
State Space Representation for

Verification of Open Systems

IREM AKTUG

Licentiate Thesis

Stockholm, Sweden 2006

TRITA-CSC-A2006:3
ISSN 1653-5723
ISRN KTH/CSC/A-06/03–SE
ISBN 91-7178-341-5

KTH CSC
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie licentiatavhandling 31 Maj
2006 10:00 i E3, Kungl Tekniska högskolan, Osquars Backe 14, Stockholm.

© Irem Aktug, April 2006

Tryck: Universitetsservice US AB

iii

Abstract

When designing an open system, there might be no implementation available for cer-
tain components at verification time. For such systems, verification has to be based on
assumptions on the underspecified components. In this thesis, we present a framework for
the verification of open systems through explicit state space representation.

We propose Extended Modal Transition Systems (EMTS) as a suitable structure for
representing the state space of open systems when assumptions on components are writ-
ten in the modal µ-calculus. EMTSs are based on the Modal Transition Systems (MTS)
of Larsen. This representation supports state space exploration based verification tech-
niques, and provides an alternative formalism for graphical specification. In interactive
verification, it enables proof reuse and facilitates visualization for the user guiding the
verification process.

We present a two-phase construction from process algebraic open system descriptions
to such state space representations. The first phase deals with component assumptions,
and is essentially a maximal model construction for the modal µ-calculus that makes
use of a powerset construction for the fixed point cases. In the second phase, the models
obtained are combined according to the structure of the open system to form the complete
state space. The construction is sound and complete for systems with a single unknown
component and sound for those without dynamic process creation.

We suggest a tableau-based proof system for establishing open system properties of
the state space representation. The proof system is sound and it is complete for modal
µ-calculus formulae with only prime subformulae.

A complete framework based on the state space representation is offered for the auto-
matic verification of open systems. The process begins with specifying the open system
by a process algebraic term with assumptions. Then, the state space representation is ex-
tracted from this description using the construction described above. Finally, open system
properties can be checked on this representation using the proof system.

iv

v

Acknowledgements

I owe my deepest gratitude to my supervisor, Dilian Gurov. He always managed
to find the time and patience for guiding me in the past 2,5 years. Through our
long discussions, and his ingenious comments I have learned how to be a scien-
tist. Without his continuous encouragement and friendly support combined with
invaluable expert advice, this thesis would have never been finished.

I thank Mads Dam, Marieke Huisman and Christoph Sprenger for helpful com-
ments on this work.

I also want to thank two great scientists from my former university METU,
Halit Oguztuzun and Cem Bozsahin, who have supported me beginning from my
undergraduate days and gave me the initial excitement of science. I think of you
every step of the way as I try to live up to the title "diligent".

Mika Cohen has been my longest lasting office mate, my first friend in Sweden,
my first logician acquaintance and many more things. I can not imagine a Ph.D.
life without him.

I thank everyone who has put up with me as I produced the work in this thesis
and complained incessantly in the meanwhile: Volkan Bilyar, all my friends at
IMIT Adam Strak, Steffen Albrecht, Sezi Yamac, my dear home mate Bagsen
Aktas, all the friends I have made at summer schools but especially the one, my
friends from Turkey Utku Erdogdu, Baris Sertkaya, Sinan Kalkan, Ruken Cakici,
my eternal student Bartan, our new group member Wen Xu, and last but most,
Anders Johansson.

I am most grateful to my fairies, Serife Tekin and Idil Aktug, as always. They
give me inspiration, warmth; help me swim deep and fly high and write fluent.

I am indebted to my beloved friends Gokcen Bas, Elcil Kaya, Zeren Ergonul,
Elif Bato and Gonca Barit from Izmir Science High School. Though we may not
see each other every year, I rejoice your being at all times. You are a part of me.

Finally, I dedicate this thesis to my parents.. Siz olmasaniz ben ne olurdum, ne
ben olurdum.

vi

Contents

Contents vii

1 Introduction 1
1.1 Motivation . 2
1.2 Overview of Notions and Results . 4

2 Background and Related Work 7
2.1 Compositional Reasoning and Maximal Models 7
2.2 Structures Capturing Properties . 10

3 Specifying Open Systems 13

4 Extended Modal Transition Systems 17

5 From Specification to State Space Representation 21
5.1 Maximal Model Construction . 21
5.2 Construction for Terms . 24
5.3 Correctness Results . 27

6 Proof System 29

7 More Related Work 37
7.1 MTS extensions for Abstraction . 37
7.2 Other Methods for the Verification of Open Systems 38

8 Conclusion 41
8.1 Summary and Contribution . 41
8.2 Future Work . 42

A Paper I 45
A.1 Introduction . 46
A.2 Extended Modal Transition Systems 47
A.3 Modal µ-Calculus . 49
A.4 A Proof System for EMTSs . 52

vii

viii CONTENTS

A.5 Soundness and Completeness . 54
A.6 Conclusion . 58

B Paper II 59
B.1 Introduction . 60
B.2 Specifying Open Systems Behaviour 61
B.3 Extended Modal Transition Systems 63
B.4 From OTA to EMTS . 65
B.5 A proof system for EMTS . 71
B.6 Conclusion . 73

C Proofs 75

Bibliography 97

Chapter 1

Introduction

Modern software is designed as a collection of components. Modularity brings flex-
ibility to both the development and use of software. For instance, components are
developed by different partners and put together at later stages or some component
of the system is replaced after some initial phase of use by a new component which
performs the same task in a more efficient manner. Certain components can even
join the system after it has been put in operation. This is the case, for example,
when applications are loaded on a smart card after the card has been issued (see
e.g. [35]).

In such scenarios, each intermediate system which "misses" components can be
thought of as an open system. An open system is a system with "holes" in it standing
for the missing components. Each hole is accompanied by some property which is
a condition that the component to fill the hole should satisfy. In contrast, a closed
system has all its components fixed. An open system captures an infinite set of
closed systems, where each holes is filled with some component that satisfies the
corresponding property.

Verification is the task of showing that software does what it is intended to do,
i.e. showing it behaves according to its specification. A common way of specifying
desired behaviour is through expressing it as a collection of properties in some
temporal logic. Verification of an open system amounts to showing that all the
closed systems captured by the open system display these properties. This can
only be achieved through a symbolic representation of the open system behaviour.

In this thesis, we propose a framework for the verification of open systems
through explicit state space representation. In our approach, we represent the be-
haviour of the open system as a finite structure which is comprised of states, tran-
sitions and an acceptance condition which excludes certain non-terminating behav-
ior. The variety in behaviour induced by the assumptions on the not-yet-available
components is reflected through necessary and admissible transitions, which respec-
tively correspond to common and possible behaviour of the closed systems captured
by the open system. When the state space of the open system is captured by such

1

2 CHAPTER 1. INTRODUCTION

a structure, verification of desired properties of the open system can be performed
on this finite structure.

The thesis is organized as follows. We first give motivation for our approach ac-
companied by a detailed account of our framework and related work. In Chapter 3,
we introduce the syntax of open terms with assumptions (OTA), the notion we use
to specify open systems. The structure we use to represent the state space of open
systems, Extended Modal Transition Systems (EMTS), is presented in Chapter 4
along with a simulation relation which defines the set of closed systems denoted
by an EMTS. Chapter 5 aims to illustrate the procedure we have introduced for
automatic conversion of OTA to EMTS through examples. In Chapter 6, a proof
system is presented for verifying properties of EMTS states expressed in modal
µ-calculus. Chapter 7 mentions work that is not directly used in this study but
is nevertheless related to our approach. Section 8.1 summarizes the current study
and its contributions. Finally, Section 8.2 concludes the thesis with an outline of
future work.

The work presented here resulted in two papers:

1. Aktug and D.Gurov, "Towards State Space Exploration Based Verification of
Open Systems" to appear in Proceedings of the 4th International Workshop
on Automated Verification of Infinite-State Systems (AVIS’05), April 2005,
Edinburgh, Scotland

2. Aktug and D. Gurov, "State Space Representation for Verification of Open
Systems", to appear in Proceedings of the 11th International Conference on
Algebraic Methodology and Software Technology, (AMAST ’06), July 2006,
Kuressaare, Estonia

The main text of this thesis is designed as an introductory text that is comple-
mentary to these papers, which can be found in Appendix A and B. The main text
provides an overview of our work and intends to clarify certain points, e.g. through
the use of examples, that were left out in the papers due to lack of space. Paper 1
includes the introduction of the EMTS notion and the proof system that we use to
show properties of EMTSs. It also contains the soundness and completeness proofs
of this proof system. Paper 2, on the other hand, concentrates on the construction
of EMTSs from OTAs while presenting an updated version of the definition of an
EMTS and the adaptation of the proof system to this new version. The proofs of
the theorems can be found in Appendix C.

1.1 Motivation

Modal Transition Systems is an intuitive notion that was designed for graphical
specification of system behaviour [29]. Each MTS specifies a set of processes
through an interval determined by necessary and admissable transitions. MTSs
are equiexpressive with Hennessy-Milner logic, i.e. an HML formula can be charac-
terized as an MTS and vice versa. MTSs provide a natural representation of open

1.1. MOTIVATION 3

systems when assumptions on the behavior of the not-yet-available components are
specified in HML.

Such an explicit state space representation supports various phases of the de-
velopment of open systems:

• In the modeling phase, this formalism can be used as an alternative means
of graphical specification. Certain kinds of properties are easier to express
graphically than in temporal logics.

• In automatic verification, it provides a visualization of the system behaviour.
This is mostly beneficial if the automatic proof construction fails and an
understanding of the open system behaviour becomes necessary for debugging.
Furthermore, computing the whole state space enables proof reuse when the
same system is to be checked for several properties.

• In interactive verification, such a state space representation is all the more
vital. While it is possible to use conventional methods like encoding sys-
tem behaviour into alternating automata [28] for automatic cases, the human
factor in interactive verification requires a more intuitive representation.

In a process algebraic setting, the behaviour of an open system can be specified
by an open process term with assumptions (OTA). An OTA has the shape Γ � E
and consists of a process term E equipped with a list of behavioural assumptions
Γ of the shape X : Φ, where X is a process variable free in E and Φ is a temporal
property. Such an open term denotes a set of closed systems, namely those that can
be obtained by substituting each free process variable in E with a closed component
satisfying the respective assumptions specified in Γ. A property of an OTA is then
a property shared by all the closed systems in its denotation.

MTS are not expressive enough for representing the state space of open sys-
tems when assumptions are temporal properties. We extend MTSs so that we can
represent the state space of open systems when the component assumptions are
written in modal µ-calculus, which adds the expressive power of least and greatest
fixed point recursion to HML. Besides the must and may transitions of MTS, our
notion, Extended Modal Transition System (EMTS) has sets of states (instead of
single states) as targets to transitions - an extension which is needed for dealing
with disjunctive assumptions. In addition, we add well-foundedness constraints to
the structure to handle least fixed point assumptions.

In this thesis, we offer an automatic method for open system verification through
explicit state space representation in the form of an EMTS. The process begins by
specifying the system as an OTA. Then a two-phase construction, under given
restrictions, automatically extracts an EMTS from an OTA. The first phase in
the construction corresponds to a maximal model construction for each component
assumption. In the second phase, the maximal models are composed according to
the structure of the OTA term. The construction is sound (resp. complete) if the
denotation of the OTA is a subset (resp. superset) of the denotation of the resulting

4 CHAPTER 1. INTRODUCTION

Maximal Model Construction
2

3
4

6

7

8

9

5

1

Extended Modal
Transition System

Logic

System
Labeled Transition

Term
Closed Process

Open Process Term
with Assumptions

Transition Rules

Construction

Denotation Denotation

�

�

⊢

⊢

Figure 1.1: Overview of Notions

EMTS. We show soundness of the construction for systems without dynamic process
creation, and soundness and completeness for systems without parallel composition.
Finally, we give a proof system to prove properties of EMTSs.

The proof system based method of Dam and Gurov [15] is an example of in-
teractive verification of open systems. Reasoning about open systems in such a
proof-theoretic manner can essentially be viewed as a symbolic execution of OTA.
As the state space is explored guided by the formula to be shown, a symbolic state-
transition graph can be generated which is conveniently captured as an EMTS. This
graph can be used to visualize the behaviour of the system that (otherwise) remains
implicit in the proof tree, thus providing an understanding of the behaviour of the
system that aids the current interaction as well as future verification efforts. It also
serves proof reuse as mentioned above. We leave possible interactive approaches
based on EMTSs to future work.

1.2 Overview of Notions and Results

Figure 1.1 shows an overview of the central notions used in the thesis and the
relations between them.OTA and EMTS are the new notions that are proposed by
the thesis (See Chapters 3 and 4 respectively). Whereas, the concepts of closed
process term and labeled transition system are already well-developed.

For modeling open systems, we propose open process terms with assumptions
on the free variables (OTA). Such an open term denotes an infinite set of closed
terms, namely all those which can be obtained from the open term by substituting
the free variables with closed terms satisfying the respective assumptions. The
analogy between closed and open terms through the relationship of closed system
to open system can be extended to one between labeled transition systems (LTS)
and extended modal transition systems (EMTS). The denotation of a state of an

1.2. OVERVIEW OF NOTIONS AND RESULTS 5

EMTS is the set of labeled transition system states that this state relates to by
some simulation relation.

The particular logic we use in this study is the modal µ-calculus. (see Chap-
ter 3 for a short introduction) The assumptions in an OTA and the properties to be
checked for the open system are both expressed in this temporal logic. Satisfaction
defines when an EMTS state is said to satisfy a temporal logic formula. We use the
proof system by Bradfield and Stirling for checking if states of an LTS satisfy a tem-
poral property expressed in modal µ-calculus. We present a proof system to check
satisfaction of a modal µ-calculus property by a state of an EMTS. (A summary
of both proof systems along with an account of major differences can be found in
Chapter 6) The soundness and completeness properties shown for prime formulae
make our proof system adequate for proving satisfaction for prime properties (Items
2 and 3 in Figure 1.1).

Given a temporal logic formula, the EMTS that characterizes it can be con-
structed using the maximal model construction presented in Chapter 5. The la-
beled transition system corresponding to a closed term can be constructed using
transition rules. Similarly, construction of the state space of an OTA in the form of
an EMTS can be done in different ways. Here we present an automatic construction
in which the maximal models for assumptions of an OTA are combined according
to the structure of the process term. (See Paper 2 and Sections 5.1 and 5.2 for
details of the construction and examples)

If the various transformations are correctly defined, the diagram should com-
mute. In particular, given a labeled transition system, the construction of an EMTS
from an OTA should preserve the denotation (Items 6 and 1 vs. Items 4 and 7 of
Figure 1.1). This is the case for the automatic construction we introduce in this
thesis when the open system does contains a single unknown component. (See Sec-
tion 5.3) Similarly, the correctness of the defined proof system (Item 3) combined
with soundness and completeness properties would provide a proof for the satisfac-
tion of a property by a state of the EMTS if and only if for each LTS, the set of all
states that are denoted (Item 1) by this state satisfy the property (Item 8).

Chapter 2

Background and Related Work

In this chapter, we give a brief account of various methods of verification that
were inspirational to our work: compositional reasoning and structures capturing
properties, namely model transition systems and automata. Previous research in
compositional reasoning has guided us in determining the state space of an open
system, while MTSs and automata inspired us in designing a structure to represent
it.

In Chapter 7, we summarize approaches that are related to ours but not directly
inspirational like abstraction and partial model checking.

2.1 Compositional Reasoning and Maximal Models

Compositional reasoning aims to avoid state space explosion by taking advantage
of the natural decomposition of the system in components. The goal is to verify
properties of individual components, and infer a property of the system which is
formed by a composition of these components and thus avoid to compute the state
space of the whole system.

The earliest formalization of this intuition is Pnueli’s assume-guarantee paradigm
[34]. The compositional reasoning extension is the following additional rule to the
logic:

〈Φ〉P 〈Ψ〉
〈true〉P ′ 〈Φ〉

〈true〉P ′ | P 〈Ψ〉

The first premise expresses that assuming the environment satisfies Φ, compo-
nent P guarantees the satisfaction of the temporal property Ψ. The second premise
simply expresses that the rest the rest of the system, P ′, satisfies Φ. From these
it is concluded that their composition P ′ | P satisfies Ψ. The rule, then, brings
together a proof about component P with one about the rest of the system P ′ to
reach a conclusion about their composition.

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

The decomposition of the required property Ψ into an adequate assumption
Φ for component P requires knowledge of the system and remains largely to be
a task of the user. In order to automate the rest of the tasks, Grumberg and
Long suggested a preorder on the finite state models that preserves satisfaction
of temporal logic formulae [19]. The finite models in this study are synchronous
parallel compositions of Kripke structures under fairness assumptions.

Definition 2.1 (Structure (Exists) Simulation). Let P and P ′ be two structures
and let s and s′ be states in SP and SP ′ , respectively. A relation H ⊆ SP × SP ′ is
a simulation relation from (P, s) to (P ′, s′) iff the following conditions hold:

1. H(s, s′).

2. For all t and t′, H(t, t′) implies:
(a) t′ satisfies all atomic propositions satisfied by t
(b) for every fair path n = t0t1t2.. in P there exists a fair path n′ = t′0t

′
1t

′
2..

in P ′ such that for every i ≥ 0, H(ti, t
′
i).

H is a simulation from P to P ′ if and only if for every initial state s0 ∈ SP

there is an initial state s′0 ∈ SP ′ such that H(s0, s
′
0). If there is such a simulation

relation from P to P ′, then we say P ′ simulates P , denoted P � P ′.
This simulation relation has two important features. The first is the preservation

of temporal formula. So if P � P ′, then for every ∀CTL formula Φ, P ′ � Φ implies
P � Φ. The second is that P simulates every system that consists of its composition
with some component P ′, i.e. for any P and P ′, P ‖ P ′ � P .

The automatization of maximal model construction is one of the keys to the
applicability of compositional verification. A tableau construction for ∀CTL for-
mulae was described in Grumberg and Long [19]. The method was later extended
to ∀CTL* by Kupferman and Vardi [26]. The maximal model MΨ for a formula
Ψ can be thought of as the most generic model to satisfy the formula, so that its
behaviors are shared by all other models that satisfy Ψ.

P |= Ψ ⇐⇒ P � MΨ

Through the use of maximal models, checking P ‖ P ′ � Ψ is reduced to the
following steps: 1. Decompose Φ to the local property Ψ 2. Construct the maximal
model for Ψ MΨ 3. Check by standard model checking algorithms that P ′ satisfies
Ψ 4. Check by standard model checking algorithms that MΨ ‖ P satisfies Φ:

P ′ |= Ψ MΨ ‖ P |= Φ

P ′ ‖ P |= Φ

Maximal model construction is explored in [35] for reasoning about sequential
applets which have potentially infinite behavior. The process is proposed for a logic
equivalent to modal µ-calculus without diamond modalities and least fixed points.
In this study, first the simulation and a corresponding logic, called simulation logic,

2.1. COMPOSITIONAL REASONING AND MAXIMAL MODELS 9

is introduced. Then, two characterization results are presented. The first is the be-
havioral characterization of logical satisfaction, which corresponds to our maximal
model definition.

The second is the complementary result of logical characterization of simulation
that says there exists a characteristic formula χ(S) for each specification S with
respect to the simulation relation �:

P � S ⇐⇒ P � χ(S)

Maximal model construction is applied to all formulae in the simulation logic
by transforming them stepwise to simulation normal form for which the mapping is
defined directly. These two characterizations form a Galois connection with respect
to the preorder of logical formulae ordered by logical consequence and the preorder
of specifications ordered by simulation.

Compositional Reasoning for Open Systems

In our understanding of the term, verification of open systems can be performed
by a compositional proof system due to Dam et al [16] for CCS processes and [14]
for Erlang programs. It is a Gentzen-style compositional proof system.

In this proof system system, the sequents are of the form Γ ⊢ ∆ where Γ and
∆ are comprised of correctness assertions. These assertions may require a process
to satisfy a temporal formula E : φ, require a process to do a certain transition
E

α
−→ F or force a relation between ordinal variables κ < κ′. The ordinal variables

are used to relate the rates of progress for fixed point formulae appearing in different
places of a sequent.

In this system, compositional reasoning is accomplished through a general rule
of subterm cut:

Γ ⊢ Q : ψ,∆ Γ, x : ψ ⊢ P : φ,∆

Γ ⊢ P [Q/x] : φ,∆

The proof progresses guided by the temporal logic formula to be verified and
a global discharge condition is employed which recognizes proofs by well-founded
induction.

It is possible to formulate open system verification problem in this framework
by placing assumptions on components in Γ while the structure of the system can
be asserted as a process algebra term in ∆. This proof system is more powerful
than our current framework: for instance it is possible to verify systems with dy-
namically changing configuration due to dynamic process spawning. Nevertheless,
we feel that our approach also has its advantages. In the above proof system, (the
explored part of) the state space is only implicitly present in a proof. Building
an explicit representation of the state space allows proof reuse utilizing the (part
of) the behavior already explored during proof search. When the verification task
is undecidable (as in the present case, unless the temporal logic is appropriately

10 CHAPTER 2. BACKGROUND AND RELATED WORK

restricted), one has to rely on interactive methods, and then visualizing the state
space can be a significant aid in guiding the proof. Finally, separating the task
of building the state space from the task of checking its properties (even if in a
synchronized fashion as in local model checking) allows user interaction to focus
on the first, potentially undecidable task, and thus be freed from the second task
which is decidable for any finite representation of the state space.

2.2 Structures Capturing Properties

Attempts to characterize formula with finite structures resulted from different con-
cerns. Modal Transition System (MTS) is a graphical specification language in the
process algebra framework. MTS was designed as a more intuitive alternative to
Hennessy-Milner logic. Whereas, automata have been used more for verification
purposes, for instance maximal models used in compositional reasoning have been
constructed in the form of automata.

We have been inspired by both MTSs and automata when coming up with
a notion that is suitable for representing the state space of open systems where
assumptions on components are expressed in the modal µ-calculus. Our structure,
EMTS, is based on modal transition systems of Larsen with an acceptance condition
borrowed from automata in order to encode prohibited infinite runs of the system.

Modal Transition Systems

MTSs were designed as a graphical specification language in the process algebra
framework by Larsen [29]. Each MTS specifies a set of processes through an interval
determined by necessary and admissable transitions. MTSs are equiexpressive with
Hennesy-Milner Logic [22].

Definition 2.2 (MTS). A modal transition system is a structure S = (S,A,−→2

,−→3) where S is a set of specifications, A is a set of actions and −→2,−→3⊆
S ×A× S, satisfying the consistency condition −→2⊆−→3.

An MTS can be refined stepwise to an implementation that performs all the must
transitions (−→2) of the MTS but performs only a subset of the may transitions
(−→3). The stepwise refinement indicates a preorder between MTSs so that as the
specification gets refined the set of processes that implement it gets smaller.

Definition 2.3 (Refinement). A refinement R is a binary relation on S such that
whenever SRT and a ∈ A then the following holds:

1. Whenever S a
−→3 S′, then T

a
−→3 T ′ for some T ′ with S′RT ′

2. Whenever T a
−→2 T ′, then S

a
−→2 S′ for some S′ with S′RT ′

S is said to be a refinement of T in case (S, T) is contained in some refinement
R, which is denoted S � T .

2.2. STRUCTURES CAPTURING PROPERTIES 11

A process p implements a structure S if there is a refinement relation which
contains (p,S), that is if p � S. Processes are MTSs where the must and may
transitions coincide, −→3=−→2, since all admissable transitions are also required
for a process.

MTSs can also be combined using process constructs of process algebra. This
enables a component to be replaced by its refinement. If S and T are MTSs, then
transitions of S|T and S + T are defined as below:

S | T
a

−→m V ⇐⇒ (V = S′ | T ∧ S
a

−→m S′) ∨ (V = S′ | T ∧ S
a

−→m S′)

S + T
a

−→m V ⇐⇒ (S
a

−→m V) ∨ (T
a

−→m V)
where m ranges over 2 and 3.
It is shown that for each MTS, a characteristic formula exists in Hennessy-Milner

Logic so that S is a refinement of T if and only if it satisfies T ’s characteristic
formula, and viewed as specifications both T and its characteristic formula are
implemented by the same set of processes.

In [6], a concept similar to maximal models is introduced. The class of formulae
of the logic for which a maximal model in the form of an MTS can be constructed
is the class of graphically representable formulae. A logical formula is graphically
representable (i.e. by a single MTS) if and only if it is consistent and prime. A
formula is prime if and only if it implies one of its disjuncts. The rest of formulae
is representable by finitely many MTSs.

Finally, these results show that a Galois connection between the logical conse-
quence preorder on consistent prime formulae and the refinement preorder on MTSs
has been established.

Automata Theoretic Approaches

The establishment of the clean connection between Büchi automata and linear tem-
poral logic (LTL) enabled verification-related problems such as satisfiability and
model-checking to be reduced to standard automata-theoretic problems. The ob-
servation is to associate with each linear temporal logic formula a finite automaton
over infinite words that accepts exactly the computations that satisfy the formula.
As a result of this correspondence, already known optimal algorithms from au-
tomata theory could be imported to verification.

Similar efforts for branching time logics resulted in the emergence of many
different structures to capture temporal formula, e.g. alternating tree automata [33]
and amorphous automata [5]. These structures run on infinite trees instead of
infinite words and are akin to tree automata. A number of different acceptance
conditions also emerged, of which the most frequently used are Muller, Rabin,
Streett, and parity conditions. When considered for tree automata, Muller, Rabin
and Streett acceptance conditions are equivalent in power. (For a comprehensive
survey of automata on infinite trees see [37].)

Emerson and Jutla have shown that modal µ-calculus formula and nondeter-
ministic automata on trees is equiexpressive [17]. They show that the parse tree of a
formula of modal µ-calculus can be seen as an alternating tree automaton with, for

12 CHAPTER 2. BACKGROUND AND RELATED WORK

instance, Streett acceptance condition and then they convert this alternating tree
automaton to an equivalent nondeterministic tree automaton. This second step is
in general not possible since alternating tree automata are a generalization of non-
deterministic tree automata, but alternating tree automata obtained from modal
µ-calculus formulae have a special property of being "history-free" which makes the
conversion possible. In our maximal model construction for modal µ-calculus we
were inspired by the construction Kaivola offered for converting the formula from
the alternation-depth class Π2 fragment of µ-calculus to Büchi Automata [24].

The reason we introduce yet another formalism to capture modal µ-calculus
formulae is that we are interested in representing the state space of any component
that satisfies this property in a common structure. Although expressively powerful,
we think that the aforementioned structures do not provide an intuitive represen-
tation of the state space in terms of states and transitions. The combination of
complicated transition relations with acceptance conditions, (consider for instance
alternating automata with Streett acceptance [26]), make automata an unattractive
choice for graphical specification. In our structure we bring together may and must
transitions of MTSs with the parity acceptance condition. The choice of parity
acceptance for capturing alternation of fixed points in modal µ-calculus formulae
is natural as was noted by Emerson and Jutla [17].

Chapter 3

Specifying Open Systems

A system, the behaviour of which is parameterized on the behaviour of certain
components, is conveniently represented as a pair Γ � E, where E is an open
process-algebraic term, and Γ is a list of assertions of the shape X : Φ where X is
a process variable free in E and Φ is a closed formula in a process logic.

In the present study, we work with the class of Basic Parallel Processes (BPP)[9].
The terms of BPP are generated by:

E ::= 0 | X | a.E | E + E | E ‖ E | fix X.E

where X ranges over a set of process variables ProcVar and a over a finite set of
actions A. We assume that ProcVar is partitioned into assumption process variables
AssProcVar used in assertions, and recursion process variables RecProcVar bound
by the fix operator. A term E is called linear if every assumption process variable
occurs in E at most once. The operational semantics of closed process terms (called
processes and ranged over by t) is standard. In the rest of this text, the symbol "‖ "
signifies merge composition, while the symbol "|" is used as a symbol for parallel
composition in general.

