
Settling the Intractability of Multiple Alignment

Isaac Elias

Dept. of Numerical Analysis and Computer Science,
Royal Institute of Technology, Stockholm, Sweden

isaac@nada.kth.se

Abstract. In this paper some of the most fundamental problems in
computational biology are proved intractable. The following problems
are shown NP-hard for all binary or larger alphabets under all fixed
metrics: Multiple Alignment with SP-score, Star Alignment, and
Tree Alignment (for a given phylogeny). Earlier these problems have
only been shown intractable for sporadic alphabets and distances, here
the intractability is settled. Moreover, the construction can be extended
to prove NP-hardness results for Consensus Patterns and Substring

Parsimony.

1 Introduction

Multiple sequence alignment is at the very core of many computational problems
in molecular biology. Different variations of multiple sequence alignment occur
in areas such as protein structure prediction, phylogeny (inference of evolution-
ary history among species), and localization of functionally important units in
biological sequences. As the field of bioinformatics grows these problems, and
several of their variations, become increasingly important. Although the results
in this paper are not surprising, the significance of the problems make the results
both interesting and important.

The evolutionary process is driven by mutation and natural selection. DNA
sequence similarity is therefore a good indication of common evolutionary origin
and function. With pairwise alignment two sequences are aligned while allowing
errors such as substitutions, insertions and deletions of symbols. The idea is that
these errors model the mutations occurring in DNA sequence replication.

Multiple alignment is the natural extension of pairwise alignment, and also a
much more powerful tool. Typically, when sequence similarity is weak, multiple
alignment may find similarities which pairwise alignments would not. However,
pairwise alignment is solvable in polynomial time and multiple alignment is
“not”.

Many scoring schemes have been suggested to measure the cost of a multiple
alignment. In this paper the focus is on the sum-of-pairs score (SP-score), Star

Alignment, and Tree Alignment. The three scoring schemes are in many
aspects different and are therefore considered as separate problems.

In [1] Wang and Jiang gave a short NP-hardness proof for the SP-score under
a non-metric distance measure over a 4 symbol alphabet. This result was then

T. Ibaraki, N. Katoh, and H. Ono (Eds.): ISAAC 2003, LNCS 2906, pp. 352–363, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 824.882] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Settling the Intractability of Multiple Alignment 353

improved by Bonizzoni and Vedova [2], who showed that the problem is NP-hard
for the binary alphabet and a specific metric. The result was extended further by
Just [3] to cover many metrics, and also under some non-metrics the problem was
proved APX-complete. However, all metrics were not covered and in particular
not the unit metric. We build on some of the ideas developed by Bonizzoni and
Vedova to show that the problem is intractable for all binary or larger alphabets
under any metric.

In [1] Star Alignment was proved to be APX-complete over a 7 symbol
alphabet, however the symbol distance did not have the property of identity nor
that of triangle inequality. In [4] Li et al. gave a PTAS and an NP-hardness result
under the unit metric for a version of Star Alignment in which there was a
restriction on the number of gaps. Moreover, in [5] the problem was proved NP-
hard for a 6 symbol metric. Wang and Jiang also proved that Tree Alignment

is NP-hard for a specific metric over a 4 symbol alphabet. Later in two companion
papers [6,7] they gave a couple of nice PTASs working for all metrics. In this
paper both problems are proved intractable for all binary or larger alphabets
under any metric, thereby settling the complexity1 of Tree Alignment. We
emphasize that hardness results for non-metrics are easier to come by and that
these do not cover the problems considered in practice. Moreover, by considering
metrics in general, this paper covers most, if not all, variations occurring in
practice.

