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Abstract. We present an approach to derive individual preferences in
the use of landmarks for route instructions in a city environment.1 Each
possible landmark that a person can refer to in a given situation is mod-
elled as a feature vector, and the preference (or salience) associated with
the landmark can be computed as a weighted sum of these features. The
weight vector, representing the person’s personal salience model, is auto-
matically derived from the person’s own route descriptions. Experiments
show that the derived salience models can correctly predict the user’s
choice of landmark in 69% of the cases.

1 Introduction

Automatically providing real-time route instructions to city pedestrians is an
increasingly important problem, as more and more people have smartphones with
GPS receivers. Such wayfinding systems use data from a geographic database to
construct a route from the user’s starting position to his stated goal, and then
give the instructions as the user is moving: When the user reaches a node pi in
the planned route, the system informs the user how he should go to get to the
next node pi+1. Obviously, it is vital that each instruction is unambiguous and
understandable, lest the user takes a wrong turn.

It would be preferable if wayfinding systems would base their instructions on
landmarks, by which we understand distinctive objects in the city environment,
since it is well established that it is predominantly by landmarks people describe
routes to one another (see e.g. [2]). However, even on this basic premise, there
are a number of options to consider. At each decision point, there are a number
of possible landmarks to choose from, and which one(s) to use in a specific route
instruction is a difficult problem. In the literature, it is generally assumed that
the candidate landmarks can be assigned a salience measure, by which they can
be compared, and the most salient features are also the most suitable to use
in route descriptions. Many researchers have proposed schemes for computing
salience from a variety of factors (see e.g. [3, 6, 9]).

In this article, we investigate to what extent salience computations can be
data-driven, that is, (semi-)automatically estimated from human route descrip-
tions. Our aim is to create empirically motivated personalized salience models,
and integrate them into our spoken-dialogue system for city exploration [1]. Two

1 Supported by the European Commission, project Spacebook, grant no 270019.



hypotheses underlie our work: Firstly, that salience is user-dependent . Secondly,
if a user is asked to give a routing instruction in a specific situation, he would
do so using the landmarks he himself thinks are most salient.

The second hypothesis suggests a kind of tuning mechanism for a wayfinding
system: Before being guided by the system, the user first walks around and
describes the way he is going by means of landmarks. The system interprets
the user’s descriptions and uses them to derive a personalized salience model,
which can later be used when guiding the same user in other parts of the city.
The present paper presents a preliminary study showing that this idea is indeed
viable.

2 Deriving Salience Models

For the learning of salience models, we use the Large Margin Algorithm, intro-
duced in [4]. Each landmark can be described as a vector of numerical features,
x = (x1, . . . , xn) specifying costs along n dimensions. The dimensions might rep-
resent scalar attributes such as distance, or categorical attributes (e.g. 1 if the
landmark is a restaurant, 0 if it is not). The salience s(x) is a linear combination
w · x, where w = (w1, . . . , wn) is the salience model that specifies the relative
importance of the different features for the user. Naturally we do not assume
that the user knows the values of his salience model, or indeed even that such a
model exists. Instead we automatically infer the model as follows:

Whenever a person uses a landmark A in a description, he is preferring A
over a number of other candidates that could have been used in the description
but were not. That is to say that A has a lower cost according to the person’s
personal salience model than has any other candidate B, i.e. w · (xB −xA) > 0,
where xA and xB are the vectors representing A, and B, respectively. Each
route description from the user involving a landmark thus generates a number
of inequalities, all in the form w · (xBi

− xAi
) > 0, for 1 ≤ i ≤ m. Our goal is

to find appropriate values for the weights in w that satisfy all these inequalities.
This can be done by solving the following linear optimization problem, e.g. with
the Simplex method [7]:

minimize
n∑

j=1

wj

subject to w · (xBi
− xAi

) ≥ 1, 1 ≤ i ≤ m
wj ≥ 0, 1 ≤ j ≤ n

This formulation of the problem assumes that a person is always consistent in
his preferences. For the case he is not, we use a slightly extended version of the
basic Large Margin Algorithm (see [4] for details).

3 Problem Description and Encoding

Consider the example in Figure 3. The figure shows a situation in one of our
experiments where the subject chooses to describe the way using a supermarket,
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Fig. 1. An example route segment from A to B. The squares represent the landmarks
in the contexts of A and B. L represents a landmark referred to by the user (a super-
market).

indicated by the larger square: “and then when you’ve reached a crossroad [. . . ]
you turn to your left and you’ll see there’s gonna be an ica, a foodstore, and a
little bit further down the road there’s gonna be a bus stop”. In the figure, the
“crossroad” is indicated by “A”, and the bus stop by “B”.

Every landmark belongs to the context of its closest node. When describing
the way from A (the starting node of the segment) to B (the goal node of the
segment), all landmarks in the contexts of these two nodes are possible referents.
We will refer to this set of landmarks as the candidate set for A and B. This set
is visualized as square-shaped icons in the figures. The candidate set is obtained
from the OpenStreetMap (osm) geographic database [5].

The method described in Section 2 requires every landmark L to which the
user can refer to be modelled as a vector of features. In this experiment, we
use a vector of 12 features that are computable from our geographic database.
These features form an initial set of structural landmark features [8] and we are
planning to further explore which other features are important for computing
salience. The features used here are the following:

– Distance between the user’s position A and the landmark L.
– Distance between the landmark L and the goal node B.
– Angle between the lines AL and AB.
– Name: Categorial attribute having the value 1 if the landmark has a name

(e.g. “7-Eleven”), or belongs to something that has a name, e.g. a node on
X street, and 0 otherwise.