·

a.E
a

−→ E

E1
a

−→ E′
1

E1 + E2
a

−→ E′
1

E2
a

−→ E′
2

E1 + E2
a

−→ E′
2

E1
a

−→ E′
1

E1 ‖ E2
a

−→ E′
1 ‖ E2

E2
a

−→ E′
2

E1 ‖ E2
a

−→ E1 ‖ E′
2

E1[fix X.E1/X]
a

−→ E′
1

fix X.E1
a

−→ E′
1

As a process logic for specifying behavioural assumptions of components, as
well as for specifying system properties to be verified, we consider the modal µ-
calculus [25]. We have selected to work with it because it subsumes most other well-
known logics like CTL and LTL. The formulae of modal µ-calculus are generated
by:

Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a] Φ | 〈a〉Φ | νZ.Φ | µZ.Φ

13

14 CHAPTER 3. SPECIFYING OPEN SYSTEMS

where Z ranges over a set of propositional variables PropVar.
Variable X in σX.Φ, where σ ∈ {ν, µ} is called guarded if every occurrence of

X in Φ is in the scope of some modality operator 〈a〉 or [a]. We say that a formula
is guarded if every bound variable in the formula is guarded. A formula Φ is a
normal formula if σ1Z1 and σ2Z2 are two different occurrences of binders in Φ then
Z1 6= Z2 and no occurrence of a free variable Z is also used in a binder σZ in Φ.
Let Φ be a normal formula and σ1X.Ψ1 and σ2Z.Ψ2 be subformulae of Φ, then X
subsumes Z if σ2Z.Ψ2 is a subformula of σ1X.Ψ1.

Definition 3.1 (µ-calculus: semantics). The semantics of the µ-calculus is given in
terms of the denotation ||Φ||TV ⊆ ST where V : PropV ar → ST is a valuation that
maps propositional variables to processes of some labeled transition system (LTS)
T = (ST , A,−→T) as follows:

||tt||TV = ST

||ff||TV = ∅
||Z||TV = V(Z)
||Φ1 ∨ Φ2||TV = ||Φ1||TV ∪ ||Φ2||TV
||Φ1 ∧ Φ2||TV = ||Φ1||TV ∩ ||Φ2||TV
|| 〈a〉Φ||TV = {t | ∃t′. t

a
−→T t′ ∧ t′ ∈ ||Φ||TV}

|| [a] Φ||TV = {t | ∀t′. t
a

−→T t′ ∧ t′ ∈ ||Φ||TV}
||µZ.Φ||TV =

⋂

{T ⊆ ST | T ⊇ ||Φ||TV[T/Z]}

||νZ.Φ||TV =
⋃

{T ⊆ ST | T ⊆ ||Φ||TV[T/Z]}

An alternative, but equivalent, interpretation of extremal fixed points is through
approximants. We provide a characterization where Ord is the set of ordinals,
α, κ ∈ Ord are ordinals, and λ ∈ Ord is a limit ordinal. Let (σZ.Φ)α be the
α-unfolding of σZ.Φ with the following interpretation:

||(νZ.Φ)0||TV = ST ||(µZ.Φ)0||TV = ∅
||(νZ.Φ)α+1||TV = ||Φ||T

V[||(νZ.Φ)α||T
V

/Z]
||(µZ.Φ)α+1||TV = ||Φ||T

V[||(µZ.Φ)α||T
V

/Z]

(νZ.Φ)λ =
⋂

{||(νZ.Φ)α||TV | α < λ} (µZ.Φ)λ =
⋃

{||(µZ.Φ)α||TV | α < λ}

Approximants are used in connection to Theorems 3.3, 3.4 and 3.2 in the proof
of the maximal model construction that can be found in appendix A of paper 2.

Theorem 3.2 (Unfolding Theorem). ||σZ.Φ||TV=||Φ[σZ.Φ/Z]||TV , where σ is either
µ or ν.

Theorem 3.3 (Knaster-Tarski Theorem). ||(µZ.Φ)||TV =
⋃

α
||(µZ.Φ)α||TV

Theorem 3.4. ||(µZ.Φ)κ||TV =
⋃

α<κ
||Φ||T

V[||(µZ.Φ)α||T
V

/Z]

As usual, we write t |=T
V Φ whenever t ∈ ||Φ||TV . In the sequel, we omit the

subscript V from ||Φ||TV when Φ is a closed formula. Satisfaction is lifted to sets

15

of states in the natural way, so that a set of states S ⊆ ST satisfies a property Φ,
S �V Φ, only if for all s ∈ S, s �V Φ.

We say that an OTA Γ�E is guarded when the term E and all modal µ-calculus
formula Φ in Γ are guarded. Similarly, we say an OTA is linear when the term it
contains is linear.

The behaviours specified by an open term with assumptions is given with respect
to a labeled transition system T that is closed under the transition rules and is
closed under substitution of processes for assumption process variables in subterms
of the OTA. The states of LTS correspond to processes in our process algebra.
The denotation of an OTA is then the set of all processes obtained by substituting
each assumption process variable in the term by a process from T satisfying the
respective assumptions.

Definition 3.5 (OTA Denotation). Let Γ � E be an OTA, T be an LTS, and
ρR : RecProcVar → ST be a recursion environment. The denotation of Γ � E
relative to T and ρR is defined as:

JΓ � EK
T
ρR

, {EρRρA | ∀(X : Φ) ∈ Γ. ρA(X) |=T Φ}

where ρA : AssProcVar → ST ranges over assumption environments.

Example. Consider an operating system in the form of a concurrent server that
spawns off Handler processes each time it receives a request. These processes run
system calls for handling the given requests to produce a result (modeled by the

action out). Handler is defined as Handler
def
= In ‖ out.0 where In

def
= in.In.

Although it is possible to communicate with request handlers through the attached
channel (modeled by the action in), they do not react to further input. A property
one would like to prove of such a server is that it stabilizes whenever it stops
receiving new requests. Eventual stabilization can be formalized in the modal µ-

calculus as stab
∆
= νX.µY. [in]X ∧

[

out
]

Y . We can reduce this verification task to
proving that the open system modeled by the OTA

X : stab �X ‖Handler

which consists of Handler and any stabilizing process X , eventually stabilizes.

Chapter 4

Extended Modal Transition

Systems

We propose Extended Modal Transition Systems (EMTS) as an explicit state space
representation for open systems with temporal assumptions. In this chapter, we
summarize the main definitions.

The notion of EMTS is based on Larsen’s Modal Transition Systems [29]. In
addition to may and must transitions for dealing with modalities, EMTSs include
sets of states (instead of single states) as targets to transitions to capture disjunc-
tive assumptions, and a set of prohibited infinite runs defined through a coloring
function to represent termination assumptions.

Definition 4.1 (EMTS). An extended modal transition system is a structure

E = (SE , A,−→
3
E ,−→

2
E , c)

where (i) SE is a set of abstract states, (ii) A is a set of actions, (iii) −→3
E , −→2

E

⊆ SE × A× 2SE are may and must transition relations, and (iv) c : SE → N
k is a

coloring function for some k ∈ N.

May transitions of an EMTS show possible behaviours of the closed systems
represented, while must transitions specify behaviour shared by all these closed
systems. A run (or may–run) of E is a possibly infinite sequence of transitions

ρE = s0
a0−→E s1

a1−→E s2
a2−→E . . . where for every i ≥ 0, si

ai

−→3
E S for some S such

that si+1 ∈ S. Must–runs are defined similarly. We distinguish between two kinds

of a-derivatives of a state s: ∂3
a (s) , {S | s

a

−→3
E S} and ∂2

a (s) , {S | s
a

−→2
E S}.

The coloring function c specifies a set WE of prohibited infinite runs by means
of a parity acceptance condition(cf. [32, 17]). The function c is extended to infinite
runs so that c(ρE) = (c(s0)(1) · c(s1)(1) . . . , . . . , c(s0)(k) · c(s1)(k) . . .) is a k-tuple
of infinite words where c(s)(j) denotes the jth component of c(s). Let inf (c(ρE)(i))
denote the set of infinitely occurring colors in the ith word of this tuple. Then the

17

18 CHAPTER 4. EXTENDED MODAL TRANSITION SYSTEMS

run ρE is prohibited, ρE ∈ WE , if and only if max (inf (c(ρE)(i))) is odd for some
1 ≤ i ≤ k, i.e. the greatest number that occurs infinitely often in one of these k
infinite words is odd.

Our coloring scheme is different from the typical one in the sense that it allows
colors to be tuples of natural numbers as opposed to single ones. However, we can
still obtain a set of state-set pairs, which would prohibit the same set of infinite
runs by means of a Streett acceptance condition. Given the EMTS E , the coloring
function c can be used to specify a set of state-set pairs Ω so that (Lij , Uij) ∈ Ω if
and only if:

• Lij = {s ∈ SE | c(s)(j) = 2 ∗ i+ 1} where 1 ≤ 2 ∗ i+ 1 ≤ maxj and

• Uij = {s ∈ SE | c(s)(j) = 2 ∗ i′ ∧ i′ ≥ i}

and maxj is the largest number that occurs in the jth entry of the states of SE .
In this way, a run is not prohibited only if the odd color in the jth entry of an
infinitely often visited state is canceled out by infinitely often visiting a state which
has a larger, even color in the same entry.

Next, we define a simulation relation between the states of an EMTS as a form
of mixed fair simulation (cf. e.g. [19, 8]).

Definition 4.2 (Simulation). R ⊆ SE × SE is a simulation relation between the
states of E if whenever s1Rs2 and a ∈ A:

1. if s1
a

−→3
E S1, then there is a S2 such that s2

a

−→3
E S2 and for each s′1 ∈ S1,

there exists a s′2 ∈ S2 such that s′1Rs
′
2;

2. if s2
a

−→2
E S2, then there is a S1 such that s1

a

−→2
E S1 and for each s′1 ∈ S1,

there exists a s′2 ∈ S2 such that s′1Rs
′
2;

3. if the run ρs2
= s2

a1−→E s
1
2

a2−→E s
2
2

a3−→E . . . is in WE then every infinite run
ρs1

= s1
a1−→E s

1
1

a2−→E s
2
1

a3−→E . . . such that si
1Rs

i
2 for all i ≥ 1 is also in WE .

We say that abstract state s2 simulates abstract state s1, denoted s1 � s2, if
there is a simulation relation R such that s1Rs2. Simulation can be generalized to
two different EMTSs E1 and E2 in the natural way.

Labeled transition systems can be viewed as a special kind of EMTS, where:
−→2

E =−→3
E , the target sets of the transition relation are singleton sets of states,

and the set of prohibited runs W is empty.
We give the meaning of an abstract state relative to a given LTS, as the set of

concrete LTS states simulated by the abstract state.

Definition 4.3 (Denotation). Let E be an EMTS, and let T be an LTS. The
denotation of abstract state s ∈ SE is the set JsKT , {t ∈ ST | t � s}. This notion
is lifted to sets of abstract states S′ ⊆ SE in the natural way: JS′KT ,

⋃

{JsKT |
s ∈ S′}.

19

In the rest of this thesis, we assume that EMTSs obey the following consistency

restrictions: −→2
E⊆−→3

E , s
a

−→2
E S implies S is non-empty, and W does not contain

runs corresponding to infinite must–runs of the EMTS.
In Chapter 6, we present a proof system for proving properties of abstract states.

For this purpose, we define when an abstract state s satisfies a modal µ-calculus
formula Φ. The global nature of the set W in EMTSs makes it cumbersome to
define the denotation of a fixed point formula compositionally as a set of abstract
states. We therefore give an indirect definition of satisfaction, by means of the
denotation JsKT of a state s.

Definition 4.4 (Satisfaction). Let E be an EMTS, s ∈ SE be an abstract state
of E and Φ be a modal µ-calculus property. Then s satisfies Φ under valuation
V : PropVar → 2SE , denoted s |=E

V Φ, if and only if for any LTS T JsKT |=T
V Φ where

valuation V : PropVar → 2ST is induced by V as V(Z)
∆
=

⋃

{JsKT | s ∈ V(Z)}.

Example. The state space of the open system introduced in the previous section
is captured by the EMTS in Figure 4.1. In Figures 4.1 and 4.2 start states of
the EMTSs are marked by a green arrow and blue, red, green circles correspond
to the state colors 0, 1 and 2, respectively. For any labeled transition system
T , the processes simulated by the state s1 are those denoted by the open term
X : stab �X ‖Handler. The EMTS consists of six abstract states, each state
denoting the set of processes which it simulates. For instance, states s5 and s6 in
the example denote all processes which can engage in arbitrary interleavings of in
and out actions, but so that in has to be enabled throughout while out has not.
Infinite runs stabilizing on out actions are prohibited by the coloring of s3 and s6.

Consider the processes a) fix A.in.A, b)fix A.(in.A + out.(fix B.in.B)) and c)
fix A.(in.A+out.A), for which corresponding EMTSs are shown in Figure 4.2. In or-
der to show that processes are denoted by the open system X : stab�X ‖Handler,
simulation relations between the start states of the EMTSs of processes and the
start state of the EMTS of the open system should be established. With the help
of these two figures, it is possible to see that the second process is in the denotation
of this open system while the first and third processes are not:

1. The relation R1 = {(t1, s1), (t1, s2)} is not a simulation relation because of the
second item of Definition 4.2. It is not possible to build a simulation relation
that contains the pair (t1, s1), since t1 does not have any successors to be
paired with s4. Since the transition from s1 to s4 is a must transition for the
action out, in order to be simulated by s1, t1 should have an out successor.

2. The relation R2 = {(t2, s1), (t2, s2), (t′2, s4), (t
′
2, s5)} is a simulation relation

for the second process and the open system. Furthermore, this is the only
possible simulation relation that contains the pair (t2, s1).

3. The relation R3 = {(t3, s1), (t3, s2), (t3, s4), (t3, s5)} is the obvious candidate
for a simulation relation for the third process. R3 is not a simulation relation

20 CHAPTER 4. EXTENDED MODAL TRANSITION SYSTEMS

out

out

out

out out

,,

,

out
out

out
out

,

,

,

,

,

,
out

out

out

out out

,,

,

out
out

out
out

,

,

,

,

,

,

in

in

in

in
in

in

in

in

in

in
in

in

s1s1

s2s2 s3s3

s4s4

s5s5 s6s6

Figure 4.1: EMTS for X : stab �X ‖Handler

(a)

,

,

in

,

in

out

, ,

out in

,

in

(c)(b)

t1

t2

t3

t′2

Figure 4.2: EMTSs for processes a) fix A.in.A, b)fix A.(in.A + out.(fix B.in.B))
and c) fix A.(in.A+ out.A)

since the pair (t3, s5) does not satisfy the third item of Definition 4.2. Because
the color of state s3 and the colors of both its out-successors, s3 and s6, are
odd, processes simulated by this state are not permitted to stabilize on out.
But t3 can perform such a stabilizing run, hence t3 is not simulated by s3.

Chapter 5

From Specification to State Space

Representation

We propose a two-phase construction ε that translates an open term Γ � E to an
EMTS, denoted ε(Γ � E). In the first phase, an EMTS is constructed for each
underspecified component. This part is essentially a maximal model construction
for the modal µ-calculus. The second phase consists of combining the EMTSs
produced in the first step according to the structure of the term E.

We will illustrate the construction with the use of examples. In the examples
below, the set of actions is A = {a, b}. Blue, red and green circles around state
names correspond to integers 0, 1 and 2 respectively and are used to indicate the
color of the state. The number of circles around a state indicates the length of the
color tuple for this state. The outermost circle around a state corresponds to the
leftmost entry of its color, while the innermost circle corresponds to the rightmost.
For example, a green outer circle in combination with a red inner circle means that
the state has color (2,1). Color tuples are contracted into equivalent but shorter
tuples when possible.

5.1 Maximal Model Construction

We define the function ε which maps modal µ-calculus formulae to triples of the
shape (E , S, λ), where E = (SE , A,−→3

E ,−→
2
E , c) is an EMTS, S ⊆ SE is a set

of start states of E , and λ : SE → 2PropV ar is a labeling function. The function
definition is inductive on the structure of Φ and can be found in Figure B.2 of Paper
2.

The EMTS for formula tt consists of the single state stt with may transitions
to itself for every action (See Figure 5.1(a)), while the EMTS for ff is the empty
EMTS. The EMTS for a propositional variable consists of a single state with may
transitions to stt for each action. Essentially, the particular valuation used for
propositional variables does not play a role in the final EMTS, since the properties

21

22
CHAPTER 5. FROM SPECIFICATION TO STATE SPACE

REPRESENTATION

(b)

a,b

a,b

a,b

(a)

stt

stt Z

Figure 5.1: (a) ε(tt), (b) ε(Z)

(b)

a,b a,b

,

a,b

a

b

a,b

a,b

a

(a)

sttstt

ZZ

s1s1

Figure 5.2: (a) ε([a]Z), (b) ε(〈a〉Z)

used as assumptions of an OTA are closed. Nevertheless, the meaning of open
formulae that arises in intermediate steps are given by the by the valuation which
assigns the whole set of processes ST to each propositional variable. This is achieved
by constructing the EMTS for the propositional variable Z as a single start state,
which has may transitions to stt for each action (See Figure 5.1(b)).

For the modal cases, a new state snew is set as the start state. The EMTS for
ε([a] Φ) has a single may transition for a, which is to the set of initial states of
ε(Φ) (See Figure 5.2(a)). This is to ensure all simulated processes satisfy Φ after
engaging in an a. Additionally, there is a may transition to stt for all other actions.
The EMTS for ε(〈a〉Φ) includes a must transition for a from this start state to
the start states of ε(Φ), along with may transitions for all actions to stt forcing
the simulated processes to have an a transition to some process satisfying Φ and
allowing any other transitions besides (See Figure 5.2(b)).

The states of the EMTS for the conjunction of two formulae is the cross product
of the states of the EMTSs constructed for each conjunct, excluding pairs with
incompatible capabilities (See Figure 5.3(a)). The color of a state of ε(Φ1 ∧ Φ2)
is the concatenation of the colors of the paired states. In the case of disjunction,
the set of start states of ε(Φ1 ∨ Φ2) is the union of the start states of ε(Φ1) and
ε(Φ2) which reflects the union of their denotation (See Figure 5.3(b)). The color of
a state is given by padding with 0’s from either the left or right.

5.1. MAXIMAL MODEL CONSTRUCTION 23

(b)

a

b

b

a

b

a,b

a,b a,b
a,b a,b

a,b

a

(a)

s1s1 s2

Y ZZZ

sttstt

Figure 5.3: (a) ε([a]Y ∧ [b]Z), (b) ε([a]Z ∨ [b]Z)

a b

a

b
a b

(b)

a b

b
a

a,b

a,b
(a)

s1

Y s3

q1

q2 q3

stt

Figure 5.4: (a) ε(νZ. [a]Y ∧ [b]Z), (b) ε(µY.νZ. [a]Y ∧ [b]Z)

The construction for fixed point formulae is a powerset construction which is
similar to the constructions given in [13] and [24] for the purpose of constructing
Büchi Automata for linear time and the alternation-depth class Π2 fragments of the
µ-calculus, respectively. The states of ε(σZ.Φ) consist of sets of states of ε(Φ) and
its start states are singletons containing some start state of ε(Φ). For a transition
of state q = {s1, . . . , sn} of ε(σZ.Φ), each state si has a transition in ε(Φ). A
member state of the target of this transition, then, contains a derivative for each
si. A member of the target state additionally contains an initial state of ε(Φ) if
one of the derivatives included is labeled by Z.

Each component of the color of state q is determined by comparing the corre-
sponding entries of the member states si. When for at least one of these states
si, this entry is odd, the greatest of the corresponding odd entries is selected as
the entry of q, otherwise the maximum entry is selected for the same purpose. The
color of q is further updated if it contains a state si labeled by Z. When Z identifies
a greatest fixed point formula, each entry of the constructed tuple is defined to be
the least even upper bound of the integers used in this entry of ε(Φ). Whereas,

24
CHAPTER 5. FROM SPECIFICATION TO STATE SPACE

REPRESENTATION

a b

a

b
a b

(a)

a b

a

b
a b

(b)

a b

a

b
a b

(c)

s1s1

s2s2 s3s3

s11

s22 s33

Figure 5.5: (a) ε(νY.µZ. [a]Y ∧[b]Z), (b) ε(νZ.µY. [a]Y ∧[b]Z), (c) ε((νY.µZ. [a]Y ∧
[b]Z) ∧ (νZ.µY. [a]Y ∧ [b]Z))

when Z identifies a least fixed point formula, the least odd upper bound of the
integers is the entry for the color of q. Figures 5.3(a) and 5.4(a,b) illustrate how
the alternation of fixed points is handled. In this example, the innermost fixed
point is a greatest fixed point which means that the color of the state labeled by
the variable identifying this fixed point (Z) is not changed going from Figure 5.3(a)
to Figure 5.4(a). On the other hand, the outer fixed point is a least fixed point
therefore the least odd upper bound of the colors of Figure 5.4(a) is computed and
the result (1) is used to color the state labeled with the variable that identifies this
fixed point (Y) in Figure 5.4(b).

In Figure 5.5, an example which requires colors of states to be tuples with
multiple entries is given.

This part of the construction potentially causes an exponential blow-up in the
number of states. Ideally, an algorithm of this step would start with the set of start
state singletons and grow the EMTS by computing the target of one transition at
each step. Then, the average number of states would be much less since most of
the subset-states are not reachable from the start states. In Figure 5.6, we can see
how the state space grows from the state state singletons and Figure 5.7 shows the
EMTS constructed.

5.2 Construction for Terms

We extend the function ε to the domain of OTAs so that ε(Γ�E) = (E ,S,λ), where
E = (SE , A,−→3

E ,−→
2
E , c) is an EMTS, S ⊆ SE is the set of start states of E , and

5.2. CONSTRUCTION FOR TERMS 25

a

I II

a

a

a

III

a

a

{s1}

{s1}{s1}

{s2}

{s2}{s2}

{s1, s3}

{s1, s3} {s1, s3}

{s2, s3}

{s2, s3}{s2, s3}

{s1, s3, stt}

{s1, s3, stt} {s2, s3, stt}

{s2, s3, stt}

Figure 5.6: Three Steps of Constructing EMTS for µZ. [a]Z ∨ [b]Z from ε([a]Z ∨
[b]Z)

26
CHAPTER 5. FROM SPECIFICATION TO STATE SPACE

REPRESENTATION

b

a

b a
b

b

b a

a b

a,b

ba

a

b

a

a b

b aa

{s1} {s2}

{s1, s3} {s2, s3}

{s1, s3, stt}{s2, s3, stt}

{s2, s4}{s1, s4}

{s2, s4, stt}{s1, s4, stt}

{stt}

Figure 5.7: ε(µZ. [a]Z ∨ [b]Z)

λ : SE → 2RecProcV ar is a labeling function.
The function ε is defined inductively on the structure of E as shown in Fig-

ure B.3. The EMTS corresponding to the nil process 0 consists of an abstract state
without outgoing transitions, indicating that no transition is allowed for processes
simulated by this state. If a process variable X in the term E stands for an under-
specified component of the system, that is if X is an assumption process variable,
then the EMTS for X is a maximal model for the conjunction of the properties
specified for this component in the assumption list Γ.

The EMTS for a recursion process variable X is a single state without outgoing
transitions, since the capabilities of the processes simulated are determined by the
binding fix -expression. The function λ labels the state X . Given the EMTS for
the term of the fix -expression where X is free, the transitions of the start states
are transferred to the states labeled by X .

The EMTS for a subterm prefixed by an action a is given by a start state with
a must a-transition to the set of start states of the EMTS for the subterm. The
EMTS for the sum operator consists of an EMTS where the start states are the
cross product of the start states of the EMTSs for the subterms. It is assumed for
this case that there are no incoming transitions to the start states of the EMTSs
being combined. This is an invariant of the construction, except the case for tt
which can be trivially converted to an equivalent EMTS to satisfy the property.

Finally, the states of the EMTS for a parallel composition of two components
consists of a state from each component. Each state has transitions such that one
of the components make a transition while the other stays in the same state. Each
state is further marked by 1 or 2 to keep track of which component has performed

5.3. CORRECTNESS RESULTS 27

the last transition; this is necessary to enable a run of the composition if the
interleaved runs are enabled.

5.3 Correctness Results

The aim of the above construction is to capture by means of an EMTS exactly those
behaviors denoted by the given OTA. The construction is sound (resp. complete)
if the denotation of the OTA is a subset (resp. superset) of the denotation of the
resulting EMTS. Our first theorem establishes the soundness and completeness of
the maximal model construction.

Theorem 5.1. Let T be a transition-closed LTS, Φ be a closed and guarded modal
µ-calculus formula and ε(Φ) = (E, S, λ). Then JSKT = ||Φ||T .

Proof The proof is done by induction on the structure of the logical formula and
can be found in Appendix C.

Our next result shows that the construction is sound and complete when as-
sumptions exist on only one of the components that are running in parallel and the
rest of the system is fully determined.

Theorem 5.2. Let T be a transition-closed LTS, Γ�E ‖ t be a guarded linear OTA
where E does not contain parallel composition, and t is closed, and let ε(Γ �E ‖ t)
= (E, S, λ). Then JSKT is equal to the set JΓ � E ‖ tKρ0

up to bisimulation, where
ρ0 maps each recursion process variable X to 0.

Theorems 5.1 and 5.2 are proved by induction on the structure of the logical
formula and the process term, respectively, and can be found in Appendix C.

In the general case, when multiple underspecified components run in parallel,
we only have soundness: our construction is sound for systems without dynamic
process creation. For systems with dynamic process creation, the construction does
not terminate.

Theorem 5.3. Let T be a transition-closed LTS, Γ � E be a guarded linear OTA
where every recursion process variable in the scope of parallel composition is bound
by a fix operator in the same scope, and let ε(Γ � E) = (E, S, λ). Then the set
JSKT includes JΓ � EKρ0

up to bisimulation.

The proof of the theorem is as the proof of Theorem 5.2, but includes a more
general case for parallel composition and can be found in Appendix C.

Example. Take a system made up of two components that run in parallel with
the only available actions being a and b. The assumption on the first component
is called NeverDoesa and means that this component can never perform action a
and dually the assumption on the second component, NeverDoesb, is that action
b is always disabled. The state space of the system constructed through ε is given

28
CHAPTER 5. FROM SPECIFICATION TO STATE SPACE

REPRESENTATION

b

a b

a

b
a

s1

s21 s22

Figure 5.8: ε(X : NeverDoesa, Y : NeverDoesb �X‖Y)

in Figure 5.8 after some simplifications. Unfortunately, the start state s1 of this
EMTS simulates any process and is clearly a proper superset of the intended set
of processes. This state space also captures systems where an a transition becomes
available although it was initially disabled while trying to capture the fact that
the first component may start at an arbitrary instant. This over-approximation
makes it impossible to prove some simple properties of the open system through
the constructed state space. One such property is 〈a〉ff ∨〈b〉 [a] tt which states that
either it is impossible to perform an a initially or for each initial b-transition there
exists a follower a-transition. Proving such a property of an EMTS requires the
presence of a must transition.

Our last result reflects the fact that verification of open systems in the presence
of parallel composition is undecidable for the modal µ-calculus in general. Com-
pleteness results can, however, be obtained for various fragments of the µ-calculus,
such as ACTL, ACTL* and the simulation logic of [35]. In our approach, the tasks
of constructing a finite representation of the state space in the form of an EMTS
and the task of verifying properties of this representation are separated. This allows
different logics to be employed for expressing assumptions on components and for
specifying system properties, giving rise to more refined completeness results.

Chapter 6

Proof System

In this section we present the proof system we use for showing that a state of an
EMTS satisfies a modal µ-calculus property. Our proof system ΣE is a specialization
of a proof system ΣT by Bradfield and Stirling for showing properties of sets of LTS
states. It is sound and complete for prime formulae.

In both systems, a proof tree is constructed using the corresponding proof rules.
The construction starts with the goal and progresses in a goal-directed fashion,
checking at each step if a terminal node was reached. A successful tableau (or proof)
is a finite proof tree having successful terminals as leaves. Below, we contrast the
major components of the two proof systems for a better understanding: sequents,
proof rules and conditions for being a successful/unsuccessful terminal, in particular
discharge conditions for repeat nodes.

Sequents Sequents of ΣT (left) include a set of LTS states S while sequents of
ΣE (right) include a single state s of the EMTS. Φ and Ψ are modal µ-calculus
properties. The similarity of the sequents is natural since the abstract state s
corresponds to a set of concrete states JsKT , its denotation with respect to the
labeled transition system, T .

S ⊢T
V Φ s ⊢E

V Ψ

Rules The rules of the two proof systems are shown in Figure 6.1. Common
rules of the two proof systems reduce the goal in a similar manner. The rule of
disjunction in our proof system is not as powerful as the one in Stirling’s. When
we are to show an abstract state s satisfies property Φ1 ∨ Φ2, we have to choose
one of Φ1 and Φ2 for s to satisfy since s can not be split. In our proof system,
ΣE , we can show that the state s satisfies Φ1 ∨ Φ2, only if JsKT satisfies one of
these properties Ψ1 and Ψ2 in every T . This results in our proof system to be
prime-complete instead of complete.