Rather than finding a consensus for the strings as a whole it is sometimes
of biological interest to focus on the consensus of well conserved regions, e.g.
in gene regulation. A well conserved region in biological sequences relates to
a functionally important unit. Consensus Patterns and Substring Parsi-

mony are natural formalizations of the problem of finding the most conserved
region. While our NP-hardness result for Substring Parsimony is new, Con-

sensus Patterns has earlier been proved NP-hard [8,9,10] and W[1]-hard in
[11]. The constructions in both proofs are similar to that of Star Alignment

and can be found in [12].
In the following section Multiple Alignment with SP-score is proved to be

NP-hard for binary or larger alphabets under the unit metric, the result for all
metrics is achieved by a slight modification and is given in [12]. Then in Sect. 3
Star Alignment and Tree Alignment are proved to be NP-hard for binary
or larger alphabets under any metric.

2 Multiple Alignment with SP-Score Is NP-Hard

In this paper a string is a sequence of symbols from an alphabet Σ, typi-
cally Σ = {0, 1} . A pairwise alignment of two strings s1 and s2 is a 2 × l
matrix A, where row one and two contain strings s1 and s2 interleaved by
spaces, respectively. The spaces are represented by the symbol ′−′ �∈ Σ. By
the cost of A we mean dA(s1, s2) =

∑l
i=1 µ(r1[i], r2[i]), where r1 and r2 are the

1 All problems considered in this paper have polynomially bounded optimal solutions
and therefore an FPTAS can not exist unless P=NP.

354 I. Elias

rows in A and µ a predefined metric for symbols from the extended alphabet
Σ∪{−}. We call the least such cost, denoted d(s1, s2), the evolutionary distance.

Table 1.

0 1 –
0 0 α β
1 α 0 γ
– β γ 0

The most simple of metrics, the unit metric, is the met-
ric in which all non-zero distances are exactly 1. The cost
of the minimum pairwise alignment under the unit metric
is also referred to as the edit distance for strings. The edit
distance is simply the minimum number of edit operations
(substitutions, insertions, and deletions) needed to transform
one of the strings into the other. In Table 1 the metric for
the extended binary alphabet is depicted (the variables will
reappear later).

Definition 1 (Multiple Alignment with SP-score). A multiple alignment
of a set S of k strings, is a k × l matrix A where row i contains string si inter-
leaved by spaces. The SP-score (sum-of-pairs) for a multiple alignment is the sum
of all pairwise distances between rows in the alignment;

∑k
i=1

∑k
j=i dA(si, sj).

Multiple Alignment with SP-score is the problem of finding a minimum align-
ment under the SP-score.

The main theorem of this section is Theorem 1 which states that Multiple

Alignment with SP-score is NP-hard under all metrics. However, to convey the
proof, a restricted case of the problem is shown NP-hard, Corollary 1. The full
proof requires only a slight modification and is given in [12]. Some of the ideas
in the construction2 is by Bonizzoni and Vedova [2].

Theorem 1. The decision version of Multiple Alignment with SP-score is
NP-complete for the binary alphabet under each metric. (Proof in [12])

Corollary 1. The decision version of Multiple Alignment with SP-score is
NP-complete for the binary alphabet under the unit metric. (Proof below)

First the reduction is presented and on page 356 its correctness is proved.
The reduction is from Independent Set in 3-regular graphs: Independent

R3 Set
3. Let V = {v1, . . . , vn} be the vertices of the graph and E ⊆ {(vi, vj) :

1 ≤ i < j ≤ n} the edges. From now on we reserve n for |V |, m for |E|, and c
for the decision limit of the Independent R3 Set instance.

The decision version of the Multiple Alignment instance has a set of
strings S = T ∪ P ∪ C and a decision limit K. It will be shown that there is an
independent set of size c if and only if there is an alignment of S of cost K.

Let b = 6nm2; a number chosen big enough to have a dominating effect in
the alignment. In S there are b template strings T , which force every optimum
alignment to have a canonical structure, illustrated in Table 2. All template
2 Bonizzoni and Vedova made a similar reduction from Vertex Cover. Although

they conjectured that it could be improved to cover an ultra metric, they did not
consider the unit metric or, more importantly, metrics in general.

3 In [13,14] Independent Set is shown to be NP-complete even for graphs with degree
bounded by 3. It is a simple matter to extend the result to 3-regular graphs.

