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Abstract We consider a proof system intermediate between regular Resolution, in
which no variable can be resolved more than once along any refutation path, and
general Resolution. We call δ-regular Resolution such system, in which at most a
fraction δ of the variables can be resolved more than once along each refutation path
(however, the re-resolved variables along different paths do not need to be the same).
We show that when for δ not too large, δ-regular Resolution is consistent with the
Strong Exponential Time Hypothesis (SETH). More precisely, for large n and k, we
show that there are unsatisfiable k-CNF formulas which require δ-regular Resolution
refutations of size 2(1−εk )n , where n is the number of variables and εk = ˜O(k−1/4)

and δ = ˜O(k−1/4) is the number of variables that can be resolved multiple times.
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1 Introduction

The SAT problem is one of the most fundamental NP-complete problems. Paturi,
Pudlák and Zane [20] proved tight depth-3 circuit lower bounds and from their tech-
nique they obtained a k-SAT algorithm which beats exhaustive search. Along similar
lines, Santhanam [25] modified a lower bound argument to obtain improved satisfi-
ability algorithms for De Morgan formulas of linear size. Employing stronger lower
bound arguments, satisfiability algorithms were given for formulas of larger size in [9]
and [10]. In a different direction, Williams [29] showed that even small improvements
over exhaustive search for satisfiability on certain circuit classes implies a lower bound
against that class. In fact he obtained his seminal NEXP � ACC0 result in [30] by
giving a non-trivial ACC0-SAT algorithm.

In this paper we focus on the k-SAT problem. There are several non-trivial algo-
rithms known for this problem, see e.g. [13,19,20,26]. Despite this however, the exact
complexity of k-SAT under suitable assumptions remains unknown. Formalizing what
this complexity could be, Impagliazzo and Paturi [17] formulated the following two
hypotheses. The Exponential Time Hypothesis (ETH) which states that the are no
sub-exponential time algorithms for the k-SAT problem, for any k. The Strong Expo-
nential Time Hypothesis (SETH) which states that the complexity of k-SAT grows
as k increases and the running time of the best k-SAT algorithms approach that of
exhaustive search. More formally, it says that k-SAT requires running time 2(1−εk)n

where εk → 0 as k → ∞.
Both ETH and SETH are stronger than P �= NP and hence we do not expect to be

able to verify either of them in any new future. We can however ask whether known
algorithms are consistent with these hypotheses. For the PPSZ algorithm [19] strong
lower bounds were proved in [11] supporting SETH. But one may ask for such a result
that holds for a class of algorithms rather than for a specific one. Proof complexity
provides a framework to do this. One can think of the run of a SAT algorithm on an
unsatisfiable instance as a proof of unsatisfiability hence, if this proof is structured
enough, we can employ tools from proof complexity and obtain lower bounds.

For instance practical SAT-solvers are based on the Davis-Putnam-Logemann-
Loveland algorithm (DPLL) that is a backtracking method introduced by [14,15] to
search for assignments satisfying a CNF formula. It is a well known result that DPLL
is equivalent to tree-like Resolution, a sub-system of the proof system Resolution
where only proofs having a tree structure are allowed. Hence size tree-like Resolution
lower bounds transfer to lower bounds for the running time of the DPLL algorithm. In
a series of works, [3,18,27] introduced the idea of Conflict Driven Clause Learning
(CDCL) as a way for DPLL SAT-solvers to cut the search space and avoid duplicated
work. This is done by performing a conflict analysis when the search for an assign-
ments leads to a contradiction and then learning a clause encoding a reason for that
failure. By definition Resolution (polynomially) simulates runs of CDCL solvers over
unsatisfiable instances, hence lower bounds for Resolution transfer to lower bounds
for CDCL solvers. We recall that the converse also holds under certain assumptions
on the behaviour of the CDCL solver, see [21] and [2].
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1.1 Previous Work

Exponential lower bounds supporting ETH have long been known for natural proof
systems such as Resolution since mid 1980s, see e.g. [28]. These are 2�(n) lower
bounds for k-CNF formulas on n variables and hence not strong enough to support
SETH. Some thirteen years passed until the first lower bounds supporting SETH were
shown. Pudlák and Impagliazzo [23] proved such lower bounds for tree-likeResolution
via Prover-Delayer games. Another thirteen years later, Beck and Impagliazzo [5]
obtained a very strong width lower bound which simplified and improved the result
of [23] for tree-like Resolution and they were able to prove lower bounds supporting
SETH for regular Resolution, a sub-system of Resolution. Beck and Impagliazzo
in [5] showed that there are unsatisfiable k-CNF formulas in n variables requiring
refutations of size at least 2n(1−εk) in regular Resolution. Their proof is an adaptation
of a probabilistic technique from [4] and, froman high level, it can be seen as a variation
of the bottleneck counting of Haken in [16]. In their argument a rule is given which
maps assignments to particular clauses of the proof, at which a significant amount of
‘work’ is done.