29

30 CHAPTER 6. PROOF SYSTEM

Name ΣT Rule ΣE Rule

∧
S ⊢T

V Φ1 ∧ Φ2

S ⊢T
V Φ1 S ⊢T

V Φ2

s ⊢E
V Φ1 ∧ Φ2

s ⊢E
V Φ1 s ⊢E

V Φ2

∨
S ⊢T

V Φ1 ∨ Φ2

S1 ⊢T
V Φ1 S2 ⊢T

V Φ2
S = S1 ∪ S2

s ⊢E
V Φ1 ∨ Φ2

s ⊢E
V Φ1

s ⊢E
V Φ1 ∨ Φ2

s ⊢E
V Φ2

2 S ⊢T
V [a] Φ

∂a(S) ⊢T
V Φ

s ⊢E
V [a] Φ

{s1, ..., sn} = ∪ ∂3
a

(s)
s1 ⊢E

V Φ . . . sn ⊢E
V Φ

3
S ⊢T

V 〈a〉Φ

fa(S) ⊢T
V Φ

fa : s 7→ s′ ∈ ∂a(s)
s ⊢E

V 〈a〉Φ

s1 ⊢E
V Φ . . . sn ⊢E

V Φ
{s1, . . . , sn} ∈ ∂2

a
(s)

σZ
S ⊢T

V σZ.Φ

S ⊢T
V Z

s ⊢E
V σZ.Φ

s ⊢E
V Z

Z
S ⊢T

V Z

S ⊢T
V Φ

Z identifies σZ.Φ
s ⊢E

V Z

s ⊢E
V Φ

Z identifies σZ.Φ

Thin
S ⊢T

V Φ

R ⊢T
V Φ

S ⊂ R

Cut
S ⊢T

V Φ

S1 ⊢T
V Φ S2 ⊢T

V Φ
S = S1 ∪ S2

In the rules above, σ ranges over µ and ν.

1

Figure 6.1: Proof Rules for ΣT and ΣE

Proof trees (possibly) branch in ΣE for 2 and 3-rules since each goal contains a
single abstract state and not a set of states. The choice in the 3-rule of ΣT result
in a goal with a single state, while the choice between 2-successors in ΣE results in
a set of states. The Cut rule does not exist in the original proof system of Stirling.
We extended ΣT with the Cut rule in order to be able to reflect branchings of a
proof tree of ΣE in a proof tree of ΣT , when we translate proof trees for showing
soundness and completeness of our proof system. Finally, we do not have a Thin
rule. In order to have such a rule in ΣE , we would have to define when a state
"includes" another, but for now we can only test two states for identity.

Terminals The conditions for being a terminal is also similar for ΣT and ΣE and
can be found in Section A.3 of Paper 1 and Section B.5 of Paper 2, respectively.
Here we will only look at the interesting case of discharge conditions for repeat

31

nodes which somewhat differ from one another.
A node n in a ΣT proof tree labelled by a sequent S ⊢T

V Ψ is denoted n : S ⊢T
V Ψ.

If n : S ⊢T
V Z is a node where Z identifies a fixed point formula σZ.Φ, and there is

a ancestor node n′ : S′ ⊢T
V Z above n with at least one application of a rule other

than Thin and Cut in between, S′ ⊇ S and for any other fixed point variable Y on
this path, Z subsumes Y , then node n is called a σ-terminal. So no further rules are
applied to it. The most recent node making n a σ-terminal is called n’s companion.
The conditions for being a σ-terminal and definition of companion node is similar
in our proof system, where σ-terminals and their companions mention the same
state. The proof systems differ in the way they determine whether a σ-terminal is
successful or not.

The σ-terminal of ΣT , R ⊢T
V Z, is a successful terminal if Z identifies a greatest

fixed point formula. If Z identifies a least fixed point formula, for the terminal to
be successful no infinite chain of composable trails T0 ◦ T1 ◦ T2 . . . of companion
node n : S ⊢T

V Ψ should exist. The notion of trail basically captures a path from
a state in S to a state in R where each state in the path is a dependent of the
previous one. These two concepts are defined below:

Definition 6.1 (Dependent). If node n′ : S′ ⊢T
V Φ′ is an immediate successor of

node n : S ⊢T
V Φ, then state s′ ∈ S′ at n′ is a dependant of state s ∈ S at n if:

• s = s′ and the rule applied to n is ∧, ∨, σZ, Z, or Thin, or

• s
a

−→T s′ and the rule is 2a, or

• s′ = fa(s) and the rule is 3a applied with choice function fa.

Definition 6.2 (T -Trail). Assume that node nk:Sk ⊢T
V Z is a µ-terminal and node

n0:S0 ⊢T
V Z is its companion. A trail T of the companion node n0 is a sequence of

state–node pairs (s0, n0), . . . , (sk, nk) from state s0 ∈ S0 at n0 to sk ∈ Sk at nk,
such that for all 0 ≤ i < k, one of the following holds:

1. si+1 ∈ Si+1 at ni+1 is a dependent of si ∈ Si at ni, or

2. ni is the immediate predecessor of a σ-terminal node n′ 6= nk whose compan-
ion is nj for some j : 0 ≤ j ≤ i, and ni+1 = nj and si+1 ∈ Si+1 at n′ is a
dependant of si ∈ Si at ni.

Two trails T1 and T2 of the same companion node are composable, if the last pair
of T1 and the first pair of T2 mention the same state; in this case their composition
is denoted by T1 ◦ T2.

The σ-terminal of ΣE , r ⊢E
V Z, is a successful terminal if Z identifies a greatest

fixed point formula. If Z identifies a least fixed point formula, for the terminal to
be successful, for every unique trail Tu of the companion node n0 : r ⊢E

V Z there
should exist 1 ≤ j ≤ k such that max (c(α(Tu))(j)) is odd. This ensures, for an
infinite run wn0

= α(T1) ◦ α(T2) ◦ α(T3) . . . where for all i ≥ 1, Ti is a trail of n0,
that there exists some 1 ≤ j′ ≤ k such that max (inf (c(wn0

)(j′))) is odd.

32 CHAPTER 6. PROOF SYSTEM

Definition 6.3 (Unique E-Trail). A unique trail Tu of the companion node n0 is
a sequence of state–node pairs (r, n0), . . . , (r, nk) such that for all 0 ≤ i < k, one of
the following holds:

1. ni+1 : ri+1 ⊢E
V Ψi+1 is an immediate successor of ni : ri ⊢E

V Ψi, or

2. ni is the immediate predecessor of a σ-terminal node n′ : r′ ⊢E
V Z ′ where

n′ 6= nk whose companion is nj : r′ ⊢E
V Z ′ for only one j : 0 ≤ j ≤ i,

ni+1 = nj , and ri+1 = r′.

In order to convert a trail to a corresponding run, we use the function α, which
returns the empty string when the trail contains only one pair, and is defined for
longer trails as follows:

α((r1, n1) · (r2, n2) · T)
∆
=















(r1
a

−→E r2) · α((r2, n2) · T)
2a or 3a-rule
is applied to n1

α((r2, n2) · T) otherwise.
Stirling’s discharge condition aims to check that infinite behaviour banned by

the least fixed point formula is not performed by the processes in the set mentioned
in the companion node. Our discharge condition does the same thing in an indirect
manner.

It is possible to give an algorithm for showing that an abstract state satisfies a
formula. The application of the rules in our proof system are deterministic, except
for the rules of disjunction and diamond, and in these cases the number of possible
applications are finite. For the discharge condition, color sequences of all unique
trails of a companion node should be checked to have a dominating odd entry. It
is possible to construct all unique trails of a companion node (Note that this is not
always possible, for the set of trails is possibly infinite). For a unique trail it is
possible to "come back" to a state-node pair only once hence there are only finitely
many unique trails for a terminal.

Theorem 6.4 (Soundness). s ⊢E
V Φ implies s �

E
V Φ.

Proof The proof is performed by converting a proof tree in ΣE to a proof tree
in ΣT . This is done by translating each rule application in ΣE to a sequence of
rule applications in ΣT . The transformation π used in this process can be found in
Definition A.9 and is presented for the 3-rule below.

After a corresponding proof tree in Stirling’s proof system is created, it remains
to show that if the terminals of the former tree are successful, the terminals of
the latter tree will also be successful. The main effort goes in this case to show
terminals which mention a least fixed point formula successful. This is achieved by
ruling out certain infinite trails of concrete states that are simulated by the abstract
state that appears in the terminal.

33

Transformation: π

Our Rule Corresponding Tree

s ⊢E
V 〈a〉Φ

{s1, . . . , sn} ∈ ∂2
a (s)

s1 ⊢E
V Φ . . . sn ⊢E

V Φ

JsKT ⊢T
V 〈a〉Φ

3a
fa(JsKT) ⊢T

V Φ
Thin*

J{s1, . . . , sn}KT ⊢T
V Φ

Cut
Js1KT ∪ . . . ∪ Jsn−1KT ⊢T

V Φ
Cut...

Cut
Js1KT ⊢T

V Φ Js2KT ⊢T
V Φ

JsnKT ⊢T
V Φ

Theorem 6.5 (Completeness). Let E be a finite–state EMTS, s ∈ SE , and let Φ
have prime subformulae only. Then s �

E
V Φ implies s ⊢E

V Φ.

Proof The proof is carried by translating a proof tree in ΣT to one in ΣE when
the former tree obeys certain conditions. The transformation is carried through the
inverse translation π−1.

Example. For the open system X : stab �X ‖Handler, a corresponding EMTS
was given in Figure 4.1. Eventual stabilization of all processes denoted by the
abstract state s1 in this EMTS can be shown using ΣE . Here we present a part of
this proof tree that is representative:

s1 ⊢E
V

νX.µY. [in] X ∧ [out]Y

n1 : s1 ⊢E
V

X

n2 : s1 ⊢E
V

µY. [in] X ∧ [out]Y

n3 : s1 ⊢E
V

Y

n4 : s1 ⊢E
V

[in] X ∧ [out]Y

s1 ⊢E
V

[in] X

.

.

.

2
n5 : s1 ⊢E

V
[out]Y

n6 : s3 ⊢E
V

Y

n7 : s3 ⊢E
V

[in] X ∧ [out]Y

2
n8 : s3 ⊢E

V
[in] X

n9 : s2 ⊢E
V

X

n10 : s2 ⊢E
V

µY. [in] X ∧ [out]Y

n11 : s2 ⊢E
V

Y

n12 : s2 ⊢E
V

[in] X ∧ [out]Y

n13 : s2 ⊢E
V

[in] X

n15 : s2 ⊢E
V

X

n14 : s2 ⊢E
V

[out]Y

n16 : s3 ⊢E
V

Y

n17 : s3 ⊢E
V

[in] X ∧ [out]Y

2
s3 ⊢E

V
[in] X

s2 ⊢E
V

X
2

n18 : s3 ⊢E
V

[out]Y

n19 : s3 ⊢E
V

Y
s6 ⊢E

V
Y

.

.

.

s4 ⊢E
V

Y

.

.

.

s3 ⊢E
V

[out]Y

.

.

.

s4 ⊢E
V

Y

.

.

.

Node n15 is discharged with companion node n9 without appealing to color-
ings since X identifies a greatest fixed point formula. To discharge node n19 with

34 CHAPTER 6. PROOF SYSTEM

n1 : s1 ⊢E
V µY. νX. [in]X ∧ [out]Y

n2 : s1 ⊢E
V Y

n3 : s1 ⊢E
V νX. [in]X ∧ [out]Y

n4 : s1 ⊢E
V X

n5 : s1 ⊢E
V [in]X ∧ [out]Y

n6 : s1 ⊢E
V [in]X n7 : s1 ⊢E

V [out]Y

n8 : s3 ⊢E
V Y

n10 : s3 ⊢E
V νX. [in]X ∧ [out]Y

n11 : s3 ⊢E
V X

n12 : s3 ⊢E
V [in]X ∧ [out]Y

n13 : s3 ⊢E
V [in]X

n15 : s2 ⊢E
V X

n16 : s2 ⊢E
V [in]X ∧ [out]Y

n17 : s2 ⊢E
V [in]X

n19 : s2 ⊢E
V X

n18 : s2 ⊢E
V [out]Y

n20 : s3 ⊢E
V Y n21 : s5 ⊢E

V Y

. . .

n14 : s3 ⊢E
V [out]Y

n22 : s3 ⊢E
V Y n23 : s6 ⊢E

V Y

. . .

n9 : s4 ⊢E
V Y

. . .

1

Figure 6.2: Unsuccessful Proof Tree Example

n16, however, we need to make sure that all infinite runs of E corresponding to
infinite sequences of trails of n16 are in W . Node n16 has only one unique trail
Tu = ((s3, n16), (s3, n17), (s3, n18), (s3, n19)). The maximum color occurring in the

corresponding run c(s3
out
−→ s3) is 1. So we have that max (c(α(Tu))(1)) is odd.

Therefore we can conclude that the infinite run s3
out
−→ s3

out
−→ . . ., which this trail

gives rise to, is prohibited. Hence the terminal is successful.

Example. As a further example, we show how an attempt to show the same
system satisfies the property stab2 = µY. νX. [in]X ∧ [out]Y fails. This property
requires that the overall number of out actions is finite, though these may be inter-
leaved with arbitrarily many in actions. This is not necessarily the case in this open
system, for example if the process we plug in the process fix A.(in.out.A) for the
underspecified component. This process satisfies the stab property and so is eligible
to join the system. But the resulting system clearly violates the stab2 property de-
fined above. Each in action is matched with at least one out action, thus infinitely
many of the former action will result in infinitely many of the latter action. We
expect to find no successful proof tree for the goal s1 ⊢E

V µY. νX. [in]X ∧ [out]Y .
Since there are no diamond modalities or disjunctions in the formula stab2, there
is only one possible proof tree. We present a part of this tree in Figure 6.2, which
includes the unsuccessful terminal node n20.

35

In order for the terminal n20 to be successful for every unique trail Tu of the
companion node n8, there should exist 1 ≤ j ≤ k such that max (c(α(Tu))(j)) is
odd, since Y identifies a least fixed point formula. The unique trails of n20 and the
corresponding partial runs are given below:

1. Tu1 = ((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n13), (s2, n15), (s2, n16),
(s2, n18), (s3, n20))

α(Tu1) = s3
in
−→ s2

out
−→ s3

2. Tu2 = ((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n13), (s2, n15), (s2, n16),
(s2, n17), (s2, n15), (s2, n16), (s2, n18), (s3, n20))

α(Tu2) = s3
in
−→ s2

in
−→ s2

out
−→ s3

3. Tu3 = ((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n14), (s3, n8), (s3, n10),
(s3, n11), (s3, n12), (s3, n13), (s2, n15), (s2, n16), (s2, n18), (s3, n20))

α(Tu3) = s3
out
−→ s3

in
−→ s2

out
−→ s3

4. Tu4 = ((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n14), (s3, n8), (s3, n10),
(s3, n11), (s3, n12), (s3, n13), (s2, n15), (s2, n16), (s2, n17), (s2, n15),
(s2, n16), (s2, n18), (s3, n20))

α(Tu4) = s3
out
−→ s3

in
−→ s2

in
−→ s2

out
−→ s3

These trails show that the state s2 occurs infinitely often in some infinite runs,
which means that the color 2 will be occurring infinitely often. For all unique
trails Tui, where 1 ≥ i ≥ 4, of the companion node n8 with the terminal n20,
max (c(α(Tui))(1)) is 2, which is even. So the condition is not met and n20 is not
a successful terminal.

Terminal n22 has the same companion node n8. Similarly, all but one of the
unique trails of n8 with the terminal n22 mention s2. (The unique trail Tu′ =
((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n14), (s3, n22)) and the corresponding run

α(Tu′)=s3
out
−→ s3 does not mention s2 so the condition is met for this trail with

j=1.) Since unique trails that do not meet the condition exist, this terminal is also
unsuccessful.

Chapter 7

More Related Work

In this chapter, we present work that is not directly inspirational but is still closely
related to our work. We mention some other extensions to MTSs that are in certain
ways similar to EMTSs but were created for use in abstraction-refinement. Other
methods that can be employed in open system verification like robust satisfaction
and partial model checking are also summarized.

7.1 MTS extensions for Abstraction

Abstraction is a technique used to deal with the state space explosion problem in
model checking [11]. In this method, knowledge about system and specification-
to-be-met is used to extract a simplified model of the system. This model is con-
servative for the logic used to express the properties to be checked, so that if the
abstract model satisfies a property it is guaranteed to hold in the concrete model.
As a result, desired properties of the system can be checked on the simplified model.
Abstraction aims to hide away details of the model and concentrate on the aspects
necessary to verify a property in order to reduce the state space while still retaining
necessary information to perform verification.

One crucial problem of the abstraction method is to come up with an appro-
priate abstract model of the original system. This process is not straightforward
considering that the abstract model should both be simple enough to deliver effi-
ciency and still be adequate for verification purposes. In abstraction refinement,
this problem is solved by the iterative refinement of the abstract model with the
feedback from the verification process. For instance, in counter-example guided
abstraction refinement [10], verification begins with a relatively simple initial ab-
straction of the system. At each iteration, the abstract model is checked against the
desired property. If it satisfies the property, the iterative process terminates with
a positive answer since the abstract model is conservative. If the verification of the
abstract model ends unsuccessfully, a counter-example for this model is produced.
If this counter-example is also a counter-example of the original model, one can

37

38 CHAPTER 7. MORE RELATED WORK

deduce that the formula does not hold for the original system, hence the iterative
process terminates with a negative answer. If the counter-example turns out to be
"spurious", the current abstract model is refined using the information extracted
from the counter-example so that it can not perform this spurious run that does
not exist in the original model.

MTSs have been used by Godefroid et al [18] as a representation for abstract
systems where the aim was to check properties written in model µ-calculus. Since
the refinement preorder on MTSs preserves any such property, if an MTS satisfies
a property, any implementation of the MTS also satisfies the property. Besides ex-
pressing over-approximations like conventional state-transition models [11], MTSs
can be used as under-approximations thanks to the "lower bound" set on behaviour
by must transitions. This enables both safety and liveness properties to be de-
duced. Additionally, MTSs allow three-valued analysis. In three-valued analysis,
the result of checking if a state of the MTS satisfies a formula results in true, false
or indefinite. Abstract models are designed to be conservative for false as well as
true and refinement is performed only if the verification of the abstract model is
indefinite.

Two structures inspired by the notion of MTS were designed for representing
state space abstractions in abstraction refinement frameworks. Kripke modal tran-
sition system (KMTS), was introduced by Huth et al. [23]. KMTSs include two
labeling functions Lmust, Lmay that label states with atomic propositions. These
specify an interval of propositions to be satisfied by each state besides the inter-
val of transitions specified by may and must transitions. General Kripke modal
transition systems (GKMTS) have hyper must-transitions, i.e. sets of states as tar-
gets to transitions, and are otherwise similar to KMTSs. The simulation relation,
called generalized mixed simulation, between two states of an GKMTS is defined
with an intention to preserve CTL properties. This relation is similar to our sim-
ulation relation as defined in Definition 4.2 without well-foundedness requirements
as set by the third part of the definition. GKMTs were introduced for performing
abstraction-refinement for CTL by Grumberg and Shoham [20].

7.2 Other Methods for the Verification of Open Systems

The term open system has been used in literature for referring to systems whose
behaviour depends on its interaction with the environment, and is not fully deter-
mined by its internal state [21, 27, 3]. In this sense of the term, a property of an
open system M is a property that is satisfied by the composition of the system with
any environment M ′. For such an open system M to satisfy property Φ, then, the
composed system M |M ′ should satisfy the property. In [27], this notion of satisfac-
tion is called robust satisfaction and is considered for systems where M is given as
a finite state (possibly nondeterministic) Moore machine that communicates with
the environment via input and output variables. The problem is considered for
the logics CTL, CTL* and µ-calculus and is solved by reduction to the emptiness

7.2. OTHER METHODS FOR THE VERIFICATION OF OPEN SYSTEMS 39

problem of alternating tree automata. Given a system as the process algebra term
EM , the problem of robust satisfaction can be stated in our framework as showing
that the open system

X : tt � EM | X

satisfies Φ where no unbound process variable occurs in EM . It is important to note
that, in our current framework transitions of the system M can not be disabled
by any other component X that runs in parallel since we use CSP-like parallel
composition without communication. In order to model this, one should use a
synchronous notion of parallel composition.

Another method that takes advantage of the compositional nature of the system
to deal with state space explosion is partial model checking [4]. In this method,
computing the state space of a concurrent system is avoided by removing some
component while transforming the specification accordingly. Given a process t and
a property Φ, Andersen defines procedures to compute the quotient property Φ/t,
making use of knowledge from compositional reasoning. For any process t′ that t
is composed with, the quotient property Φ/t satisfies the following:

t′|t |= Φ ⇐⇒ t′ |= Φ/t

The "only if" direction of this equivalence allows us to model check t′ against the
quotient property Φ/t instead of model checking t′|t against the original property
Φ. The task of model checking the system is then simplified, assuming the size of
the quotient property is not much larger than the size of the original property. In
order to keep the size of the quotient property reasonably small, it is simplified at
each step with the help of heuristics.

Martinelli observes in [30] that "security protocols can be conveniently described
by open systems." He gives two examples. In the first example, an attacker tries to
listen to the conversation between the two agents A and B. This can be modelled
by the open system consisting of the process algebra terms EA, EB which represent
the agents and X , a placeholder for the attacker with unpredictable behaviour:

X : tt � EA | EB | X

The second example again mentions two parties willing to communicate, but
this time one of them can not be trusted. Let A and B be these two agents and
suppose B has unknown behaviour and may try to exploit the protocol to gain
advantage. If the agent A is specified by the term EA, in this open system X is a
placeholder for the possibly malicious agent B:

X : tt � EA | X

In these two examples, it is possible to show that the communication is secure
in any scenario through showing properties of the open systems above provided the
agents are specified in a suitable process algebra and a suitable logic is used for

40 CHAPTER 7. MORE RELATED WORK

expressing properties. However, in [30] the verification is performed in a slightly dif-
ferent manner. Only systems with one unknown component is considered. Suppose
the known participants of the system are given as the term ES and the desirable
property of the system is Φ, then partial model checking techniques mentioned
above are used to find a property Ψ on the unknown component X such that

X : tt � ES | X has property Φ ⇐⇒ X has property Ψ

Then, the remaining task is to find if Ψ is satisfiable, that is to find if there
exists a malicious partner which may have the property Ψ. In the first system above,
for instance, this would mean that a potential attacker exists that can obtain the
secret message. Although his verification method is different, Martinelli’s work is
important for us since it provides us with a possible application area.

Chapter 8

Conclusion

8.1 Summary and Contribution

In this thesis, a finite structure is introduced that captures the state space of open
systems when component assumptions are written in modal µ-calculus. We provide
a method that extracts such a structure from open system descriptions in the form
of process algebra terms with assumptions, and show it sound for terms without
dynamic process creation and complete for systems with a single underspecified
component. We also adapt an existing proof system for the task of proving be-
havioural properties of open systems based on the given state space representation.
Our proof system is sound and prime-complete.

A complete framework based on the state space representation is offered for
verification of open systems. The process begins with specifying the open system
by a process algebraic term with assumptions. Then, the state space representation
is extracted from this description. Finally, open system properties can be checked
on this representation. The main feature of the approach is to have the main focus
of the verifying process on understanding the behaviour of the system rather than
proving properties of it. System behaviour is captured in the form of a space space
representation, so that the more tedious part of showing properties through this
representation is automatable. This creates an advantage over other methods of
open system verification in certain cases, especially when a visualization of the
behaviour is important, for instance in debugging.

Below are the contributions of this thesis:

• A finite structure (EMTS) was introduced that is suitable for the representa-
tion of the state space of open systems since it supports:

– visualization of the state space, i.e. the system behavior,

– graphical specification,

– state space exploration for interactive techniques,

– verification,

41

42 CHAPTER 8. CONCLUSION

– proof reuse.

• A maximal model construction for the modal µ-calculus was offered that
builds an EMTS capturing the formula by composing EMTSs of subformulae.

• An automatic construction that extracts the state space of an open system
from process algebraic system descriptions is offered. The construction is
exact provided that the open system has a single unknown component and
over-approximating when the open system does not include dynamic process
creation,

• A sound and prime-complete proof system that can be used to prove proper-
ties using the state space representation.

My contribution

The initial idea of state space representation of open systems as a means of open
system verification, analogical to the verification of closed systems, is due to my
advisor Dilian Gurov. The novel notions presented here for achieving this purpose
are joint work and have been developed in our common discussions. Finally, the
workout of the construction of Chapter 5 and the workout of the proofs are due to
me. The papers published as a result of the work have also been written jointly.

8.2 Future Work

Characterization The correctness results on the automatic construction of Chap-
ter 5 can be made more precise in a number of ways. First of all, Theorem 5.3
states that the construction over-approximates if the open system includes parallel
composition but there is no indication how much. We believe that any additions of
must-transitions or the subtraction of may-transitions in an effort to make the con-
structed structure more precise would result in an under-approximation. Thus, our
construction comes as close to capturing the open term as possible with an EMTS.
A more practically interesting problem is to determine which temporal properties
can still be shown using the constructed EMTS, even when it over-approximates.
The question is, more formally put: for which temporal property Φ, it is the case
that the open system Γ �E satisfies Φ if the start states of the constructed EMTS
satisfy Φ as well?

∀T .ε(Γ � E) satisfies Φ =⇒ JΓ � EKT satisfies Φ

Another set of correctness results could be established considering different log-
ics for expressing assumptions and open system properties.

Parallel composition In order to be able to handle more systems in our frame-
work, it is essential to consider different types of parallel composition in specifi-
cation and eventually in construction. Currently we consider only systems where

8.2. FUTURE WORK 43

components act in parallel but independently of each other, which leaves out many
interesting open systems.

Interactive exploration Since the problem of verifying open systems in the pres-
ence of parallel composition when assumptions are expressed in modal µ-calculus is
undecidable (consider for instance dynamic process spawning [15]), user interaction
is necessary to perform the verification task in general. Therefore, user interac-
tion should be integrated to our framework in order to deal with a larger class of
open systems. Interactive verification is to be performed as state space exploration.
This corresponds to the symbolic execution of OTA in a stepwise manner. Some
extensions to the notion of EMTS like sub and super states, and to the notion of
OTA with transition assertions that keep historical information about component
behaviour seems to be necessary for this purpose. Another major problem in this
context is setting the colors of states to model terminating behavior, especially
when fixed point alternation is present in some component assumption.

Algorithms Automatic construction of Chapter 5 will be formulated as an algo-
rithm along with the proof system of Chapter 6. These will complete the autom-
atization of the framework. An algorithm for the minimization of the constructed
state space is also considered for visualization issues.

Tool development The analysis results and algorithms suggested above would
make it possible to develop a tool for the verification of open systems. This tool is
to contain the following features:

• Specification: The specification of the open system is to be given either in
the form of an OTA or can be directly provided as an EMTS. The OTA may
include assumptions expressed in different fragments of modal µ-calculus.

• Automatic State Space Extraction The construction presented in Section 5
can be used for automatic extraction of the state space when the specification
of the system is given as an OTA.

• Interactive State Space Exploration As an alternative, interactive exploration
may be employed for forming the (partial) state space when automatic ex-
traction is not possible. This feature is to appear similar to the "Simulation"
command of Concurrency Workbench [12].

• Visualize State Space EMTSs are to be visualized by the aid of a graph visu-
alizer. Minimization may be necessary for a comprehensible visualization.

• Verification Verification of modal µ-calculus properties of the state space will
be possible by an implementation of an algorithmic version of the proof system
of Section 6.

Case Studies A tool based on our theory can be used for the evaluation of the
approach through case studies. The possible applications are limited by the lack of
modelling of data in our framework. Nevertheless, I think interesting examples that
illustrate how helpful the tool is for working with open systems are not rare. We

44 CHAPTER 8. CONCLUSION

also plan more realistic case studies like applications in security, similar to those
suggested in [30]. These require different logics and process algebra to be adapted
in the framework.

.

Appendix A

Paper I

Verification of Open Systems Based on

Explicit State Space Representation

Irem Aktug, Dilian Gurov
KTH Communication and Information Technology

Stockholm, Sweden
{irem,dilian}@imit.kth.se

Abstract

When verifying behavioural properties of a system, one has sometimes to deal with
components for which there is no implementation available yet, but only a specification of
its behaviour. Such a component specification denotes a potentially infinite set of possible
implementations of the component, which induces a potentially infinite set of possible
system behaviours. A behavioural property of such an open system is then a property
shared by all possible system behaviours. To support verification of open system properties
based on state space exploration, these behaviours have to be suitably represented in a
finite structure.