Settling the Intractability of Multiple Alignment 355

strings are identical to T = (10b)n−1. Since they are identical, they are also
aligned identically in every optimum alignment. In the canonical alignment the
1’s in column (b + 1)(i − 1) + 1 play the role of vertex vi in the graph. For this
reason we refer to the column as the i’th vertex column.

In S there are also b = |P| identical pick strings P = 1c. For the same
reason as for the template strings, these are aligned identically. Moreover, in any
optimum alignment the 1’s in the pick strings are aligned in those columns with
the most 1’s, which are the vertex columns. Thus the pick strings pick c of the
n vertices to be part of the independent set (in Table 2 vertex v2 is picked).

Table 2. A canonical alignment for the complete graph with four vertices. Since v2 is
the only vertex column containing three 1’s from the constraint strings, the pick strings
are aligned to pick v2.

v1 v2 v3 v4
|T | = b 1 0. . . 0. . . 1 0. . . 0. . . 1 0. . . 0. . . 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 0. . . 0. . . 1 0. . . 0. . . 1 0. . . 0. . . 1

|P| = b 1

.

.

.

1

C12 0 0. . . 10. . . 1 0. . . 0. . . 0 0. . . 0. . . 0 0. . .

C13 0. . . 1 0. . . 0. . . 0 0. . . 10. . . 0 0. . . 0. . . 0

C14 0 0. . . 10. . . 0 0. . . 0. . . 0 0. . . 0. . . 1 0. . .

C23 0. . . 0 0. . . 0. . . 1 0. . . 10. . . 0 0. . . 0. . . 0

C24 0. . . 0 0. . . 0. . . 1 0. . . 0. . . 0 0. . . 10. . . 0

C34 0. . .︸︷︷︸ 0 0. . . 0. . . 0 0. . . 0. . . 1 0. . . 10. . . 0 ︸︷︷︸
4n 0’s 4n 0’s

There are also m constraint strings C in S, one for each edge. The constraint
string for edge (vi, vj) ∈ E is the string

Cij = 04n(00b)i−110b−4n(00b)j−i−110b(00b)n−j−1004n.

That is, Cij has two 1’s and is 4n longer than the template strings (|Cij | =
5n + b(n − 1)). The string Cij can be constructed from T by setting all but
the i’th and j’th vertex positions to 0, adding 4n 0’s to the beginning and end
and removing 4n 0’s from in between the i’th and j’th vertex position. This
structure ensures that only one of the two 1’s can be aligned in its associated
vertex column. The 1 that is not aligned in its vertex column is not part of
the independent set. (In Table 2 vertex v1 is selected not to be part of the
independent set by both the alignment of rows C12 and C14.)

We now formally define the canononical alignment illustrated in Table 2.

Definition 2 (Canonical Alignment). A canonical alignment is an align-
ment in which; (1) the template strings are aligned identically, (2) the pick
strings are aligned identically and their 1’s are in vertex columns, (3) each con-
straint string is aligned with the template strings so that 4n of its first or last
0’s are matched with spaces and the rest with symbols of the template strings.

356 I. Elias

We use d(T , P) to denote the sum of pairwise distances between rows
(the alignment matrix is implicit) associated with strings in T and P, i.e.
d(T , P) =

∑
t∈T

∑
p∈P d(t, p). With this notation the total cost of the align-

ment is 1
2d(S, S).

Since S = T ∪ P ∪ C the cost of any alignment is

1
2
d(S, S) =

1
2
d(T , T) + d(T , P) + d(T , C) +

1
2
d(P, P) + d(P, C) +

1
2
d(C, C).