– Type: These 8 features represent the type of the landmark according to
whether they belong into the categories road network, i.e. the landmark node
is part of a street, building, eating & pleasure, e.g. a restaurant or a theater,



shops, entrances, i.e. a specific house number on a street, areas, e.g. a park
or a construction site, structures, e.g. a statue or a fountain, or other. Each
landmark is of at least one type, which is indicated by the value 1 in the
corresponding slot.

In the example in Figure 3, the supermarket that is referenced by the user (the
larger square), is represented by the vector (5.0, 5.0, 40, 1, 0, 0, 0, 1, 0, 0, 0, 0). The
first two positions contain the distances (the 2-logarithm of the actual distance
in metres, rounded to the nearest integer). The third position represents the
angle (in degrees). The ‘1’ in the succeeding slot indicates that the landmark
has a name “ica”. The values in the final 8 slots indicate that the landmark is
a shop, but no other type.

4 Data Collection

A number of subjects (engineering students) were asked to describe a route
to someone unfamiliar with the area, imagining that they were talking to this
person on the phone. The subjects had just walked the same route themselves and
should therefore remember it well. To further help them recall their trajectory,
they were also shown their route on a map on the screen by a moving mouse
cursor (i.e. without using speech), and they could also look at the map while
they described the route.

The subjects’ speech was recorded and segmented according to route seg-
ments before transcription. Each route segment starts at a node A and ends at
a goal node B. The nodes A and B were inferred from the subjects’ instructions,
as they used phrases like “and when you are at the intersection, turn left and
walk until the bus stop”. While the route as a whole differed only slightly from
subject to subject, the routes do not necessarily consist of the same number
of segments. The segmentation here is derived from the subjects’ descriptions.
Each segment was also annotated with all landmarks in the database that the
subject referred to. The set of landmarks used by the subjects often includes the
goal node B itself, as in the example in Figure 3. In that example, the instruc-
tion was annotated with the node representing the supermarket and the node
representing the bus stop. It can also be the case that the goal node B is not
mentioned explicitly, as in “and when you are at the traffic light, cross street S”.
In this case, the goal node B is implicit, and not part of the landmarks referred
to by the subject.

Prior to describing the route, the subjects had walked them themselves, fol-
lowing instructions given by our prototype system. This means that their own
instructions might be influenced by what they just heard. However, the sys-
tem’s instructions only partly used landmarks and otherwise relied on relative
instructions such as “turn left”. This strategy sometimes resulted in ambigu-
ous or wrong instructions, and the subjects were asked to “improve upon the
system’s behavior”.

For each subject, we thus have a number of annotated segments, each con-
sisting of a start node, an end node, and at least one landmark that the subject



referred to (his preferred landmark(s) in this segment). Segments where the sub-
ject didn’t refer to anything at all were excluded from this experiment. The
candidate set for the segment (i.e. the landmarks the user could have referred
to) was automatically computed from the osm database and contains on average
22 landmarks.

The preferred landmarks might or might not be part of the candidate set.
There are two possible reasons for a preferred landmark not to be part of the
candidate set: Either the user referred to something that is not in the database
at all (in which case we removed the reference), or he referred to something that
is farther away, and doesn’t belong to the context of neither A nor B (this latter
case actually never happened in our experiments).

An instance, of the salience model learning problem, then, is a candidate set
together with one or several preferred landmarks, at least one of which is part of
the candidate set. The set of all instances for a particular user was split into a
training set and a test set. The training set was used to derive a salience model
w according to the method presented in Section 2. To evaluate w, the salience of
each member of each instance of the test set was computed. A successful instance
is one in which one of the preferred landmarks had the best salience according
to w. The number of successful instances in the test set is an indicator of how
well the learned salience model actually reflects the preferences of the user.

5 Results

The results are presented in Table 1. For all individual salience models, at least
half of the test instances are successful. In one case, the model even returns all
the instances as successful. To get an insight into how well the models perform
on those landmarks that did not receive the lowest cost but were used by the
subject, we also compute the measure rank. For this measure, we compute
the percentage of landmarks receiving costs that were equal or higher than the
preferred landmark’s cost (recall that the lower the cost, the more salient the
landmark). The number of landmarks that can be referred to differs depending
on the particular route segment and this measure reflects how high the salience
model ranked a landmark in comparison to all available landmarks. For example,
subject 1’s model has two successful test instances, and in the other two ranks
the preferred landmark as 3 of 14 in one instance, and as 5 of 39 in the other.

6 Discussion

The results are encouraging insofar that in 69%, the method actually managed
to mimic the user’s own salience preferences, although the model is built from
very few training examples. Note that the ratio of training vs. testing segments
differs between the subjects. Initially, the training set contains two thirds of the
route segments. For some subjects, the training size had to be reduced, because
our algorithm is limited in the number and size of route segments it can process.



Table 1. For evaluation, we used the induced weights to compute costs on test sets
and counted in how many cases the best option was a landmark used by the subject,
including also reference to streets and squares. segments: total number of route seg-
ments, tests: number of test instances, succ: number (and percentage) of successful
test instances, rank: percentage of landmarks with equal or higher cost

subj segments tests succ rank

1 13 4 2 (0.50) 0.93

2 16 5 3 (0.60) 0.94

3 9 3 2 (0.67) 0.94

4 9 3 2 (0.67) 0.94

5 16 10 7 (0.70) 0.95

6 12 4 4 (1.00) 1.00

total 75 29 20 (0.69) 0.95

Future work includes a user study in which users are recorded as they walk
around the city describing their environment in real-time (rather than describing
a route after having walked it). We also plan to analyse in detail whether the
individual preference models all have something in common (i.e. whether there
are general properties of salience models that always hold). The results of such an
analysis might allow us to restrict our candidate sets, thereby making it possible
to build the models from more examples. Furthermore, we aim to investigate
which other features, apart from the ones we are considering in this article, are
important for the salience computation problem.
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