In this paper we propose a representation of the state space of open systems for which
the behaviour of the yet unavailable components is specified in the modal µ-calculus, and
a proof system for verifying open system properties written in the same logic. Following
earlier work on modular verification for various fragments of the logic, we base the state
space representation on the notion of modal transition systems, suitably extended to
deal with disjunctive assumptions and with least fixed point assumptions. The latter are
captured through a set of prohibited infinite runs. The representation, called extended

modal transition system, has been tailored to allow (a) convenient construction from an
open system description, and (b) verification of open system properties. For the latter
task, we adapt an existing proof system for infinite state systems due to Stirling and
Bradfield. Soundness and (relative) completeness of our proof system are established

45

46 APPENDIX A. PAPER I

through a translation between the two systems. The problem of constructing a finite state
space representation from a given open system description will be addressed elsewhere.

A.1 Introduction

When verifying the behaviour of a system based on state space exploration, it is
usually assumed that the system’s implementation is available at verification time,
and thus an accurate representation of the system’s behavior can be extracted.
Such a closed world assumption, however, cannot always be made, since sometimes
the implementation of some of the components is not available at verification time.
This is the case, for example, when certain components join the system after the
latter has been put in operation, as for example when applications are loaded on a
smart card after the card has been issued (see e.g. [35]). Such systems are usually
referred to as open. Still, even if the implementation of certain components is
not yet available, an open system can be verified on the basis of the components’
specifications, i.e. the properties which they are assumed to satisfy. Furthermore,
proving system properties relative to given assumptions on some of its components
is a standard element of compositional reasoning. Such reasoning can for example
be employed for verifying systems with dynamically changing configuration due to
dynamic process spawning [14]. Finally, replacing a component implementation
with a specification can be used as a means of abstraction in order to control state
space explosion.

State space exploration based verification of open systems requires the state
space of the open system to be represented in a suitable fashion. A component
specification denotes a set of possible behaviours of the component. Hence, the
state space of an open system corresponds to a (potentially infinite) set of possible
behaviours, as induced by the component specifications. A behavioural property of
an open system is then a property which is satisfied by all such behaviours. These
behaviours have to be conveniently represented in a structure, which is at the
same time suitable for verification. We propose extended modal transition systems
(EMTS) for these purposes, when component specifications are written in the modal
µ-calculus. These are based on the notion of modal transition systems, introduced
by Larsen [29, 6] as a graphical specification language. A similar structure, called a
Kripke modal transition system, was first introduced by Huth [23], and later refined
by Shoham and Grumberg [20] as a means for representing state space abstractions
in an abstraction refinement framework for CTL. As in the latter approach, EMTSs
have sets of states (instead of single states) as targets to transitions – an extension
which is needed for dealing with disjunctive assumptions. In addition, we add well-
foundedness constraints to the structure to handle least fixed point assumptions.
These serve a purpose dual to the one of fairness constraints (see e.g. [11]).

The notion of EMTS is planned to be used in a larger context to be developed
for the verification of open systems using state space exploration. The process
begins with specifying the system as a process algebra term with assumptions on

A.2. EXTENDED MODAL TRANSITION SYSTEMS 47

variables representing the underspecified components. This model is to be converted
to an EMTS in such a way that, ideally, all possible behaviours of the model are
captured by the EMTS. Finally, to check whether the system has a certain property,
the property is checked for this EMTS.

Related Work. Besides the beforementioned work on modal transition systems
and its variants, our work is closely related to the approach of using maximal model
constructions for modular verification, as pioneered by Grumberg and Long [19] in
the context of ACTL, extended to ACTL* by Kupferman and Vardi [26], and ap-
plied by Sprenger et al to the fragment of the modal µ-calculus without least fixed
points and diamond modalities [35]. These approaches provide an algorithmic solu-
tion to the problem of verifying open systems for the particular logics, all of which
are proper fragments of the modal µ-calculus, when the same logic is used for spec-
ifying the properties of both the yet unavailable components and the open system.
For the modal µ-calculus, however, no such algorithmic solution is possible. In [15],
a proof system is presented to verify properties of open CCS terms parameterized
on variables with modal mu-calculus assumptions. The proof is guided by the for-
mula to be verified and the state space is implicit in the proof tree. In our approach,
we separate the tasks of constructing a finite representation of the state space of
an open system (to be addressed elsewhere) from the task of verifying properties
of the representation (addressed here) allowing different fragments of the modal
µ-calculus to be explored for these two tasks. Having this seperation has additional
benefits like state space visualisation and possibility of proof reuse.

Organization. In this paper, we first give a motivating example for EMTSs,
followed by the definition of this notion. We also define a simulation relation in
Section A.2 which specifies the set of states of a given labelled transition system
(LTS) denoted by an EMTS state. Section A.3 gives background information about
modal µ-calculus along with a proof system due to Bradfield and Stirling [7, 36]
for checking properties of labelled transition systems in this logic. In Section A.4
we introduce our proof system for verifying modal µ-calculus properties of EMTS
states, which is an adaptation of Bradfield and Stirling’s. Soundness and relative
completeness of our proof system is shown by providing a translation of proofs in
our proof system to proofs in the other system. Finally, Section A.6 concludes the
paper with an outline of future work.

A.2 Extended Modal Transition Systems

Motivation. Consider a concurrent server that spawns off Handle processes for
handling requests to produce a result, modelled by the action out. Although Handle
processes can receive further input, modelled by the action in, they do not process
these. We would like to prove that such a system eventually stabilizes – i.e., always
comes to a state where only input actions are enabled – provided that the server
does not receive any new requests. Eventual stabilization can be formalized in
the modal µ-calculus as νX.µY. [in]X ∧

[

out
]

Y . This system can be specified

48 APPENDIX A. PAPER I

s’in

in s

out

out

,

,

,

out

Figure A.1: EMTS representation of an open system.

as the open system, x | Handle, which consists of component Handle and any
eventually stabilizing component x. In order to verify the above open system,
we propose an abstract representation of its behaviour as the EMTS shown in
Figure A.1. The EMTS consists of two “abstract” states, each state denoting the
set of “concrete” states (processes) which it simulates, and two transition relations
called may and must, depicted by −→3 and −→2 arrows, respectively. The must
transitions are a subset of the may transitions, defining an interval of possible
behaviours. Thus, state s′ in the example denotes all processes which can engage
in arbitrary interleavings of in and out actions, but so that in has to be enabled
throughout while out has not. In addition, the EMTS specifies explicitly a set W
of infinite runs which are deemed impossible. In this example, W consists of the
infinite runs stabilizing on out actions. A proof of eventual stabilization of the
system using this representation can be found in Section A.4.

EMTS. We introduce the central notion of the present paper, aimed at repre-
senting the state space of an open system for the purposes of verifying temporal
properties. The notion of EMTS is based on Modal Transition Systems (MTS) of
Larsen [29], and borrows ideas from some generalizations [19, 20]. The formal defi-
nition of EMTS has been chosen to support in a natural way the construction of an
EMTS from an open system specification: it includes may and must transitions to
deal with modal assumptions, sets of states (instead of single states) as targets to
transitions to deal with disjunctive assumptions, and well-foundedness constraints
to deal with least fixed point assumptions.

Definition A.1 (EMTS). An extended modal transition system is a structure

E = (SE , A,−→
3

E ,−→
2

E ,W)

where (i) SE is a set of abstract states, (ii) A is a set of actions, (iii) −→3
E , −→2

E ⊆
SE ×A× 2SE are may and must transition relations, and (iv) W is a set of infinite
E-runs.

A run, or may–run, of E is a possibly infinite sequence of transitions ρE =

s0
a0−→E s1

a1−→E s2
a2−→E . . . where for every i ≥ 0, si

ai

−→3
E Se for some Se such

A.3. MODAL µ-CALCULUS 49

that si+1 ∈ Se. Must–runs are defined similarly. We distinguish between two

kinds of a-derivatives: ∂3
a (s) , {S | s

a

−→3
E S}, and ∂2

a (s) , {S | s
a

−→2
E S}.

For purposes of generality, the definition of W is extentional; there are various
possibilities for giving W a finite characterization.

We define a simulation relation between the states of an EMTS, a form of fair
simulation (cf. e.g. [19, 8]).

Definition A.2 (Simulation). R ⊆ SE × SE is a simulation relation between the
states of an E if:

1. whenever sRt and a ∈ A:

a) if s1
a

−→3
E S1, then there is a S2 such that s2

a

−→3
E S2 and for each

s′1 ∈ S1, there exists a s′2 ∈ S2 such that s′1Rs
′
2;

b) if s2
a

−→2
E S2, then there is a S1 such that s1

a

−→2
E S1 and for each

s′1 ∈ S1, there exists a s′2 ∈ S2 such that s′1Rs
′
2.

2. If ρt = t
a1−→E t1

a2−→E t2
a3−→E . . . is in W , then every infinite run ρs = s

a1−→E

s1
a2−→E s2

a3−→E . . . such that siRti for all i ≥ 1 is in W .

The choice for (ii) is made to guarantee soundness of the proof system presented
in Section A.4. We say that abstract state t simulates abstract state s, denoted s �
t, if there is a simulation relation R such that sRt. Simulation can be generalized
to two different EMTSs E1 and E2 in the natural way.

The standard notion of labelled transition system (LTS) can be viewed as a
special kind of EMTS, where: −→2

E =−→3
E , the target sets of the transition relation

are singleton sets of states, and set W is empty. We give the meaning of an abstract
state relative to a given LTS, as the set of concrete LTS states simulated by the
abstract state.

Definition A.3 (Denotation). The denotation of an abstract state sE w.r.t. a
given LTS T is the set JsEKT , {t ∈ ST | t � sE}.

The notion is lifted to sets of abstract states S′ ⊆ SE in the natural way:
JS′KT ,

⋃

{JsKT | s ∈ S′}. In the rest of the paper, we shall assume that EMTSs

obey the following consistency restrictions: −→2
E⊆−→3

E , s
a

−→2
E S implies S is

non-empty, and W does not contain runs corresponding to infinite must–runs of
the EMTS.

A.3 Modal µ-Calculus

In this section we give a summary of the modal µ-calculus [25], a process logic
which we consider for specifying assumptions about the behavior of components,

50 APPENDIX A. PAPER I

as well as for specifying the system properties to be verified. We present a known
proof system, which we refer to for showing soundness and completeness of the
proof system which we propose in the next section.

Definition A.4 (µ-calculus syntax). A formula Φ of the modal µ-calculus is gen-
erated by the following grammar, where a ranges over a set of actions, and Z over
a set of propositional variables.

Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a] Φ | 〈a〉Φ | νZ.Φ | µZ.Φ

A formula Φ is a normal formula if σ1Z1 and σ2Z2 are two different occurrences
of binders in Φ then Z1 6= Z2 and no occurrence of a free variable Z is also used
in a binder σZ in Φ. Let Φ be a normal formula and σ1X.Ψ1 and σ2Z.Ψ2 be
subformulas of Φ, then X subsumes Z if σ2Z.Ψ2 is a subformula of σ1X.Ψ1.

The semantics of the µ-calculus is standard (see e.g. [36]), defining a satisfac-
tion relation �T

V relative to a LTS T = (ST , A,−→T) and a valuation V mapping
propositional variables Z to a sets of states V(Z) ⊆ ST . Satisfaction is then lifted
to sets of states in the natural way.

The proof system ΣT given below has been proposed by Bradfield and Stirling
[7, 36] for showing that a set of states in a given LTS T (or, as in the original text, a
set of closed CCS process terms) satisfies a property given as a µ-calculus formula.
A proof tree is constructed starting from the goal using the rules in a goal-directed
fashion, checking at each step if a terminal node was reached. A proof tree is a
proof if all the terminal nodes are successful. In the rules below, σ ranges over
µ and ν. We give a single-action version of Bradfield and Stirling’s K notation.
The original set of rules has been augmented with an admissable Cut rule for later
purposes. The rules are presented in a goal-directed fashion.

The proof system is sound and complete (cf. [7, 36]). In the next section, we
present a similar proof system for states of extended modal transition systems. We
rely on the properties of the above proof system to show that our system enjoys
these properties as well.

∧
S ⊢T

V Φ ∧ Ψ

S ⊢T
V Φ S ⊢T

V Ψ
∨

S ⊢T
V Φ ∨ Ψ

S1 ⊢T
V Φ S2 ⊢T

V Ψ
S = S1 ∪ S2

σZ
S ⊢T

V σZ.Φ

S ⊢T
V Z

2a
S ⊢T

V [a] Φ

∂a(S) ⊢T
V Φ

Z
S ⊢T

V Z

S ⊢T
V Φ

Z identifies σZ.Φ 3a
S ⊢T

V 〈a〉Φ

fa(S) ⊢T
V Φ

fa : s 7→ s′ ∈ ∂a(s)

Thin
S ⊢T

V Φ

R ⊢T
V Φ

S ⊂ R Cut
S ⊢T

V Φ

S1 ⊢T
V Φ S2 ⊢T

V Φ
S = S1 ∪ S2

A.3. MODAL µ-CALCULUS 51

A successful tableau (or proof) is a finite proof tree having successful terminals
as leaves. A node n in a proof tree labelled by a sequent S ⊢T

V Ψ is denoted
n : S ⊢T

V Ψ. If n : S ⊢T
V Z is a node where Z identifies a fixed point formula σZ.Φ,

and there is a ancestor node n′ : S′ ⊢T
V Z above n with at least one application of

a rule other than Thin and Cut in between, S′ ⊇ S and for any other fixed point
variable Y on this path, Z subsumes Y , then node n is called a σ-terminal. So no
further rules are applied to it1. The most recent node making n a σ-terminal is
called n’s companion. The conditions for a leaf sequent R ⊢T

V Ψ to be a successful
(resp. unsuccessful) terminal are as follows

Successful Terminals

1. Ψ = tt, or else Ψ = Z, Z is free in the initial formula, and R ⊆ V(Z)

2. R = ∅

3. Ψ = Z where Z identifies a fixed point formula σZ.Φ, and the leaf sequent is
a σ-terminal with companion node n : S ⊢T

V Ψ, then

a) If σ = ν, then the terminal is successful.

b) If σ = µ, then the terminal is successful if there is no infinite chain of
composable trails T0 ◦ T1 ◦ T2 . . . of n (see Definition A.6 below).

Unsuccessful Terminals

1. Ψ = ff, or Ψ = Z and Z is free in the initial formula with R 6⊆ V(Z)

2. Ψ = 〈a〉Φ and for some r ∈ R, ∂a({r}) = ∅

3. Ψ = Z where Z identifies a minimal fixed point formula µZ.Φ, there is an
ancestor node S ⊢E

V Ψ with at least one application of a rule other than Thin
and Cut in between, S ⊂ R and for any other fixed point variable Y on this
path, Z subsumes Y .

We now explain the notion of trail used in the above definition.

Definition A.5 (Dependent). If node n′ : S′ ⊢T
V Φ′ is an immediate successor of

node n : S ⊢T
V Φ, then state s′ ∈ S′ at n′ is a dependant of state s ∈ S at n if:

• s = s′ and the rule applied to n is ∧, ∨, σZ, Z, or Thin, or

• s
a

−→T s′ and the rule is 2a, or

• s′ = fa(s) and the rule is 3a applied with choice function fa.

1In order to show completeness for our proof system, we relax this condition without harming

the soundness and completeness results.

52 APPENDIX A. PAPER I

Definition A.6 (T -Trail). Assume that node nk:Sk ⊢T
V Z is a µ-terminal and node

n0:S0 ⊢T
V Z is its companion. A trail T of the companion node n0 is a sequence of

state–node pairs (s0, n0), . . . , (sk, nk) from state s0 ∈ S0 at n0 to sk ∈ Sk at nk,
such that for all 0 ≤ i < k, one of the following holds:

1. si+1 ∈ Si+1 at ni+1 is a dependent of si ∈ Si at ni, or

2. ni is the immediate predecessor of a σ-terminal node n′ 6= nk whose compan-
ion is nj for some j : 0 ≤ j ≤ i, and ni+1 = nj and si+1 ∈ Si+1 at n′ is a
dependant of si ∈ Si at ni.

Two trails T1 and T2 of the same companion node are composable, if the last pair
of T1 and the first pair of T2 mention the same state; in this case their composition
is denoted by T1 ◦ T2.

Trails mention state–node pairs. Later in this paper, we will work with actual
sequences of transitions (runs). We therefore define a mapping α to extract the
corresponding run from a given trail.

Definition A.7 (α: Trail to Run Conversion). Let T = (s0, n0), . . . , (sk, nk) be
a T -trail of proof tree Σ. The corresponding run α(T) is inductively defined as
follows:

α(s, n)
∆
= ε

α((s1, n1) · (s2, n2) · T)
∆
=

{

(s1
a

−→T s2) · α((s2, n2) · T) 2a or 3a-rule
is applied to n1

α((s2, n2) · T) otherwise.

A.4 A Proof System for EMTSs

Satisfaction of a temporal property by an EMTS state cannot be defined directly.
The reason for this is the presence of the set W in EMTSs, which makes it im-
possible to define the denotation of a fixed point formula compositionally (that is,
inductively on the structure of the formula). We therefore give an indirect definition
of satisfaction by means of the denotation JsKT of a state s.

Definition A.8. Let E be an EMTS, and let s ∈ SE . We define satisfaction s |=E
V Φ

to hold if and only if JsKT |=T
V Φ holds for any LTS T and valuation V mapping

propositional variables Z to sets of states V(Z) ⊆ SE , where valuation V is defined

via V by V(Z)
∆
=

⋃

{JsKT | s ∈ V(Z)}.

We present a proof system ΣE for verifying whether a state s of an EMTS E
satisfies a modal µ-calculus formula Φ. Since the transitions of the EMTS result in
sets of states, the latter are immediately split into separate goals.

A.4. A PROOF SYSTEM FOR EMTSS 53

s ⊢E
V Φ ∧ Ψ

s ⊢E
V Φ s ⊢E

V Ψ

s ⊢E
V Φ ∨ Ψ

s ⊢E
V Φ

s ⊢E
V Φ ∨ Ψ

s ⊢E
V Ψ

s ⊢E
V σZ.Φ

s ⊢E
V Z

s ⊢E
V [a] Φ

s1 ⊢E
V Φ . . . sn ⊢E

V Φ
{s1, . . . , sn} = ∪ ∂3

a (s)

s ⊢E
V Z

s ⊢E
V Φ

Z identifies σZ.Φ
s ⊢E

V 〈a〉Φ

s1 ⊢E
V Φ . . . sn ⊢E

V Φ
{s1, . . . , sn} ∈ ∂2

a (s)

The conditions for a leaf node of a proof tree in ΣE to be a successful terminal
are similar to the ones specified for ΣT (see Section A.3), and are even somewhat
simpler since single states are considered instead of sets of states.

Considering node r ⊢E
V Ψ:

Successful Terminals

1. Ψ = tt, or else Ψ = Z, Z is free in the initial formula, and r ∈ V(Z)

2. Ψ = [a] Φ and ∪∂3
a (r) = ∅

3. Ψ = Z where Z identifies a fixed point formula σZ.Φ, and the sequent is a
σ-terminal with companion node n : r ⊢E

V Ψ, then

a) If σ = ν, then the terminal is successful.

b) If σ = µ, then the terminal is successful if every infinite run wn0
of

the EMTS that corresponds to an infinite sequence of E-trails of the
companion node n0 is in W . That is, if wn0

= α(E1) ◦ α(E2) ◦α(E3) . . .
is such that the first state of trail Ei is r for all i ≥ 1, then wn0

∈ W
(the notion of E-trail is explained below).

Unsuccessful Terminals

1. Ψ = ff, or else Ψ = Z, Z is free in the initial formula, and r 6∈ V(Z)

2. Ψ = 〈a〉Φ and ∪∂2
a (r) = ∅

3. Ψ = Z where Z identifies the minimal fixed point formula µZ.Φ, and the
sequent is a σ-terminal with companion node n : r ⊢E

V Ψ, then the terminal
is unsuccessful if some infinite run wn0

of the EMTS that corresponds to an
infinite sequence of E-trails of the companion node n0 is not in W .

The notion of E-trails of an EMTS is defined analogously to T -trails of an LTS.
Since the nodes of the proof trees mention single states, the notion of dependant
becomes superfluous. What is more, E-trails of a node always begin and end with

54 APPENDIX A. PAPER I

s ⊢E
V νX.µY. [in]X ∧ [out]Y

n1 : s ⊢E
V X

n2 : s ⊢E
V µY. [in]X ∧ [out]Y

n3 : s ⊢E
V Y

n4 : s ⊢E
V [in]X ∧ [out]Y

2
n5 : s ⊢E

V [in]X

n6 : s ⊢E
V X

2
n7 : s ⊢E

V [out]Y

n8 : s ⊢E
V Y

n9 : s′ ⊢E
V Y

n10 : s′ ⊢E
V [in]X ∧ [out]Y

2
n11 : s′ ⊢E

V [in]X

n12 : s′ ⊢E
V X

n13 : s′ ⊢E
V µY. [in]X ∧ [out]Y

n14 : s′ ⊢E
V Y

n15 : s′ ⊢E
V [in]X ∧ [out]Y

2
n16 : s′ ⊢E

V [in]X

n17 : s′ ⊢E
V X

2
n18 : s′ ⊢E

V [out]Y

n19 : s′ ⊢E
V Y

2
n20 : s′ ⊢E

V [out]Y

n21 : s′ ⊢E
V Y

1

Figure A.2: Proof Tree Example

the same state, and are thus always composable. The mapping α from Defini-
tion A.7 which converts an T -trail to an T -run can be applied exactly the same
way to E-trails and proofs trees in ΣE .

Consider the example from the Introduction, where the set W consists of all

infinite runs which have the suffix s
out
−→ s

out
−→ . . . or s′ out

−→ s′
out
−→ Using the

above proof system, eventual stabilization of all processes denoted by the abstract
state s is established with the successful tableau in Figure A.2.

Node n6 is discharged with companion node n1, and similarly n17 is discharged
with n12 without appealing to W since X identifies a greatest fixed point formula.
To discharge node n8 with n3, however, we need to make sure that all infinite runs
of E corresponding to infinite sequences of E-trails of n3 are in W . Node n3 has

only one E-trail, giving rise to a single infinite run s
out
−→ s

out
−→ Since this run

is in W , the terminal is successful. Node n19 with companion n14, and node n21

with companion n9 are discharged similarly.

A.5 Soundness and Completeness

To prove soundness of the proof system ΣE presented above, we show that every
successful tableau for sequent s ⊢E

V Φ in ΣE can be transformed into a successful
tableau for sequent JsKT ⊢T

V Φ in ΣT for any given T . Soundness of ΣE follows
then from the soundness of ΣT by Definition A.8. Full proofs of results in this
section has been left out due to lack of space and can be found in [1].

We achieve this transformation by defining a translation from rule instances
in ΣE to proof trees in ΣT and we show that its extension to proof trees in ΣE

A.5. SOUNDNESS AND COMPLETENESS 55

s ⊢E
V Φ1 ∧ Φ2

s ⊢E
V Φ1 s ⊢E

V Φ2

JsKT ⊢T
V Φ1 ∧ Φ2

∧
JsKT ⊢T

V Φ1 JsKT ⊢T
V Φ2

s ⊢E
V Φ1 ∨ Φ2

s ⊢E
V Φ1

JsKT ⊢T
V Φ1 ∨ Φ2

∨
JsKT ⊢T

V Φ1

s ⊢E
V Φ1 ∨ Φ2

s ⊢E
V Φ2

JsKT ⊢T
V Φ1 ∨ Φ2

∨
JsKT ⊢T

V Φ2

s ⊢E
V [a] Φ and ∪ ∂3

a (s) = ∅ JsKT ⊢T
V [a] Φ

2a

∅ ⊢T
V Φ

s ⊢E
V [a] Φ

{s1, . . . , sn} = ∪ ∂3

a (s)
s1 ⊢E

V Φ . . . sn ⊢E
V Φ

JsKT ⊢T
V [a] Φ

2a

∂a(JsKT) ⊢T
V Φ

Thin*
J∪ ∂3

a (s)KT ⊢T
V Φ

Cut
Js1KT ∪ . . . ∪ Jsn−1KT ⊢T

V Φ
Cut...

Cut
Js1KT ⊢T

V Φ Js2KT ⊢T
V Φ

JsnKT ⊢T
V Φ

s ⊢E
V 〈a〉Φ

{s1, . . . , sn} ∈ ∂2

a (s)
s1 ⊢E

V Φ . . . sn ⊢E
V Φ

JsKT ⊢T
V 〈a〉Φ

3a

fa(JsKT) ⊢T
V Φ

Thin*
J{s1, . . . , sn}KT ⊢T

V Φ
Cut

Js1KT ∪ . . . ∪ Jsn−1KT ⊢T
V Φ

Cut...
Cut

Js1KT ⊢T
V Φ Js2KT ⊢T

V Φ

JsnKT ⊢T
V Φ

s ⊢E
V Z

Z identifies σZ.Φ
s ⊢E

V Φ

JsKT ⊢T
V Z

σZ
JsKT ⊢T

V Φ

s ⊢E
V σZ.Φ

s ⊢E
V Z

JsKT ⊢T
V σZ.Φ

Z
JsKT ⊢T

V Z

1

Figure A.3: Translation πT

translates successful tableaux in ΣE to successful tableaux in ΣT .

Definition A.9 (Translation). Translation πT , mapping rule instances in ΣE to
proof trees in ΣT for a given T , is defined through Figure A.3. In the definition,
fa is a choice function.

Soundness

Lemma A.10 (Correctness). For each rule instance in ΣE , translation πT assigns
a correct proof tree in ΣT , so that each premise (resp. conclusion), s ⊢E

V Φ, of the
rule is matched by a leaf (resp. root), JsKT ⊢T

V Φ, and all unmatched leaves of the
constructed proof tree are successful terminals.

Translation πT extends to proof trees in ΣE in the obvious way as defined by
the matching sequents.

56 APPENDIX A. PAPER I

Corollary A.11. For proof tree AE with root sequent s ⊢E
V Φ in ΣE , AT = πT (AE)

is a proof tree with root sequent JsKT ⊢T
V Φ in ΣT , such that each leaf si ⊢E

V Φi of
AE is matched by a leaf JsiKT ⊢T

V Φi in AT , and all unmatched leaves in AT are
successful terminals.

Definition A.12 (β:Trail Translation). Given a proof tree AE with nodes labeled
m0 . . .ml, the function β converts a trail, T = (t0, n0), . . . , (tk, nk), of the corre-
sponding LTS tree πT (AE) to the E-trail, E = (s0, n0), . . . , (sk′ , nk′) by replacing
each node with the matching one and deleting the remaining ones:

β(ε)
∆
= ε

β((t1, n1) · T)
∆
=

{

((s1′ , n1′) · β(T)) if n1′ matches n1 and s1′ is in n1′

β(T) if no node matches n1 in AE

Notice that whenever a pair (ti, ni) is replaced by (si′ , ni′), ti ∈ Jsi′KT , since
node ni contains the sequent Jsi′KT ⊢T

V Φ′.

Lemma A.13. s ⊢E
V Φ implies JsKT ⊢T

V Φ for any LTS T . That is, if there is a
successful tableaux for s ⊢E

V Φ in ΣE , then for any T there is a successful tableaux
for JsKT ⊢T

V Φ in ΣT .

Proof. Assume AE is a successful tableau for sequent s ⊢E
V Φ, and assume T is an

LTS. To establish the result it suffices, due to Corollary A.11, to show that each
leaf of tableaux AT = πT (AE) matching a (successful) terminal of AE is a successful
terminal. Consider the successful terminal m : r ⊢E

V Ψ in AE and the matching
node of AT , n : JrKT ⊢T

V Ψ. The proof that the latter is also a successful terminal
is trivial when Ψ = tt, when Ψ = Z and Z is free in the initial formula, when Z
identifies the formula νZ.Ψ′, or when Ψ = [a]Ψ′ and ∪∂3

a (r) = ∅.
The only interesting case occurs when Ψ = Z and Z identifies µZ.Ψ′. In such

a case, the condition of subset inclusion is trivially satisfied, so it remains to show
that no infinite sequences of composable trails of the companion node n′ exist in
AT , i.e. there is no κn′ = T1 ◦ T2 ◦ . . ., such that for all i ≥ 1, Ti begins with a
pair (ti, n

′), where ti ∈ JrKT .
Assume such an infinite sequence, κn′ = T1 ◦ T2 . . ., exists. Since the trails are

composable, we also know that for all i ≥ 1, Ti ends with the pair (ti′ , n) for some
ti′ ∈ JrKT . Then the corresponding sequence of the EMTS for terminal node m
and companion node m′, wm′ = β(T1) ◦ β(T2) . . . is an infinite sequence of E-trails,
and for all i ≥ 1, β(Ti) starts and ends with pairs (r,m′) and (r, m) respectively.
Because m : r ⊢E

V Z is a successful terminal, the corresponding infinite run α(wm′)
is guaranteed to be in W . Then, by the definitions of simulation and denotation,
the run α(κn′) of T cannot be infinite, and therefore neither can κn′ be infinite.
We thus reached a contradiction. 2

Theorem A.14 (Soundness). s ⊢E
V Φ implies s �

E
V Φ.