Below we consider each pairwise distance to get the value of the decision limit
K. That is, K is chosen so that there is an alignment of cost K if and only if
there is an independent set of size c.
A1. d(T , T) = 0 in any optimum alignment and in any canonical alignment.
A2. d(T , P) = (n − c + b(n − 1))b2 in any optimum alignment and in any
canonical alignment. All 0’s and n − c 1’s are matched with spaces for each pair
of template and pick strings.
A3. d(T , C) ≥ (4n + n)bm is the sum of minimum pairwise costs and also the
cost in any canonical alignment. One of the two 1’s in each constraint string is
aligned in its associated vertex column. Thus 4n 0’s are matched with spaces
and n 1’s are matched with 0’s for each pair of template and constraint string.
A4. d(P, P) = 0 in any optimum alignment and in any canonical alignment.
A5. d(P, C) ≥ (5n + b(n − 1))bm − c3b gives a lower bound for all canonical
alignments. Remember, the graph is 3-regular and hence there can at most be
three 1’s from the constraint strings in the columns picked by the strings in
P. It is clear that if there is an independent set of size c then there also is a
canonical alignment for which equality holds. Moreover, the minimum possible
cost of d(P, C) in any alignment is (5n + b(n − 1))bm − 2bm, which happens if
both 1’s of each constraint string are aligned with a 1 from the pick strings.
A6. 1

2d(C, C) < (8n + 4)m(m − 1)/2 < 5nm2 in any canonical alignment. In a
canonical alignment at most 8n 0’s are matched with spaces and at most 4 1’s
are matched with 0’s for each pair of constraint strings.

Summing all these we get the value for the decision limit;

K = (n − c + b(n − 1))b2 + (4n + n)bm + (5n + b(n − 1))bm − c3b + 5nm2.

Note that the equalities in A1-A4 are achieved by every canonical alignment.
Equality in A5 is achieved by every canonical alignment describing an indepen-
dent set of size c. A6 provides an upper bound for the constraint strings in every
canonical alignment.

Proof (Corollary 1). Clearly Multiple Alignment ∈ NP. Moreover, K was
chosen in such a manner that if there is an independent set of size c then there is
an alignment of cost K. Below the opposite is proved; if there is no independent
set of size c then there is no alignment of cost K.

Assume that there is no independent set of size c. We first show that there
can not be a canonical alignment with cost K. Consider a canonical alignment,
since there is no independent set of size c, there has to be at least one column,
selected by the pick strings, which does not contain three 1’s from the constraint

Settling the Intractability of Multiple Alignment 357

strings. Thus, the cost of d(P, C) ≥ (5n+ b(n− 1))bm− c3b+ b, i.e. compared to
the lower bound in A5 there is an additional cost of at least b. Thereby the cost
of the alignment is at least K − 5nm2 + b > K. Notice that we have disregarded
the cost of 1

2d(C, C) ≥ 0 and only considered A1-A5. Therefore, the cost of any
canonical alignment is more than K.

The proof is completed by showing that there is no alignment of cost K.
Recall that the equalities in A1, A2, and A4 are achieved by any optimum
alignment and that the contribution of d(T , C) can be no less than in A3. Thus
for an optimum alignment to have cost ≤ K the contribution of d(P, C) has to be
made smaller. There are two cases in which this is possible and in each case we
show that there exists a better canonical alignment, a contradiction. Essentially;
aligning the constraint strings in a non-canonical fashion to improve d(P, C) is
penalized by d(T , C).
(i) Assume that there are r constraint strings aligned such that one of their 1’s
is in an unassociated vertex column. That is, if Cij is such a string then one of its
1’s is in the k’th vertex column for k �= i, j. Then the cost of d(P, C) + 1

2d(C, C)
can be at most 2br + 5nm2 less than in a canonical alignment. However, the
cost of d(T , C) is at least 2(b − 4n − 1)br more than in a canonical alignment;
due to a gap of ≥ b − 4n. Since 2(b − 4n − 1)br > 2br + 5nm2 the alignment is
not optimum.
(ii) Assume that there are r constraint strings aligned such that both of their
1’s are in associated vertex columns. That is, if Cij is such a string then the
first of its 1’s is in the i’th vertex column and the other in the j’th. As above
d(P, C) + 1