Prior to this work, the strongest proof system with lower bounds supporting SETH
was regular Resolution [5]. This work proves lower bounds supporting SETH in a
subsystem of Resolution stronger than regular Resolution and moreover it gives a dif-
ferent, conceptually simpler, game-theoretic proof of the fact that SETH is consistent
with regular Resolution.

1.2 Results

In this work we consider proof systems that are intermediate between regular Resolu-
tion and Resolution. The Resolution proof system [7,24] is a proof system for refuting
unsatisfiable CNF formulas. A Resolution refutation of a CNF formula ϕ is a sequence
of clauses ending with the empty clause such that each clause is either a clause from
ϕ or it is derived from previous clauses in the sequence according to the following
inference rule:

C ∨ x, D ∨ ¬x

C ∨ D
,

where C and D are clauses and x is a variable. Clearly a Resolution refutation can be
annotated with directed edges keeping track of the applications of the inference rule,
in particular each clause in the sequence will have either 0 or 2 predecessors according
to if it is a clause from ϕ or an inferred clause. The resulting directed graph is a DAG
and the sequence of clauses in the Resolution refutation is a topological ordering of
it. Notice that given a resolution Refutation the DAG we can associate is not uniquely
determined. Anyway, when defining subsystems of Resolution based on restrictions
on the DAG structures allowed for a proof, it is customary to consider a Resolution
refutation directly as a DAG with vertices labeled with clauses. This is the case for
tree-like Resolution where are allowed as valid Resolution refutations only the ones
with a tree-like structure.
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A δ-regular Resolution refutation of a formula ϕ is a Resolution derivation in
which along any path of the refutation DAG at most a fraction δ of the variables
of ϕ are resolved multiple times. Hence a 0-regular Resolution refutation is just a
standard regularResolution refutation, that is aResolution refutationwhere no variable
is resolved multiple times along any path. A 1-regular Resolution refutation is just
one without any constraint. A more formal definition of Resolution and δ-regular
Resolution is given in Sect. 2 together with all the other necessary preliminaries.

The main result of this work is the following.

Theorem 1.1 (Main theorem) For any large n and k, there exists an unsatisfiable
k-CNF formula ψ on n′ ≥ n variables such that any δ-regular Resolution refutation
of ψ requires size at least 2(1−εk)n where both εk and δ are ˜O(k−1/4).

We recall that the width of a Resolution refutation is the number of literals in the
largest clause appearing in the refutation. The way we prove this result is via a strong
width lower bound, that is a lower bound of the form (1−εk)n, with εk → 0, relative to
Resolution refutations of some particular k-CNFs in n variables. Width lower bounds
of this form were proved in [5] and improved in the asymptotic in [8] (see Theorem
4.1 for the precise statement we are going to use).

The reader could be tempted to think that once we are given a strong Resolution
width of the form above then a size lower bound as in Theorem 1.1 will follow by the
standard relation between width and size by Ben-Sasson andWigderson [6]. In [6] the
authors showed that if a formula requires refutations of large width, it also requires
refutations with many clauses. More precisely they showed that if a k-CNF formula
can only have Resolution refutations of width at least W , then it requires Resolution
size at least 2(W−k)2/16n , where n is the number of variables. The constant loss in the
exponent is the reasonwhywe do not immediately get 2(1−εk)n size lower bounds from
strong width lower bounds. However, the result in [6] holds for any k-CNF without
any particular assumption. If the formula is structured in some sense, for instance if it
is a xorification, we show we can avoid this loss (in a subsystem of Resolution).