Proof. Follows directly from Lemma A.13, the soundness of Bradfield and Stirling’s
proof system (cf. [7, 36]), and Definition A.8. 2

A.5. SOUNDNESS AND COMPLETENESS 57

Completeness

We base our completeness argument on the existence of a universal LTS U , having
the property that every LTS T is isomorphic to a transition–closed sub–structure
of U . Because of the shape of our disjunction proof rule, completeness can only be
shown for formulas Φ, all subformulas of which are prime (cf. [6]). A formula Ψ is
prime if whenever it logically implies a disjunction Ψ1 ∨Ψ2 then it also implies one
of the disjuncts.

By the completeness proof of Bradfield and Stirling’s proof system ([7], [36]),
whenever JsKU |=U

V
Φ we know that there is a space of canonical proofs of JsKU ⊢U

V
Φ,

which differ in the choice functions that are made use of in the 3-rule applications.
For the case when E is finite–state and all subformulas of Φ are prime, we show how
to construct a proof AU of JsKU ⊢U

V
Φ that captures several of these canonical proofs

using the branching provided by Cut-rule. This proof is constructed mutually with
another proof A∗

U for the same goal that is built using "macro"s from πU instead of
single rules. Both proofs are built in the weaker version of Bradfield and Stirling’s
proof system, where repeat nodes are not necessarily terminals. In the final step of
the Completeness proof, A∗

U is translated backward into a proof of s ⊢E
V Φ using

the reverse function π−1
U .

The constructions of AU and A∗
U guide each other. At each step, the rule

application in AU determines the corresponding subtree (or “macro”) application
taken from the range of translation πU in A∗

U except when the rule is Thin. In
turn, A∗

U determines the number of Cut-rules that are to be applied after each 2

and 3 rule in AU . As a result, each rule application in AU is matched by the
same rule application in A∗

U except for Thin. In order to describe this, we define in
the construction process a γ function which matches nodes of AU and A∗

U . If the
rule/macro to be used is 3, A∗

U additionally constraints the choice function used
in AU so that the extension of the former to the set mentioned in the matching
node of AU gives the latter. Finally, when a repeat node of AU is to be taken as a
terminal is also determined by whether the matching node is a terminal in A∗

U .
AU is similar to the canonical proofs from the completeness proof of ΣT

[7, 36] in the judicious application of the Thin rule, and in that the validity of
the sequent is preserved at each application. Besides being applied to the goal as
the first rule, Thin is applied in the rest of the tree only if the goal is of the form
S ⊢U

V
σZ.Ψ. The application of Thin should reduce the goal S ⊢T

V Φ to the
subgoal ||Φ||T

V
⊢T

V Φ, where ||Φ||T
V

is defined as the set of all states in ST that
satisfy Φ under valuation V. AU may include applications of a special version of
the Cut-rule, while no Cut-rule applications occur in canonical proofs. Cut may be
applied after 2 and 3 rule in AU , in such a way that the set mentioned in each of
the subgoals produced will be identical to the set mentioned in the original node.
(Note that this application merely duplicates the current subgoal hence giving the
possibility to combine several proof trees for the same subgoal in a single proof
tree.)

58 APPENDIX A. PAPER I

Theorem A.15 (Completeness). Let E be a finite–state EMTS, s ∈ SE , and let Φ
have prime subformulas only. Then s �

E
V Φ implies s ⊢E

V Φ.

Proof. See [1]. 2

A.6 Conclusion

We propose extended modal transition systems as a means for representing the set
of possible behaviours of an open system in the presence of not yet available com-
ponents for which we are given behavioural specifications (assumptions) written
in the modal µ-calculus. The extentions to the standard notion of modal tran-
sition systems are needed to deal with disjunctive assumptions and with liveness
assumptions. The latter are captured through a set of well-founded (that is, pro-
hibited infinite) runs, a notion dual to the familiar notion of fairness constraints.
We present a proof system for local model checking of EMTS properties written
in the modal µ-calculus. We define a translation of proofs in our proof system to
proofs in a known sound and complete proof system for infinite state systems due
to Bradfield and Stirling, and use this translation to show these properties for our
proof system.

This paper presents work in progress towards state space representation and
verification of open systems. Current work focuses on developing a formalism to
model open systems, and on the problem of constructing a finite EMTS from such a
specification, exploring both interactive techniques when dealing with the full logic
and algorithmic techniques for certain fragments. The notion of an EMTS will
be modified to include a suitable finite representation for the set of well-founded
runs W , which in turn will make it possible to give an algorithm for verifying that
an EMTS state satisfies a temporal property. The theory will be extended to deal
with assumptions on data variables, in addition to assumptions on process variables.
Finally, tool development will be followed by practical applications and verification
case studies.

Acknowledgement. The authors are indebted to Christoph Sprenger for his
valuable comments on an earlier draft.

Appendix B

Paper II

State Space Representation for Verification

of Open Systems

Irem Aktug, Dilian Gurov
KTH Computer Science and Communication

Stockholm, Sweden
{irem,dilian}@nada.kth.se

Abstract

When designing an open system, there might be no implementation available for cer-
tain components at verification time. For such systems, verification has to be based
on assumptions on the underspecified components. When component assumptions are
expressed in Hennessy-Milner logic (HML), the state space of open systems can be natu-
rally represented with modal transition systems (MTS), a graphical specification language
equiexpressive with HML. Having an explicit state space representation supports state
space exploration based verification techniques. Besides, it enables proof reuse and facili-
tates visualization for the user guiding the verification process in interactive verification.
As an intuitive representation of system behavior, it aids debugging when proof generation
fails in automatic verification.

HML is not expressive enough to capture temporal assumptions. For this purpose, we
extend MTSs to represent the state space of open systems where component assumptions
are specified in modal µ-calculus. We present a two-phase construction from process
algebraic open system descriptions to such state space representations. The first phase
deals with component assumptions, and is essentially a maximal model construction for
the modal µ-calculus. In the second phase, the models obtained are combined according
to the structure of the open system to form the complete state space. The construction
is sound and complete for systems with a single unknown component and sound for those
without dynamic process creation. For establishing open system properties based on the
representation, we present a proof system which is sound and complete for prime formulae.

59

60 APPENDIX B. PAPER II

B.1 Introduction

In an open system, certain components can join the system after it has been put
in operation. For example, applications can be loaded on a smart card after the
card has been issued (see e.g. [SGH04]). Since the implementations of certain
components are not yet available, the verification of the system has to be based on
behavioural assumptions on such components. Security protocols can be verified
in this manner, for instance by treating an unpredictable attacker as an unknown
component of the system [31].

Modal transition systems (MTS) were introduced by Larsen as a graphical spec-
ification language [29]. Certain kinds of properties are easier to express graphically
than in temporal logics. Each MTS specifies a set of processes as an interval de-
termined by necessary and admissable transitions. MTSs are equiexpressive with
Hennessy-Milner logic (HML), i.e. an HML formula can be characterized by an
MTS and vice versa. As a result, MTSs provide a natural representation of the
state space of open systems when assumptions on the behavior of the not-yet-
available components are specified in HML. When the assumptions are temporal
properties, however, MTSs are not expressive enough for this purpose. In [2], we
extend MTSs to represent the state space of open systems when the component
assumptions are written in the modal µ-calculus [25]. This logic adds the expres-
sive power of least and greatest fixed point recursion to HML. Besides the must
(necessary) and may (admissable) transitions of MTS, our notion, extended modal
transition system (EMTS) has sets of states (instead of single states) as targets to
transitions - an extension which is needed for dealing with disjunctive assumptions,
and well-foundedness constraints to handle least fixed point assumptions.

Having a way to capture the state space of an open system explicitly can be
useful in various phases of the development of open systems. In the modeling phase,
this formalism can be used as an alternative means of graphical specification of open
system behavior. In interactive verification, an explicit state space representation
facilitates visualization of the system behaviour, assisting the user in guiding the
proof. This visualization facility is beneficial in automatic verification when the au-
tomatic proof construction fails and an understanding of the open system behaviour
becomes necessary for debugging. Furthermore, computing the whole state space
enables proof reuse when the same system is to be checked for several properties.

In this paper, we address the problem of constructing an explicit state space
representation from an open system description and verifying open system proper-
ties based on this representation. In a process algebraic setting, the behaviour of
an open system can be specified by an open process term with assumptions (OTA).
An OTA consists of a process term equipped with a list of behavioral assumptions
on the free variables of the term. We offer a two-phase construction that, under
given restrictions, automatically extracts an EMTS from an OTA. The first phase
in the construction corresponds to a maximal model construction for each compo-
nent assumption. For the fixed point cases, a powerset construction is used that
is similar to the one used in the Büchi automata constructions of [13] and [24]. In

B.2. SPECIFYING OPEN SYSTEMS BEHAVIOUR 61

the second phase, the maximal models are composed according to the structure of
the open system. The construction is sound (resp. complete) if the set of systems
denoted by the OTA is a subset (resp. superset) of the denotation of the resulting
EMTS. We show soundness of the construction for systems without dynamic pro-
cess creation, and soundness and completeness for systems with a single unknown
component. Finally, we present a proof system for showing open system properties
based on EMTSs. The proof system is sound and complete for prime formulae,
a prime formula being one that logically implies one of the disjuncts whenever it
logically implies a disjunction. The relative simplicity of the proof system and its
use is an indication of the adequateness of EMTSs for open system state space
representation.

Related Work. In this strand of research, our work follows earlier work on using
maximal model constructions for modular verification for various fragments of the
µ-calculus: for ACTL by Grumberg and Long [19], ACTL* by Kupferman and
Vardi [26], and the fragment without least fixed points and diamond modalities by
Sprenger et al [35]. In automata based approaches (see for instance [17, 24, 28]),
various structures like alternating tree automata, Büchi and Rabin automata have
been employed for capturing temporal properties. Although expressively powerful,
we argue that these structures do not provide an intuitive representation of the
state space for branching-time logics.

Proof system based methods have previously been suggested for the interactive
verification of open systems [14, 15] where modal µ-calculus is used to express
the temporal assumptions on components as well as the desired property of the
system. These interactive methods explore the state space implicitly as much as
it is necessary for the particular verification task. In contrast to these methods,
we separate the tasks of constructing a finite representation of the state space of
an open system from the task of verifying its properties. This separation provides
a state visualization facility to the user guiding the interactive proof, and offers
greater possibilities for proof reuse.

Organization. The paper is organized as follows. In section B.2, we make the
syntax of OTAs precise by a brief account of the logic used in behavioral assump-
tions and the process algebra used to define the process term. Section B.3 is a
summary of important definitions related to the notion of EMTS. We present the
translation from OTA to EMTS in Section B.4, and provide correctness results. In
Section B.5, we give a proof system for showing open system properties of EMTSs.
The last section presents conclusions and identifies directions for future work.

B.2 Specifying Open Systems Behaviour

A system, the behaviour of which is parameterized on the behaviour of certain
components, is conveniently represented as a pair Γ � E, where E is an open

62 APPENDIX B. PAPER II

process-algebraic term, and Γ is a list of assertions of the shape X : Φ where X is
a process variable free in E and Φ is a closed formula in a process logic.

In the present study, we work with the class of Basic Parallel Processes (BPP)[9].
The terms of BPP are generated by:

E ::= 0 | X | a.E | E + E | E ‖ E | fix X.E

where X ranges over a set of process variables ProcVar and a over a finite set of
actions A. We assume that ProcVar is partitioned into assumption process variables
AssProcVar used in assertions, and recursion process variables RecProcVar bound
by fix . A term E is called linear if every assumption process variable occurs in E
at most once. The operational semantics of closed process terms (called processes
and ranged over by t) is standard, where the operator ‖ signifies merge composition.

As a process logic for specifying behavioural assumptions of components, as
well as for specifying system properties to be verified, we consider the modal µ-
calculus [25]. Its formulas are generated by:

Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a] Φ | 〈a〉Φ | νZ.Φ | µZ.Φ

where Z ranges over a set of propositional variables PropVar. The semantics of
the µ-calculus is standard and given in terms of the denotation ||Φ||TV ⊆ ST where
V : PropV ar → ST is a valuation that maps propositional variables to processes
of some labeled transition system (LTS), which are ranged over by T . As usual, we
write t |=T

V Φ whenever t ∈ ||Φ||TV . In the sequel, we omit the subscript V when Φ
is a closed formula.

We say that an OTA Γ�E is guarded when the term E and all modal µ-calculus
formula Φ in Γ are guarded. Similarly, we say an OTA is linear when the term it
contains is linear.

The behaviours specified by an open term with assumptions is given with respect
to a labeled transition system T that is closed under the transition rules and is
closed under substitution of processes for assumption process variables in subterms
of the OTA. The states of LTS correspond to processes in our process algebra.
The denotation of an OTA is then the set of all processes obtained by substituting
each assumption process variable in the term by a process from T satisfying the
respective assumptions.

Definition B.1 (OTA Denotation). Let Γ � E be an OTA, T be an LTS, and
ρR : RecProcVar → ST be a recursion environment. The denotation of Γ � E
relative to T and ρR is defined as:

JΓ � EKρR
, {EρRρA | ∀(X : Φ) ∈ Γ. ρA(X) |=T Φ}

where ρA : AssProcVar → ST ranges over assumption environments.

Example. Consider an operating system in the form of a concurrent server that
spawns off Handler processes each time it receives a request. These processes run

B.3. EXTENDED MODAL TRANSITION SYSTEMS 63

system calls for handling the given requests to produce a result (modeled by the

action out). Handler is defined as Handler
def
= In ‖ out.0 where In

def
= in.In.

Although it is possible to communicate with request handlers through the attached
channel (modeled by the action in), they do not react to further input. A property
one would like to prove of such a server is that it stabilizes whenever it stops
receiving new requests. Eventual stabilization can be formalized in the modal µ-

calculus as stab
∆
= νX.µY. [in]X ∧

[

out
]

Y . We can reduce this verification task to
proving that the open system modeled by the OTA

X : stab �X ‖Handler

which consists of Handler and any stabilizing process X , eventually stabilizes.

B.3 Extended Modal Transition Systems

In [2], we proposed Extended Modal Transition Systems (EMTS) as an explicit
state space representation for open systems with temporal assumptions, with an
extensional representation for the well-foundedness constraints. In this section,
we summarize the main definitions, and propose a concrete representation of well-
foundedness constraints. The notion of EMTS is based on Larsen’s Modal Tran-
sition Systems [29]. Kripke Modal Transition Systems (KMTS) have been first
introduced by Huth et. al. [23], and later refined by Grumberg and Shoham [20]
for representing state space abstractions in an abstraction refinement framework.
EMTS is similar to KMTS with the addition of fairness constraints.

In addition to may and must transitions for dealing with modalities, EMTSs
include sets of states (instead of single states) as targets to transitions to capture
disjunctive assumptions, and a set of prohibited infinite runs defined through a
coloring function to represent termination assumptions.

Definition B.2 (EMTS). An extended modal transition system is a structure

E = (SE , A,−→
3

E ,−→
2

E , c)

where (i) SE is a set of abstract states, (ii) A is a set of actions, (iii) −→3
E , −→2

E

⊆ SE × A× 2SE are may and must transition relations, and (iv) c : SE → N
k is a

coloring function for some k ∈ N.

May transitions of an EMTS show possible behaviours of the closed systems
represented, while must transitions specify behaviour shared by all these closed
systems. A run (or may–run) of E is a possibly infinite sequence of transitions

ρE = s0
a0−→E s1

a1−→E s2
a2−→E . . . where for every i ≥ 0, si

ai

−→3
E S for some S such

that si+1 ∈ S. Must–runs are defined similarly. We distinguish between two kinds

of a-derivatives of a state s: ∂3
a (s) , {S | s

a

−→3
E S} and ∂2

a (s) , {S | s
a

−→2
E S}.

The coloring function c specifies a set WE of prohibited infinite runs by means
of a parity acceptance condition (cf. [32, 17]). The function c is extended to infinite

64 APPENDIX B. PAPER II

runs so that c(ρE) = (c(s0)(1) · c(s1)(1) . . . , . . . , c(s0)(k) · c(s1)(k) . . .) is a k-tuple
of infinite words where c(s)(j) denotes the jth component of c(s). Let inf (c(ρE)(i))
denote the set of infinitely occurring colors in the ith word of this tuple. Then the
run ρE is prohibited, ρE ∈ WE , if and only if max (inf (c(ρE)(i))) is odd for some
1 ≤ i ≤ k, i.e. the greatest number that occurs infinitely often in one of these k
infinite words is odd.

Next, we define a simulation relation between the states of an EMTS as a form
of mixed fair simulation (cf. e.g. [19, 8]).

Definition B.3 (Simulation). R ⊆ SE × SE is a simulation relation between the
states of E if whenever s1Rs2 and a ∈ A:

1. if s1
a

−→3
E S1, then there is a S2 such that s2

a

−→3
E S2 and for each s′1 ∈ S1,

there exists a s′2 ∈ S2 such that s′1Rs
′
2;

2. if s2
a

−→2
E S2, then there is a S1 such that s1

a

−→2
E S1 and for each s′1 ∈ S1,

there exists a s′2 ∈ S2 such that s′1Rs
′
2;

3. if the run ρs2
= s2

a1−→E s
1
2

a2−→E s
2
2

a3−→E . . . is in WE then every infinite run
ρs1

= s1
a1−→E s

1
1

a2−→E s
2
1

a3−→E . . . such that si
1Rs

i
2 for all i ≥ 1 is also in WE .

We say that abstract state s2 simulates abstract state s1, denoted s1 � s2, if
there is a simulation relation R such that s1Rs2. Simulation can be generalized to
two different EMTSs E1 and E2 in the natural way.

Labeled transition systems can be viewed as a special kind of EMTS, where:
−→2

E =−→3
E , the target sets of the transition relation are singleton sets of states,

and the set of prohibited runs W is empty. We give the meaning of an abstract
state relative to a given LTS, as the set of concrete LTS states simulated by the
abstract state.

Definition B.4 (Denotation). Let E be an EMTS, and let T be an LTS. The
denotation of abstract state s ∈ SE is the set JsKT , {t ∈ ST | t � s}. This notion
is lifted to sets of abstract states S′ ⊆ SE in the natural way: JS′KT ,

⋃

{JsKT |
s ∈ S′}.

In the rest of the paper, we shall assume that EMTSs obey the following con-

sistency restrictions: −→2
E⊆−→3

E , s
a

−→2
E S implies S is non-empty, and W does

not contain runs corresponding to infinite must–runs of the EMTS.
In section B.5, we present a proof system for proving properties of abstract

states. For this purpose, we define when an abstract state s satisfies a modal µ-
calculus formula Φ. The global nature of the set W in EMTSs makes it cumbersome
to define the denotation of a fixed point formula compositionally as a set of abstract
states. We therefore give an indirect definition of satisfaction, by means of the
denotation JsKT of a state s.

B.4. FROM OTA TO EMTS 65

out

out

out

out out

,,

,

out
out

out
out

,

,

,

,

,

,

in

in

in

in
in

in

s1

s2 s3

c(s1) = c(s4) = 0

c(s3) = c(s6) = 1

c(s2) = c(s5) = 2
s4

s5 s6

Figure B.1: EMTS for X : stab �X ‖Handler

Definition B.5 (Satisfaction). Let E be an EMTS, s ∈ SE be an abstract state
of E and Φ be a modal µ-calculus property. Then s satisfies Φ under valuation
V : PropVar → 2SE , denoted s |=E

V Φ, if and only if for any LTS T JsKT |=T
V Φ where

valuation V : PropVar → 2ST is induced by V as V(Z)
∆
=

⋃

{JsKT | s ∈ V(Z)}.

Example. The state space of the open system introduced in the previous sec-
tion is captured by the EMTS in Figure B.1. For any labeled transition system
T , the processes simulated by the state s1 are those denoted by the open term
X : stab �X ‖Handler. The EMTS consists of six abstract states, each state de-
noting the set of processes which it simulates. For instance, states s5 and s6 in the
example denote all processes which can engage in arbitrary interleavings of in and
out actions, but so that in has to be enabled throughout while out has not. Infinite
runs stabilizing on out actions are prohibited by the coloring of s3 and s6.

B.4 From OTA to EMTS

In this section, we address the problem of providing an explicit state space rep-
resentation for a given open term Γ � E, by means of an EMTS E . While it is
tempting to define −→3

E and −→2
E through transition rules, the global nature of

the well-foundedness constraints suggests that a direct construction would be more
convenient for automatic construction. We propose a two-phase construction ε that
translates an open term Γ�E to an EMTS, denoted ε(Γ�E). In the first phase, an
EMTS is constructed for each underspecified component. This part is essentially a
maximal model construction as developed by Grumberg and Long for ACTL [19],

66 APPENDIX B. PAPER II

extended to ACTL* by Kupferman and Vardi [26], and applied by Sprenger et al
to the fragment of the modal µ-calculus without least fixed points and diamond
modalities [35]. For the construction of the fixed point cases, we adapt a powerset
construction used earlier to convert fragments of the modal µ-calculus to Büchi au-
tomata which was introduced by Dam [13] for linear time µ-calculus and extended
by Kaivola [24] to the Π2 fragment. The second phase consists of combining the
EMTSs produced in the first step according to the structure of the term E. We
then show the correctness of the construction by relating the set of states simulated
by the constructed EMTS to the denotation of the given OTA.

Maximal Model Construction

We define the function ε which maps modal µ-calculus formulas to triples of the
shape (E , S, λ), where E = (SE , A,−→3

E ,−→
2
E , c) is an EMTS, S ⊆ SE is a set of

start states of E , and λ : SE → 2PropV ar is a labeling function.
The function is defined inductively on the structure of Φ as shown in Figure B.2.

The meaning of open formulae that arises in intermediate steps are given by the
by the valuation which assigns the whole set of processes ST to each propositional
variable. Essentially, the particular valuation used does not play a role in the final
EMTS, since the properties used as assumptions of an OTA are closed.

In the definition, let ε(Φ1) be ((SE1
, A, −→3

E1
, −→2

E1
, c1), S1, λ1) and ε(Φ2)

be ((SE2
, A, −→3

E2
, −→2

E2
, c2), S2, λ2) where SE1

and SE2
are disjoint sets. The

new state snew is not in SE1
and a and a′ are actions in A. The coloring functions

c1 : SE1
→ N

k1 and c2 : SE2
→ N

k2 color the states of E1 and E2 with integer tuples
of length k1 and k2 respectively.

For a set S, S |2 denotes the largest transition-closed set contained in S such
that there is no element s ∈ S |2 with the empty set as the target to a must

transition, that is, there is no s such that for some a ∈ A, s
a

−→2
E ∅ and each state

s is reachable from some start state.
In what follows, we explain the various cases of the construction. The EMTS

for formula tt consists of the single state stt with may transitions to itself for every
action, while the EMTS for ff is the empty EMTS. The EMTS for a propositional
variable consists of a single state with may transitions to stt for each action.

The states of the EMTS for the conjunction of two formulas is the cross product
of the states of the EMTSs constructed for each conjunct, excluding pairs with
incompatible capabilities. The color of a state of ε(Φ1 ∧ Φ2) is the concatenation
of the colors of the paired states. In the case of disjunction, the set of start states
of ε(Φ1 ∨ Φ2) is the union of the start states of ε(Φ1) and ε(Φ2) which reflects the
union of their denotation. The color of a state is given by padding with 0’s from
either the left or right.

For the modal cases, a new state snew is set as the start state. The EMTS for
ε([a] Φ) has a single may transition for a, which is to the set of initial states of
ε(Φ). This is to ensure all simulated processes satisfy Φ after engaging in an a.

B.4. FROM OTA TO EMTS 67

• ε(tt)
∆
= (({stt}, A, −→3

E , ∅, {stt 7→ 0}), {stt}, {stt 7→ ∅})

where stt

a

−→3

E {stt} for all a ∈ A.

• ε(ff)
∆
= ((∅, A, ∅, ∅, ∅), ∅, ∅)

• ε(Z)
∆
=(({snew , stt}, A, −→3

E , ∅, {stt 7→ 0, snew 7→ 0}), {snew}, {snew 7→ {Z}, stt 7→ ∅})

where snew

a

−→3

E {stt} and stt

a

−→3

E {stt} for all a ∈ A.

• ε(Φ1 ∧ Φ2)
∆
=(((SE1

× SE2
)|2, A, −→3

E , −→2

E , W), (SE1
× SE2

)|2 ∩ (S1 × S2), λ) where

−→3

E
∆
= {(s, r)

a

−→3

E S′ ×∪∂3
a (r) | s

a

−→2

E1
S′}

∪ {(s, r)
a

−→3

E ∪∂3
a (s) × R′ | r

a

−→2

E2
R′}

∪ {(s, r)
a

−→3

E S′ × R′ | s
a

−→3

E1
S′ ∧ r

a

−→3

E2
R′ ∧ S′ 6∈ ∂2

a (s) ∧ R′ 6∈ ∂2
a (r)}

−→2

E
∆
= {(s, r)

a

−→2

E (S′ ×∪∂3
a (r)) | s

a

−→2

E1
S′}

∪ {(s, r)
a

−→2

E (∪∂3
a (s) × R′) | r

a

−→2

E2
R′}

c
∆
= {(s, r) 7→ c1(s) · c2(r) | s ∈ SE1

∧ r ∈ SE2
}

λ
∆
= {(s, r) 7→ λ1(s) ∪ λ2(r) | s ∈ SE1

∧ r ∈ SE2
}

• ε(Φ1 ∨ Φ2)
∆
= ((SE1

∪ SE2
, A, −→3

E , −→2

E , c), S1 ∪ S2, λ1 ∪ λ2) with:

−→3

E
∆
= −→3

E1
∪ −→3

E2

−→2

E
∆
= −→2

E1
∪ −→2

E2

c
∆
= {s 7→ c1(s) · 0k2 | s ∈ SE1

} ∪ {s 7→ 0k1 · c2(s) | s ∈ SE2
}

• ε([a] Φ1)
∆
=((SE1

∪ {snew , stt}, A, −→3

E , −→2

E1
, c), {snew}, λ) with:

−→3

E
∆
= −→3

E1
∪{stt

a′

−→3

E {stt} | a′ ∈ A} ∪ {snew

a

−→3

E S1}

∪ {snew

a′

−→3

E {stt} | a′ 6= a ∧ a′ ∈ A}

c
∆
= c1 ∪ {snew 7→ 0k1} ∪ {stt 7→ 0k1}

λ
∆
= λ1 ∪ {snew 7→ ∅} ∪ {stt 7→ ∅}

• ε(〈a〉Φ1)
∆
= ε(ff) if S1 = ∅

ε(〈a〉Φ1)
∆
= ((SE1

∪ {snew, stt}, A, −→3

E , −→2

E , c), {snew}, λ) otherwise, with:

−→3

E
∆
= −→3

E1
∪{snew

a

−→3

E S1} ∪ {snew

a′

−→3

E {stt} | a′ ∈ A} ∪ {stt

a′

−→3

E {stt} | a′ ∈ A}

−→2

E
∆
= −→2

E1
∪{snew

a

−→2

E S1}

c
∆
= c1 ∪ {snew 7→ 0k1} ∪ {stt 7→ 0k1}

λ
∆
= λ1 ∪ {snew 7→ ∅} ∪ {stt 7→ ∅}

• ε(σZ.Φ1) ((2SE1 |2, A,−→3

E ,−→2

E , cσ), 2SE1 |2 ∩ {{s} | s ∈ S1}, λ) where σ ∈ {ν, µ} with:

−→3

E
∆
= {{s1, . . . , sn}

a

−→3

E S | ∃i.∃S′
i.si

a

−→2

E1
S′

i∧

S = ∂P ((∪∂3
a (s1), . . . , S′

i, . . . ,∪∂3
a (sn)), S1, λ1, Z)}

∪ {{s1, . . . , sn}
a

−→3

E S | ∀j.∃S′
j .sj

a

−→3

E1
S′

j ∧ S′
j 6∈ ∂2

a (sj)∧

S = ∂P ((S′
1, . . . , S′

n), S1, λ1, Z)}

−→2

E
∆
= { {s1, . . . , sn}

a

−→2

E S | ∃i.∃S′
i.si

a

−→2

E1
S′

i∧

S = ∂P ((∪∂3
a (s1), . . . , S′

i, . . . ,∪∂3
a (sn)), S1, λ1, Z)}

cν({s1, . . . , sn})(j)
∆
=

8>><>>: maxodd
1≤i≤n

(c1(si)(j)) if ∀i.Z 6∈ λ1(si)

evend

s∈SE1

c1(s)(j) if ∃i.Z ∈ λ1(si)

cµ({s1, . . . , sn})(j)
∆
=

8>>><>>>: maxodd
1≤i≤n

(c1(si)(j)) if ∀i.Z 6∈ λ1(si)

oddd

s∈SE1

c1(s)(j) if ∃i.Z ∈ λ1(si)

λ
∆
= {{s1, . . . , sn} 7→

S
1≤i≤n

λ1(si) − {Z} | {s1, . . . , sn} ∈ 2SE1 }

Figure B.2: Maximal Model Construction

68 APPENDIX B. PAPER II

Additionally, there is a may transition to stt for all other actions. The EMTS for
ε(〈a〉Φ) includes a must transition for a from this start state to the start states
of ε(Φ), along with may transitions for all actions to stt forcing the simulated
processes to have an a transition to some process satisfying Φ and allowing any
other transitions besides.

