over ghost variables, i ∈ ω, and let Op (Bop) range over
a standard, not further specified, collection of unary and binary operations (comparison
operations) on strings and integers. Assertions a, and expressions e used in assertions, have
the following shape:

e ::= ⊥ | v | g | e.f | s[i] | Op e | e Op e

a ::= e Bop e | e : c | ¬a | a ∧ a | a ∨ a

Here, s[i] is the value at the i’th position of the current operation stack, if defined, and ⊥
otherwise, and e : c is a class membership test.

Ghost Variable Assignments Ghost variables are assigned using a single, guarded
multi-assignment of the form

−→gs := a1 →
−→e1 | · · · |am →

−→em (1)

such that the arities (and types) of −→gs and the −→ei match. The idea is that the first assignment
−→gs := −→ei is assigned such that the guard ai is true in the current extended state. If no guard
is true, the ghost state is assigned the constant ⊥-vector. This happens, in particular, when
m ≤ 0 in (1) above, which we write as −→gs := ().

9

(1)
Assert(a,C, σ)

Γ∗ ` (aψ,C, σ) → (ψ,C, σ)

(2)
‖ a1 ‖ (C, σ) = TRUE, m > 0

Γ∗ ` ((−→gs := a1 →
−→e1 | · · · |am →

−→em)ψ,C, σ) → (ψ,C, σ[‖ −→e1 ‖ (C, σ)/−→gs])

(3)
‖ a1 ‖ (C, σ) 6= TRUE, m > 0

Γ∗ ` ((−→gs := a1 →
−→e1 | · · · |am →

−→em)ψ,C, σ) → ((−→gs := a2 →
−→e2 | · · · |am →

−→em)ψ,C, σ)

(4)
·

Γ∗ ` ((−→gs := ())ψ,C, σ) → (ψ,C, σ[
−→
⊥/−→gs])

(5)
C −→JVM C ′ Unexc(C ′)

Γ∗ ` (ε, C, σ)→ (A(Γ∗(M(C ′)))(pc(C ′)), C ′, σ)

(6)
C −→JVM C ′, Unhandled (C ′)

Γ∗ ` (ε, C, σ)→ (Exsures(Γ∗(M(C))), C ′, σ)
(7)

C −→JVM C ′ Handled(C ′)

Γ∗ ` (ε, C, σ)→ (ε, C ′, σ)

Table 1: Operational Semantics of Annotations

Method Annotations A target program is annotated by an extended environment, Γ∗,
which maps method references M to tuples (P,H,A,Requires ,Ensures ,Exsures) such that
Requires , Ensures and Exsures are assertions, and such that A is an assignment to each
program point n ∈ Dom(P) of a sequence, ψ, of atomic annotations, either an assertion or
a ghost variable assignment.

Annotation Semantics In the absence of ghost variable assignments the notion of an-
notation validity is the expected one, i.e. that the assertions annotating any given program
point (or the point of exceptional return) are all guaranteed to be valid. To extend this
account to ghost variables, an account of the way ghost variables are updated and checked
is needed. We use a rewrite semantics for this, shown on table 6.1. In the table, extended
configurations are triples of the form (ψ,C, σ) such that ψ is the sequence of annotations
remaining to be evaluated for the current program point in C. We use abbreviations M ,
pc, A, Requires , Ensures , and Exsures for the first, second, third, fourth, fifth and sixth
projections, respectively. Unhandled holds of a configuration if it has an exceptional frame
on top of the frame stack, and Γ does not contain a handler for that exception in the
current method. Handled holds of a configuration if it has an exceptional frame on top of
the frame stack, and Γ does contain a handler for that exception in the current method.
Finally, Unexc holds of a configuration that does not have an exceptional frame on the top
of the stack,i.e. Unexc(C)⇔ ¬(Handled(C) ∨Unhandled (C))

The side condition Assert(a,C, σ) always returns true, but as a sideeffect causes the
arguments to be “asserted”, e.g. to appear on some output channel. For rule (5), note that
unhandled exceptions must cause any assertions in the Exsures clause to be asserted.

Definition 6.1 (Validity). A program annotated according to the rules set up above is valid
for the annotated environment Γ∗, if all predicates asserted as a result of a Γ∗-derivation
(ψ0, C0, σ0) → · · · → (ψn, Cn, σn) → · · · are valid, where ψ0 is Requires(Γ∗(〈main〉)) ·
A〈main〉[1], C0 is an initial configuration, and σ0 = [].

10

6.2 Policy Annotations (Level I)

The policy annotations define a monitor for the given policy by means of ghost variables.
The ghost variables, which constitute the specified security state, are initialized in the
precondition of the 〈main〉 method and updated at relevant points by annotating all the
methods defined by the classes of the target program. We call each such method a target
method. When adding the level I annotations, we assume that 〈main〉 is not called by any
target method (including itself) and that all exceptions that may be raised by a security
relevant instruction (i.e. an instruction that may lead to a security relevant action) are
covered by an exception handler. We also assume that the exception handling is structured
such that unexceptional execution can not ”fall through” to an exception handler, i.e. the
only way an instruction in an exception handler gets executed is if an exception has been
raised previously in the execution and caught by the handler that the instruction belongs
to.

Updating the Specified Security State The updates to the specified security state
are done according to the transitions of the symbolic automaton. If the automaton does
not have a transition for a security relevant method call,the call is violating and the cor-
responding annotation sets the value of the specified state to undefined.Such a program
should terminate without executing the next security relevant action in order to adhere
to the policy. This is specified by asserting, as a precondition to each security relevant
method invocation and before each update to the specified state, that the specified state is
not undefined.

If the execution of a method invocation instruction of a target method may lead to a
preaction of the automaton, then an annotation is inserted as a precondition to this instruc-
tion, which updates the specified security state. If a method invocation instruction may
lead to a postaction, we record the object the method is called on, values of the method
arguments (and possibly a part of the heap) by assigning them to ghost variables as the
precondition to the instruction. The updates to the specified state are done in the post-
condition of the instruction, if the method invocation can lead to a normal (unexceptional)
postaction. If the instruction can cause an exceptional postaction, however, the update
to the specified security state is inserted as a precondition to the first instruction of each
exception handler that cover the instruction. The recorded label is used then at the handler
to resolve which instruction has caused the exception, so that the correct update (or no
update if the exception was raised by an irrelevant instruction) is performed.

Preliminary Definitions In the definitions below, assume given a program P and a
policy P. Let As = (qs, As, δs, Inits) be the symbolic automaton induced by P, and let

qs = {s1, . . . , sn}. We define the set Ae
s ⊆ A]

s of exceptional symbolic post-actions as
those post-actions which have the value exc as their first component. Given a symbolic
action set A′

s, the function RS((c,m), A′
s) returns those subclasses c′ of c for which the

method (c′,m) is defined by a class c′′ such that A′
s has an action with the reference

(c′′,m). In the annotations, the ghost variables that represent the security state are named
identically with the security state variables of the automaton, and we use the tuple −→gs =
(s1, . . . , sn) in guarded multi-assignments. We use the ghost variable gpc to record labels of
security relevant instructions. Ghost variables g also used for recording stack values. For
an expression mapping E : qs → Exp, let −→eE denote the corresponding expression tuple and
for a boolean ConSpec expression b ∈ BoolExp, let ab denote the corresponding assertion.

11

Level I Annotation Further below, we define an initializing ghost annotation IA, and
for every method M , three arrays of annotations: a pre-annotation array A[

M [i], a post-

annotation array A]
M [i][j], and an exceptional annotation array Ae

M [i][k], where i ranges
over the instructions of method M . The second index j ∈ {0, 1}, k ∈ {0, 1, 2} indicates
whether the annotation will be placed as a precondition of the instruction (j, k = 0), as
a precondition to the next instruction (j, k = 1), or as a precondition to all the exception
handlers of the instruction (k = 2). In addition, we define Exc(L,M) as the sequence of all
annotations of shape Ae

M [L′][2] where L′ is a security relevant instruction such that there
exists an exception handler (L1, L2, L, c) ∈ HM for labels L1 and L2 and class name c such
that L1 ≤ L

′ < L2, and as ε if such an L′ does not exist.
Given these annotations, the level I ghost annotation of program P is given for each

target method M as a precondition Requires I
M and an array AI

M [i] of annotation sequences
defined as follows (where L > 0):

Requires I
M =

{

(−→gs := (Init s(s1), . . . , Init s(sn))) · (gpc := 0) if M = 〈main〉
(gpc := 0) otherwise.

AI
M [1] = A[

M [1] · A]
M [1][0] ·Ae

M [1][0]

AI
M [L] =

{

Exc(L,M) ·A[
M [L] ·A]

M [L][0] ·Ae
M [L][0] if ∃L1, L2, c.(L1, L2, L, c) ∈ HM

Ae
M [L− 1][1] ·A]

M [L− 1][1] · A[
M [L] ·A]

M [L][0] ·Ae
M [L][0] otherwise

The initialization annotation RequiresM resets the value of gpc and additionally assigns
to the ghost variables the values given by the initialization function Init s of the automaton
if M = 〈main〉. We assume that the first instruction of a program can not be a handler
instruction.

We now define the annotation arrays mentioned in the above definition.

Before Annotations For every methodM , the elements of the pre-annotation array A[
M [i]

are defined for each label L as follows:

(i) If the instruction at label L is not an invokevirtual instruction or is of the form
M [L] = invokevirtual (c.m) where RS((c,m), A[

s) = ∅, we define the precondition
to be empty: A[

M [L] = ε.

(ii) Otherwise, if the instruction at label L is of the form M [L] = invokevirtual (c.m)
with (c.m) : (γ → τ) and |γ| = n and RS((c,m), A[

s) = {c′1, . . . , c
′
p}, then the precon-

dition of the instruction computes the new security state using the arguments and
the object of the called method and updates the ghost variables:

A[
M [L] = (−→gs := α1 | · · · | αm | α) · Defined [

The assertion Defined [checks if the ghost variables are defined:

Defined [= ((s[n] : c′1 ∨ . . . ∨ s[n] : c′p) =⇒ (−→gs 6=
−→
⊥))

The αk are the guarded expressions

(−→gs 6=
−→
⊥) ∧ s[n] : c′i ∧ abρi →

−→eEρi

where class c′′ defines (c′i,m) and there exists a[
s = (c′′,m, (τ0x0, . . . τn−1xn−1)) ∈

A[
s such that (a[

s, b, E) ∈ δ[
s. The substitution ρi is defined as [s[0]/x0, . . . , s[n −

1]/xn−1, s[n]/this]. Finally, α = ¬(s[n] : c′1 ∨ . . . ∨ s[n] : c′p) →
−→gs.

12

After Annotations For every methodM , the elements of the post-annotation array A]
M [i][j]

are defined for each label L as follows:

(i) If the instruction at label L is not an invokevirtual instruction or is of the form

M [L] = invokevirtual (c.m) where RS((c,m), A]
s \Ae

s) = ∅, we define the pre- and
postconditions to be empty:

A]
M [L][0] = A]

M [L][1] = ε

(ii) Otherwise, if the instruction at label L is of the form M [L] = invokevirtual (c.m)

with (c.m) : (γ → τ) and |γ| = n and RS((c,m), A]
s \ Ae

s) = {c′1, . . . , c
′
p}, then the

precondition of the instruction saves the arguments and the object in ghost variables:

A]
M [L][0] = ((g0, . . . , gn−1, gthis) := (s[0], . . . , s[n])) ·Defined]

The assertion Defined] checks if the ghost variables are defined:

Defined] = ((gthis : c′1 ∨ . . . ∨ gthis : c′p) =⇒ (−→gs 6=
−→
⊥))

while the postcondition of the instruction uses these saved values to compute the new
security state:

A]
M [L][1] = (−→gs := α1 | · · · | αm | α) · (gpc := 0)

where the αk are the guarded expressions

(−→gs 6=
−→
⊥) ∧ gthis : c′i ∧ abρi →

−→eEρi

where class c′′ defines (c′i,m) and there exists a]
s = (r, c′′,m, (τ0x0, . . . τn−1xn−1)) ∈

A]
s\Ae

s such that (a]
s, b, E) ∈ δ]

s. The substitution ρi is defined as [s[0]/x, g0/x0, . . . gn−1/xn−1, gthis/this]
if r = (τ x) and as [g0/x0, . . . gn−1/xn−1, gthis/this] if r = void . Finally, α = ¬(gthis :
c′1 ∨ . . . ∨ gthis : c′p) →

−→gs.

Exceptional Annotations For every method M , the elements of the exceptional anno-
tation array Ae

M [i][j] are defined for each label L as follows:

(i) If the instruction at label L is not an invokevirtual instruction or is of the form
M [L] = invokevirtual (c.m) where RS((c,m), Ae

s) = ∅, we define the pre- and
post-conditions to be empty: Ae

M [L][0] = Ae
M [L][1] = Ae

M [L][1] = ε.

(ii) Otherwise, if the instruction at label L is of the form M [L] = invokevirtual (c.m)
with (c.m) : (γ → τ) and |γ| = n and RS((c,m), Ae

s) = {c′1, . . . , c
′
p}, then the pre-

condition of the instruction saves the arguments, the object and the label of the
instruction in ghost variables:

Ae
M [L][0] = ((g0, . . . , gn−1, gthis, gpc) := (s[0], . . . , s[n]), L) ·Defined e

The assertion Defined e checks if the ghost variables are defined:

Defined e = ((gthis : c′1 ∨ . . . ∨ gthis : c′p) =⇒ (−→gs 6=
−→
⊥))

The postcondition of the instruction resets the value of gpc to 0. Notice that this
annotation gets executed only if the method invocation did not return with an excep-
tion.