2d(C, C) is at most 2br + 5nm2 less than in a canonical alignment.
However, the cost of d(T , C) becomes ≥ (8n − 2)br more than in a canonical
alignment; due to a gap of 4n positions. Since (8n − 2)br > 2br + 5nm2 the
alignment is not optimum. ��

3 Star Alignment and Tree Alignment Are NP-Hard

In this section Star Alignment and Tree Alignment are proved NP-hard
for all binary or larger alphabets under any metric. Both reductions are from
Vertex Cover and have very similar constructions. The metric is depicted in
Table 1. We assume w.l.o.g. that β ≤ γ and that 1 ≤ min(α, β). Due to space
limitations we have, in this version of the paper, omitted the proof of the special
case α = β + γ. From now on we assume that α < β + γ. Moreover, we have
omitted the proofs of several technical lemmas, these can be found in [12].

Lemma 1 (Triangle inequality for strings). If the symbol distance, µ, is a
metric then the distance for strings defined by the cost of pairwise alignments
w.r.t. µ satisfies the triangle inequality.

3.1 Star Alignment Is NP-Hard

Below we formally define the problem. The reader should notice the relation to
Steiner trees and that the Steiner tree is restricted to be a star.

358 I. Elias

Definition 3 (Star Alignment). Given a set of strings S, Star Alignment

is the problem of finding a string c (called a Steiner string) minimizing the sum
of pairwise alignments between c and the strings in S, i.e.

∑
s∈S d(c, s).

The reduction is from Vertex Cover and the construction, given in Table
3 and Fig. 1, has three types of components; base components, selection compo-
nents, and one ground component. A general outline of the construction is given
below (see 1-3). Let G = (V, E) be the graph of the Vertex Cover instance,
n = |V |, and m = |E|.
(1) There are r base components, definition below, ensuring that the optimum
Steiner string is a string in which there are n vertex positions. A 1 in vertex
position i corresponds to the i’th vertex being part of the vertex cover. That is,
the optimum Steiner string corresponds to a subset V ′ of the vertices.
(2) There are m selection components, definition below, one for each edge. These
components ensure that there for each edge (vi, vj) is a 1 in either the i’th or the
j’th vertex position of the Steiner string. That is, the optimum Steiner string
corresponds to a vertex cover V ′.
(3) The ground component, definition below, minimizes the number of 1’s in
vertex positions. That is, the optimum Steiner string corresponds to a minimum
vertex cover V ′.

Fig. 1. Construction for Star

Alignment. See 1–3 above for
an outline of the components.
The strings are from Table 3.

E
G

G
E

r base
components

Sij
E

E
Si′j′

m selection
components

G

Base Components. The optimum Steiner string is base string and is of the
form DDCDD; where C is a cover string and the D’s are delimiter strings, see
Table 3. A cover string consists of n consecutive blocks, each being B0 or B1.
If the i’th block is B1 then this corresponds to the i’th vertex being part of the
cover. In B0 = P0P and B1 = P1P the 0 and 1, respectively, are in the so
called vertex position. For the construction to work for all metrics the size of the
paddings, denoted by P , depends on the metric. Let

s ≥ (n + 1) ·
⌈max(α, γ)

min(α, β)

⌉
, (1)

and let P = 0s1s0s. The delimiter strings consists of |C| 1’s: D = 1|C|.
In the construction there are sufficiently many special pairs of base strings,

called base components, to ensure that the optimum Steiner string is a base

Settling the Intractability of Multiple Alignment 359

Table 3. An overview of the strings in the construction (s is from Eq. 1). Each string
is formally introduced below. The general idea though is that there is a one-to-one
correspondance between the optimum vertex covers and the optimum Steiner strings
which are base strings.