The construction for fixed point formulae is a powerset construction, i.e. which
is similar to the constructions given in [13] and [24] for the purpose of constructing
Büchi Automata for linear time and the alternation-depth class Π2 fragments of the
µ-calculus, respectively. the states of ε(σZ.Φ) consist of sets of states of ε(Φ) and its
start states are singletons containing some start state of ε(Φ). An invariant of the
maximal model construction is that start states do not have incoming transitions.
(The case for ε(tt) is the only exception and can be easily adapted to satisfy the
invariant.) For a transition of state q = {s1, . . . , sn} of ε(σZ.Φ), each state si has a
transition in ε(Φ). A member state of the target of this transition, then, contains a
derivative for each si. A member of the target state additionally contains an initial
state of ε(Φ) if one of the derivatives included is labeled by Z. The definition of
Figure B.2 makes use of the target set function ∂P defined below.

Definition B.6 (Target Set Function ∂P). Let Φ be a modal µ-calculus formula, σ
be either µ or ν, ε(Φ) be (E1,S,λ) where E1 = (SE1

, A,−→3
E ,−→

2
E , c) is an EMTS,

S ⊆ SE1
is a set of start states, λ : SE1

→ 2PropV ar is a function that maps states
of E to propositional variables, c : SE → Nk is a coloring function that maps
states of E to k-tuples, and let Z ∈ PropV ar be a propositional variable. Given a
tuple consisting of a target set for each element of a state of ε(σZ.Φ), the function

∂P : (2SE1 × . . .× 2SE1)× 2SE1 × (SE1
→ 2PropV ar)× PropV ar → 22

SE1 defines the
target set of a transition of ε(σZ.Φ) for this state as follows:

∂P((S1, . . . , Sn), S, λ, Z)
∆
= {{s1, . . . , sn} | ∀i.si ∈ Si∧ 6 ∃j.Z ∈ λ(sj)}∪

{{s1, . . . , sn, s0} | ∀i.si ∈ Si∧
∃j.Z ∈ λ(sj) ∧ s0 ∈ S}

Each component of the color of state q is determined by comparing the cor-
responding entries of the member states si. When, for at least one si, this entry
is odd, the greatest of the corresponding odd entries is selected as the entry of q,
otherwise the maximum entry is selected for the same purpose. In Figure B.2, the
function maxodd selects the greater of two numbers if both of them are odd or both
of them are even, and the odd one otherwise. The color of q is further updated if it
contains a state si labeled by Z. When Z identifies a greatest fixed point formula,
each entry of the constructed tuple is defined to be the least even upper bound of
the integers used in this entry of ε(Φ). Whereas, when Z identifies a least fixed
point formula, the least odd upper bound of the integers is the entry for the color
of q. In Figure B.2, least even and least odd upper bounds are denoted by the

operators
even
⊓ and

odd
⊓ , respectively.

B.4. FROM OTA TO EMTS 69

• ε(Γ � 0)
∆
=(({snew}, A, ∅, ∅, {snew 7→ 0}), {snew}, {snew 7→ ∅})

• ε(Γ � X)
∆
= ε(Φ) if X ∈ AssProcV ar

where Φ =
V

X:Ψ ∈ Γ
Ψ (defaults to tt when Γ contains no assumption on X).

• ε(Γ � X)
∆
=(({snew}, A, ∅, ∅, {snew 7→ 0}), {snew}, {snew 7→ {X}}) if X ∈ RecProcV ar

• ε(Γ � a.E1)
∆
= ((SE1

∪ {snew}, A, −→3

E , −→2

E , c), {snew}, λ1 ∪ {snew 7→ ∅}) with:

−→3

E
∆
= −→3

E1
∪{snew

a

−→3

E S1}

−→2

E
∆
= −→2

E1
∪{snew

a

−→2

E S1}

c
∆
= c1 ∪ {snew 7→ 0k1}

• ε(Γ � E1 + E2)
∆
= ((SE1

∪ SE2
∪ (S1 × S2), A, −→3

E , −→2

E , c), S1 × S2, λ)

−→3

E
∆
= −→3

E1
∪ −→3

E2
∪{(s, r)

a

−→3

E S′ | s ∈ S1 ∧ r ∈ S2 ∧ (s
a

−→3

E1
S′ ∨ r

a

−→3

E2
S′)}

−→2

E
∆
= −→2

E1
∪ −→2

E2
∪{(s, r)

a

−→2

E S′ | s ∈ S1 ∧ r ∈ S2 ∧ (s
a

−→2

E1
S′ ∨ r

a

−→2

E2
S′)}

c
∆
= {s 7→ c1(s) · 0k2 | s ∈ SE1

} ∪ {r 7→ 0k1 · c2(r) | r ∈ SE2
}

∪ {(s, r) 7→ c1(s) · c2(r) | (s, r) ∈ S1 × S2}

λ
∆
= λ1 ∪ λ2 ∪ {(s, r) 7→ λ1(s) ∪ λ2(r) | s ∈ S1 ∧ r ∈ S2}

• ε(Γ � fix X.E1)
∆
=((SE1

, A, −→3

E , −→2

E , c1), S1, λ) with:

−→3

E
∆
= {s

a

−→3

E S | (s
a

−→3

E1
S) ∨

(∃s1 ∈ S1.s1

a

−→3

E1
S ∧ X ∈ λ1(s) ∧ s is reachable from s1)}

−→2

E
∆
= {s

a

−→2

E S | (s
a

−→2

E1
S) ∨

(∃s1 ∈ S1.s1

a

−→2

E1
S ∧ X ∈ λ1(s) ∧ s is reachable from s1)}

λ
∆
= {s 7→ (λ1(s) − {X}) | s ∈ SE1

}

• ε(Γ � E1 ‖ E2)
∆
= ((SE1

× SE2
× {1, 2}, A, −→3

E , −→2

E , c), S1 × S2 × {1, 2}, λ)

−→3

E
∆
= {(s, r, x)

a

−→3

E S′ × {r} × {1} | s
a

−→3

E1
S′}

∪ {(s, r, x)
a

−→3

E {s} × R′ × {2} | r
a

−→3

E2
R′}

−→2

E
∆
= {(s, r, x)

a

−→2

E S′ × {r} × {1} | s
a

−→2

E1
S′}

∪ {(s, r, x)
a

−→2

E {s} × R′ × {2} | r
a

−→2

E2
R′}

c
∆
= {(s, r, 1) 7→ c1(s) · 0k2 | s ∈ SE1

∧ r ∈ SE2
}

∪ {(s, r, 2) 7→ 0k1 · c2(r) | s ∈ SE1
∧ r ∈ SE2

}

λ
∆
= {(s, r, x) 7→ ∅ | s ∈ SE1

∧ r ∈ SE2
∧ x ∈ {1, 2}}

Figure B.3: EMTS Construction for Process Algebra Terms

70 APPENDIX B. PAPER II

Composing EMTSs

We extend the function ε to the domain of OTAs so that ε(Γ�E) = (E ,S,λ), where
E = (SE , A,−→3

E ,−→
2
E , c) is an EMTS, S ⊆ SE is the set of start states of E , and

λ : SE → 2RecProcV ar is a labeling function.
The function ε is defined inductively on the structure of E as shown in Fig-

ure B.3. In the definition, we let ε(Γ �E1) be ((SE1
, A, −→3

E1
, −→2

E1
, c1), S1, λ1)

and ε(Γ�E2) be ((SE2
, A, −→3

E2
, −→2

E2
, c2), S2, λ2), where SE1

and SE2
are disjoint

sets. The new state snew is not in SE1
. The coloring functions c1 : SE1

→ N
k1 and

c2 : SE2
→ N

k2 color the states of E1 and E2 with integer tuples of length k1 and k2

respectively.
The EMTS corresponding to the nil process 0 consists of an abstract state

without outgoing transitions, indicating that no transition is allowed for processes
simulated by this state. If a process variable X in the term E stands for an under-
specified component of the system, that is if X is an assumption process variable,
then the EMTS for X is a maximal model for the conjunction of the properties
specified for this component in the assumption list Γ.

The EMTS for a recursion process variable X is a single state without outgoing
transitions, since the capabilities of the processes simulated are determined by the
binding fix -expression. The function λ labels the state X . Given the EMTS for
the term of the fix -expression where X is free, the transitions of the start states
are transferred to the states labeled by X .

The EMTS for a subterm prefixed by an action a is given by a start state with
a must a-transition to the set of start states of the EMTS for the subterm. The
EMTS for the sum operator consists of an EMTS where the start states are the
cross product of the start states of the EMTSs for the subterms. It is assumed for
this case that there are no incoming transitions to the start states of the EMTSs
being combined. This is an invariant of the construction, except the case for tt
which can be trivially converted to an equivalent EMTS to satisfy the property.

Finally, the states of the EMTS for a parallel composition of two components
consists of a state from each component. Each state has transitions such that one
of the components make a transition while the other stays in the same state. Each
state is further marked by 1 or 2 to keep track of which component has performed
the last transition; this is necessary to enable a run of the composition if the
interleaved runs are enabled.

Correctness Results

The aim of the above construction is to capture, by means of an EMTS, exactly
those behaviors denoted by the given OTA. The construction is sound (resp. com-
plete) if the denotation of the OTA is a subset (resp. superset) of the denotation of
the resulting EMTS. Our first result establishes that the first part of the construc-
tion is a maximal model construction for the modal µ-calculus.

B.5. A PROOF SYSTEM FOR EMTS 71

Theorem B.7. Let T be a transition-closed LTS, Φ be a closed and guarded modal
µ-calculus formula and ε(Φ) = (E, S, λ). Then JSKT = ||Φ||T .

Our next result shows that the construction is sound and complete when as-
sumptions exist on only one of the components that are running in parallel and the
rest of the system is fully determined.

Theorem B.8. Let T be a transition-closed LTS, Γ�E‖t be a guarded linear OTA
where E does not contain parallel composition, and t is closed, and let ε(Γ �E ‖ t)
= (E, S, λ). Then JSKT is equal to the set JΓ � E ‖ tKρ0

up to bisimulation, where
ρ0 maps each recursion process variable X to 0.

Theorems B.7 and B.8 are proved by induction on the structure of the logical
formula and the process term, respectively, and can be found in Appendix C.

In the general case, when multiple underspecified components run in parallel,
we only have soundness: our construction is sound for systems without dynamic
process creation. For systems with dynamic process creation, the construction does
not terminate.

Theorem B.9. Let T be a transition-closed LTS, Γ �E be a guarded linear OTA
where every recursion process variable in the scope of parallel composition is bound
by a fix operator in the same scope, and let ε(Γ � E) = (E, S, λ). Then the set
JSKT includes JΓ � EKρ0

up to bisimulation.

The proof of the theorem is as the proof of Theorem B.8, but includes a more
general case for parallel composition and can be found in Appendix C.

Our last result reflects the fact that verification of open systems in the presence
of parallel composition is undecidable for the modal µ-calculus in general. Com-
pleteness results can, however, be obtained for various fragments of the µ-calculus,
such as ACTL, ACTL* and the simulation logic of [35]. In our approach, the tasks
of constructing a finite representation of the state space in the form of an EMTS
and the task of verifying properties of this representation are separated. This allows
different logics to be employed for expressing assumptions on components and for
specifying system properties, giving rise to more refined completeness results.

B.5 A proof system for EMTS

In [2], we presented a proof system for verifying that an abstract state s of an EMTS
E satisfies a modal µ-calculus formula Φ. In this section, we give a summary of
this proof system and provide an alternative termination condition that uses the
coloring function c instead of the earlier condition that assumed an extensional
definition of the set of prohibited runs WE . The system is a specialization of a
proof system by Bradfield and Stirling [7, 36] for showing µ-calculus properties for
sets of LTS states. The relationship between the two proof systems is clear when
one considers that each EMTS state denotes a set of LTS states.

72 APPENDIX B. PAPER II

A proof tree is constructed using the rules below, where σ ranges over µ and
ν. The construction starts with the goal and progresses in a goal-directed fashion,
checking at each step if a terminal node was reached.

s ⊢E
V Φ ∧ Ψ

s ⊢E
V Φ s ⊢E

V Ψ

s ⊢E
V Φ ∨ Ψ

s ⊢E
V Φ

s ⊢E
V Φ ∨ Ψ

s ⊢E
V Ψ

s ⊢E
V σZ.Φ

s ⊢E
V Z

s ⊢E
V [a] Φ

s1 ⊢E
V Φ . . . sn ⊢E

V Φ
{s1, . . . , sn} = ∪ ∂3

a (s)

s ⊢E
V Z

s ⊢E
V Φ

Z identifies σZ.Φ
s ⊢E

V 〈a〉Φ

s1 ⊢E
V Φ . . . sn ⊢E

V Φ
{s1, . . . , sn} ∈ ∂2

a (s)

A successful tableau (or proof) is a finite proof tree having successful terminals as
leaves. If n : r ⊢E

V Z is a node where Z identifies a fixed point formula, and there is
an identical ancestor node of n, n′ : r ⊢E

V Z and for any other fixed point variable
Y on this path, Z subsumes Y , then node n is called a σ-terminal. So no further
rules are applied to it. The most recent node making n a σ-terminal is named n’s
companion. The conditions for a leaf node r ⊢E

V Ψ of a proof tree to be a successful
terminal are listed below.

Successful Terminals

1. Ψ = tt, or else Ψ = Z, Z is free in the initial formula, and r ∈ V(Z)

2. Ψ = [a] Φ and ∪∂3
a (r) = ∅

3. Ψ = Z where Z identifies a fixed point formula σZ.Φ, and the sequent is a
σ-terminal with companion node n : r ⊢E

V Ψ, then

a) If σ = ν, then the terminal is successful.

b) If σ = µ, then the terminal is successful if every infinite run of the EMTS
that corresponds to an infinite sequence of trails of the companion node
n0 is in WE . (The notion of trail is explained below.) When the set WE is
encoded using a coloring function c, the condition is that for any set ST

of trails of n0, there should exist 1 ≤ j ≤ k, so that max(∪
T∈ST

c(α(T))(j))

is odd. This ensures, for an infinite run wn0
= α(T1) ◦ α(T2) ◦ α(T3) . . .

where for all i ≥ 1, Ti is a trail of n0, that there exists some 1 ≤ j′ ≤ k
such that max (inf (c(wn0

)(j′))) is odd.

Unsuccessful Terminals

1. Ψ = ff, or else Ψ = Z, Z is free in the initial formula, and r 6∈ V(Z)

2. Ψ = 〈a〉Φ and ∪∂2
a (r) = ∅

B.6. CONCLUSION 73

3. Ψ = Z where Z identifies the least fixed point formula µZ.Φ, and the sequent
is a σ-terminal with companion node n0, then the terminal is unsuccess-
ful if there exists a set ST of trails of n0 such that for every 1 ≤ j ≤ k,
max (∪

T∈ST

c(α(T))(j)) is even. This means that some infinite run wn0
of the

EMTS, which corresponds to an infinite sequence of trails of the companion
node n0, is not in WE .

Trails and corresponding runs are defined as follows. Assume that node nk:r ⊢E
V

Z is a µ-terminal and node n0:r ⊢E
V Z is its companion. A trail T of the companion

node n0 is a sequence of state–node pairs (r, n0), . . . , (r, nk) such that for all 0 ≤
i < k, one of the following holds:

1. ni+1 : ri+1 ⊢E
V Ψi+1 is an immediate successor of ni : ri ⊢E

V Ψi, or

2. ni is the immediate predecessor of a σ-terminal node n′ : r′ ⊢E
V Z ′ where

n′ 6= nk whose companion is nj : r′ ⊢E
V Z ′ for some j : 0 ≤ j ≤ i, ni+1 = nj,

and ri+1 = r′.

In order to convert a trail to a corresponding run, we use the function α, which
returns the empty string when the trail contains only one pair, and is defined for
longer trails as follows:

α((r1, n1) · (r2, n2) · T)
∆
=















(r1
a

−→E r2) · α((r2, n2) · T)
2a or 3a-rule
is applied to n1

α((r2, n2) · T) otherwise.
A formula is prime if whenever it logically implies a disjunction then it also

implies one of the disjuncts. As we show in [2], the proof system is sound and
complete for all formulas with only prime subformulas.

B.6 Conclusion

In this paper we investigate a state space representation for open systems spec-
ified as open process terms with behavioural assumptions written in the modal
µ-calculus. This representation can serve both as a graphical specification for-
malism and as a basis for verification, supporting state space exploration based
techniques and state visualization for interactive methods. We present a two-phase
construction of such a representation from an open term with assumptions, and
show it sound for terms without dynamic process creation and complete for sys-
tems with a single underspecified component. Finally, we adapt an existing proof
system for the task of proving behavioural properties of open systems based on the
given state space representation. The relative simplicity of the proof system and
its use is an indication of the adequateness of EMTSs for open system state space
representation.

Future work is required to characterize more precisely the construction and the
µ-calculus fragments for which it is complete, taking into account that the fragment

74 APPENDIX B. PAPER II

for specifying component assumptions need not be the same as the fragment chosen
for specifying system properties. In addition to automatic state space construction,
interactive state space exploration will be considered, allowing a wider class of open
systems to be handled. Finally, we plan to demonstrate the utility of the proposed
approach by means of tool support and case studies.

Appendix C

Proofs

Proposition C.1. For any s ∈ SE and LTS T , ∂a(JsKT) ⊆ J∪ ∂3
a (s)KT

Proof. Assume t′ ∈ ∂a(JsKT). Then, by the notion of a-derivatives for LTS, there
is a t ∈ JsKT s.t. t a

−→T t′. Then, by the definition of denotation, t � s and hence,

by the definition of simulation, there are S′ and s′ ∈ S′ such that s
a

−→3
E S′ and

t′ � s′. Therefore t′ ∈ Js′KT and hence, by the definition of a-derivatives for EMTS,
t′ ∈ J∪∂3

a (s)KT . 2

Lemma A.10 For each rule instance in ΣE , translation π assigns a correct proof
tree in ΣT , so that each premise (resp. conclusion), s ⊢E

V Φ, of the rule is matched
by a leaf (resp. root), JsKT ⊢T

V Φ, and all unmatched leaves of the constructed proof
tree are successful terminals.

Proof. We consider each rule of ΣE in turn. The cases for ∧-rule, ∨-rule, σ-rule,
and Z-rule are trivial.

For the 2a-rule, in the first case we have ∪∂3
a (s) = ∅ Then 2a rule is applied

to node JrKT ⊢T
V [a]Ψ′ in ΣT . Since none of the states implementing r have a-

derivatives, the resulting node is ∅ ⊢T
V Ψ′, which is a successful terminal. For the

second case, we use ∂a(JsKT) ⊆ J∪∂3
a (s)KT by Proposition C.1. Then, the Thin rule

is only applied if the subset relation between the range of fa and J{s1 . . . sn}KT is
proper. Finally, a sequence of Cut-rules are applied.

For the 3a-rule, by the side condition we have s
a

−→2
E {s1, . . . , sn}, and hence,

by the definitions of simulation and denotation, for every t ∈ JsKT there must be a
s′ ∈ {s1, . . . , sn} and t′ ∈ Js′KT such that t a

−→T t′. Then the mapping fa mapping
each t ∈ JsKT to such a corresponding t′ is a valid choice function for rule 3a of
ΣT . Again the Thin rule is applied only when the subset relation is a proper one.
The applications of the Cut-rules follow to split J{s1, . . . , sn}KT to the denotation
of individual states. 2

75

76 APPENDIX C. PROOFS

Corollary A.11 For proof tree AE with root sequent s ⊢E
V Φ in ΣE , AT = πT (AE)

is a proof tree with root sequent JsKT ⊢T
V Φ in ΣT , such that each leaf si ⊢E

V Φi of
AE is matched by a leaf JsiKT ⊢T

V Φi in AT , and all unmatched leaves in AT are
successful terminals.

Proof. Follows directly from Lemma A.10 by induction on the depth of AE . 2

Canonical Proof Constructions and the Matching Function γ. Let E be a finite-
state EMTS, s ∈ SE , and Φ have prime subformulas only. If s �

E
V Φ, then the

construction process of the proof trees AU and A∗
U in the weakened version of ΣT

for the goal JsKU ⊢U
V

Φ is presented below. The construction is described through
the matching function γ : ΓN → ΓM ∪ {⊥}, where ΓN and ΓM are the node spaces
of AU and A∗

U , respectively and ⊥ stands for the "undefined value". The definition
of γ is given as the construction progresses.

Construction

1. The root nodes n0 of AU and m0 of A∗
U both contain the sequent: JsKU ⊢U

V
Φ.

(γ(n0)
∆
= m0)

2. Thin rule is applied to n0 to produce the subgoal n1 : ||Φ||U
V

⊢U
V

Φ. (γ(n1)
∆
=

m0)

3. If the current subgoal in AU is n : Sn ⊢U
V

Ψ:

a) γ(n) = m, where m : JsmKU ⊢U
V

Ψ

• Ψ = Ψ1 ∧Ψ2 : Apply ∧-rule to n and ∧-macro to m to get the new
subgoals n1 : Sn ⊢U

V
Ψ1,n2 : Sn ⊢U

V
Ψ2 and m1 : JsmKU ⊢U

V
Ψ1,

m2 : JsmKU ⊢U
V

Ψ2 respectively. (γ(n1)
∆
= m1 and γ(n2)

∆
= m2).

• Ψ = Ψ1 ∨ Ψ2 : Pick Ψi where i ∈ 1, 2 so that Ψ implies Ψi. Apply
∨-rule to n and ∨-macro to m to get the new subgoals n′ : Sn ⊢U

V
Ψi

and m′ : JsmKU ⊢U
V

Ψi respectively. (γ(n′)
∆
= m′)

• Ψ = [a] Ψ′ : Apply 2-rule to n and the corresponding 2-macro1 to
m according to whether ∂3

a (sm) = ∅. Let the immediate subgoals of

n and m be n′ and m′, respectively. (γ(n′)
∆
= m′)

If ∪∂3
a (sm) = {s1 . . . sk} where k > 1, then apply k − 1 consecutive

Cut-rules to n′. For every application, if the current subgoal is
nj , then the newly produced subgoals are nj+1 : ∂a(Sn) ⊢U

V
Ψ′

and nj+2 : ∂a(Sn) ⊢U
V

Ψ′ with the subgoals of γ(nj) being mj+1 :
J{s1 . . . sk′−1}KU ⊢U

V
Ψ′ and mj+2 : Jsk′KU ⊢U

V
Ψ′ where 1 ≤ k′ ≤ k.

Apply the next Cut rule to nj+1. (γ(nj+1)
∆
= mj+1 and γ(nj+2)

∆
=

mj+2)

1No application of the Thin rule is needed in this macro. See Proof of Proposition C.1

77

• Ψ = 〈a〉Ψ′ : Pick S′ ∈ ∂2
a (sm) with for all s′ ∈ S′, s′ �

E
V Ψ′. Apply

3-rule to n and 3-macro2 to m using the choice functions fa and fE
a

respectively, where fa is some choice function that preserves validity
with fa|JsmK

U
= fE

a and fE
a maps each t ∈ JsmKU to some t′ ∈ JS′KU

such that t a
−→ t′ and there exists s′ ∈ S′ where s′ simulates t′.

Let the immediate subgoals of n and m be n′ and m′, respectively.

(γ(n′)
∆
= m′)

If S′ = {s1 . . . sk} where k > 1, then apply k − 1 consecutive
Cut-rules to n′. For every application, if the current subgoal is
nj , then the newly produced subgoals are nj+1 : fa(Sn) ⊢U

V
Ψ′

and nj+2 : fa(Sn) ⊢U
V

Ψ′ with the subgoals of γ(nj) being mj+1 :
J{s1 . . . sk′−1}KU ⊢U

V
Ψ′ and mj+2 : Jsk′KU ⊢U

V
Ψ′ where 1 ≤ k′ ≤ i.

Apply the next Cut rule to nj+1. (γ(nj+1)
∆
= mj+1 and γ(nj+2)

∆
=

mj+2)

• Ψ = σZ.Ψ′ : Apply the Thin rule to n to get the new subgoal n′′.

(γ(n′′)
∆
= m)

Apply σZ rule to n′′ and σZ macro to m to get the new subgoals

n′ and m′, respectively. (γ(n′)
∆
= m′)

• Ψ = Z where Z identifies the fixed point formula σZ.Ψ′: Apply Z
rule to n and Z macro to m to get the new subgoals n′ and m′,

respectively. (γ(n′)
∆
= m′)

Let n1 . . . ni where i ∈ {1, 2} be the current subgoals in AU :
Test for each subgoal nj if it is a terminal using the conditions below. If
nj is a terminal than no further rules are applied to γ(nj). If nj is not
a terminal, repeat Step (iii) for each nj .

b) γ(n) = m, where m : ∅ ⊢T
V Ψ, which means m is a successful terminal of

A∗
U and will not be applied any further rules.

Apply to n the corresponding rule according to the structure of Ψ as in
a). If the rule to be applied is 3, the choice function f can be picked as
any that preserves validity.

Let n1 . . . ni where i ∈ {1, 2} be the subgoals of n. A subgoal nj of
n is a terminal if it obeys one of the termination conditions stated in
Section A.3 for the original proof system. For the subgoals that are not

terminals the process is repeated beginning from Step (iii).(γ(nj)
∆
= ⊥

where 1 ≤ j ≤ i)

c) γ(n) = ⊥ Apply corresponding rule according to the structure of Ψ as
in a). If the rule to be applied is 3, the choice function f can be picked
as any that preserves validity.

2No application of the Thin rule is needed in this macro. See proof of Proposition C.3

78 APPENDIX C. PROOFS

Let n1 . . . ni where i ∈ {1, 2} be the subgoals of n. A subgoal nj of
n is a terminal if it obeys one of the termination conditions stated in
Section A.3 for the original proof system. For the subgoals that are not

terminals the process is repeated beginning from Step (iii).(γ(nj)
∆
= ⊥

where 1 ≤ j ≤ i)

Successful Termination for node n′ : S′
n ⊢T

V Ψ′ of AU :

1. Ψ′ = tt, or else Ψ′ = Z, Z is free in the initial formula, and S′
n ⊆ V(Z)

2. S′
n = ∅

3. Ψ′ = Z where Z identifies a fixed point formula σZ.Φ, then this sequent is a
σ-terminal if node γ(n′) = m′ in A∗

U where m′ : Jsm′KU ⊢U
V

Ψ′ is a σ-terminal
with companion node m′′, which mentions same sequent m′′ : Jsm′KU ⊢U

V
Ψ′

and the companion node of n is γ−1(m′′). The terminal is successful when
σ = ν. If σ = µ, then the terminal is successful if there is no infinite chain of
composable trails T0 ◦ T1 ◦ T2 . . . of γ−1(m′′) and n′.

It can be shown that the matching function γ is surjective, that is for each node
m of A∗

U there exists at least one node n of AU such that γ(n) = m. Furthermore,
one can say that for all nodes m of A∗

U , the set γ−1(m) is either a singleton or
γ−1(m) has two elements n1 and n2, when the rule applied to n1 is a Thin, with
n2 as the resulting subgoal.

Proposition C.2. Let E be an EMTS. For universal LTS U and s ∈ SE , ∂a(JsKU) =
J∪ ∂3

a (s)KU

Proof. We know ∂a(JsKT) ⊆ J∪ ∂3
a (s)KT for any LTS T by Proposition C.1. We

go on to prove that J∂3
a (s)KU ⊆ ∂a(JsKU). Suppose for some LTS T there exists

t′ ∈ J∂3
a (s)KU where t′ is not an element of ∂a(JsKU and let t be some state simu-

lated by s. Let us built T ′ with the addition of a new state tnew, which have the
same transitions with t, and additionally the transition tnew

a
−→T t′. tnew is also

simulated by s and must be in JsKU . Then its a-derivative t′ must be in ∂a(JsKU ,
which is a contradiction. 2

Proposition C.3. Let E be an EMTS. For universal LTS U , s ∈ SE , for every
S′ ∈ ∂2

a (s), there exists a choice function fa such that fa(JsKU) = JS′KU .