Ae
M [L][1] = gpc := 0

13

The precondition of each handler that covers this instruction uses gpc to check whether
the exception catched was thrown by a security relevant instruction. If the excep-
tion was raised by a method called by the instruction with the relevant label, the
annotation uses the saved values to compute the new security state:

Ae
M [L][2] = (−→gs := α1 | · · · | αm | α) · (gpc := 0)

where the αk are the guarded expressions

(gpc = L) ∧ (−→gs 6=
−→
⊥) ∧ gthis : c′i ∧ abρi →

−→eEρi

where class c′′ defines (c′i,m) and there exists ae
s = (exc, c′′,m, (τ0x0, . . . τn−1xn−1)) ∈

Ae
s such that (ae

s, b, E) ∈ δe
s . The substitution ρi is defined as [g0/x0, . . . gn−1/xn−1, gthis/this].

Finally, α = ¬(gthis : c′1 ∨ . . . ∨ gthis : c′p) →
−→gs.

Each execution of a program that is valid with respect to level I annotations for policy P
corresponds to a co-execution of the program and the automaton for P where the automaton
states coincide with the specified security state, hence the program adheres to P.

Theorem 6.2 (Correctness of Level I Annotations). The level I annotation of program P
for policy P is valid if, and only if, P adheres to P.

Proof. See Appendix B.

Example An application annotated with level I annotations for the example policy in
section 4 is shown below. The annotations are surrounded by braces {} and placed above
the instruction they are associated to. The application creates a new file, asks the user if
it can open a connection, after which it opens a connection. Although the user’s answer is
disregarded when opening the connection, the annotated application is valid since it does
not access existing files.

14

public static void main(java.lang.String[]);

(a, p) := (false, false)
gpc := 0

ff

L1 new GUI

L2 dup

L3 invokespecial GUI.<init>()V

L4 astore r1

L5 new File

L6 dup

L7 invokespecial File.<init>()V

L8 astore r2

L9 aload r2

L10 ldc "Data.txt"

L11 ldc "CreateNew"

L12 ldc "OpenWrite"
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

gthis : File ⇒ (a, p) 6=
−→
⊥

(a, p) := s[3] : File ∧ (s[1] equals ”CreateNew”) → (a, p) |
s[3] : File ∧ ¬(s[1] equals ”CreateNew”) ∧ (s[1] equals ”Open”) ∧ (s[2] equals ”OpenRead”) → (a, false) |
¬(s[3] : File) → (a, p)

gthis : File ⇒ (a, p) 6=
−→
⊥

(g1, g2, g3, gthis, gpc) := (s[0], s[1], s[2], s[3], 12)

gthis : File ⇒ (a, p) 6=
−→
⊥

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

L13 invokevirtual File.Open(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)Z
˘

gpc := 0
¯

L14 aload r1

gthis := s[0]

gthis : GUI ⇒ (a, p) 6=
−→
⊥

ff

L15 invokevirtual GUI.AskConnect()Z
8

>

>

<

>

>

:

gthis : GUI ⇒ (a, p) 6=
−→
⊥

(a, p) := gthis : GUI ∧ s[0] → (a, true) |
gthis : GUI ∧ ¬s[0] → (a, false) |
¬(gthis : GUI) → (a, p)

9

>

>

=

>

>

;

L16 new Connection

L17 dup

L18 invokespecial Connection.<init>()V

L19 astore r3

L20 aload r3

L21 ldc "HTTPS"

L22 ldc "www.someurl.com"
8

>

>

<

>

>

:

gthis : Connection ⇒ (a, p) 6=
−→
⊥

(a, p) := s[0] : Connection ∧ (¬a ∨ p) → (a, p) |
¬(s[0] : Connection) → (a, p)

gthis : Connection ⇒ (a, p) 6=
−→
⊥

9

>

>

=

>

>

;

L23 invokevirtual Connection.Open(Ljava/lang/String;Ljava/lang/String;)Z

L24 goto L26
8

>

>

<

>

>

:

(gthis : File ∧ gpc = 12) ⇒ (a, p) 6=
−→
⊥

(a, p) := gpc = 12 ∧ gthis : File ∧ false → (a, p) |
¬(gpc = 12) ∨ ¬(gthis : File) → (a, p)

gpc := 0

9

>

>

=

>

>

;

L25 astore r4

L26 invokestatic java/lang/System.exit:(I)V

L27 return

Exception Table:

L1 L24 L25 Class java/lang/Exception

6.3 Synchronisation Check Annotations (Level II)

An inlined program can be expected to contain an explicit representation of the security
state, an embedded state, which is updated in synchrony with the execution of security
relevant actions. The level II annotations aim to capture this idea in a generic enough form
that it is independent of many design choices a specific inliner may make. In particular,
it seems natural to require of an inlined monitor that it maintains agreement between the
ghost state and the embedded state immediately prior to execution of a security relevant

15

action. That is, program and monitor state are both tested and, where necessary, updated
whenever a security relevant action is about to be performed. This is by no means a
necessary condition: For instance, a monitor implementation may in advance determine
that some fixed sequence of security relevant actions is permissible without necessarily
reflecting this through an explicit sequence of updates to the embedded state. Thus, in the
middle of such a sequence, the embedded state and the ghost state may disagree. In this
paper, however, we assume that this type of optimized inlining is not performed.

The second assumption we make in this section is that updates to the embedded state
are made locally, by the same method that executes the security relevant method call.
This allows correctness to be expressed by asserting equality of the ghost state and the
embedded state for every method at point of entry, at normal and exceptional exit, and at
each method invocation. This compositionality property has the important advantage that
virtual call resolution can be avoided for the level II annotations: The specified and the
embedded states are synchronized at all call points, not just at the points where a security
relevant action is invoked.

For simplicity we assume that the embedded state is determined as a fixed vector −→ms of
global static variables of the target program, of types corresponding pointwise to the type
of ghost state vector −→gs. The synchronisation assertion is the equality −→gs = −→ms, and the
level II annotations are formed by appending the synchronization assertion to the level I
annotations of each method M of the target program at the following points:

1. Each annotation A(Γ∗(M))(i) such that P (Γ∗(M))(i) is an invoke or a return instruc-
tion.

2. The annotation Exsures(Γ∗(M)).

We explain a sense in which the level II annotations can be argued to characterize exactly
the two conditions assumed in this section (the synchronous update assumption, and the
method-local update assumption).

Consider a program P with a level II annotated environment Γ∗. Consider an execution
E = C0C1 · · · from an initial configuration C0 of P . We sample the embedded state ~ms at all
configurations that are either invoke instructions, return instructions, the first instruction
of a method, or an unhandled exception. More precisely, the index i is a sampling point if
one of the following two conditions hold:

1. The top frame of Ci has the shape (M, pc, s, f), andM [pc] is either an invokevirtual

instruction, a return instruction, or else pc = 1.

2. Alternatively, the top frame of Ci is exceptional, of the form (b)e.

We can then construct a sequence w = (C0, q0)(C1, q1) · · · (or, w(E,−→ms) if the underlying
execution and embedded state needs emphasis) such that:

• q0 is the initial automaton state,

• for all sampling points i > 0, qi = Ci(
−→ms), the value of −→ms in configuration Ci, and

• for any two consecutive sampling points i and i′, for all j : i ≤ j < i′, qj = qi.

In other words, the embedded state is sampled at the sampling points and maintained
constant inbetween.

The role of the sequence w is roughly similar to the role of interleavings in section ??.
However, a slightly different treatment is needed here since the sequence q0q1 · · · may not

16

necessarily correspond to an automaton derivation. This is so for the case of post-actions
followed by pre-actions where the intermediate automaton state is not sampled, as there is
no well-defined point where this might be done. Also, the construction needs to account
for the method-local nature of embedded state updates.

For this reason define the operation extract II taking sequences w to strings over the
alphabet Q ∪A ∪ {brk} where brk is a distinguished symbol by the following conditions:

• extract II((C1, q1)(C2, q2)w) = q1 act [(C1) act](C1, C2)q2 extract II((c2, q2)w), if C1 is
an API method call.

• extract II((C, q)w) = brkq extract II(w), if C is entering to or returning from an ap-
plication method call.

• extract II((C, q)) = q act [(C) /marginparonly if API call

• extract II(ε) = ε

Definition 6.3 (Method-local Co-execution). Let Σ1 = {brk}∪Q∪E[∪E]∪{a]qq′a[| q, q′ ∈
Q, a[∈ A[, a] ∈ A],∃q′′.δ[(q, a[) = q′′, δ](q′′, a]) = q′}, and Σ2(q) = {qbrkq} ∪ {qq} ∪ {qaq |
a ∈ A} ∪ {(qa[a]q) | a[∈ A[, a] ∈ A]}. A sequence w is a method-local co-execution, if
extract II(w) ∈ (Σ∗

1 ∪Σω
1) ∩ ((∪

q∈Q
Σ2(q))

∗ ∪ (∪
q∈Q

Σ2(q))
ω) .

We can then extend theorem 2 to the situation where a target program P has a monitor
for the given policy inlined into it.

Theorem 6.4 (Level II Characterization). The level II annotation of P with embedded
state −→ms is valid if, and only if, for each execution E of P , the sequence w(E,−→ms) is a
method-local co-execution.

The idea of the proof is to sample pre- and post-actions from E, immediately preceded
and followed by a sample of the embedded state −→ms. The sequence extracted in this way
is almost a potential derivation, but in the case of a post-action followed, some time later,
by a pre-action, an intermediate automaton state may be missing. It is not clear, however,
how to sample this state. Also, it is necessary to ensure that embedded state updates
do not cross method boundaries. To this end, extracted sequences need to be completed
by (a) missing intermediate automaton states, and (b) indicators of method boundary
crossings at: method invocations that are not security relevant actions, return instructions,
configurations that contain an exceptional frame at the top of the frame stack, and at the
first instruction of each method.

First, we note that the embedded state −→ms is equal to the ghost state −→gs at sampling
points if and only if the synchronisation assertions added at level II hold. We show in
the proof of theorem 2 that the ghost state and machine configurations consitute a co-
execution if and only if the program annotated with level I annotations is valid. If the
program annotated with level II annotations is valid then the sampling of the embedded
stated as described above amounts to taking the co-execution of the ghost state and the
program and ”skipping” some ghost updates, which the embedded state does not follow (as
the sampling of the embedded state is not done as frequently). Then extract II applied to
this sequence falls in the set stated in def 6.3.

17

7 Correctness of a Simple Inliner

As an application of the annotation scheme described in the previous section, we prove the
correctness of a simple inliner in the flavor of PoET/PSLang [8, 7]. The inliner inputs a
ConSpec policy and a program, and inserts code for (i) storing the security state and (ii)
for updating it according to the policy clauses at calls to security relevant methods. We
describe the inlining process briefly here, in enough detail for the reader to get an intuition
for the proof of correctness. The implementation of the the tool is available at [1].

7.1 The Inliner

Storing the Security State The inliner adds a class definition to the program and
stores the security state in its static variables. We refer to this as the inlined security
state. Since this new class is not in the previous name space, the security state is safe from
interference by the target program. In this text, we assume that SecState is a fresh name
for the untrusted program, and use this name for the class storing the security state.

Compiling Policy Body to Bytecode The first part of the transformation consists of
compiling the policy to bytecode and is independent of the method(s) to be inlined. For
each clause in the policy, we produce a bytecode fragment, which is to be inlined in the
program text in the rewriting stage.

Each clause of a policy consists of an event modifier, an event specification and a list
of guarded commands. The code created evaluates, in turn, the guards and either updates
the security state according to the update block associated with the first condition that
holds or quits the program if none of them hold.

The variables that occur in an event clause are of three kinds: security state variables,
method arguments and fields of method arguments. The three kinds of variables are stored
at different parts of the JVM, hence the compilation of an event clause produces different
code to access them:

1. Security state variables are stored in the the SecState class. Since all fields of the
class are static, they are created as soon as the class is loaded to the JVM. (Notice
that the only variables that get updated are security state variables)

2. Arguments can be obtained by accessing the stack immediately before the method
invocation. In order to use argument values while computing the new values of the
security state variables, we copy them from the top of the stack and store them in
local variables (that are not used by the original program). Since local variables of the
calling method are not affected by the method invocations argument values stored in
this manner can even be accessed right after the control returns to the calling method.

3. Fields of arguments are accessed using the arguments and heap.

Rewriting Methods According to Policy The inlining process consists of identifying
method invocation instructions that lead to security relevant actions (security relevant in-
structions) and for each such instruction inserting code produced by the policy compilation
in an appropriate manner. The inlined code is depicted for a single instruction in fig. 2.
The inliner inserts, immediately before the security relevant instruction, code that records
the object the method is called for, the arguments (and possibly parts of the heap) in local
variables. Then code for the relevant BEFORE clauses of the policy (if any) is inserted.

18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

H:

Update for Guard1

and jump to

Evaluate Guard2

If false, jump to G3

Update for Guard2

Else quit program

G1:

Exception Table

(L,L+1,H,java.lang.Throwable)

If method is (,m)

BEFORE .m

If method is (,m)

BEFORE .m

.

.

.

.

.

.

.