Name Notation Form Length
Padding P 0s1s0s 3s
1-Block B1 P1P 2|P | + 1
0-Block B0 P0P 2|P | + 1
Vertex string Vi Bi−1

0 B1B
n−i
0 |B0|n

Delimiter string D 1|Vi| |B0|n
Cover string C (B1|B0)n |D|
Selection string Sij ViDVj 3|D|
Enforcer string E DD Bn

1 DD 5|D|
Ground string G DD Bn

0 DD 5|D|
Base string DDCDD 5|D|

string. The string pair in a base component consists of one enforcer string and
one ground string, defined by E = DDBn

1 DD and G = DDBn
0 DD, respectively.

The important properties of the base components are given in the lemma below.

Lemma 2 (Base components). (1) The only optimum alignment of an en-
forcer string and a ground string is the direct match. That is, in the direct match
the i’th symbol of E is aligned with the i’th symbol of G, thus d(E, G) = nα.

(2) If d(E, x) + d(G, x) < d(E, G) + min(α, β, β + γ − α) and α < β + γ,
then x is a base string.

Selection Components. Each edge (vi, vj) in the vertex cover instance is
represented by a selection component. A selection component for the edge
(vi, vj) consists of two strings, one enforcer string E and one selection string
Sij = ViDVj , where Vi = Bi−1

0 B1B
n−i
0 . The important properties of the compo-

nent are given in the lemma below. According to the lemma d(E, x) + d(Sij , x)
is minimized if and only if x is a base string in which block i or j is B1. Cor-
respondingly, for each edge (vi, vj) in the Vertex Cover instance vertex vi or
vj have to be part of the cover.

Lemma 3 (Selection component). (1) The cost of an optimum alignment of
an enforcer string and a selection string is d(E, Sij) = 2|D|γ + (4ns + 2n − 2)α.

(2) If x is a base string and d(E, x) + d(Sij , x) = d(E, Sij), then the i’th or
j’th block of x is B1. Moreover, if x is a base string in which both block i and j
are B0 then d(E, x) + d(Sij , x) = d(E, Sij) + 2α.

Ground Component. The ground component is simply one single ground
string. For each B1 block in the Steiner string the ground component adds an
additional cost to the alignment. In other words, the fewer vertices that are
selected the smaller the cost.

360 I. Elias

Lemma 4. If x is a base string and z the number of B1 blocks in x, then
d(G, x) = zα.

The Completeness Proof.

Theorem 2. The decision version of Star Alignment is NP-complete for the
binary alphabet under all metrics in which α < β + γ.

Proof. Clearly Star Alignment ∈ NP. As Fig. 1 indicates, the alignment in-
stance has 2m + 2r + 1 strings; one selection component per edge, r base com-
ponents, and one ground component. Let

r = n
⌈ max(α, γ)
min(α, β, β + γ − α)

⌉
(2)

and the decision limit

K = m ·
(
2|D|γ +

(
4ns + 2n − 2

)
α
)

+ r · αn + αc,

where c is the decision limit of the Vertex Cover instance.
We now show that an optimum Steiner string corresponds to a minimum

vertex cover, and vice versa. If the Steiner string is a base string corresponding
to the cover V ′ then the cost of the star alignment is

m · d(E, Sij)
︸ ︷︷ ︸

selection comp., Lem. 3

+ r · d(E, G)
︸ ︷︷ ︸

base comp., Lem. 2

+ α|V ′|
︸ ︷︷ ︸
ground

, (3)

which is strictly decreasing in the size of the cover, |V ′|. Clearly, by lemmas
2, 3, and 4, if there exists a cover of size c then there is alignment of cost
K. In particular, there is always an alignment of the same cost as above with
|V ′| = n − 1.

Let s∗ be an optimum Steiner string.
(i) Assume that s∗ is not a base string. By Lemma 2 the cost of the base com-
ponents is r(d(E, s∗)+d(G, s∗)) ≥ rαn+n max(α, γ). Moreover, the cost of the
selection components is at least m · d(E, Sij). Since this is more than the upper
limit of (3) this contradicts the optimality of s∗.
(ii) Assume that s∗ does not correspond to a cover. Then there is a selection
string Sij such that both block i and j of s∗ is B0. By Lemmas 2, 3, and 4, we
could exchange block i or j for B1 and thereby improve the cost, contradicting
the optimality of s∗.