Proof. By Definition A.2, for every t ∈ JsKU there exists t′ ∈ JS′KU such that
t

a
−→T t′. So we know that at least one choice function fa exists which takes the

elements of JsKU to a subset of JS′KU . What is more, we can construct such an fa

whose range covers all elements of JS′KU : Take any t ∈ JsKU and let t′ ∈ ∂a(t) and
t ∈ JS′KU . For each state t′′ ∈ JS′KU , define fa(tnew) = t′′ where tnew is a state
that has all transitions of t plus the transition tnew

a
−→T t′′. It is clear that each

tnew defined in this manner is simulated by s and exists in U .
2

79

Proposition C.4. Let E be an EMTS. For universal LTS U and s ∈ SE , if
s �

E
V 〈a〉Ψ, then there exists S′ ∈ ∂2

a (s) such that for all s′ ∈ S′, s′ �
E
V Ψ.

Proof. First, we prove that ∂2
a (s) is not empty. Assume ∂2

a (s) = ∅. Then, the
state tnew which has all the transitions of some t ∈ JsKU , with the exception of a-
transitions would still be simulated by s. Then by Definition A.8, tnew |=U

V
〈a〉Ψ′,

but this is clearly not the case so we reach a contradiction.
Next, we prove that there exists S′ ∈ ∂2

a (s) such that for all s′ ∈ S′, s′ �
E
V Ψ.

Assume for all S′ ∈ ∂2
a (s), S′ does not satisfy Ψ′. In such a case the state tbrandnew

which has all the transitions of a state t ∈ JsKU excluding a-transitions of t and with
the addition of the transition tbrandnew

a
−→T t′ for some t′ ∈ JS′KU , is still simulated

by s. But then tbrandnew does not satisfy 〈a〉Ψ′, which is a contradiction. 2

Lemma C.5. Let E be a finite-state EMTS and AU and A∗
U be proof trees con-

structed as described above. If for node n : Sn ⊢U
V

Φn in AU , γ(n) = m where
m : Sm ⊢U

V
Φm in A∗

U , then Sm ⊆ Sn.

Proof. In order to make our proof, we can use induction on the depth of the rule
applications in AU .

As a base case, n0 and γ(n0) are the roots of the trees and mention the same
sets, so initially Sm = Sn.

Suppose node n : Sn ⊢U
V

Ψ of AU matches m : Sm ⊢U
V

Ψ of A∗
U and Sm ⊆ Sn we

show the same subset condition holds for each subgoal produced by rule induction.
If the rule applied to n is:

• Thin, then let the immediate successor of n be n′ : ||Ψ||U
V

⊢U
V

Ψ. We know
that γ(n′) = m by definition and that Sn ⊆ ||Ψ||UV , hence Sm ⊆ ||Ψ||UV

• ∨, ∧, σZ or Z, the sets Sn and Sm also occur in the immediate successors,
so the property is preserved.

• Cut, then the set Sn occurs in both subgoals n1 and n2, meanwhile the sets
mentioned in γ(n1) and γ(n2) are both subsets of Sm, so they are also subsets
of Sn.

• 2a, then Sm = JsmKU for some state sm of E . Then ∂a(JsmKU) = J∪∂3
a (sm)KU

by Proposition C.4. Since JsKU ⊆ Sn, ∂a(JsKU) ⊆ ∂a(Sn). Hence J∪∂3
a (sm)KU ⊆

∂a(Sn).

• 3a This is the case since we have selected fa|JsmK
U

= fE
a in the construction.

2

Lemma C.6. Let E be a finite-state EMTS, s ∈ SU , and Φ have prime subformulas
only. If s �

E
V Φ, then let AU and A∗

U be proof trees constructed as described above.
If AU is a finite proof tree, than A∗

U is also a finite proof tree.

80 APPENDIX C. PROOFS

Proof. First, we have to show the correctness of the application of the rules involved
in macro applications, i.e. A∗

U is indeed a proof tree. Next, we show that validity
is preserved with each macro application. Finally. we show that the application
of macros guided by the rule applications in AU can not go on forever, i.e. A∗

U is
finite.

Let m : JsmKU ⊢U
V

Ψ be a node of A∗
U where JsKU |=U

V
Ψ. If the macro applied

to m is:

• ∧, σZ or Z, the application is identical to the corresponding rule application
in ΣT .

• ∨ and Ψ = Ψ1 ∨ Ψ2, the goal is guaranteed to be reduced to a single subgoal
because Ψ is a subformula of Φ and hence prime.

• 2a where Ψ = [a] Ψ′ and JsKU |=U
V

[a] Ψ′. We first have to show that no
application of the Thin rule is needed. This is the case since ∂a(JsKU) =
J∪∂3

a (s)KU by the definition of satisfaction, Definition A.8. This automatically
shows that J∪ ∂3

a (s)KU |=U
V

Ψ′ by the preservation of validity in AU .

• 3a where Ψ = 〈a〉Ψ′ and JsKU |=U
V

〈a〉Ψ′. The existence of a proper choice
function fE

a is a result of Proposition C.3 and Proposition C.4.

This concludes the proof of the correctness of the macro applications.
The fact that validity is preserved comes from Lemma C.5 and that validity is

preserved in canonical proofs and hence is preserved in AU .
The fact that the tree is finite is obvious, because a macro is applied to a

sequent of A∗
U , if a rule is applied to the matching sequent in AU . Cut-rules are

applied in AU when a macro includes them so that after the whole construction
each rule application in AU is matched by a rule application in A∗

U except for Thin.
The possible causes of nontermination could be the modifications we made on the
proof system: the addition of the Cut-rule applications and the new termination
condition.

The modified proof system allows for infinitely many Cut-rule applications since
the sequent is not changed with each application, but the number of consecutive
Cut-rule applications allowed in the construction is equal to the number of states
the particular state of the E has transition to. So the number of applications is
guaranteed to be finite since E is finite state.

The new termination condition used in the construction requires that for a
repeating node in AU to be a terminal, its matching node in A∗

U must be a σ-
terminal which mentions exactly the same sequent with its companion. The set
mentioned in repeating nodes is always the denotation of a single set and the
number of states of the E is finite, so eventually we are guaranteed to reach the
identical sequent in A∗

U . Therefore the modified termination condition does not
cause infinite proof trees. 2

81

Definition C.7 (Trail Translation). Let AU and A∗
U be constructed as described

above, and T = (ti,mi), . . . , (tk,mk) be a trail in A∗
U of the terminal node mk and

its companion mi. The function δ converts T to a trail of the matching σ-terminal
and its companion in AU by replacing each node with the matching one(s) in AU :

δ(ε)
∆
= ε

((t,m) · T)
∆
=

{

((t, n) · δ(T)) γ−1(m) = {n}
((t, n) · (t, n′) · δ(T)) γ−1(m) = {n, n′} with n above n′ in AU

It is possible to use the same state ti for the trail of AU because for each mi that
is matched by a ni, a state ti that occurs in node mi is also in ni, by Lemma C.5.

Lemma C.8. If AU is a successful proof tree, then A∗
U is also a successful proof

tree.

Proof. We know by Lemma C.6 that we will get a correct tableaux A∗
U . It remains

to prove that if the first tableaux is successful, then the second is also successful.
Let m : Sm ⊢U

V
Ψ be a leaf of A∗

U , and n : Sn ⊢U
V

Ψ where γ(n) = m and the
rule applied to n is not Thin. Assume n is a successful terminal.

If Sm = ∅, then it is trivially a successful terminal. For all other cases, since
the termination is checked only after (possible) Cut-rule applications, Sm = JsmKU
for some state sm of E .

If Ψ is tt, m is trivially successful. If Ψ is a variable Z which is free in the
initial formula, then it should be the case that Sn ⊆ V (Z), and by Lemma C.5,
JsKU ⊆ V (Z).

In the case where Ψ is a variable Z that identifies σZ.Ψ′, let n′ be the companion
node of n. By construction, γ(n′) = m′ where m′ : JsmKU ⊢U

V
Z in A∗

U , and m′ a
predecessor of m. Then m is a successful terminal if Z identifies νZ.Ψ′.

If Z identifies µZ.Ψ′, it has to be shown that there is no infinite chain of com-
posable trails of the companion node m′. Suppose there is such an infinite chain of
composable trails, κm′=T0◦T1◦T2 . . . in A∗

U . Then there is a corresponding infinite
chain of composable trails in AU given by κn′=δ(T0) ◦ δ(T1) ◦ δ(T2) However,
n is a successful terminal, therefore no such infinite chain of n′ exists. Hence we
reach a contradiction. 2

Lemma C.9. If proof trees AU and A∗
U constructed as described above are success-

ful, then AE = π−1
U (A∗

U) is also a successful proof tree.

Proof. If AU is a successful proof tree, A∗
U is a successful proof tree by Lemma C.8.

The side conditions of the rules of ΣE are satisfied by the correctness of the macro
applications in A∗

U . Thus, to establish the rest of the result, it suffices to show that
each leaf of AE = π−1

U (A∗
U) is a successful terminal.

By the definition of πT , it is easy to observe that each leaf of AE is matched by
a leaf of A∗

U , except the case where the leaf node is m : r ⊢E
V Ψ with the matching

node being n : JrKU ⊢T
V Ψ with ∪∂3

a (r) = ∅. Since r does not have may-transitions,
m is a successful terminal.

82 APPENDIX C. PROOFS

Consider the successful terminal n : JrKU ⊢T
V Ψ in A∗

U and the matching node
of AE , m : r ⊢E

V Ψ. The proof that the latter is also a successful terminal is trivial
when Ψ = tt, when Ψ = Z and Z is free in the initial formula, or when Z identifies
the formula νZ.Ψ′.

For the terminal node m to be successful when Ψ = Z and Z identifies µZ.Ψ′,
all runs that correspond to an infinite sequence of E-trails of m and its companion
node m′ should be in W , that is there is no wm′ = E1 ◦ E2 . . ., where for all i ≥ 1,
Ei begins with (r,m′) and ends with (r,m), and α(wm′) is not in W .

Assume that such an infinite sequence, wm′ = E1 ◦ E2 . . . exists, where α(wm′)
is not in W . Then an LTS, T , can be constructed such that for each ri in SE , there

exists ri′ in ST and there exists a transition ri′
a

−→T rj′ , if and only if ri
a

−→3
E rj .

It is clear that each state, ri′ , of T is simulated by a state ri of E , so ri′ ∈ JriKT .
Since U contains T , there is an infinite sequence of composable trails in A∗

U of the
terminal node n and its companion n′ that mentions the same states, ri′ . But since
n is a successful terminal, there can be no such infinite sequence of trails, hence we
reach a contradiction.

2

Theorem A.15 (Completeness) Let E be a finite–state EMTS, s ∈ SE , and let
Φ have prime subformulas only. Then s �

E
V Φ implies s ⊢E

V Φ.

Proof. Assume s �
E
V Φ. Then, by Definition A.8, JsKT |=T

V
Φ for any T , and hence

also JsKU |=U
V

Φ. By completeness of ΣT , there exists a family of canonical proofs
for the goal JsKU ⊢U

V
Φ. AU , which can be viewed as a combination of several of

these canonical proofs, can be constructed with A∗
U as described above. Then, by

Lemma C.9, π−1
U (A∗

U) is a proof of s ⊢E
V Φ in ΣE . 2

Correctness of Maximal Model Construction

Before we proceed to the proof of the correctness, we give some definitions. We
extend the notion of simulation for "labelled" EMTSs, that is for an EMTS E that
is accompanied by a labeling function λ : SE → 2PropV ar which labels the states of
E with propositional variables.

Definition C.10 (Simulation For a Valuation). R ⊆ ST × SE is a simulation
relation for valuation V : PropV ar → 2ST if whenever tRs, a ∈ A and Z ∈
PropV ar:

1. if t a
−→T T , then there is an S such that s

a

−→3
E S and for each t′ ∈ T , there

exists a s′ ∈ S such that t′Rs′;

2. if s
a

−→2
E S, then there is a T such that t

a

−→2
E T and for each t′ ∈ T , there

exists a s′ ∈ S such that t′Rs′;

83

3. If for the run ρs = s
a1−→E s1

a2−→E s2
a3−→E . . . ∈ W then there does not exist

an infinite run ρt = t
a1−→T t1

a2−→T t2
a3−→T . . . such that tiRsi for all i ≥ 0.

4. If Z ∈ λ(s), then t ∈ V(Z).

We write tRVs when tRs for valuation V. We say that abstract state s simulates
state t with respect to valuation V, denoted t �V s, if there is a simulation relation
R such that tRVs.

We define the notion of denotation of an EMTS E with respect to a valuation
as follows:

Definition C.11 (EMTS Denotation). Let E an EMTS with (SE , A,−→3
E ,−→

2
E , c),

S ⊆ SE a set of start states of E , and λ : SE → 2PropV ar a labeling function.
The denotation of a state s ∈ SE with respect to an LTS T and valuation

function V : PropV ar → 2ST is defined as JsKTV
∆
= {t | t �V s}. The notion of

denotation is lifted to sets of states in the natural way.
The denotation of a triple (E , S, λ), then, is defined as the denotation of the

start states:
J(E , S, λ)KTV

∆
= JSK

T
V

Using these definitions we restate the Theorem 5.1 to include valuation V. No-
tice that this valuation does not have any effect when the states of the E are not
labeled.
Theorem 5.1(B.7) Jε(Φ)K

T
V = ||Φ||TV

Proof. The proof proceeds by induction on the structure of Φ. Let ε(Ψ1) = ((SE1
,

A, −→3
E1

, −→2
E1

, W1), S1, λ1) and ε(Ψ2)= ((SE2
, A, −→3

E2
, −→2

E2
, W2), S2, λ2) be

constructed as defined in Figure B.2. In the cases below, IH stands for induction
hypothesis and TR for transition rules of CCS.

• Φ ≡ tt
JSKU = SU = ||tt||UV0

• Φ ≡ ff
JSKU = ∅ = ||ff||UV0

• Φ ≡ Z
JSKU = J0K≈ = ||Z||UV0

• Φ ≡ 〈a〉Ψ1

t � S
⇐⇒ t � snew (Construction)
⇐⇒ ∃t′.t

a
−→T t′ where t′ � S1 (Def. C.10)

⇐⇒ ∃t′.t
a

−→T t′ where t′ |=U
V0

Ψ1 (Induction Hyp.)
⇐⇒ t |=U

V0
〈a〉Ψ1

84 APPENDIX C. PROOFS

• Φ ≡ [a]Ψ1

t � S
⇐⇒ t � snew (Construction)
⇐⇒ if there exists a transition t

a
−→T t′, then t′ � S1 (Def. C.10)

⇐⇒ ∀t′.t
a

−→T t′ =⇒ t′ |=U
V0

Ψ1 (Induction Hyp.)
⇐⇒ t |=U

V0
[a] Ψ1

• Φ ≡ Ψ1 ∧ Ψ2

Assume Jε(Ψi)K
T
V = ||Ψi||TV for i ∈ {1, 2} (Induction Hyp.)

We show Jε(Ψ1 ∧ Ψ2)K
T
V = ||Ψ1 ∧ Ψ2||TV in two parts.

(⊆) Assume t ∈ Jε(Ψ1 ∧ Ψ2)K
T
V , then there is a simulation relation R1 ⊆

ST ×Sε(Ψ1∧Ψ2) for V such that tRV
1 (s, r) for some (s, r) ∈ (Sε(Ψ1)×Sε(Ψ2))|2∩

(S1 × S2) by definition of construction. We define R′
2 ⊆ ST × Sε(Ψ1) as tR′

2s
if and only if there exists r ∈ Sε(Ψ2).tR1(s, r). We prove R′

2 is a simulation

relation below. Hence, t ∈ Jε(Ψ1)K
T
V . By a similar argument we can show

t ∈ Jε(Ψ2)K
T
V . Therefore, t ∈ ||Ψ1 ∧ Ψ2||TV

Proof that R′
2 is a simulation relation:

Assume t R′
2 s.

1. Whenever a ∈ A,

a) If t a
−→T t′, by definition of simulation there exists S such that

(s, r)
a

−→3
E S and t′R1(s

′, r′) for some (s′, r′) ∈ S. By construction

(s, r)
a

−→3
E S if and only if there exists S′ and R′ such that s

a

−→3
E1

S′, r
a

−→3
E2
R′ and S = S′ × R′. Thus s

a

−→3
E1
S′ where t′R′

2s
′ for

some s′ ∈ S′.

b) If s
a

−→2
E1
S′, then (s, r)

a

−→2
E S where S = S′ × ∪∂3

a (r). (The set
∂3

a (r) can not be empty since in this case this state would not be a
part of the constructed EMTS) Since tR1(s, r), t

a
−→T t′ such that

t′R′
2(s

′, r′) where s′ ∈ S′ and r′ ∈ ∪∂3
a (r), so t′R′

2s
′.

2. If ρs = s
a1−→E1

s2
a2−→E1

s3
a3−→E1

. . . is in W , then no infinite run
ρt = t

a1−→T t2
a2−→T t3

a3−→T . . . of t such that ti R′
2 si for all i ≥ 1 is

possible. Such an infinite run ρt is not possible because the run ρ(s,r) =

(s, r)
a1−→E (s2, r2)

a2−→E (s3, r3)
a3−→E . . . ∈W by construction.

(⊇) Assume t ∈ Jε(Ψ1)K
T
V and t ∈ Jε(Ψ2)K

T
V , then there are simulation re-

lations R1 ⊆ ST × Sε(Ψ1) and R2 ⊆ ST × Sε(Ψ2) for V such that tRV
1 s and

tRV
2 s for some s1 ∈ S1 and r1 ∈ S2 by definition of construction. We define

R ⊆ ST × Sε(Ψ1∧Ψ2) as tR(s, r) if and only if tR1s and tR1r. We prove R is

a simulation relation below. Hence, t ∈ Jε(Ψ1 ∧ Ψ2)K
T
V .

85

Assume t R (s, r).

1. Whenever a ∈ A,

a) If t a
−→T t′, by Induction Hypothesis and definition of simulation

there exists S′ and R′ such that s
a

−→3
E1
S′, r

a

−→3
E1
R′ and t′R1s

′,
t′R2r

′ for some s′ ∈ S′ and r′ ∈ R′. Then by construction there

exists S where (s, r)
a

−→3
E S and (s′, r′) ∈ S and t′R(s′, r′).

b) If (s, r)
a

−→2
E S, then either there exists S′ such that s

a

−→2
E S

′ and
S = {(s′, r′) | s′ ∈ S′ ∧ r′ ∈ ∪∂3

a (r)} or there exists R′ such that

r
a

−→2
E R

′ and S = {(s′, r′) | s′ ∈ ∪∂3
a (s) ∧ r′ ∈ R′}.

If it is the first case, by the definition of of simulation there exists
t′ such that t

a
−→T t′, and t′R1s

′ for some s′ in S′. Since t is also
simulated by r, there exists some R′ ∈ ∪∂3

a (r) such that t′R2r
′ for

some r′ ∈ R′. Then (s′, r′) ∈ S and t′R(s′, r′).
The second case is similar.

2. If ρ(s,r) = (s, r)
a1−→E (s2, r2)

a2−→E (s3, r3)
a3−→E . . . is in W , then the

infinite run ρt = t
a1−→T t2

a2−→T t3
a3−→T . . . such that ti R (si, ri) for

all i ≥ 1 should not be possible.
Assume that such an infinite run ρt1 exists. By construction, ρ(s,r) ∈ W

if and only if ρs = s
a1−→E1

s2
a2−→E1

s3
a3−→E)1 . . . ∈ W1 or ρr = r

a1−→E2

r2
a2−→E2

r3
a3−→E)2 . . . ∈ W2. If it is the first case and ρs ∈ W1, by

definition of simulation there is no infinite run ρt = t
a1−→T t′2

a2−→T −→T

t′3
a3−→T . . . where t′i R1 si for all i ≥ 1. However, ρt is such a run hence

we reach a contradiction. The argument is similar if ρr ∈W2.

• Φ ≡ Ψ1 ∨ Ψ2

Assume Jε(Ψi)K
T
V = ||Ψi||TV for i ∈ {1, 2} (Induction Hyp.)

We show Jε(Ψ1 ∨ Ψ2)K
T
V = ||Ψ1 ∨ Ψ2||TV in two parts.

(⊆) Assume t ∈ Jε(Ψ1 ∨ Ψ2)K
T
V , then there is a simulation relation R1 ⊆

ST × Sε(Ψ1∨Ψ2) for V such that tRV
1 s for some s ∈ S1 ∪ S2 by definition of

construction. We define R′
2 ⊆ ST × Sε(Ψ1) as tR′

2s if and only if tR1s and
s ∈ Sε(Ψ1) and similarly R′′

2 ⊆ ST × Sε(Ψ2) as tR′′
2s if and only if tR1s and

s ∈ Sε(Ψ2). These relations are well defined as Sε(Ψ1) and Sε(Ψ2) are disjoint
sets. As the sets are disjoint, showing these relations are indeed simulation
relations is trivial as the conditions are satisfied by R1. Hence t ∈ Jε(Ψ1)K

T
V

or t ∈ Jε(Ψ2)K
T
V and by (Induction Hypothesis) t ∈ ||Ψ1||TV or t ∈ ||Ψ2||TV .

Therefore, t ∈ ||Ψ1 ∨ Ψ2||TV .

(⊇) Assume t ∈ Jε(Ψ1K
T
V . Then there is a simulation relationR′

2 ⊆ ST ×Sε(Ψ1)

for V such that tR
′V
2 s for some s ∈ S1. We define R1 ⊆ ST × Sε(Ψ1∨Ψ2) as

86 APPENDIX C. PROOFS

tR1s if and only if tR′
2s. It is again trivial to show that R1 is a simulation

relation since it is identical to R′
2. Hence t ∈ Jε(Ψ1 ∨ Ψ2)K

T
V . The case for

t ∈ Jε(Ψ2K
T
V is similar.

• Φ ≡ νZ.Ψ1

Dual to least fixed point case.

• Φ ≡ µZ.Ψ
Let ε(Ψ) = ((Sε(Ψ), A, −→3

E , −→2
E , c), S1, λ) and ε(µZ.Ψ)= ((Sε(µZ.Ψ), A,

−→3
E′ , −→2

E′ , c′), S′
1, λ′) be constructed as defined in Figure B.2. We will

prove
Jε(µZ.Ψ)K

T
V = ||µZ.Ψ||TV

in two steps.

(⊆) We make use of ordinal approximants and the unfolding theorem for fixed
point formulae.

We show
Jε(µZ.Ψ)K

T
V ⊆ ||µZ.Ψ||TV

Note first that
||(µZ.Ψ)κ||TV =

⋃

β<κ

||(µZ.Ψ)β ||TV

and so

||(µZ.Ψ)κ||TV = ||Ψ||TV[
S

β<κ

||(µZ.Ψ)β ||T
V

/Z]

By the Induction Hypothesis then, we replace the formula with its EMTS

||(µZ.Ψ)κ||TV = Jε(Ψ)K
T
V[
S

β<κ

||(µZ.Ψ)β ||T
V

/Z]

Assume t ∈ Jε(µZ.Ψ)K
T
V . Then there is a simulation relation R1 ∈ ST ×

Sε(µZ.Ψ) for V such that tR1{s} for some state state s ∈ S1.

Then there is a mapping ord : ST → Ord+ such that whenever t′R1q
′, t′ a

−→T

t′′, q′
a

−→3
E q′′ and t′′R1q

′′, then ord(t′′) < ord(t′) whenever Z ∈ λ1(∪q′′) and
ord(t′′) ≤ ord(t′) otherwise.

Define Sκ
T

def
= {t′ ∈ ST | ord(t′) ≤ κ} and Rκ

1
def
= R1|Sκ

T

We claim that Rκ
1 is a simulation relation for V. We show the following by

induction on ord(t′).

∀t′ ∈ ST .(∃q
′ ∈ Sε(µZ.Ψ).q

′ ∩ S1 6= ∅ ∧ t′R
ord(t′)
1 q′) =⇒ t′ ∈ ||(µZ.Ψ)ord(t′)||TV

87

Assume it holds for all t′′ ∈ ST such that ord(t′′) ≤ κ by ordinal induction
hypothesis. Assume t′ ∈ ST is such that ord(t′) = κ, and there exists q′ ∈

Sε(µZ.Ψ).∃q
′ ∈ Sε(µZ.Ψ).q

′∩S1 6= ∅∧t′R
ord(t′)
1 q′). we show t′ ∈ Jε(Ψ)K

T
Vκ where

Vκ = V[
⋃

β<κ

||(µZ.Ψ)β ||TV/Z], and then by the original induction hypothesis

and the unfolding of formula illustrated above we obtain t′ ∈ ||(µZ.Ψ)ord(t′)||TV
since κ = ord(t′).

Define Rκ
2 ⊆ ST × Sε(Ψ) as {(t′, s′) | ∃q′ ∈ Sε(µZ.Ψ).(s

′ ∈ real(q′) ∧ t′Rκ
1q

′)},
where real(q) is defined inductively as follows:

– real({s1}) = {s1}

– Consider the state q. Let Q be the set of states in Sε(µZ.Ψ) such that

∃Q′. q′′
a

−→3
E Q′ where q ∈ Q′ if and only if q′′ ∈ Q. Then real(q) ⊆ q

is the set of derivatives of
⋃

Q in q.

We show that Rκ
2 ⊆ ST × Sε(Ψ) is a simulation relation for Vκ. Then, by the

assumption on t′, we have t′Rκ
2s

′ for some s′ ∈ S1, and hence t′ ∈ Jε(Ψ)K
T
Vκ

(⊇) We show

Jε(Ψ)K
T
V[Jε(µZ.Ψ)KT

V
/Z] ⊆ Jε(µZ.Ψ)K

T
V(∗)

Then by Induction Hypothesis

||Ψ||T
V[Jε(µZ.Ψ)KT

V
/Z]

⊆ Jε(µZ.Ψ)KTV

The result hence holds since then Jε(µZ.Ψ)K
T
V is a prefixed point of the func-

tion λS.||Ψ||T[S/X], and since ||µZ.Ψ||TV is the least such prefixed point by the
semantics of modal µ-calculus.

Let V∗ = V[Jε(µZ.Ψ)KTV/Z]. Proof for Jε(Ψ)KTV∗ ⊆ Jε(µZ.Ψ)KTV is as follows:
We have to prove that if there exists an s ∈ S1 such that tRV∗

s for some
simulation relation R ⊆ ST × Sε(Ψ), then there exists a simulation relation
R′ ⊆ ST × Sε(µZ.Ψ) and a state {q} ∈ S′

1 such that tR′V{q}.

We define R′ for V using R for V∗ as the least relation that satisfies the fol-
lowing:

– If tRs and s ∈ S1, tR′{s}

– If t′R′{q} and t′ a
−→T t′′

since t′Rq (INV. 1) there exists q′ such that q′ ∈ Q′ for some Q′ where

q
a

−→3
E Q′ and t′′Rq′. Then,

88 APPENDIX C. PROOFS

1. if Z ∈ λ(q′), then we know by the definition of simulation that
t ∈ Jε(µZ.Ψ)KTV . Then there exists a simulation relation R′′ such
that and for some s′′ ∈ S1 t

′′R′′V{s′′} by construction and the def.
of denotation. Then t′′R′{q′, s′′}.

2. if Z 6∈ λ(q′), then t′′R′V{q′}.

– If t′R′V{q1, . . . , qn}, n > 1 and t′
a

−→T t′′

since there exists

∗ qi 6∈ S1 such that t′Rqi (INV. 1a), there exists q′ such that q′ ∈ Q′

for some Q′ where q
a

−→3
E Q′ and t′′Rq′.

∗ Q1, . . . , Qm ∈ S(ε(µZ.Ψ)) such that (
⋃

1≤j≤m

Qj) ∪ qi = {q1, . . . , qn}

and for 1 ≤ j ≤ m, t′R
′V
j Qj for some simulation relation R′

j ⊆
ST × S(ε(µZ.Ψ)). (INV 2.) There exists Q′

1, . . . , Q
′
m such that for

1 ≤ j ≤ m Q′
j ∈ SQj for some SQj where Qj

a

−→3

ε(µZ.Ψ) SQj and

t′′R
′V
j Q′

j .

1. If Z ∈ λ(q′), then we know by the definition of simulation that
t ∈ Jε(µZ.Ψ)K

T
V , then there exists a simulation relation R such that

and for some s′′ ∈ S1 t
′′R′′V{s′′} by construction and the def. of

denotation. In this case t′′R′(
⋃

1≤j≤m

Q′
j ∪ {q′} ∪ {s′′}).