.

.

.

L+1:

L:

Save return value

Load return value

 invokevirtual c.m

Resolve method
to be called

Update for the clause

Update for the clause

Else continue

G2:

and jump to

Evaluate Guard1

If false, jump to G2

Updates for

the relevant

clauseEXCEPTIONAL

Rethrow exception

Updates for

the relevant

BEFORE clause

Load arguments

AFTER

Updates for

the relevant

clause

Save arguments

PSfrag replacements

Lload
Lload

Lload

c1

c1

c2

c2

Figure 2: Inlining of an Instruction

The object and the method arguments are restored on stack immediately before the secu-
rity relevant instruction. If there are AFTER clauses in the policy for the instruction, first
the return value (if there is any) is recorded in a local variable, the code compiled from the
AFTER clauses is inlined, followed by code to restore the return value on the stack. Finally,
if there are EXCEPTIONAL clauses for the instruction, an exception handler is created
that covers only the method invocation instruction and catches all types of exceptions. It
is placed highest amongst the handlers for this label in the handler list, so that whenever
the instruction throws an exception, this handler will be executed. The code of this ex-
ception handler consists of code created for the related EXCEPTIONAL clauses and ends
by rethrowing the caught exception. All (original) exception handlers of the program that
cover the security relevant instruction are redirected to cover this last throw instruction
instead.

Method Resolution Due to virtual method call resolution, execution of an invocation
instruction can give rise to different security relevant actions. The inliner inserts code to
resolve, at runtime, the signature of the method that is called, using the type of the object
that the method is invoked on, and information on which methods have been overridden. A
check to compare this signature against the signature of the event mentioned in the clause
is prepended to code compiled for the clause2.

7.2 Correctness of the Inliner

We first describe how, for programs inlined with the inliner described above, level II anno-
tations can be efficiently completed to an (equivalent) level III annotation, and then show
that validity of level III annotations – and thus policy adherence – holds for such programs
and is efficiently checkable.

Level III annotation uses the weakest precondition function wp(M [L]) defined in [3].
Table 2 contains the definition of the function for the instructions occurring in the examples.
The function shift(A) denotes the substitution, for all i, of s[i] by s[i + 1] in assertion A,
while function unshift(A) denotes the inverse function. The last two rows of the table refer

2This can be accomplished using a call to the Object.getClass() method followed by a call to the

method Class.getName() of the java.lang API. Else Reflect API can be used.

19

M [L] wp(M [L])

dup unshift((head (AM [L+ 1]))[s[1]/s[0]])
ldc v unshift((head (AM [L+ 1]))[v/s[0]])
iload r / \verbaload r+ unshift((head (AM [L+ 1]))[r/s[0]])
aconst_null unshift((head (AM [L+ 1]))[null/s[0]])

istore r / \verbastore r+ (shift(head (AM [L+ 1])))[s[0]/r]
putstatic m (shift(head (AM [L+ 1])))[s[0]/m]

goto L′ head (AM [L′])
ifeq L′ (s[0] = 0⇒ shift(head (AM [L′])))∧

(¬(s[0] = 0)⇒ shift(head (AM [L+ 1])))

invokevirtual c.m (shiftn(head (AM [L+ 1])))[fc.m(s[0], . . . , s[n])/s[n]]
invokestatic c.m (shiftn−1(head (AM [L+ 1])))[fc.m(s[0], . . . , s[n− 1])/s[n− 1]]

Table 2: Weakest precondition function wp(M [L])

only to calls to API methods used by the inliner - these are side-effect free and therefore
treated as atomic operations. In both rows, n denotes the arity of method c.m, and fc.m

denotes the operation implemented by method c.m (which is of arity n + 1 in the case of
invokevirtual, with the reference to the object as an implicit argument).

Level III annotation also uses a normalizing function norm on annotations, with the
combined effect of conjuncting consecutive logical assertions and backward weakest precon-
dition propagation:

norm(α) = α
norm(γ · α0 · α1) = norm(γ · (α0 ∧ α1))

norm(γ · (−→g := ce) · α) = norm(γ · α[ce/−→g]) · (−→g := ce) · α

where α, α0, and α1 range over logical assertions, γ over annotation sequences, and where
α[ce/−→g] denotes the substitution in α of each ghost variable gi ∈

−→g by the conditional
expression ce i, obtained from ce by replacing each expression vector −→eE occurring in ce
with its i-th component. The function head returns the first element of the annotation
sequence.

Level III Annotation A level III (or “full”) annotation is obtained as follows.

1. Requires(Γ∗(M)), Ensures(Γ∗(M)) and Exsures(Γ∗(M)) are all defined as the syn-
chronisation assertion.

2. For all non-inlined instructions M [L], not (level II) annotated with the synchronisa-
tion assertion, define

AIII
M [L] = norm(AII

M [L] · (−→gs = −→ms))

3. For all (non-inlined) potentially post-security relevant instructions M [L], define

AIII
M [L] = norm(AII

M [L] · (g0 = r0) · . . . · (gn−1 = rn−1) · (gthis = rthis))

where r0, . . . , rn−1, rthis are the local variables used by the inliner to store the values
of the parameters and the reference to the object with which the method is invoked.

20

4. For all remaining non-inlined instructions M [L], define

AIII
M [L] = norm(AII

M [L])

5. For all blocks of inlined code, we apply the weakest precondition function wp(M [L])
defined in Table 2 to propagate backwards the head assertion of the first instruction
following the block (which is the synchronisation assertion −→gs = −→ms). Notice that
these blocks are cycle-free and do not contain jumps to any other instruction outside
of the block, thus the backward wp-propagation is well-defined (and in effect computes
the weakest precondition of the whole block w.r.t. the synchronisation assertion).

Thus, if M [L] is an inlined instruction immediately following a potential (nonexcep-
tional) post-security relevant instruction or the first instruction of a handler for a
potential (exceptional) post-security relevant instruction, define

AIII
M [L] = norm((g0 = r0) · . . . · (gn−1 = rn−1) · (gthis = rthis) · A

II
M [L] · wp(M [L]))

and otherwise define
AIII

M [L] = wp(M [L])

The following result uses the full annotation to show that programs inlined with the
inliner described above contain a monitor as characterised by Theorem 6.4. In the result,
local validity refers to logical validity of the verification conditions resulting from a fully
annotated program.

Theorem 7.1. Let P be a program, P a ConSpec policy, and I(P,P) denote program P
inlined for policy P. The level III annotation of I(P,P) is locally valid, and validity is
efficiently checkable.

Proof. See Appendix B.

If the level III annotation of I(P,P) is locally valid, then it is also valid in terms of
Definition 6.1. Hence, by the above result, the inlined program I(P,P) is valid with respect
to the level I annotation for policy P, and therefore, by Theorem 6.2, adheres to the policy.

Corollary 7.2 (Correctness of Inlining). Let P be a ConSpec policy and P be a program.
The inlined program I(P,P) adheres to the policy.

Notice that a level III annotation as described above can be used for on-device checking
of inlining correctness in a proof-carrying code setting.

8 Conclusion

This report presents a specification language for security policies in terms of security au-
tomata, and a two-level class file annotation scheme in a Floyd-style program logic for
Java bytecode, characterizing two key properties: (i) that the program adheres to a given
policy, and (ii) that the program has an embedded method-compositional monitor for this
policy. The annotation scheme thus characterises a whole class of monitor inliners. As an
application, we present a concrete inliner and show its correctness. For this inliner, validity
of the annotations can be decided efficiently using a standard wp annotation checker, thus
allowing the annotation scheme to be used in a proof-carrying code setting for certifying

21

monitor compliance. This idea is currently being developed within the European S3MS
project.

Future effort will focus on generalizing the level II annotations by formulating suitable
state abstraction functions to extend the present approach to programs that are not in-
lined but still self-monitoring. Another interesting challenge is to extend the annotation
framework to programs with threading.

References

[1] I. Aktug and J. Linde. An inliner tool for mobile platforms.
http://www.csc.kth.se/∼irem/S3MS/Inliner/.

[2] I. Aktug and K. Naliuka. ConSpec – a formal language for policy specification. In
F. Piessens and F. Massacci, editors, to appear in Proc. of The First International
Workshop on Run Time Enforcement for Mobile and Distributed Systems (REM’07),
Electronic Notes in Theoretical Computer Science, 2007.

[3] F. Y. Bannwart and P. Müller. A logic for bytecode. In F. Spoto, editor, Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE), volume 141-1
of Electronic Notes in Theoretical Computer Science, pages 255–273. Elsevier, 2005.

[4] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with Polymer. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2005.

[5] T. Colcombet and P. Fradet. Enforcing trace properties by program transformation. In
Proc. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’00), pages 54–66, New York, NY, USA, 2000. ACM Press.

[6] D. Drusinsky. The temporal rover and the atg rover. In Proceedings of the 7th Inter-
national SPIN Workshop on SPIN Model Checking and Software Verification, pages
323–330, London, UK, 2000. Springer-Verlag.

[7] Ú. Erlingsson. The inlined reference monitor approach to security policy enforcement.
PhD thesis, Dep. of Computer Science, Cornell University, 2004.

[8] Ú. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection. In
IEEE Symposium on Security and Privacy, page 0246, New York, NY, USA, 2000.
IEEE Computer Society.

[9] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a retrospec-
tive. In Proc. Workshop on New Security Paradigms (NSPW ’99), pages 87–95, New
York, NY, USA, 2000. ACM Press.

[10] S. N. Freund and J. C. Mitchell. A type system for object initialization in the Java
bytecode language. ACM Trans. Program. Lang. Syst., 21(6):1196–1250, 1999.

[11] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined reference moni-
toring on .net. In Proc. of the ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security (PLAS’06), June 2006.

[12] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for enforce-
ment mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006.

22

[13] K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In Proc. of
Tools and Algorithms for Construction and Analysis of Systems (TACAS’02), volume
2280, pages 342–356, 2002.

[14] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A lightweight architecture for
program execution monitoring. In Proc. of the ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE ’98), pages 67–74,
New York, NY, USA, 1998. ACM Press.

[15] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a run-time assurance tool for
Java. In 1st International Workshop on Run-time Verification, volume 55, July 2001.

[16] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswantathan. Computational analysis
of run-time monitoring: Fundamentals of Java-MaC. In Proc. of the Second Interna-
tional Workshop on Runtime Verification (RV 2002), volume 70, December 2002.

[17] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Auto-
mated Reasoning, 30(3–4):235–269, 2003.

[18] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security, 4(1–2):2–16,
February 2005. (Published online 26 Oct 2004.).

[19] J. Ligatti, L. Bauer, and D. Walker. Enforcing non-safety security policies with pro-
gram monitors. In Proceedings of the 10th European Symposium on Research in Com-
puter Security (ESORICS), September 2005.

[20] T. Rezk. Verification of Confidentiality Policies for Mobile Code. PhD thesis, INRIA
Sophia Antipolis and University of Nice Sophia Antipolis, November 2006.

[21] F. B. Schneider. Enforceable security policies. ACM Trans. Infinite Systems Security,
3(1):30–50, 2000.

23

A Examples

1. Java source code The program contains the Ask class has a single field called gui,
which is of type GUI. The run method of this class calls GUI.AskConnect() on the object
stored in the gui field. It returns true if this method returns ”Yes”, it returns false otherwise.

public class Report {

public static void main(String[] args) {

GUI g= new GUI();

File f= new File();

f.Open("Data.txt", "Open", "OpenRead");

Ask a= new Ask(g);

a.run();

Connection c = new Connection();

c.Open("HTTPS", "www.someurl.com");

}

}

public class Ask {

GUI gui;

public void Ask(GUI g) {

gui = g;

}

public bool run() {

return gui.AskUser();

}

}

2. Policy The policy is the one from section 4.

24

3. Java bytecode

public class Ask extends java/lang/Object

GUI gui;

public <init> (GUI)V

L1 aload r0
L2 invokespecial java/lang/Object/<init>()V

L3 aload r0
L4 aload r1
L5 putfield gui
L6 return

public run ()Z
L1 aload r0
L2 getfield gui
L3 invokevirtual GUI/AskConnect()Z
L4 ireturn

25

public class Report extends java/lang/Object

public static void main(java.lang.String[]);
L1 new GUI
L2 dup
L3 invokespecial GUI.<init>()V

L4 astore r1
L5 new File
L6 dup
L7 invokespecial File.<init>()V

L8 astore r2
L9 ldc ”Data.txt”

L10 ldc ”Open”
L11 ldc ”OpenRead”
L12 invokevirtual File.Open(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)Z
L13 new Ask
L14 dup
L15 aload r1
L16 invokespecial Ask.<init>(LGUI)V

L17 invokevirtual Ask.run()Z
L18 new Connection
L19 dup
L20 invokespecial Connection.<init>()V

L21 astore r3
L22 aload r3
L23 ldc ”HTTPS”
L24 ldc ”www.someurl.com”
L25 invokevirtual Connection.Open(Ljava/lang/String;Ljava/lang/String;)Z
L26 return

26

4. Inlined Java bytecode

public class Ask extends java/lang/Object

GUI gui;

public <init> (GUI)V

L1 aload r0

L2 invokespecial java/lang/Object/<init>()V

L3 aload r0

L4 aload r1

L5 putfield gui

L6 return

public run ()Z

L1 aload r0

L2 getfield gui

// begin of inlined code //
L3 dup

L4 astore r1 // saves object in reg r1
// end of inlined code //

L5 invokevirtual GUI/AskConnect()Z

// begin of inlined code //
L6 istore r2 // saves the return value in reg r2
L7 aload r1 // load object to stack