Since (3) is strictly decreasing in the size of the cover we have shown that
the optimum Steiner string corresponds to a minimum vertex cover. Clearly, the
reduction is polynomial. Hence Star Alignment is NP-hard for the binary
alphabet under metrics in which α < β + γ. ��

Settling the Intractability of Multiple Alignment 361

3.2 Tree Alignment Is NP-Hard

A full labeling of a tree is a function assigning strings to all vertices of the tree.
Similarly a leaf labeling is a function assigning labels to the leafs. The length of
an edge (u, v) in a labeled tree is the cost of the minimum pairwise alignment of
the labels at u and v.

Definition 4 (Tree Alignment). For a leaf labeled tree of bounded degree a
tree alignment is a full labeling of the tree, such that the leafs are labeled according
to the leaf labeling. Given a leaf labeled tree, Tree Alignment is the problem
of finding a minimum cost full labeling, where the cost is the sum of all edge
lengths.

The construction for Tree Alignment (Fig. 2) is very similar to that of Star

Alignment. Only some additional arguments to handle the tree structure are
required.

Fig. 2. Construction for
Tree Alignment. There
are m branches (one for each
edge), each branch has r base
components and one selection
component. Moreover, in
between each branch there
are r base components. G

SijE

E G

E G

r base
comp.

Si′j′E

E G

E G

r base
comp.

�

m branches

E G

E G

r base comp. inbetween
each branch

Theorem 3. The decision version of Tree Alignment is NP-complete for
the binary alphabet under all metrics in which α < β + γ.

Proof. Clearly Tree Alignment ∈ NP. As Fig. 2 indicates, the alignment in-
stance consists of a tree with 2m + 2r(2m − 1) + 1 leaves. Let r be as in (2)
in the previous proof. For each edge, in the vertex cover instance, there is a
branch with one selection component and r base components (see the figure for
details). Moreover, each such branch is separated by r base components. As in
the proof for Star Alignment there is also one ground component. Moreover,
the alignment instance has a decision limit

K = m
(
2|D|γ +

(
4ns + 2n − 2

)
α
)

+ r(2m − 1)αn + αc,

where c is the decision limit of the Vertex Cover instance.

362 I. Elias

If x is a base string corresponding to a cover V ′, then the cost of the alignment
in which all internal vertices are labeled with x is

m · d(E, Sij)
︸ ︷︷ ︸
selection comp.

+ r(2m − 1) · d(E, G)
︸ ︷︷ ︸

base comp.

+ α|V ′|
︸ ︷︷ ︸
ground

. (4)

If |V ′| ≤ c then the alignment has cost ≤ K (follows from lemmas 2,3, and 4).

Fig. 3. (A) Part of a branch in the construction. All vertices incident to base compo-
nents are labeled with the same base string. (B) The vertex connecting a branch is
labeled with a base string. (C) The vertex in a selection component is labeled with a
base string.

We now show that there is a vertex cover of size c if there is an alignment
of cost at most K. This is done by proving that there is an optimum alignment
in which each vertex is labeled with the same base string x, corresponding to a
cover. Since (4) is strictly decreasing in |V ′|, x corresponds to a minimum cover.
The proof is in two steps: (i) in every optimum alignment all labels are base
strings, (ii) using (i) we show that there is an optimum labeling with a base
string corresponding to a cover.
(i) Consider an optimum alignment. We show that if not all internal vertices
are labeled with base strings then the alignment is not optimum. According to
Lem. 2, if a vertex incident (e.g. vertex c in Fig. 3A) to a base component is
not labeled with a base string, then the cost of that base component is at least
d(E, G) + min(α, β, β + γ − α). There are r base components on each branch.
Thus at least one of the vertices incident to the base components is labeled with
a base string. Otherwise, since the contribution of these components is

r(d(E, G) + min(α, β, β + γ − α)) > rd(E, G) + nα,

the alignment is not optimum, i.e. nα more than in (4).
Let the vertices a,b,c, and b′, in Fig. 3A be labeled with the strings sa,sb,sc,

and sb′ , respectively. We show that if sc is a base string then so is sb, which
inductively implies the claim. Assume that sb is not a base string. Then by
exchanging the label at both b and b′ for sc we achieve a better alignment, a
contradiction. This is a direct consequence of the triangle inequality (Lem. 1)
and the properties of the base component (Lem. 2).