2. If Z 6∈ λ(q′), then t′′R′(
⋃

1≤j≤m

Q′
j ∪ {q′}).

INV 1a. is justified through an invariant of the construction namely that for
every EMTS in the range of ε, the start states of the EMTS do not have
incoming transitions.

That the resulting states are actually reachable in ε(µZ.Ψ) is by the definition
of ε.

The proof that R′ is a simulation for V is as follows:

Assume tR′{q1, . . . , qn} where n > 1, a ∈ A and X ∈ PropV ar, then by the
invariants 1 and 2:

– there exists qi ∈ {q1, . . . , qn} such that qi 6∈ S1 and tRqi,

– Q1, . . . , Qm ∈ S(ε(µZ.Ψ)) such that (
⋃

1≤j≤m

Qj)∪qi = {q1, . . . , qn} and for

1 ≤ j ≤ m, tR
′V
j Qj for some simulation relation R′

j ⊆ ST × S(ε(µZ.Ψ)).

1. Straightforward.

2. If {q1, . . . , qn}
a

−→2

ε(µZ.Ψ) S, then by construction there exists a q ∈

{q1, . . . , qn} such that q
a

−→2

ε(Ψ) S
′ and

S = ∂P((∪∂3
a (q1), . . . , S

′, . . . ,∪∂3
a (qn)), S1, λ, Z).

89

– If q = qi, then by the definition of simulation there exists t a
−→T t′

such that t′Rq′i for some q′i ∈ S′. Again by the definition of simula-
tion, if t a

−→T t′, then there should existQ′
1 ∈ ∪∂3

a (Q1), . . . , Q
′
Q−1 ∈

∪∂3
a (qi−1), q

′
i+1 ∈ ∪∂3

a (qi+1), . . . , q
′
n ∈ ∪∂3

a (qn)

– If q ∈ Qj for some j, then let Qj = {s1, . . . , sk}. By construction

Qj

a

−→2

ε(µZ.Ψ) S
′
j where S = ∂P ((∪∂3

a (s1), . . . , S
′, . . . ,∪∂3

a (sk)), S1, λ, Z).

3. If for the run ρµZ.Ψ = {q1, . . . , qn}
a1−→E Sµ

1
a2−→E Sµ

2
a3−→E . . . there

exists 1 ≤ j ≤ k such that max(inf(cµ(ρµZ.Ψ)(j))) is odd then there
does not exist an infinite run ρt = t

a1−→T t1
a2−→T t2

a3−→T . . . such that
tiR

′Sµ
i for all i ≥ 0.

4. If X ∈ λ′({q1, . . . , qn}) then there is at least one member qj of this set for
which X ∈ λ(qj) and X 6= Z by construction. By the invariants 1 and
2, tRqi for some qi ∈ {q1, . . . , qn} and there exists a set Q ⊆ {q1, . . . , qn}
where qj ∈ Q and tR′′Q for some R′′:

– If qj = qi then t ∈ V∗(X) but since V(X) = V∗(X) when Z 6= X ,
so t ∈ V(X), or

– Then by construction, X ∈ λ′(Q), so t ∈ V(X).
2

Correctness of Construction for Process Terms

Proposition C.12. Let fix X.E be a guarded term. E′[fix X.E/X]ρAρ0
a

−→

E′′[fix X.E/X]ρAρ0 if and only if E′[0/X]
a

−→ E′′[0/X] and E′ 6≡ X.

Proof. This can be proved by induction on the structure of E′.
We will illustrate by giving one case, the others are similar. Suppose E′ ≡ a.F . By
transition rules of CCS a.F [fix X.E/X]

a
−→T F [fix X.E/X]. Then a.F [0/X]

a
−→T

F [0/X].
Suppose E′ ≡ F+G. By transition rules of CCS either (F+G)[fix X.E/X]

a
−→T

F ′[fix X.E/X] or (F + G)[fix X.E/X]
a

−→T G′[fix X.E/X] and this is the case
if F [fix X.E/X]

a
−→T F ′[fix X.E/X] or G[fix X.E/X]

a
−→T G′[fix X.E/X] re-

spectively. And since G,F 6≡ X , we can use the induction hypothesis. Suppose
E′ ≡ F | G. This is the case if F and G does not contain occurrences of X , be-
cause of the assumption on the syntax of the algebra terms in the theorem. Then
(F | G)[fix X.E/X] ≡ (F | G)[0/X]. So the claim holds trivially. 2

Lemma C.13. Let Γ �E be a guarded OTA without composition and let ε(Γ �E)
= (E, S, λ). Then JSKU is equal to the set JΓ � EKρ0

up to bisimulation denoted
JSKU ⋍ JΓ � EKρ0

where ρ0 maps each recursion process variable X to 0.

90 APPENDIX C. PROOFS

Proof. The proof proceeds on the structure of E. Note that in the proofs below
t ≈ t′ denotes that t is bisimilar to t′. Let ε(Γ �E1)=((SE1

, A, −→3
E1

, −→2
E1

, W1),
S1, λ1) and ε(Γ � E2)= ((SE2

, A, −→3
E2

, −→2
E2

, W2), S2, λ2) be constructed as
defined in Figure B.3. In the cases below, Induction Hypothesis stands for induction
hypothesis and TR for transition rules of CCS.

• E ≡ 0

t � S
⇐⇒ t � s (Construction)
⇐⇒ for no a ∈ A exists t′ such that t a

−→T t′. (Def. C.10)
⇐⇒ t ≈ 0 (Def. 3.5), {0} = JΓ � 0Kρ0

• E ≡ X

1. X ∈ AssProcV ar
JΓ �XKρ0

=ε(
∧

X:Ψ ∈ Γ

Ψ) and we can directly use Theorem 5.1. Note that

since the logical formulae Ψ are closed, the returned labeling function
labels all states with the empty set.

2. X ∈ RecProcV ar
JΓ �XKρ0

=ρ0(X)={0} by Def. 3.5.

• E ≡ a.E1

t � S
⇐⇒ t � snew (Construction)
⇐⇒ ∃t′.t

a
−→T t′ where t′ � S1 and

∀k ∈ A where k 6= a there exists no t′′ s.t. t k
−→T t′′ (Def. C.10)

⇐⇒ ∃t′.t
a

−→T t′ where t′ ≈ u′ where u′ ∈ JΓ � E1Kρ0
and ∀k ∈ A

where k 6= a there exists no t′′ s.t. t k
−→T t′′ (Induction Hyp.)

⇐⇒ ∃u′.t ≈ a.u′ and u′ ∈ JΓ � E1Kρ0

⇐⇒ ∃u.t ≈ u and u ∈ JΓ � a.E1Kρ0
(Def. 3.5)

• E ≡ E1 + E2

t � S
⇐⇒ ∃s1 ∈ Sυ1

, r1 ∈ Sυ2
. t � (s1, r1)

⇐⇒ ∃t1, u1, s1 ∈ Sυ1
, r1 ∈ Sυ2

.t ≈ t1 + u1 ∧ t1 � s1
∧u1 � r1 (See below)

⇐⇒ ∃t1, u1.t ≈ t1 + u1 ∧ (∃v1.t1 ≈ v1 ∧ v1 ∈ JΓ � E1Kρ0
)

∧(∃v2.u1 ≈ v2 ∧ v2 ∈ JΓ � E2Kρ0
) (Induction Hyp.)

⇐⇒ ∃v1, v2.t ≈ v1 + v2 ∧ v1 ∈ JΓ � E1Kρ0
∧ v2 ∈ JΓ � E2K

⇐⇒ ∃v1, v2.t ≈ v1 + v2 ∧ v1 + v2 ∈ JΓ � E1 + E2Kρ0

⇐⇒ ∃v.t ≈ v ∧ v ∈ JΓ � E1 + E2Kρ0
(Def. 3.5)

The second equivalence is established by separate proofs of the two directions:

91

(⇒)Consider some t such that t � (s1, r1) where s1 ∈ Sυ1
and r1 ∈ Sυ2

.
By the Expansion Theorem and by our construction definition, we take t ≈
(a0.t0 + . . . + ak.tk) + (ak+1.tk+1 + . . . + an.tn) for some processes ti ∈ U

and where for each ai.ti in this sum, ∃S′.(s1, r1)
ai

−→3
E S′ and ti � S′ where

S′ ⊆ SE1
if 0 < i ≤ k, and S′ ⊆ SE2

if k < i ≤ n by the definition of simulation.
The arguments for (a0.t0+. . .+ak.tk) � Sυ1

and (ak+1.tk+1+. . .+an.tn) � Sυ2

are then trivial.

(⇐) By Induction Hypothesis there exists simulation relations R1 and R2

between elements of JΓ �E1Kρ0
and Eυ1

, JΓ �E2Kρ0
and Eυ2

respectively. We
define the relation R′ ⊆ SU × SE using R1 and R2 as follows:

tR′q
∆
=















t1R1s1 ∧ t2R2r1
if t = t1 + t2 and q = (s, r) for
s1 ∈ Sυ1

, r1 ∈ Sυ2

tR1q if q ∈ SE1

tR2q if q ∈ SE2

We show that R′ is a simulation relation.

Assume tR′q. The argument is obvious if q /∈ Sυ1
× Sυ2

. So we assume
q = (s1, r1) for some s1 ∈ Sυ1

and some r1 ∈ Sυ2
.

(i)(a) ∃t′.(t1 + u1)
a

−→T t′

=⇒ ∃t′.(t1
a

−→T t′ ∨ u1
a

−→T t′) (TR)

=⇒ ∃S′.(s1
a

−→3
E S′ ∧ t′R1S

′) or

∃S′.(r1
a

−→3
E S′ ∧ t′R2S

′) (Def C.10)

=⇒ ∃S′.((s1, r1)
a

−→3
E S′) ∧ t′RS′ (Construction)

(i)(b) ∃S′.(s1, r1)
a

−→2
E S

′

=⇒ ∃S′.s1
a

−→2
E1
S′ or ∃S′.r1

a

−→2
E2
S′ (Construction)

=⇒ ∃t′.t1
a

−→T t′ ∧ t′R1S
′ or

∃t′.u1
a

−→T t′ ∧ t′R2S
′ (Def. 4.2)

=⇒ t1 + u1
a

−→T t′ ∧ t′RS′

(ii) We show that if (s1, r1)
a1−→ q1

a2−→ q2 . . . ∈ W , then ρt = t
a1−→T t1

a2−→T

t2 . . . where tiRqi for all i > 1 is not a run of t.

Assume such a ρt exists, and let t = u1+u2 where u1R1s1 and u2R2r1. By the
construction either s1

a1−→ q1
a2−→ q2 . . . ∈ Wυ1

or r1
a0−→ q1

a2−→ q2 . . . ∈ Wυ2
.

Assume it is the first case. Then tiRqi where qi ∈ SE1
for all i > 0. For this

to be the case, tiR1qi for all i > 0. Then u1
a0−→T t1

a2−→T t2 . . . is an infinite
run where tiR1qi for all i > 0 but such an infinite run can not exist by the
definition of simulation.

• E ≡ fix X.E1

92 APPENDIX C. PROOFS

v ∈ JΓ � fix X.E1Kρ0

⇐⇒ v ≡ (fix X.E1ρAρ0) for some ρA (Def. 3.5)
⇐⇒ v ≡ X [fix X.E1/X]ρAρ0 for some ρA

⇐⇒ ∃t.t ≡ E1[0/X]ρAρ0 ∧ t ∈ JΓ � E1Kρ0
(Def. 3.5)

⇐⇒ ∃s1 ∈ S1.t ≡ E1[0/X]ρAρ0 ∧ t � s1 (Def. 4.2)
⇐⇒ ∃s1 ∈ S1.v � s1 (See below)

We establish the last equivalence as follows. By induction hypothesis, there
exists a simulation relation R1 between processes in JΓ �E1Kρ0

and states of
E1. Using this relation R1, we define R ⊆ SU × SE as follows:

(E′
1[fix X.E1/X])ρAρ0Rs

∆
=

{

E′
1[0/X]ρAρ0 R1 s if E′

1 6≡ X
E1[0/X]ρAρ0 R1 s if E′

1 ≡ X

We show that R is a simulation relation.
Assume E′

1[fix X.E1/X]ρAρ0Rs
(i)(a) First let us take the case where E′

1 ≡ X , then
E′

1[fix X.E/X]ρAρ0 ≡ (fix X.E1)ρAρ0.

(fix X.E1)ρAρ0t
a

−→T E′′
1 [fix X.E1/X]ρAρ0

⇐⇒ E1[fix X.E1/X]ρAρ0t
a

−→ E′′
1 [fix X.E1/X]ρAρ0 (TR)

⇐⇒ E1[0/X]ρAρ0
a

−→T E′′
1 [0/X]ρAρ0 (fix X.E1 is guarded, Prop. C.12)

⇐⇒ E1[0/X]ρAρ0 ∈ JΓ � E1Kρ0

⇐⇒ s ∈ S1 ∧ E1[0/X]ρAρ0R1s (Def. 3.5)

⇐⇒ ∃S′.s
a

−→3
E S′ where E′′

1 [0/X]ρAρ0R1s
′ for some s′ in S′ (Def. 4.2)

⇐⇒ E′′
1 [fix X.E/X]ρAρ0Rs

′

Argument for E′
1 6≡ X is similar.

b)First let us take the case where s ∈ S1.

s
a

−→2
E S

′

⇐⇒ E1[0/X]ρAρ0
a

−→T E′′
1 [0/X]ρAρ0

and E′′
1 [0/X]ρAρ0R1s

′ for some s′ ∈ S′(Def. 4.2)
⇐⇒ E1[fix X.E1/X]ρAρ0

a
−→T E′′

1 [fix X.E1/X]ρAρ0

and E′′
1 [fix X.E1/X]ρAρ0R1s

′ for some s′ ∈ S′(Prop. C.12, E1 6≡ X)
⇐⇒ fix X.E1ρAρ0

a
−→ E′′

1 [fix X.E1/X]ρAρ0 and E′′
1 [fix X.E1/X]ρAρ0Rs

′

for some s′ ∈ S′ (TR)
Argument for s 6∈ S1 is similar.

2) Take some prohibited run of s1, s1
a1−→E s2 . . .

an−1

−→E sn).ρsn
where n ≥ 1

and ρsn
∈ W1. For all mentioned states sm in this run, where m > n,

sm /∈ S1. Suppose there is an infinite run of t = E′[fix X.E/X]ρAρ0: (t
a1−→T

t2 . . .
an−1

−→T tn).ρtn
, such that for all i > 1, tiRsi.

Assume sn ∈ S1. We have E[0/X]ρAρ0R
′sn and so

tn = X [fix X.E/X]ρAρ0Rsn by Induction Hypothesis. Then, the infinite run
ρtn

has the form X [fix X.E/X]ρAρ0
an−→T En+1[fix X.E/X]ρAρ0

an+1

−→T . . .

93

where for all i > 1, En+i[fix X.E/X]ρAρ0Rsn+i and sn+i 6∈ S1. By the
way we defined R, this is possible if for all i > 1, En+i[0/X]ρAρ0R

′sn+i

and En+1 6≡ E. Then we can construct a run of E[0/X]ρAρ0, if we re-
place the fix expression substitution at each process with a 0 substitution:
E[0/X]ρAρ0

an−→T En+1[0/X]ρAρ0
an+1

−→T . . . where E[0/X]ρAρ0R
′sn and for

all i > 1, En+i[0/X]ρAρ0R
′sn+i. This run is a legal run of E[0/X]ρAρ0 in E1,

since the transitions between these terms exist also in E1 (Proposition. C.12,
TR) This results in an infinite run of E[0/X]ρAρ0 which is simulated by ρsn

,
but this is impossible by Def. 4.2 since ρsn

∈ W1. Hence no such infinite run
simulated by ρs1

is possible. The case for sn 6∈ S1 is similar.
2

Lemma C.14. Let T be a transition-closed LTS, Γ � E1 ‖ E2 be a guarded linear
OTA where every recursion process variable in the scope of parallel composition is
bound by a fix operator in the same scope, and let ε(Γ �E) = (E, S, λ). Then the
set JSKT includes JΓ � E1 ‖ E2Kρ0

up to bisimulation.

Proof. Let ε(Γ � E1)=((SE1
, A, −→3

E1
, −→2

E1
, W1), S1, λ1) and ε(Γ �E2)= ((SE2

,
A, −→3

E2
, −→2

E2
, W2), S2, λ2) be constructed as defined in Figure B.3.

v ∈ JΓ � E1‖E2Kρ0

⇐⇒ ∃t1, u1. v ≈ t1‖u1 ∧ t1 ∈ JΓ � E1Kρ0
∧ u1 ∈ JΓ � E2Kρ0

(linearity)
=⇒ ∃t1, u1, s1, r1. v ≈ t1‖u1 ∧ s1 ∈ S1 ∧ r1 ∈ S2∧

t1 � s1 ∧ u1 � r1 (Induction Hyp.)
=⇒ ∃s1, r1, x1. v � (s1, r1, x1)(See below)

In order to show the last implication we define a relation R ⊆ SU × SE (see
below). By Induction Hypothesis, simulation relations R1 and R2 exist between
elements of JΓ � E1Kρ0

, JΓ � E2Kρ0
and states of E1, E2 respectively.

R is the least relation that satisfies the following:

• if tR1s1 and uR2r1 where s1 ∈ S1 and r1 ∈ S2, then (t‖u)R(s1, r1, x) for all
x ∈ {1, 2}

• if tR1s and uR2r and t a
−→T t′ and t′R1s

′, then (t′‖u)R(s′, r, 1)

• if tR1s and uR2r and u a
−→T u′ and u′R2r

′, then (t‖u′)R(s, r′, 2).

We claim that the relation R is a simulation relation.
Assume (t‖u) R (s, r, x) for some x ∈ {1, 2}.

1. Whenever a ∈ A,

a) If (t‖u)
a

−→T (t′‖u′), then by TR either t
a

−→T t′ and u′ = u or u
a

−→T

u′ and t′ = t. In the first case, tR1s by assumption. Then, by the

Def. 4.2 there is a S′
1 ⊆ SE1

such that s
a

−→3
E1
S′

1 and t′R1s
′ for some

s′ ∈ S′
1. So (s, r)

a

−→3
E S, where S = {(s′, r, 1)‖s′1 ∈ S′

1}. Again by
assumption uR2r, then (t′‖u) R (s′, r, 1). The second case is similar.

94 APPENDIX C. PROOFS

b) If (s, r, x)
a

−→2
E S, then either s

a

−→2
E1
S′

1 and S = {(s′, r, 1)‖s′1 ∈ S′
1)}

or r1
a

−→2
E2
S′

2 and S = {(s, r′, 2)‖r′ ∈ S′
2}. In the first case, tR1s by

assumption. Then, Def. 4.2 there is t′ such that t a
−→T t′ and t′R1s

′ for
some s′ ∈ S′

1. Then by TR, (t | u)
a

−→T (t′‖u). Again by assumption
uR2r. Then (t′‖u) R (s′, r, 1). The second case is similar.

2. If ρ(s,r,x) = (s, r, x)
a1−→E (s1, r1, x1)

a2−→E (s2, r2, , x2)
a3−→E . . . is in W , then

no infinite run ρ(t‖u) = t‖u
a1−→E t1‖u1

a2−→E t2‖u2
a3−→E . . . such that (ti‖ui)

R (si, ri, xi) for all i ≥ 1 can exist. Suppose that such a run of (t‖u) exists.
This run would clearly be an interleaving of runs of t and u, where at least one
of these runs are infinite. Since ρ(s,r,x) is prohibited and Sε(Γ�E1‖E2) is finite,
there exists an infinitely occurring state (s′, r′, x′) in this run such that for
some 1 ≤ j ≤ k, the color entry of this state c(s′, r′, x′)(j) is odd and larger
than the other infinitely occurring integers in the jth entry of c(ρ(s,r,x)).

If 1 ≤ j ≤ k1, then we know that the infinitely occurring state (s′, r′, x′) is
a state where the last transition was performed by the first component, so
x = 1. By just selecting from the run ρ(s,r,x) those transitions which are
followed by some state labeled with 1 and the first component of these states,
we can extract a run ρs of the first component. By a similar selection of the
first component from the same positions of ρ(t‖u), we can build an infinite
run of t. By our assumption these two runs follow each other, although ρs is
in W , ρt is not. But again by assumption tR1s, so we reach a contradiction.
Same argument then applies to u if k1 < j ≤ k2 + k1.

2

Theorem 5.2(B.8) See page 27.

Proof. This is similar to the proof of Lemma C.13 with the additional case of the
parallel composition.

Let ε(Γ � E)=((SE1
, A, −→3

E1
, −→2

E1
, W1), S1, λ1) and ε(Γ � t)= ((SE2

, A,
−→3

E2
, −→2

E2
, W2), S2, λ2) be constructed as defined in Figure B.3. The may and

must transitions of ε(Γ � t) coincide, and all colors are 0 since no maximal model
construction is done for this case.

v � S
⇐⇒ ∃s1 ∈ S1, r1 ∈ S2, x1 ∈ {1, 2}. v � (s1, r1, x1) (Construction)
⇐⇒ ∃t1, u1, s1 ∈ S1, r1 ∈ S2. v ≈ t1‖u1 ∧ t1 � s1 ∧ u1 � r1 (See below)
⇐⇒ ∃t1, u1. v ≈ t1‖u1 ∧ t1 ∈ JΓ � EKρ0

∧
u1 ∈ JΓ � tKρ0

(Induction Hypothesis)
⇐⇒ v ∈ JΓ � E‖tKρ0

We show the second equality in two directions:
(=⇒) For this case, t1 and u1 can be constructed inductively, using the state

space of (s1, r1, x1). The process u1 is to be chosen bisimilar to t. At each step we

95

know which component will make a transition through the last entry of the tuple,
x.

(⇐) Corollary of Lemma C.14. 2

Theorem 5.3(B.9) See page 27.

Proof. This is a direct corollary of Lemma C.13 and Lemma C.14. 2

Bibliography

[1] I. Aktug and D. Gurov. Verification of open systems based on
explicit state space representation. Technical report, ICT, KTH,
http://www.nada.kth.se/∽irem/sefros/techrep05.ps, August 2005.

[2] I. Aktug and D. Gurov. Verification of open systems based on explicit state
space representation. In AVIS’05: Proceedings of Automated Verification of
Infinite Systems, To appear, 2005.

[3] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672–713, 2002. ISSN 0004-5411.

[4] H. R. Andersen. Partial model checking. In Proceedings of The 10th Annual
IEEE Symposium on Logic in Computer Science, pages 398–407, 1995.

[5] O. Bernholtz and O. Grumberg. Branching time temporal logic and amor-
phous tree automata. In CONCUR ’93: Proceedings of the 4th International
Conference on Concurrency Theory, volume 715, pages 262–277, London, UK,
1993. Springer-Verlag.

[6] G. Boudol and K. G. Larsen. Graphical versus logical specifications. In André
Arnold, editor, CAAP ’90, 15th Colloquium on Trees in Algebra and Program-
ming, Copenhagen, Denmark, May 15-18, 1990, Proceedings, volume 431 of
Lecture Notes in Computer Science, pages 57–71. Springer-Verlag, 1990. ISBN
3-540-52590-4.

[7] J.C. Bradfield and C.P. Stirling. Local model checking for infinite state spaces.
Theoretical Computer Science, 96:157–174, 1992.

[8] D. Bustan and O. Grumberg. Applicability of fair simulation. In TACAS
’02: Proceedings of the 8th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 2280 of Lecture Notes in
Computer Science, pages 401–414. Springer-Verlag, 2002. ISBN 3-540-43419-4.

[9] S. Christensen. Decidability and Decomposition in Process Algebras. PhD
thesis, University of Edinburgh, 1993.

97

98 BIBLIOGRAPHY

[10] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Computer Aided Verification, volume 1855
of Lecture Notes in Computer Science, pages 154–169. Springer-Verlag, 2000.

[11] E.M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM-TOPLAS, 16(5):1512–1542, 1994. ISSN 0164-0925.

[12] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench. In
Proceedings of the international workshop on Automatic verification methods
for finite state systems, volume ??, pages 24–37, New York, NY, USA, 1990.
Springer-Verlag New York, Inc. ISBN 0-387-52148-8.

[13] M. Dam. Fixed points of Büchi automata. In FSTTCS ’92: Proceedings of 12th
Conference on Foundations of Software Technology and Theoretical Computer
Science, volume 652 of Lecture Notes in Computer Science, pages 39–50, 1992.

[14] M. Dam, L.-Å. Fredlund, and D. Gurov. Toward parametric verification of
open distributed systems. In H. Langmaack, A. Pnueli, and W.-P. de Roever,
editors, Compositionality: the Significant Difference, volume 1536 of Lecture
Notes in Computer Science, pages 150–185. Springer-Verlag, 1998.

[15] M. Dam and D. Gurov. Compositional verification of CCS processes. In PSI
’99: Proceedings of the Third International Andrei Ershov Memorial Confer-
ence on Perspectives of System Informatics, pages 247–256. Springer-Verlag,
2000. ISBN 3-540-67102-1.

[16] Mads Dam. Proving properties of dynamic process networks. Information and
Computation, 140(2):95–114, 1998.

[17] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In Proceedings of 32nd Annual Symposium on Founda-
tions of Computer Science, IEEE, pages 368–377. Computer Society Press,
1991.

[18] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking
using modal transition systems. In CONCUR ’01: Proceedings of the 12th In-
ternational Conference on Concurrency Theory, volume 2154 of Lecture Notes
in Computer Science, pages 426–440, 2001.

[19] O. Grumberg and D. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.

[20] O. Grumberg and S. Shoham. Monotonic abstraction-refinement for CTL. In
TACAS’04: Proceedings of the 10th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, volume 2988 of Lecture
Notes in Computer Science, pages 546–560. Springer-Verlag, 2004.

99

[21] D. Harel and A. Pnueli. On the development of reactive systems. 13:477–498,
1985.

[22] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the Association for Computing Machinery, pages 137–161,
1985.

[23] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A
foundation for three-valued program analysis. In ESOP ’01: Proceedings of the
10th European Symposium on Programming Languages and Systems, volume
2028, pages 155–169, London, UK, 2001. Springer-Verlag. ISBN 3-540-41862-8.

[24] R. Kaivola. On modal mu-calculus and Büchi tree automata. Information
Processing Letters, 54(1):17–22, 1995.

[25] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[26] O. Kupferman and M. Vardi. An automata-theoretic approach to modular
model checking. ACM Transactions on Programming Languages and Systems,
22(1):87–128, 2000.

[27] O. Kupferman and M. Y. Vardi. Robust satisfaction. In CONCUR ’99: Pro-
ceedings of the 10th International Conference on Concurrency Theory, volume
1664 of LNCS, pages 383–398, London, UK, 1999. Springer-Verlag. ISBN 3-
540-66425-4.

[28] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. Journal of ACM, 47(2):312–360, 2000. ISSN
0004-5411.

[29] K. G. Larsen. Modal specifications. Automatic Verification Methods for Finite
State Systems, pages 232–246, 1989.

[30] F. Martinelli. Analysis of security protocols as open systems. Theor. Comput.
Sci., 290(1):1057–1106, 2003. ISSN 0304-3975.

[31] F. Martinelli. Analysis of security protocols as open systems. Theoretical
Computer Science, 290(1):1057–1106, 2003. ISSN 0304-3975.

[32] A. W. Mostowski. Regular expressions for infinite trees and a standard form
of automata. Computation Theory, 208:pages 157–168, 1984.

[33] D. E. Muller and P. E. Schupp. Alternating automata on infinite objects,
determinacy and rabin’s theorem. In Automata on Infinite Words, Ecole de
Printemps d’Informatique Théorique,, volume 192, pages 100–107, London,
UK, 1985. Springer-Verlag. ISBN 3-540-15641-0.

100 BIBLIOGRAPHY

[34] A. Pnueli. In transition for global to modular temporal reasoning about pro-
grams. In K.R. Apt, editor, Logics and Models of Concurrent Systems, vol-
ume 13 of NATO ASI Series. Springer, 1984.

[35] C. Sprenger, D. Gurov, and M. Huisman. Compositional verification for secure
loading of smart card applets. In C. Heitmeyer and J.-P. Talpin, editors, Proc.
MEMOCODE’04, pages 211–222. IEEE, 2004.

[36] C. Stirling. Modal and Temporal Properties of Processes. Texts in Computer
Science. Springer-Verlag, 2001. ISBN 0-387-98717-7.

[37] W. Thomas. Handbook of Theoretical Computer Science (vol. B): Formal Mod-
els and Semantics, chapter Automata on Infinite Objects, pages 133–191. MIT
Press, Cambridge, MA, USA, 1990.