// get class of object
L8 invokevirtual java/lang/Object/getClass()Ljava/lang/Class

L9 aconst_null // load null (pointer to array of ...)
L10 ldc "AskUser"

// Returns actual method
L11 invokevirtual java/lang/Class/getMethod(Ljava/lang/String;[Ljava/lang/Class;)

Ljava/lang/reflect/Method
// Returns declaring class of method

L12 invokevirtual java/lang/reflect/Method/getDeclaringClass()Ljava/lang/Class

L13 ldc "GUI"

// Load class of GUI
L14 invokestatic java/lang/Class/forName(Ljava/lang/String) Ljava/lang/Class

// Compare class of GUI with class of called method
L15 invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z

L16 ifeq L24 // if not equal then not security relevant;
L17 iload r2 // otherwise load the return value from r2, and
L18 ifeq L22 // update security state accordingly
L19 ldc 1

L20 putstatic SecState/permission

L21 goto L24

L22 ldc 0

L23 putstatic SecState/permission

L24 iload r2 // load the return value on stack to return
// end of inlined code //

L25 ireturn

27

public class Report extends java/lang/Object

public static void main(java.lang.String[]);
L0 new GUI

L1 dup

L2 invokespecial GUI.<init>()V

L3 astore r1

L4 new File

L5 dup

L6 invokespecial File.<init>()V

L7 astore r2

L8 ldc "Data.txt"

L9 ldc "Open"

L10 ldc "OpenRead"

// begin of inlined code //
L12 astore r4 //saves argument in reg4
L13 astore r5 // saves argument in reg5
L14 astore r6 //saves argument in reg6
L15 astore r7 // saves object in reg7

// get class of object
L16 aload r7 // loads object to stack+
L17 invokevirtual java/lang/Object/getClass()Ljava/lang/Class

L18 ldc "Open"

L19 iconst_3

L20 anewarray java/lang/Class

L21 dup

L22 dup

L23 dup

L24 iconst_0

L25 ldc java/lang/String

L26 aastore

L27 iconst_1

L28 ldc java/lang/String

L29 aastore

L30 iconst_2

L31 ldc java/lang/String

L32 aastore

// Returns actual method
L33 invokevirtual java/lang/Class/getMethod(Ljava/lang/String;[Ljava/lang/Class;)Ljava/lang/reflect/Method

// Returns declaring class of method
L34 invokevirtual java/lang/reflect/Method/getDeclaringClass()Ljava/lang/Class

//Load class of File
L35 ldc "File"

L36 invokevirtual java/lang/Class/forName(Ljava/lang/String)Ljava/lang/Class

// Compare File with class of method called
L37 invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z
L38 ifne L1’ //if not equal then not security relevant
L39 aload r5
L40 ldc ”CreateNew”
L36 invokevirtual java/lang/String/equals(Ljava/lang/Object;)Z
L36 ifneq G2’

goto L1’
G2’: aload r5

ldc ”Open”
ifne ABORT1
invokevirtual java/lang/String/equals(Ljava/lang/Object;)Z
aload r6
ldc ”OpenRead”
ifne ABORT1
ldc 1
putstatic SecState/accessed
goto L1’

28

ABORT1: iconst 1
invokestatic java/lang/System.exit:(I)V // (ABORT)

L1’ aload r7 //load object to stack
aload r6 //load argument to stack
aload r5 //load argument to stack
aload r4 //load argument to stack
// end of inlined code //

L invokevirtual File.Open(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)Z
//beginning of inlined code //
goto AFTERL

H aload r7 // loads object to stack
invokevirtual java/lang/Object/getClass()Ljava/lang/Class
ldc ”Open”
iconst 3
anewarray java/lang/Class
dup
dup
dup
iconst 0
ldc java/lang/String
aastore
iconst 1
ldc java/lang/String
aastore
iconst 2
ldc java/lang/String
aastore
// Returns actual method
invokevirtual java/lang/Class/getMethod(Ljava/lang/String;[Ljava/lang/Class;)Ljava/lang/reflect/Method
// Returns declaring class of method
invokevirtual java/lang/reflect/Method/getDeclaringClass()Ljava/lang/Class
//Load class of File
ldc ”File”
invokevirtual java/lang/Class/forName(Ljava/lang/String)
Ljava/lang/Class
// Compare File with class of method called
invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z
ifne HL1’ //if not equal then not security relevant
iconst 1
invokestatic java/lang/System.exit:(I)V // (ABORT)
//Rethrow exception

HL1’ athrow
// end of inlined code

AFTERL new Ask
dup
aload r1
invokespecial Ask.¡init¿(LGUI)V
invokevirtual Ask.run()Z
new Connection
dup
invokespecial Connection.¡init¿()V
astore r3
aload r3
ldc ”HTTPS”
ldc ”www.someurl.com”
astore r4 //saves argument in reg4
astore r5 // saves argument in reg5
astore r6 //saves object in reg6
// get class of object
aload r6 // loads object to stack
invokevirtual java/lang/Object/getClass()Ljava/lang/Class
ldc ”Open”

29

iconst 2
anewarray java/lang/Class
dup
dup
iconst 0
ldc java/lang/String
aastore
iconst 1
ldc java/lang/String
aastore
// Returns actual method
invokevirtual java/lang/Class/getMethod(Ljava/lang/String;[Ljava/lang/Class;)Ljava/lang/reflect/Method
// Returns declaring class of method
invokevirtual java/lang/reflect/Method/getDeclaringClass()Ljava/lang/Class
//Load class of Connection
ldc ”Connection”
invokevirtual java/lang/Class/forName(Ljava/lang/String) Ljava/lang/Class
// Compare Connection with class of method called
invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z
ifne L4’ //if not equal then not security relevant
getstatic SecState/accessed
ifeq L5’
getstatic SecState/permission
ifne L6’

L5’ ldc 0
putstatic SecState/permission
goto L4’

L6’ iconst 1
invokestatic java/lang/System.exit:(I)V // (ABORT)

L4’ aload r6 //load object to stack
aload r5 //load argument to stack
aload r4 //load argument to stack
// end of inlined code //
invokevirtual Connection.Open(Ljava/lang/String;Ljava/lang/String;)Z
return

Exception Table:
L L+1 H any

30

5. Level II Annotated Inlined Java bytecode

public class Ask extends java/lang/Object

GUI gui;

public <init> (GUI)V

L1 aload r0

L2 invokespecial java/lang/Object/<init>()V

L3 aload r0

L4 aload r1

L5 putfield gui

L6 return

Requires = ((a, p) = (SecState.accessed, SecState.permission))
Ensures = ε
Exsures = ((a, p) = (SecState.accessed , SecState.permission))

public run ()Z

{gpc := 0}
L1 aload r0

L2 getfield gui

// begin of inlined code //
L3 dup

L4 astore r1 // saves object in reg r1
// end of inlined code //
8

<

:

gthis := s[0]

gthis : GUI ∧ (a, p) 6=
−→
⊥

(a, p) = (SecState.accessed , SecState.permission)

9

=

;

L5 invokevirtual GUI/AskConnect()Z
8

>

>

<

>

>

:

gthis : GUI ∧ (a, p) 6=
−→
⊥

(a, p) := gthis : GUI ∧ s[0] → (a, true) |
gthis : GUI ∧ ¬s[0] → (a, false) |
¬(gthis : GUI) → (a, p)

9

>

>

=

>

>

;

// begin of inlined code //
L6 istore r2 // saves the return value in reg r2
L7 aload r1 // load object to stack

// get class of object
L8 invokevirtual java/lang/Object/getClass()Ljava/lang/Class

L9 aconst null // load null (pointer to array of ...)
L10 ldc "AskUser"

// Returns actual method
L11 invokevirtual java/lang/Class/getMethod(Ljava/lang/String;[Ljava/lang/Class;)

Ljava/lang/reflect/Method

// Returns declaring class of method
L12 invokevirtual java/lang/reflect/Method/getDeclaringClass()Ljava/lang/Class

L13 ldc "GUI"

// Load class of GUI
L14 invokestatic java/lang/Class/forName(Ljava/lang/String) Ljava/lang/Class

// Compare class of GUI with class of called method
L15 invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z

L16 ifeq L24 // if not equal then not security relevant;
L17 iload r2 // otherwise load the return value from r2, and
L18 ifeq L22 // update security state accordingly
L19 ldc 1

L20 putstatic SecState/permission

L21 goto L24

L22 ldc 0

L23 putstatic SecState/permission

L24 iload r2 // load the return value on stack to return
// end of inlined code //
˘

(a, p) = (SecState.accessed, SecState.permission)
¯

L25 ireturn

31

public class Report extends java/lang/Object

public static void main(java.lang.String[]);
L0 new GUI

L1 dup

L2 invokespecial GUI.<init>()V

L3 astore r1

L4 new File

L5 dup

L6 invokespecial File.<init>()V

L7 astore r2

L8 ldc "Data.txt"

L9 ldc "Open"

L10 ldc "OpenRead"

// begin of inlined code //
L12 astore r4 //saves argument in reg4
L13 astore r5 // saves argument in reg5
L14 astore r6 //saves argument in reg6
L15 astore r7 // saves object in reg7

// get class of object
L16 aload r7 // loads object to stack+
L17 invokevirtual java/lang/Object/getClass()Ljava/lang/Class

L18 ldc "Open"

L19 iconst_3

L20 anewarray java/lang/Class

L21 dup

L22 dup

L23 dup

L24 iconst_0

L25 ldc java/lang/String

L26 aastore

L27 iconst_1

L28 ldc java/lang/String

L29 aastore

L30 iconst_2

L31 ldc java/lang/String

L32 aastore

// Returns actual method
L33 invokevirtual java/lang/Class/getMethod(Ljava/lang/String;[Ljava/lang/Class;)Ljava/lang/reflect/Method

// Returns declaring class of method
L34 invokevirtual java/lang/reflect/Method/getDeclaringClass()Ljava/lang/Class

//Load class of File
L35 ldc "File"

L36 invokevirtual java/lang/Class/forName(Ljava/lang/String)Ljava/lang/Class

// Compare File with class of method called
L37 invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z
L38 ifne L1’ //if not equal then not security relevant
L39 aload r5
L40 ldc ”CreateNew”
L36 invokevirtual java/lang/String/equals(Ljava/lang/Object;)Z
L36 ifneq G2’

goto L1’
G2’: aload r5

ldc ”Open”
ifne ABORT1
invokevirtual java/lang/String/equals(Ljava/lang/Object;)Z
aload r6
ldc ”OpenRead”
ifne ABORT1
ldc 1
putstatic SecState/accessed
goto L1’

32

ABORT1: iconst 1
invokestatic java/lang/System.exit:(I)V // (ABORT)

L1’ aload r7 //load object to stack
aload r6 //load argument to stack
aload r5 //load argument to stack
aload r4 //load argument to stack
// end of inlined code //

Defined[· ((a, p) := . . .) · Defined[

·(g0, g1, g2, gthis, gpc) := (s[0], s[1], s[2], s[3],L) · Definede · (−→gs = −→ms)

ff

L invokevirtual File.Open(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)Z
{gpc := 0}
//beginning of inlined code //
goto AFTERL

((gpc = L) ⇒ Definede) · ((a, p) := . . .) · (−→gs = −→ms)
·(g0, g1, g2, gthis, gpc) := (s[0], s[1], s[2], s[3],L) · Definede · (−→gs = −→ms)

ff

H aload r7 // loads object to stack
invokevirtual java/lang/Object/getClass()Ljava/lang/Class
ldc ”Open”
iconst 3
anewarray java/lang/Class
dup
dup
dup
iconst 0
ldc java/lang/String
aastore
iconst 1
ldc java/lang/String
aastore
iconst 2
ldc java/lang/String
aastore
// Returns actual method
invokevirtual java/lang/Class/getMethod(Ljava/lang/String;[Ljava/lang/Class;)Ljava/lang/reflect/Method
// Returns declaring class of method
invokevirtual java/lang/reflect/Method/getDeclaringClass()Ljava/lang/Class
//Load class of File
ldc ”File”
invokevirtual java/lang/Class/forName(Ljava/lang/String)
Ljava/lang/Class
// Compare File with class of method called
invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z
ifne HL1’ //if not equal then not security relevant
iconst 1
invokestatic java/lang/System.exit:(I)V // (ABORT)
//Rethrow exception

HL1’ athrow
// end of inlined code

AFTERL new Ask
dup
aload r1
invokespecial Ask.¡init¿(LGUI)V
invokevirtual Ask.run()Z
new Connection
dup
invokespecial Connection.¡init¿()V
astore r3
aload r3
ldc ”HTTPS”
ldc ”www.someurl.com”
astore r4 //saves argument in reg4
astore r5 // saves argument in reg5
astore r6 //saves object in reg6
// get class of object

33

aload r6 // loads object to stack
invokevirtual java/lang/Object/getClass()Ljava/lang/Class
ldc ”Open”
iconst 2
anewarray java/lang/Class
dup
dup
iconst 0
ldc java/lang/String
aastore
iconst 1
ldc java/lang/String
aastore
// Returns actual method
invokevirtual java/lang/Class/getMethod(Ljava/lang/String;[Ljava/lang/Class;)Ljava/lang/reflect/Method
// Returns declaring class of method
invokevirtual java/lang/reflect/Method/getDeclaringClass()Ljava/lang/Class
//Load class of Connection
ldc ”Connection”
invokevirtual java/lang/Class/forName(Ljava/lang/String) Ljava/lang/Class
// Compare Connection with class of method called
invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z
ifne L4’ //if not equal then not security relevant
getstatic SecState/accessed
ifeq L5’
getstatic SecState/permission
ifne L6’

L5’ ldc 0
putstatic SecState/permission
goto L4’

L6’ iconst 1
invokestatic java/lang/System.exit:(I)V // (ABORT)

L4’ aload r6 //load object to stack
aload r5 //load argument to stack
aload r4 //load argument to stack
// end of inlined code //
invokevirtual Connection.Open(Ljava/lang/String;Ljava/lang/String;)Z
return

Exception Table:
L L+1 H any

34

6. Level III Annotated Inlined Java bytecode

In this example, we will be using the four functions strclass , objclass and meth , and
declass , for modeling the semantics of the Reflect library methods that occur in the inlined
code. The reflect library is used to determine the declaring class of a method called in case
the method may be security relevant. The first function strclass :‖ string ‖→‖ Class ‖
returns for each string c which is a class name, the special object of type Class. Such an
object exists for each defined class name. Similarly, objclass : ` ⇀‖ Class ‖ returns for
each object of the heap the type of the object as an object of type Class. The function
meth :‖ string ‖ ×(V al)∗ × Class →‖ Method ‖ returns, for a method name, the list of
its argument types and the object the method is to be called on, an object of the Method
class. In turn, the function declass :‖ Method ‖⇀‖ Class ‖ returns the declaring class of
an object of the Method class.