It remains to show that the vertices connecting the branches and the vertices
connected with the leafs of a selection component are labeled with base strings,
i.e. the vertices in Fig 3B and 3C. A detailed proof of this fact is given in [12].

Settling the Intractability of Multiple Alignment 363

(ii) We show that there is an optimum alignment in which all internal vertices
are labeled with a base string x, corresponding to a cover. Consider an optimum
alignment in which all labels are base strings. Then x is created so that ∀i ∈ [1, n]
if the i’th block is B1 in any of the labels in the optimum alignment then the i’th
block in x is also B1. The labeling with x is still optimum because: (1) base strings
are aligned symbol by symbol, (2) triangle inequality holds for symbols, and (3)
only the cost at the ground is effected by B1 blocks. Thus with the labeling with
x all missmatches occuring in vertex positions have been transfered to the edge
incident to the ground. Moreover, for each selection string Sij the i’th or j’th
block of x is B1, hence x corresponds to a cover.

Clearly, the reduction is polynomial. Consequently, Tree Alignment is NP-
hard for the binary alphabet under any metric in which α < β + γ. ��

Acknowledgments. I am very grateful for the help and support that I have
received from my supervisor Prof. Jens Lagergren. Without him this paper would
not have been written. Moreover, I would like to thank an anonymous referee of
an earlier version of this paper for many valuable comments.

References

1. L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J.
Comput. Bio., 1:337–348, 1994.

2. P. Bonizzoni and G. D. Vedova. The complexity of multiple sequence alignment
with SP-score that is a metric. TCS, 259(1–2):63–79, 2001.

3. W. Just. Computational complexity of multiple sequence alignment with sp-score.
Journal of Computational Biology, 8(6):615–623, 2001.

4. M. Li, B. Ma, and L. Wang. Finding similar regions in many strings. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC’99),
pages 473–482, New York, May 1999. Association for Computing Machinery.

5. J. S. Sim and K. Park. The consensus string problem for a metric is np-complete.
Journal of Discrete Algorithms, 2(1), 2001.

6. L. Wang, T. Jiang, and E. L. Lawler. Approximation algorithms for tree alignment
with a given phylogeny. Algorithmica, 16(3):302–315, September 1996.

7. L. Wang, T. Jiang, and D. Gusfield. A more efficient approximation scheme for
tree alignment. SIAM Journal on Computing, 30(1):283–299, February 2001.

8. M. Li, B. Ma, and L. Wang. Finding similar regions in many sequences. accepted
by Journal of Computer and System Sciences, July 2001.

9. M. Blanchette, B. Schwikowski, and M. Tompa. Algorithms for phylogenetic foot-
printing. J. Comput. Bio., 9(2):211–223, 2002.

10. T. Akutsu. Hardness results on gapless local multiple sequence alignment. Tech-
nical Report 98-MPS-24-2, 1998.

11. M. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability
of CLOSEST SUBSTRING and related problems. In STACS, 2002.

12. I. Elias. Settling the intractability of multiple alignment. Technical Report TRITA-
NA-0316, Nada, KTH, 2003.

13. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991.

14. P. Berman and T. Fujito. On approximation properties of the independent set
problem in degree 3 graphs. Lecture Notes in Computer Science, 955:449ff, 1995.

	Introduction
	textsc {Multiple Alignment} with SP-Score Is NP-Hard
	textsc {Star Alignment} and textsc {Tree Alignment} Are NP-Hard
	textsc {Star Alignment} Is NP-Hard
	textsc {Tree Alignment} Is NP-Hard