The calls to the library functions are in a certain order so that the wp of this block
contains the expression:

strclass(c) = declass(meth(m,a, objclass(r)))

where c is a class name, m is the method name, r is the object the method is called on,
and a is the address of an array which stores the list of the argument types. Since we
do not consider overloading, we assume that a is Γ(c,m). Then we can use the following
equivalence:

strclass(c) = declass(meth(m,a, objclass(r)))⇔
∨

c′∈Sc

r : c′

where Sc = {c′ | c defines (c′,m)}.

35

Annotations of L1 − L4 are computed using rule 1.
AIII [L1] = norm(gpc := 0 · (a, p) = (SecState.accessed, SecState.permission))

= ((a, p) = (SecState.accessed , SecState.permission))
· (gpc := 0)
· ((a, p) = (SecState.accessed , SecState.permission)

AIII [L2] = AIII [L3] = AIII [L4]
= norm(ε · (a, p) = (SecState.accessed, SecState.permission))
= (a, p) = (SecState.accessed, SecState.permission))

Annotation of L5 is computed using rule 2.

AIII [L5] = norm((gthis := s[0]) · (gthis : GUI ⇒ (a, p) 6=
−→
⊥)

· ((a, p) = (SecState.accessed , SecState.permission)) · (gthis = r1))

= ((s[0] : GUI ⇒ (a, p) 6=
−→
⊥) ∧ ((a, p) = (SecState.accessed, SecState.permission)) ∧ (s[0] = r1))

· (gthis := s[0])

· ((gthis : GUI ⇒ (a, p) 6=
−→
⊥) ∧ ((a, p) = (SecState.accessed, SecState.permission)) ∧ (gthis = r1))

Annotation of L25 (used for computing the annotations of L6 − L24) is computed using rule 3.
AIII [L25] = norm((a, p) = (SecState.accessed, SecState.permission))

= (a, p) = (SecState.accessed, SecState.permission)

Annotations of L6 − L24 are computed using rule 4 using wp computation.
AIII [L23] = wp(M [23])

= shift(head(AIIIM [L24]))[s[0]/SecState.permission]
= (a, p) = (SecState.accessed, SecState.permission)[s[0]/SecState.permission]
= (a, p) = (SecState.accessed, s[0])

AIII [L22] = wp(M [22])
= unshift(head (AIIIM [L23])[0/s[0]])
= (a, p) = (SecState.accessed, 0)

AIII [L21] = wp(M [21])
= head(AIIIM [L22])
= (a, p) = (SecState.accessed, SecState.permission)

AIII [L20] = wp(M [20])
= (shift(head (AIIIM [L21])))[s[0]/m]
= (a, p) = (SecState.accessed, s[0])

AIII [L19] = wp(M [19])
= unshift(head (AIIIM [L20])[1/s[0]])
= (a, p) = (SecState.accessed, 1)

AIII [L18] = wp(M [18])
= (s[0] = 0 ⇒ shift(head (AIIIM [L22])))∧

(¬(s[0] = 0) ⇒ shift(head (AIIIM [19])))
= (s[0] = 0 ⇒ (a, p) = (SecState.accessed, 0))∧

(¬(s[0] = 0) ⇒ (a, p) = (SecState.accessed , 1))

AIII [L17] = wp(M [17])
= unshift(head (AIIIM [18])[r2/s[0]])
= (r2 = 0 ⇒ (a, p) = (SecState.accessed, 0))∧

(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1))

AIII [L16] = wp(M [16])
= (s[0] = 0 ⇒ shift(head (M [L24])))∧

(¬(s[0] = 0) ⇒ shift(head (M [L17])))
= (s[0] = 0 ⇒ (a, p) = (SecState.accessed, SecState.permission))∧

(¬(s[0] = 0) ⇒
(r2 = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1)))

36

AIII [L15] = wp(M [15])
= (shift(head (M [L16])))[s[0] = s[1]?1 : 0/s[1]]
= ((s[0] = s[1]?1 : 0) = 0 ⇒ (a, p) = (SecState.accessed, SecState.permission))∧

(¬((s[0] = s[1]?1 : 0) = 0) ⇒
(r2 = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1)))

= (¬(s[0] = s[1]) ⇒ (a, p) = (SecState.accessed, SecState.permission))∧
((s[0] = s[1]) ⇒

(r2 = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1)))

AIII [L14] = wp(M [14])
= (head (M [L15]))[strclass(s[0])/s[0]]
= ((¬(strclass(s[0]) = s[1]) ⇒ (a, p) = (SecState.accessed, SecState.permission))∧

((strclass(s[0]) = s[1]) ⇒
(r2 = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1))))

AIII [L13] = wp(M [L13])
= (unshift(head (M [L14]))[”GUI”/s[0]])
= ((¬(strclass(”GUI”) = s[0]) ⇒ (a, p) = (SecState.accessed , SecState.permission))∧

((strclass(”GUI”) = s[0]) ⇒
(r2 = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1))))

AIII [L12] = wp(M [L12])
= (head (M [L13])[declass(s[0])/s[0]])
= ((¬(strclass(”GUI”) = declass(s[0])) ⇒

(a, p) = (SecState.accessed, SecState.permission))∧
((strclass(”GUI”) = declass(s[0])) ⇒

(r2 = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1))))

AIII [L11] = wp(M [L11])
= (shift2(head(M [L12]))[meth(s[0], s[1], s[2])/s[2]]
= ((¬(strclass(”GUI”) = declass(meth(s[0], s[1], s[2])))

⇒ (a, p) = (SecState.accessed , SecState.permission))∧
((strclass(”GUI”) = declass(meth(s[0], s[1], s[2]))) ⇒

(r2 = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1))))

37

AIII [L10] = wp(M [L10])
= unshift(head (M [L11])[”AskUser”/s[0]])
= ((¬(strclass(”GUI”) = declass(meth(”AskUser”, s[0], s[1]))) ⇒

(a, p) = (SecState.accessed, SecState.permission))∧
((strclass(”GUI”) = declass(meth(”AskUser”, s[0], s[1]))) ⇒

(r2 = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed , 1))))

AIII [L9] = wp(M [L9])
= unshift(head(M [L10])[/s[0]])
= ((¬(strclass(”GUI”) = declass(meth(”AskUser”, null, s[0])))

⇒ (a, p) = (SecState.accessed, SecState.permission))∧
((strclass(”GUI”) = declass(meth(”AskUser”, , s[0]))) ⇒

(r2 = 0 ⇒ (a, p) = (SecState.accessed, 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed, 1))))

AIII [L8] = wp(M [L8])
= (head (M [L9])[objclass(s[0])/s[0]]
= ((¬(strclass(”GUI”) = declass(meth(”AskUser”, null, objclass(s[0])))) ⇒

(a, p) = (SecState.accessed, SecState.permission))∧
((strclass(”GUI”) = declass(meth(”AskUser”, , objclass(s[0])))) ⇒

(r2 = 0 ⇒ (a, p) = (SecState.accessed, 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed, 1))))

AIII [L7] = wp(M [L7])
= unshift((head (M [L8])[r1/s[0]]))
= ((¬(strclass(”GUI”) = declass(meth(”AskUser”, null, objclass(r1))))

⇒ (a, p) = (SecState.accessed, SecState.permission))∧
((strclass(”GUI”) = declass(meth(”AskUser”, null, objclass(r1)))) ⇒

(r2 = 0 ⇒ (a, p) = (SecState.accessed, 0))∧
(¬(r2 = 0) ⇒ (a, p) = (SecState.accessed, 1))))

AIII [L6] = norm((gthis = r1) · AII
M [L6] · wp(M [L6]))

= norm((gthis = r1) · AII
M [L6] · (shift(head(M [7])))[s[0]/r2])

= norm((gthis = r1) · AII
M [L6] · α)

= norm((gthis = r1) · (gthis : GUI ∧ (a, p) 6=
−→
⊥) · α[ce/(a, p)]) · ((a, p) := ce) · α

= ((gthis = r1) ∧ (gthis : GUI ⇒ (a, p) 6=
−→
⊥) ∧ α[ce/(a, p)]) · ((a, p) := ce) · α

where
α = (¬(r1 : GUI) ⇒ (a, p) = (SecState.accessed, SecState.permission))∧

((r1 : GUI) ⇒
(s[0] = 0 ⇒ (a, p) = (SecState.accessed , 0))∧
(¬(s[0] = 0) ⇒ (a, p) = (SecState.accessed , 1)))

ce = gthis : GUI ∧ s[0] → (a, true) | gthis : GUI ∧ ¬s[0] → (a, false) | ¬(gthis : GUI) → (a, p)
Notice that r1 : GUI = (strclass(”GUI”) = declass(meth(”AskUser”, null, objclass(r1)))) for this target program.

B Proofs

B.1 Proof of Theorem 5.2

Theorem 5.2 (Correctness, Monitoring by Co-execution) The program T adheres to pol-
icy P if, and only if, for each execution C0C1 · · · of T there is a co-execution w for the
automaton AP such that w ↓ 1 = C0C1 · · · .

Proof. (⇒) Let AP = (Q,A, δ, q0). We show that if T adheres to P, then for each exe-
cution E of T, there exists a co-execution w such that w ↓ 1 = E by (1) constructing a
configuration-automaton state sequence w for each execution and (2) proving that w is a
co-execution with w ↓ 1 = E.

(1) If the program adheres to the policy, the security relevant trace of every execution
E is in the language of the automaton: srtA(E) ∈ LAP

. We construct a configuration-
automaton state sequence w for an execution using the accepting run q0q1 . . . of the au-
tomaton for the security relevant trace of the execution. We begin the construction with
the initial configuration C0 and the initial state q0. We add the remaining configurations,
paired with this state until a security relevant action (s.r.a.) is met. Whenever an s.r.a. is

38

met, the state component of the added pair is changed with the next automaton state in
the run. This process is repeated until both the end of the execution and of the automaton
run is reached. Each time the sequence is to be extended for the next configuration, an
s.r.a. is induced if the latest configuration and this new configuration induce a postaction
or if the new configuration induces a preaction by itself.

Suppose the constructed sequence for the execution C0C1Cn−1 where n ≥ 0 is wn−1 and
the current state is qk (the state component of the last pair of wn−1). The sequence wn for
the execution C0C1 . . . Cn is defined as follows:

• act](Cn−1, Cn)act [(Cn) = ε :

wn = wn−1 · (Cn, qk)

• act](Cn−1, Cn)act [(Cn) = a[for some a[∈ A[:

wn = wn−1 · (Cn, qk) · (Cn, qk+1)

• act](Cn−1, Cn)act [(Cn) = a] for some a] ∈ A] :

wn = wn−1 · (Cn, qk) · (Cn, qk+1)

• act](Cn−1, Cn)act [(Cn) = a[a] for some a[∈ A[, a] ∈ A]:

wn = wn−1 · (Cn, qk) · (Cn, qk+1) · (Cn, qk+2)

The sequence for the execution of length 0 is the sequence of length 0: w−1 = ε. When
constructing w1, the current state is taken as q0 and act](C−1, C0) as ε. Note that the
number of s.r.a.’s in the execution is the position of the current state in the given automata
run. For instance when there are no configurations (and hence s.r.a’s) in the execution, the
current state is q0. If the new configuration induces one s.r.a, and the state was qk, the
new current state is qk+1 and if it induces two s.r.s’s, the current state is qk+2. This means
that if the program adheres to the policy, the sequence is well-defined.

(2) We prove the statement by induction on the length of the execution. We consider
finite executions only and note that the statement holds for an infinite execution since it
holds for all its finite prefixes. Think!

(Base Case) Consider the execution consisting of the initial configuration C0. If act [(C0) ∈
A[, then the security relevant trace of the execution consists of this action: srt A(E) =
act [(C0). Let the automaton run for this trace be q0q1 where δ(q0, act

[(C0)) = q1. Then
w0 = (C0, q0)(C0, q1) by construction. This sequence is an interleaving since q0q1 is an
automaton run: (C0, q0) −→AUT (C0, q1). By the definition of the first projection function
w0 ↓ 1 = C0. Finally, by the definition of the extract function extract(w0) = q0q1 act [(C0)
and clearly q0q1 act [(C0) ∈ E[. If act [(C0) = ε on the other hand, the security relevant
trace is empty srtA(E) = ε. The accepting run then consists of q0 and the constructed
sequence w0 of (C0, q0). By the definition of the first projection function w0 ↓ 1 = C0, and
extract(w0) = ε.

(Induction Hypothesis) Assume that the statement holds for all executions of length k,
k ≤ n.

(Inductive Step) Consider the sequence wn constructed for the execution C0 . . . Cn−1Cn

using the automaton run q0 . . . qm. Consider the execution En−1 = C0 . . . Cn−1. By defini-
tion, the following holds:

srtA(En) = srtA(En−1) act](Cn−1, Cn) act [(Cn)

39

We consider the case where act](Cn−1, Cn) ∈ A], act [(Cn) ∈ A[. (The other cases are
similar, but simpler.) Since q0 . . . qm is an accepting run for this execution:

δ∗(q0, srtA(En−1)) = qm−2 (i)
δ(qm−2, act

](Cn−1, Cn)) = qm−1 (ii)

δ(qm−1, act
[(Cn)) = qm (iii)

Then the sequence wn−1, constructed (as described above) for En−1 using the run
q0 . . . qm−2, is a co-execution by the induction hypothesis. Note that the last component of
this co-execution is Cn−1, qm−2 by the construction. Again by construction, the sequence
wn is an extension of wn−1 (last case of the construction):

wn = wn−1(Cn, qm−2)(Cn, qm−1)(Cn, qm)

We prove that:

• wn is an interleaving: The sequence wn is an interleaving by the induction hypothesis.
Since En is an execution, there is a machine transition from Cn−1 to Cn. There are
transitions between the consecutive states qm−2qm−1qm of the automaton run. Thus
the extension to wn−1 consists of one machine transition followed by the automaton
transitions:

(Cn−1, qm−2) −→JVM (Cn, qm−2)
(Cn, qm−2) −→AUT (Cn, qm−1)

(Cn−1, qm−1) −→AUT (Cn, qm)

(∗)

• w ↓ 1 = En: This simply follows from the induction hypothesis and applying the first
projection function to wn.

• w is a co-execution: By assumption wn−1 is a co-execution. Then extract(wn−1) ∈
(E[∪E])m−2 since there m− 2 s.r.a’s in En−1. By definition of the extract function
and using (*):

extract(wn) = extract(wn−1)act
]
A(Cn−1, Cn) qm−2qm−1qm−1qm act [

A(Cn)

By (ii), act]
A(Cn−1, Cn)qm−2qm−1 ∈ E

] and by (iii), qm−1qmact [
A(Cn) ∈ E[. Hence

extract(wn) ∈ (E[∪E])m.

(⇐) Let AP = (Q,A, δ, q0). We first show that an execution C0C1 · · · for which there
exists a co-execution w for AP such that w ↓ 1 = C0C1 . . . is in the language of the
automaton:

∀E.∃w.(w ↓ 1) = E ⇒ srtA(E) ∈ LAP

Since this is the case for all executions of T, we can then conclude that T obeys the policy.
We begin by noting that reflecting the result of the extract function of a co-execution to

the program actions produces the program’s security relevant trace, that is, (extractA(w)) ↓
A = srtA(w ↓ T). For a program to adhere to the policy, there should exist a trace of the
automaton that accepts the security relevant trace of the program. Such a trace is provided
by the automaton component of the co-execution and can be constructed by reflecting the
result of the extract function, this time, to the automaton states. Here we consider the
case when the security relevant trace of the program is finite (the case when it is infinite is
similar) and let (extractA(w)) ↓ A = a1 · a2 · . . . an. Then (extractA(w)) ↓ Q = q1q2 . . . qm
for some m >= 0 and by the definition of co-execution, δ(q2∗i, ai) = q2∗i+1 for all 1 ≤ i ≤ n

40

and m = 2 ∗ n. We are left to show that the transitions in (extractA(w)) ↓ Q follow each
other to form an automaton trace, that is for all k ≤ m where k is even, qk = qk+1. This is
so since when we apply the extract function to the interleaving, we consider each state twice:
once as the possible destination state of a transition and another time as the possible initial
state for a transition. So the trace constructed by filtering the states in even positions from
the state sequence (extractA(w)) ↓ Q) gives us an accepting trace for the security relevant
trace srtA(w ↓ T). Hence, the execution of the program is in the enforcement language of
the automaton.

41

In the text below, the program T annotated with level I annotations for policy P is TP .
Furthermore, pc(Ck) denotes the value of the program counter and M(Ck) the method at
the top frame of configuration Ck. Finally, σ(−→gs) denotes the value of the ghost state given
by the mapping σ.

The following two propositions follow from the definition of level I annotations.

Proposition B.1. Let C be an unexceptional configuration of program T. If the BEFORE
annotation A[

M [pc(C)] of pc(C) in TP is ε, then act [
A(C) = ε.

Proposition B.2. Let C1 and C2 be two unexceptional consecutive configurations in an
execution of program T. If the AFTER annotation A]

M [pc(C1)] of pc(C1) in TP is ε, then

act]
A(C1, C2) = ε.

Given an annotated program TA, a sequence of extended configurations (ψ0, C0, σ0)(ψ1, C1, σ1) . . .
is an extended execution of TA, if:

• C0 is an initial machine configuration, ψ0 = Requires 〈main〉 ·A〈main〉[1], σ0 = [] and

• ∀i.Γ∗ ` (ψi, Ci, σi)(ψi+1, Ci+1, σi+1)

That is, an extended execution is any execution as described in def 6.1.
The projection of an extended execution to its second component isolates the execution

of the JVM program, and is described similar to the definition of the first projection function
in section 5.

Given a finite execution E = C0C1 . . . Cn of program T, the extended execution XE =
(ψ0, C

′
0, σ0)(ψ1, C

′
1, σ1) . . . (ψm, C

′
m, σm) of the annotated program TP is the complete ex-

tended execution of E if XE ↓ 2 = E and ψm = ε. That is an extended execution is
complete if it executes the precondition (if any) of the instruction at the program counter
of its last configuration to completion. Given a finite execution E = C0C1 . . . Cn−1 of pro-
gram T, notice that the following hold for the execution E ′ = C0C1 . . . Cn−1Cn if Cn−1 is
not an application method call and Cn is not exceptional:

XE′ = XE (AM(Cn)[pc(Cn)], Cn, σ) . . . (ε, Cn, σ) (∗)

where (ε, Cn, σ) is the last element of XE. If Cn−1 is an application method call and Cn

is not exceptional AM [pc(Cn)] is replaced by RequiresM(Cn)AM(Cn)[1]. Finally, if Cn is
exceptional, there is no annotation to be executed (as Exsures clause is empty in level I
annotations):

XE′ = XE (ε, Cn, σ)

For each extended execution X of the annotated program TP , we extract a sequence of
configuration-automaton pairs by sampling the value of the ghost state. If a configuration
induces a preaction, the annotated program TP updates the ghost state immediately before
transiting to the next configuration (that is ”executing the method”). If two consecutive
configurations induce a non-exceptional postaction, the ghost state is updated immediately
after transiting to the second configuration (that is upon return). However, in the case of
an exceptional postaction the update is not immediate. When two consecutive configura-
tions C and C ′ induce an exceptional action, the new state can not be extracted from the
extended execution that ends with C ′. The reason is that there is no annotation associ-
ated with exceptional configurations. The necessary ghost update in this case is done as a
precondition to the first instruction of the handler. This is executed after the transition to
the configuration following C ′. Since we assume that there is a handler for any exception

42

raised by an API method call, there can not be a maximal execution having the suffix CC ′.
Hence, below, we consider each finite execution as a prefix of a maximal execution.

Let E = C0 . . . Cj be a finite execution and let XE = (ψ0, C
′
0, σ0) . . . (ψk, C

′
k, σk) be

its corresponding extended execution. Notice that the first two extended configurations
correspond to the execution of Requires 〈main〉. If the last two configurations Cj−1, Cj of
E do not induce an exceptional action, the sequence of configuration-automaton pairs
corresponding to this extended execution is defined as

w(XE) = (C0, q0) subw((ψ1, C
′
1, σ1) . . . (ψk, C

′
k, σk))

where q0 is the initial state of AP and subw is defined below. If Cj−1 and Cj induce an
exceptional action, we extract the co-execution using the complete extended execution of
E′ = C0 . . . CjCj+1. Let X ′ be the extended execution where X ′ ↓ 2 = E′ and X ′ ends
with the execution of the annotation Exc(pc(Cj+1),M(Cj+1) as described in sec 6.2. Then
the value of the ghost state at the last element of X ′ is taken.

A sequence of configuration-automaton pairs are extracted from a sequence of extended
configurations using the function subw . This function forms a sequence by sampling the ma-
chine configuration and the ghost state whenever one of the two is updated. If the machine
configuration changes in consecutive extended configurations, the sequence is extended with
the machine configuration and the ghost state of this second extended configuration. If the
current annotation is a conditional ghost assignment, then the configuration and ghost
state of the extended configuration after the execution of this annotation is added to the
sequence. If the current extended configuration is the last one, then the sequence is not
extended further.

subw((ψ1, C1, σ1) · (ψ2, C2, σ2) ·X
′) =

(C2, σ2(
−→gs)) · subw((ψ2, C2, σ2) · X

′) if C1 −→JVM C2

(C2, σ2(
−→gs)) · subw((ψ2, C2, σ2) · X

′) if ψ1 = (−→gs := α1| . . . |αk) · ψ2

for some k 6= 1
subw((ψ2, C2, σ2) · X

′) otherwise
subw(ψ,C ′, σ) = ε

In the definition above, the update of the ghost state causes a sampling only if the
update is not done by the last condition of the conditional update. The reason is that when
the program is annotated with level I annotations, an update on the ghost state using the
last condition of the conditional expression is a stutter.

Definition 5.1 captures all interleavings of the monitor and the program, for a monitor
that updates the security state every time a s.r.a. occurs. If a configuration induces a
preaction, the update should happen before the transition to the next configuration. If
two consecutive configurations induce a postaction, the update should be done after the
transition to the latter configuration. The definition aims to specify the interval where the
update may be done for the interleaving to be a co-execution. A co-execution is a closest
updating co-execution if the monitor makes a corresponding transition at the latest possible
point when the update is for a preaction and at the earliest possible point when the update
is for a postaction.

Definition B.3 (Closest Updating Co-execution). A co-execution is closest updating co-
execution if the following holds for consecutive pairs (C1, q1)(C2, q2)(C3, q3)(C4, q4):

• act [
A(C1) ∈ A

[∧ (C2, q2) −→JVM (C3, q3) =⇒ (C1, q1) −→AUT (C2, q2)

• act]
A(C1, C2) ∈ A

] ∧Unexc(C2) =⇒ (C2, q2) −→AUT (C3, q3)

43

• act]
A(C1, C2) ∈ A

] ∧ Handled (C2) =⇒ (C2, q2) −→JVM (C3, q3) ∧ (C3, q3) −→AUT

(C4, q4)

We now prove that, the configuration-automaton state pairs extracted from a level I
annotated program is a co-execution, provided that the annotations are valid and vice versa.
What is more, due to the shape of the annotations, we prove that these co-executions are
closest updating.

Lemma B.4. TP is valid, if and only if, for every maximal execution E of T, the ex-
tracted sequence w(XE) of the complete extended execution XE of TP is closest updating
and w(XE) ↓ 1 = E.

Proof. There are two aspects to the proof. First, we are showing that ghost assignments
follow security relevant method executions and are performed according to the way de-
scribed in the policy. Second, that no security relevant action execution happens when the
ghost state is undefined if and only if the annotated program is valid.

We proceed by induction on the number of configurations in E.

When the number of configurations in E is 0, TODO!!

For all executions Ek = C0 . . . Ck−2Ck−1 of length k such that k ≤ n and act]
A(Ck−2, Ck−1)

is not an exceptional post action, we assume that w(Xk) is a co-execution where w(Xk) ↓
1 = Ek if and only if all boolean formulas asserted in the complete extended execution Xk

holds except possibly the assertions Defined] and Defined e asserted in the course of the
execution of the precondition of pc(Ck−1).

Notice that this induction assumption is sufficient, since no maximal execution can end
with an exceptional configuration that is immediately preceded by an exceptionally security
relevant API method call. Similarly, for no maximal execution Defined] or Definede is
asserted in the course of the execution of the precondition of pc(Ck−1). If the maximal
execution is one which returns from the 〈main〉, then pc(Ck−1) is return and hence no
definedness precondition. If the maximal execution is one which ends exceptionally, then
this exception is not one thrown by a security relevant API method.

n′ = n + 1 Consider the execution En+1 = C0 . . . Cn of T and its corresponding extended
execution XEn+1 .

We consider the different forms of the pair Cn−1, Cn:

• Cn−1 and Cn are both not exceptional, and Cn−1 is not an application method call:
We have assumed that the statement holds for En = C0 . . . Cn−1. Since XEn+1 is an
extension of XEn , the assertions met in XEn+1 hold if and only if assertions met in
XEn andX hold whereXEn+1 = XEn ·X. By the induction assumption, the assertions
met in XEn of TP hold if and only if w(XEn) is a co-execution and w(XEn) ↓ 1 = En.

Let the last element of XEn be (ε, Cn−1, σ) for some σ, executing method of Cn be
M and pc(Cn) be L. Notice that since Cn−1 is not exceptional, L is not a handler
instruction. By the definition of a complete extended execution, the first element of
the suffix X is (AM [L], Cn, σ), and its last element is (ε, Cn, σ

′) for some σ′ that is
determined by the assignments in AM [L]. That is X corresponds to the execution of
the annotation sequence that is associated with L in M : AM [L]. By the definition of
subw and w:

w(XEn+1) = w(XEn)(Cn, σ(−→gs)) · subw(X)

By the definition of level I annotations,

AM [L] = Ae
M [L− 1][1] ·A]

M [L− 1][1] ·A[
M [L] ·A]

M [L][0] ·Ae
M [L][0]

44

In the rest of the argument of this case, we take Ae
M [L− 1][1] = ε for simplicity. This

annotation otherwise would set gpc to 0, which does not change the argument.

Notice that, again by the definition of level I annotations, AM [L] contains at most

two assignments to the ghost state in this case. (For all L′, A]
M [L′][1] and A[

M [L′] can

contain at most one ghost assignment (to the ghost state), while A]
M [L′][0], Ae

M [L′][0]
and Ae

M [L′ − 1][1] can not contain any.) In order to go through all shapes the suffix
subw(X) can have, we consider the possible ghost assignments in X:

1. A]
M [L− 1][1] = ε, A[

M [L] = ε
In this case there are no ghost assignments in AM [L] and so subw(X) = ε by
definition. Then, w(XEn+1) = w(XEn)(Cn, σ(−→gs)).

(⇒) From this and the induction hypothesis, the following can be concluded: (i)
w(XEn+1)) ↓ 1 = En+1 by the definition of ↓, (ii) w(XEn+1) is an interleaving,
since the last element of w(XEn) is (Cn−1, σ(−→gs)) and Cn−1 −→JVM Cn.

By the definition of the extract function:

extract(w(XEn+1)) = extract(w(XEn))act]
A(Cn−1, Cn)act [

A(Cn)

By lemma B.1, act [
A(Cn) = ε and by lemma B.2, act]

A(Cn−1, Cn) = ε. By the
induction hypothesis, w(XEn+1) is a co-execution.

(⇐) Assume that w(XEn+1) is a closest updating co-execution The only way
this is possible is that w(XEn) is itself a closes updating (c.u.) co-execution,

and act [
A(Cn) = ε, act]

A(Cn−1, Cn) = ε. (Otherwise there would be ghost up-
dates executed in w(XEn+1))). The latter we have already shown to hold. By
the induction hypothesis, if w(XEn) is a c.u. co-execution then all assertions
(except possibly the definedness assertions Defined] and Definede executed for
pc(Cn−1)) hold. Since A[

M [L] = ε, there is no Defined [that is asserted in the
precondition of pc(Cn−1), hence the only assertions that should be shown to
hold are Defined] and Defined e of pc(Cn−1). If pc(Cn−1) is not a method invo-
cation instruction, there is no definedness assertions in its precondition, and we
are done. If pc(Cn−1) is a method invocation instruction, either Cn−1 is either
an application method call or an API method call. In the former case, both
Defined] and Defined e hold vacuously since the premise of the boolean formula
does not hold, that is the object that the method is invoked on is not one of
those mentioned in these assertions.

Let us consider the case where Cn−1 is an API method call. Since there are
no jumps to instructions after method calls, pc(Cn−1) should be L− 1. By the

definition of AFTER annotations, A]
M [L−1][1] = ε implies that A]

M [L−1][0] = ε,
so there is no Defined] for pc(Cn−1). If it is also the case that Ae

M [L− 1][0] = ε,
we are done. If there is a Defined e however, we have to show that this also holds.

Suppose that Defined e which comes from Ae
M [L − 1][0] does not hold. Then

an alternative execution of the program can be constructed by replacing Cn

with C ′
n where C ′

n is exceptional. Since L− 1 is exceptionally security relevant
(otherwise there would be no Defined e asserted for Cn−1), there is a handler H
for L− 1. Now consider the alternative execution that is archived by extending
the execution with C ′

n+1 where pc(Cn−1) = H: E′ = C0 . . . Cn−1C
′
nC

′
n+1. Then

w(XE′) can not be a co-execution. We reach a contradiction.

2. A]
M [L− 1][1] 6= ε, A[

M [L] = ε
Then the suffix X is as follows:

45

((−→gs := ce) ·A]
M [L][0] ·Ae

M [L][0], Cn, σ) (1)

→∗ ((−→gs := α1| · · · · · |αk) · A
]
M [L][0] · Ae

M [L][0], Cn, σ) (2)

→ (A]
M [L][0] · Ae

M [L][0], Cn, σ
′) (3)

→∗ (ε, Cn, σ
′′) (4)

By definition, subw(X) = ε if k = 1 and subw(X) = (Cn, σ
′(−→gs)) otherwise.

Notice that σ′′(−→gs) = σ′(−→gs) since there are no assignments to the ghost state in
the steps between (3) and (4) and furthermore if k = 1, σ ′(−→gs) = σ(−→gs), by the
definition of level I annotations.

By the definition of AFTER annotations, A]
M [L − 1][1] 6= ε if M [L − 1] =

invokevirtual (c.m) for some class c and method m. That is the instruction
at above the current program counter is a method invocation instruction. By
the assumption that there are no direct jumps to instructions immediately below
method calls, the previous configuration is either a method call (to an API
method) or a method return (from an application method).

(⇐) This direction is similar to the argument for the case above.

(⇒) As is apparent from the execution of X, subw(X) is determined by the value
of k above:

(a) k = 1:
This corresponds to the case where we have a stuttering if the ghost state
is defined when the assignment begins executing. This type of stuttering is
meant to occur when the current call is not to a security relevant action, in
order to not to update the state unnecessarily with this assignment. This
last condition can be satisfied also if the ghost state is not defined when the
assignment begins executing. In this case, for the extracted sequence to be
a co-execution, the method return should not be a postaction.
By the definition of subw , subw(X) = ε and w(XEn+1) is the same as case 1
above. The argument that this is an interleaving and that its first projection
is En is also identical. The equation 1 also holds. For w(XEn+1) to be a
co-execution then, we should show that no security relevant actions are
induced by the addition of configuration Cn to the execution En−1. By
lemma B.1, act [

A(Cn) = ε. If Cn−1 is a return from an application method,

act]
A(Cn−1, Cn) = ε. The case where Cn−1 is a method call to an API is

more complicated. This case is to prove that, although this instruction has
been annotated, in this case the method called as a result of virtual method
resolution turned out not to be security relevant.
Let Cn−1 be ((M,L−1, s ·d ·s′, lv) ·R, h[) and Cn be ((M,L, v ·s′, lv) ·R, h])
for some actual arguments s, some location d, some stack s′ and return
value v. Notice that there exists a class c′ such that c′ defines type(h[, d).m
and type(h[, d) <: c. (If this was not the case, Cn would be exceptional.)
Now suppose (v, c′,m, s, h[, h]) is a postaction of the induced automaton AP .
Then there should exist, for some names x, x1, . . . xn, a symbolic postaction
a]

s = (τx, c′,m, ((τ1 x1), . . . , (τn xn))) of As such that the type of v is τ ,
the type of s[0] is τ1 etc. It would then be the case that type(h[, d) ∈

RS((c,m), A]
s \Ae

s), by the definition of RS. Notice that σ(gthis) = d by the
execution of A][L− 1][0] in XEn−1 .

Since k = 1, either ¬(gthis : c′1 ∨ . . . ∨ gthis : c′p) or −→gs =
−→
⊥ or both of

46

them holds at (2) where RS((c,m), A]
s \ Ae

s) = {c′1, . . . , c
′
p}. If only the

first holds, at (2), d is not an object of one of these classes, type(h[, d) 6∈

RS((c,m), A]
s \ Ae

s). (We assume that type(h[, d) = type(h], d), that is an
API call does not change the type of the object it is called on) We reach a

contradiction, showing that act]
A(Cn−1, Cn) = ε. Hence, extract(w(XEn+1))

is a co-execution. If both holds, then the return is again not security relevant
and extract(w(XEn+1)) is a co-execution.

If only the second holds however act]
A(Cn−1, Cn) ∈ A] and extract(w(XEn+1))

can not be a co-execution since there is no outgoing transitions from the un-
defined state in a ConSpec automaton induced from the symbolic automaton
of the policy. In order to rule out this case, we should prove that σ(−→gs) 6= ⊥.
Now we use the assumption that all assertions in XEn+1 holds. This is only
the case if all assertions of XEn holds. By the definition of AFTER anno-
tations, A][L − 1][0] asserts that if gthis is of a class which is a member of

RS((c,m), A]
s \ Ae

s, then σ(−→gs) 6= ⊥. Hence it can not be the case only the
second conjunct holds.

(b) k 6= 1:
Let σ(−→gs) = q and σ′(−→gs) = q′, by the definition of subw and of extract :

w(XEn+1) = w(XEn)(Cn, q)(Cn, q
′)

extract(w(XEn+1)) = extract(w(XEn))act]
A(Cn−1, Cn)qq′act [

A(Cn)

In order to show that w(XEn+1) is an interleaving, we should prove that there
exits an action a ∈ A such that δ(q, a) = q ′. From this, it will also follow that
w(XEn+1) ↓ 1 = En+1. To prove that w(XEn+1) is a co-execution, however,

we should prove a stronger statement, namely that δ](q, act]
A(Cn−1, Cn)) = q′.

(This is the only possibility since by lemma B.1, act [
A(Cn) = ε)

– k > 1: This is the case when one of the conditions (other than the last
condition) of the conditional assignment is satisfied and the ghost state is
set accordingly. We show that this is the case only if Cn−1 is a return from
a post security relevant method call and that the ghost state is set correctly.
Since k > 1, in the execution segment above, α1 has the following form:

(−→gs 6=
−→
⊥) ∧ gthis : c′i ∧ a →

−→e , where c′i ∈ RS((c,m), A]
s \ Ae

s). Note that

α1 holds at (2). This implies that −→gs 6=
−→
⊥ at σ.

We first show that Cn can not be a return from an application method. (If
this was the case the return would be from an application method, hence not
security relevant). Assume that this is the case, let this method which is re-
turning be c′,m and the object it was called on to be d. (That is the second
frame in the activation stack of Cn−1 is (M,L− 1, s · d · s′) for some actual
arguments s, and some stack s′) Since the call was made by the instruc-
tion invokevirtual c.m, it should be the case that c′ defines (type(d, h),m)
where h is the heap at the time of the method call. Notice that gthis = d,
since it was set to this value by A][L − 1][0] just before the method call
was made and since it is local so could not have been changed during the
execution of the application method. (We further assume that the appli-
cation method does not change the type of the object it is called on) This

means that c′ ∈ RS((c,m), A]
s \Ae

s), which can not be the case since it is an
application method. Hence we reach a contradiction, showing that Cn can
not be a return from an application method.

47

The only possibility left is that Cn is a return from an API method. Let
Cn−1 be ((M,L − 1, s · d · s′, lv) · R, h[) and Cn be ((M,L, v · s′, lv) · R, h])
for some actual arguments s, some location d, some stack s′, return value
v and heaps h[, h]. Let (c.m) : (γ → τ). Since α1 is a part of the

ghost assignment, the symbolic automaton should include the action a]
s =

(τx, c′i,m, ((τ1x1), . . . , (τ|γ|x|γ|))) for some names x, x1, . . . and types τ, τ1, . . .
such that the type of v is τ , the type of s[0] is τ1 etc. What is more there

exists a predicate b and an expression tuple E such that (a]
s, b, E) ∈ δ]

s and
a = abρ where ab is the boolean formula for predicate b and −→eE as defined
in section 6.2. The substitution ρ = [v/x, g0/x0, . . . gk−1/xn−1, gthis/this]
by construction. Notice that σ(gthis) = d by the execution of A][L− 1][0] in
XEn−1 and hence c′i defines type(h[, d).m. Thus (v, c′,m, s, h[, h]) is a postac-

tion of the induced automaton AP . We have proven that act]
A(Cn−1, Cn) ∈

A].
We are left to prove that δ](q, act]

A(Cn−1, Cn)) = q′. Since α1 holds at (2),

‖ abρ ‖ (Cn, σ) = true ⇔‖ b ‖ qIh[h] = true

where I = [x 7→ v, x1 7→ s[0], . . .]. Using the same interpretation,

‖ −→eEρ ‖ (Cn, σ) = q′ ⇔‖ E(sv) ‖ qIh[h] = q′(sv)

for all security state variables sv of −→gs. The result then follows from the way
a ConSpec automaton is induced by a symbolic automaton.

– k = 0 It is possible to show in this case that Cn is a return from a security
relevant method call by a similar argument. The idea is that if Cn was a
return from an application method call, the last condition of the conditional
assignment would instead have been satisfied, hence k would have been 1.
Since this is not the case, we know that Cn is a return from an API call.
What is more, let this method be c′.m. Then c′ ∈ RS((c,m), A]

s \Ae
s. Notice

that none of the conditions in the assignment hold, that is k = 0, if either
σ(−→gs) = ⊥ or σ(−→gs) 6= ⊥ but the guards are not satisfied. In both cases,
after this assignment the ghost state is undefined: σ ′(−→gs) = ⊥.
The case that k = 0 may only occur if the ghost state becomes undefined
since the return from the API method was a violation. Since the last con-
dition does not hold, we know that the ghost state was not undefined at σ
and we know that the object the method was called is of one of the classes
in RS((c,m), A]

s \ Ae
s. This means that the call is security relevant. Since

none of the conditions before the last was satisfied, this is a violating postac-
tion. By the definition of the way a ConSpec automaton is extracted from a
symbolic automaton, any such state has a transition to the undefined state.

Hence δ](q, act]
A(Cn−1, Cn)) = q′, where q′ =

−→
⊥ and we are done.

Hence, w(XEn+1) is a co-execution.

3. The cases where A]
M [L − 1][1] = ε, A[

M [L] 6= ε and where A]
M [L − 1][1] 6= ε,

A[
M [L] 6= ε are proved similar to the case above.

• Cn−1 and Cn are both not exceptional, and Cn−1 is an application method call:
This case can be viewed as a special case of the case when Cn−1 is not an application
method call (above). The difference is that the Requires of the called method is also
executed, making sure that when the execution of a method begins gpc is set to 0.

48

• Cn−1 is exceptional, while Cn is not exceptional: The only interesting subcase of this
case is when Cn−2 is an API method call and act]

A(Cn−2, Cn−1) 6= ε. In this case,
notice that w(XEn+1) is not an extension of w(XEn), but rather of w(XEn−1), by the
definition of w function.

• Cn−1 is not exceptional, while Cn is exceptional: The only interesting subcase of
this case is when Cn−2 is an API method call and act]

A(Cn−2, Cn−1) 6= ε. Then the
special construction described for w(X) when X has an exceptional configuration as
last element and the element before the last is an API call is used.

Lemma B.5. Given a program T and a policy P, if for every execution E of T there exists
a co-execution w of T and AP such that w ↓ 1 = E, then the sequence w(XE) extracted
from the extended execution XE corresponding to this execution is also a co-execution such
that w(XE) ↓ 1 = E and w(XE) is closest updating.

Proof. For each co-execution, a closest updating co-execution can be constructed by post-
poning the transition of the monitor for a preaction until the configuration which calls this
security relevant method is reached and by performing the transition of the monitor right
after the return of the security method call if the update is for a postaction.

Theorem 6.2 (Correctness of Level I Annotations) Program T annotated with level I
annotations for policy P is valid, if and only if, T adheres to P.

Proof. (⇒) The result follows in this direction from theorem 5.2, lemma B.5 and lemma B.4.
(⇐) The result follows in this direction from lemma B.4 and theorem 5.2.

B.2 Proof of Theorem 6.4

Theorem 6.4 The level II annotation of P with embedded state −→ms is valid if and only if
for each execution E of P , the sequence w(E,−→ms) is a method-local co-execution.

Proof. (←)
By induction on the length of the execution:

Base Case

Induction Hypothesis: For all executions Ek, k < n, w(Ek,
−→ms) is a method-local co-

execution.

Inductive Step: We consider the shape of Cn:

• Cn is an entry point of an application method: This is the case only if Cn−1 is an

• Cn is an application method call:

• Cn is an API method call:

• Unhandled (Cn): invokevirtual instruction or if n = 0.

• Cn is not of the above: In this case, Cn is not a sampling point, hence w(En,
−→ms) =

w(En−1,
−→ms) and the claim holds by the induction hypothesis.

(→)

49

B.3 Proof of Theorem 7.1

Theorem 7.1 Let P be a program, P a ConSpec policy, and I(P,P) denote program P
inlined for policy P. The level III annotation of I(P,P) is locally valid, and validity is
efficiently checkable.

Proof. (Sketch) We show that the verification conditions resulting from the level III annota-
tion of I(P,P) are valid and efficiently checkable. To simplify the presentation, we consider
here post-actions only; the argument is easily adapted to pre-actions and exception actions.

Notice that for level III annotated programs, every instruction is annotated by a non-
empty sequence of logical assertions alternated with ghost variable assignments, always
starting and ending with a logical assertion. Notice also that Ensures(Γ∗(M)) and Exsures(Γ∗(M))
are all equal to the synchronization assertion −→gs = −→ms for fully annotated programs. The
first and last elements of the annotation sequence of Requires(Γ∗(M)) is also the syn-
chronization assertion (except for 〈main〉, in which case last(Requires(Γ∗(M))) is again
−→gs = −→ms). Similarly, notice that for all instructions L, where L is not the label of an in-
lined instruction and is not a security relevant action, last(AIII

M [L]) is the synchronization
assertion.

We assume that the return instruction is not the first instruction of an exception handler,
the last element in its annotation sequence is the synchronisation annotation. We also
assume that the inlined instructions do not raise exceptions.

Then, a level III annotation of I(P,P) gives rise to a set of verification conditions de-
scribed as follows.

First, there are three types of verification conditions arising from method composition-
ality, namely:

• last(Requires(Γ∗(M)))⇒ head (AIII
M [1]),

• last(AIII
M [R])⇒ Ensures(Γ∗(M)),

• For all instructions L that is not a method call and that can raise an unhandled
exception last(AIII

M [L])⇒ Exsures(Γ∗(M))
last case,
method
call?

where R is the label of the return instruction in method M , and where last is a function
on sequences returning the last element. The inlined instructions are assumed not to raise
any exceptions, so no verification condition for exception raising is generated by these.
Additionally, only inlined instructions and method calls change the embedded monitor
state, hence the simple form of the verification conditions of the latter type. In the first
two cases and in the last case when L is not the label of a method call, the antecedent and
the consequent are (syntactically) equal to the synchronisation assertion. These verification
conditions are therefore valid, and validity is efficiently checkable.

Second, every ghost variable assignment −→g := ce gives rise to a verification condition. If
α·(−→g := ce)·α′ is a subsequence of AIII

M [L] for some L where α and α′ are logical assertions,
then α ⇒ α′[ce/−→g] is a verification condition. Due to the normalization performed in
the construction of the level III annotation, α must contain a conjunct α′[ce/−→g]. Such
verification conditions are therefore valid, validity being efficiently checkable.

Third, every non-method-call instruction M [L] gives rise to a verification condition
last(AIII

M [L]) ⇒ wp(M [L]). There are three cases to be considered: (a) if M [L] is a non-
inlined instruction with non-inlined successor instructions only, last(AIII

M [L]) is syntactically
equal to wp(M [L]) by construction; (b) if M [L] is a non-inlined instruction followed by an
inlined instruction (in the case of post-actions only, the latter indicates the beginning of

50

an inlined block serving to record the current values of the parameters and the object with
which the following potentially security relevant instruction is called), then the synchro-
nization assertion −→gs = −→ms must appear as a conjunct in both last(AIII

M [L]) and wp(M [L]),
and the only other conjuncts in the latter must be either of the shape Defined] or s[i] = s[i];
(c) if M [L] is an inlined instruction, last(AIII

M [L]) must contain a conjunct wp(M [L]) by
construction. In all three cases, the verification condition is valid, validity being efficiently

checkable; the only interesting case here is presented by Defined], the consequent −→gs 6=
−→
⊥

of which is implied by −→gs = −→ms. Similarly, every non-method call instruction M [L] that can
raise an exception which is handled by the handler at label H gives rise to the verification
condition last(AIII

M [L])⇒ head (AIII
M [H]). By the assumption that the inlined instructions

do not raise an exception, this instruction can not be an inlined instruction. There are two
cases to consider: (a) if M [H] is a non-inlined instruction, then both the antecedent and
the consequent are the synchronisation annotation; (b) if the handler M [H] is an inlined
instruction (which is possible only if it is the first instruction a code inlined for a poten-
tially preaction occuring in the original handler) this case becomes a subcase of the proof
for pre-actions, handled similar to the final part of this proof.

Finally, every method-call instruction M [L] calling some method M ′ gives rise to three
types of verification conditions. If the method call is not potentially post-security relevant,
these are:

• last(AIII
M [L])⇒ Requires(Γ∗(M ′)),

• Ensures(Γ∗(M ′))⇒ head(AIII
M [L+ 1]), and

• For all handler instructions H of L, Exsures(Γ∗(M ′))⇒ head (AIII
M [H])

In the first two formulas, the antecedent and the consequent are (syntactically) equal by
construction, and hence valid. The last set of verification conditions are valid and efficiently
checkable by the argument for the case when M [L] is not a method-call presented above
where last(AIII

M [L]) should be replaced by Exsures(Γ∗(M ′)).
If M [L] is calling some method M ′ which is potentially security relevant, the three types

of verification conditions are

• last(AIII
M [L])⇒ Requires(Γ∗(M ′)) ∧ φ,

• Ensures(Γ∗(M ′)) ∧ φ⇒ head (AIII
M [L+ 1]), and

• For all instruction handler instructions H of L, Exsures(Γ∗(M ′))∧φ⇒ head (AIII
M [H])

where φ is the formula (g0 = r0) ∧ . . . ∧ (gn−1 = rn−1) ∧ (gthis = rthis). Notice that the
invoked method does not change the local variables and the evaluation stack of the caller
method (except for popping arguments from the stack and pushing its return value). Then
a formula mentioning variables not changed by the invoked method (such as φ) can be
added to both the pre-and postconditions of the invoked method [3].

The first of these conditions is again easy to show valid, since Requires(Γ∗(M ′)) and
all conjuncts in φ also appear as conjuncts in last(AIII

M [L]) by construction. The third set
of verification conditions are similar to the last cases of the argument above, when M [L]
is calling a non-potentially security relevant action. The only really involved case in the
whole proof is the second verification condition.

Let α1, . . . , αm be the guarded expressions gthis : c′i ∧ abρi →
−→eEρi, 1 ≤ i ≤ m, and

α be ¬(gthis : c′1 ∨ . . . ∨ gthis : c′p) →
−→gs, all induced by the policy for the instruction

M [L] = invokevirtual (c.m) as described in Section 6.2 (cf. After Annotations). Then

51

the second element of AIII
M [L + 1] must be a ghost assignment −→gs := ce where ce is the

conditional expression α1 | · · · | αm | α. The block inlined immediately after the (potentially
post-security relevant) instruction M [L] has the important property that its weakest pre-
condition w.r.t. the head assertion of the first instruction following the block (which is the
synchronisation assertion −→gs = −→ms) is the logical assertion

∧

1≤i≤m rthis : c′i ∧ abρ
′
i →

−→gs = −→eEρ
′
i

∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) →
−→gs = −→ms

where the substitution ρ′i is defined as [s[0]/x, r0/x0, . . . rn−1/xn−1, rthis/this,
−→ms/−→gs] if r =

(τ x) and as [r0/x0, . . . rn−1/xn−1, rthis/this,
−→ms/−→gs] if r = void . Therefore, head (AIII

M [L+
1]) must be the logical assertion

φ

∧ Defined]

∧
∧

1≤i≤m rthis : c′i ∧ abρ
′
i →

−→ce = −→eEρ
′
i

∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) →
−→ce = −→ms

where φ is as explained above, and where −→ce is the tuple of conditional expressions ce i,
obtained from ce by replacing each expression vector −→eE occurring in ce with its i-th compo-
nent. Now, validity of the verification condition Ensures(Γ∗(M ′))∧φ⇒ head (AIII

M [L+1]) is
established as follows. The first conjunct φ (actually a set of conjuncts) of head (AIII

M [L+1])
appears as a conjunct in Ensures(Γ∗(M ′))∧φ. The second conjunct Defined] is implied by

Ensures(Γ∗(M ′)) ∧ φ because Ensures(Γ∗(M ′)) is −→gs = −→ms, which implies −→gs 6=
−→
⊥ . Every

conjunct rthis : c′i ∧ abρ
′
i →

−→ce = −→eEρ
′
i is valid under the equalities of Ensures(Γ∗(M ′))∧φ,

since then every guard rthis : c′i ∧ abρ
′
i matches exactly the guard of αi, and −→eEρi is equal

to −→eEρ
′
i. Vality can thus be easily checked mechanically by simple equational reasoning and

(syntactic) guard matching. Finally, validity of the conjunct ¬(rthis : c′1 ∨ . . .∨ rthis : c′p) →
−→ce = −→ms is established similarly.

When M [L] can give rise to an exceptional postaction, the last set of verification con-
ditions look slightly different. Notice that our inliner inserts a handler for each such poten-
tially security relevant instruction that handles all types of exceptions. Let the label of the
first instruction of this handler to be H for the instruction M [L], then the three verification
conditions are:

• last(AIII
M [L])⇒ Requires(Γ∗(M ′)) ∧ φ ∧ (gpc = L) and

• Ensures(Γ∗(M ′)) ∧ φ ∧ (gpc = L)⇒ head (AIII
M [L+ 1]), and

• , Exsures(Γ∗(M ′)) ∧ φ ∧ (gpc = L)⇒ head (AIII
M [H])

where φ is the formula (g0 = r0)∧ . . .∧ (gn−1 = rn−1)∧ (gthis = rthis). The non-trivial case
is then to show that the third verification condition is valid and efficiently checkable. This
argument is similar to the argument made above for the non-exceptional case.

52