The �-xorification of a CNF formula ϕ in n variables is a new CNF formula in n�

variables obtained substituting each variable xi in ϕ with � new variables y1i ⊕· · ·⊕ y�
i

and then expanding again as a CNF.We denote the CNF resulting from such operation
ϕ[⊕�]. Our main technical result, Theorem 1.2 informally states that if a k-CNF ϕ

requires width w to be refuted in Resolution, then any δ-regular Resolution refutation
of ϕ[⊕�] requires size 2(1−ε)n�, where ε is a function of k, �, δ and w. More precisely
we prove the following:

Theorem 1.2 Let ϕ be an unsatisfiable CNF formula in n variables and w, δ and �

be parameters. If the width to refute ϕ is Resolution is at least w then the size to refute

ϕ[⊕�] in δ-regular Resolution is at least 2(1−ε)w�, where ε = 1
�
log( e

3�n
w

)+ δn
w
log e3�

δ
.

Once we have proved this result then Theorem 1.1 follows just by carefully tuning
the parameters.

The way we prove Theorem 1.2 relies on two known games characterizations:
the Pudlák game characterizing Resolution size [22] and the Atserias-Dalmau game
characterizing Resolution width [1]. In Sect. 3 we give a precise account for both
games in a common setting and terminology, see Definition 3.1. We conclude this
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introductory part giving some intuition behind those games and the proof of Theorem
1.2.

In the Pudlák game, informally, we have two players, Prover and Delayer , that
play on some formula ϕ. Prover has the objective of showing that the formula ϕ is
unsatisfiable by querying variables. Delayer on the other hand wants to play as long
as possible before the formula is falsified while answering to the queries Prover asks
her. The size of Resolution proofs of ϕ is then characterized as the minimal number of
records, i.e. partial assignments, Prover has to consider in a winning strategy [22]. If
we force the Prover in each game to re-query a fraction of at most δ variables from ϕ

then the minimal number of records suchProver has to consider in a winning strategy
characterize the size in δ-regular Resolution. This is the content of Theorem 3.3 which
we leave without proof since it is a trivial observation over the result in [22].

Hence to prove a Resolution (or a δ-regular Resolution) size lower bound we show
that, in order to win, Prover must keep a large number of records and we can do that
by producing a lot of sufficiently different strategies for Delayer . Prover must win
against each of them, hence in his winning strategy he must have a lot of distinct
records, since the strategies of Delayer are sufficiently different. In the literature this
is done essentially by making Prover play against a Delayer that plays accordingly
to a random strategy [12,22]. Then the size lower bound, that is a lower bound on
the number of records that Prover must have in a winning strategy, is obtained by
probabilistic arguments. This may very likely lead to some loss in the constants that
we need to avoid to prove a SETH lower bound for Resolution size so we choose
another way: we play the Pudlák game over a xorified formula ϕ[⊕�].

The construction of multiple strategies for Delayer relies on the characterization
of Resolution width as a game [1] where again we have a Prover and a Delayer ,
the goal of the prover is to falsify the formula ϕ but he can use assignments with a
bounded number of variables. At a very high level, a winning strategy for Delayer in
the width game on ϕ gives rise to a multitude of strategies for Delayer on the Pudlák
game on ϕ[⊕�]. The new strategies act differently from each other on ϕ[⊕�], but in
a sense they all act the same as the original strategy for Delayer in the width game
on the original formula ϕ. The size lower bound then follows by a counting argument
exploiting the combinatorial properties of the xorified formula in such a way that the
number of Delayer strategies, for the Pudlák game played on ϕ[⊕�], does indeed
hugely amplify.

Notice that Theorem 1.2 does not depend on the particular formula we choose to
apply it but, to get the result in Theorem 1.1, we need to apply it to a particular formula
ϕ for which we have strong width lower bounds, such formulas are provided by [5]
and, with better asymptotic, by [8].

1.3 Outline of Paper

In the next Section we give some preliminaries and notations about Resolution and δ-
regular Resolution. Section 3 contains the common framework for Pudlák games [22]
characterizing size inResolution and theAtserias andDalmaugames [1] characterizing
width in Resolution. Section 4 contains the core results of this work (Theorem 1.1 and
Theorem 1.2).
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1.4 Open Problems

In this work we prove that there exist unsatisfiable k-CNF formulas in n variables that
require δ-regular Resolution refutations of size at least 2(1−ε)n , where k = ˜O(ε−4)

and where δ = ˜O(ε−4). Hence a natural question is whether it is possible to improve
the dependency of δ and k on ε.

More generally, we have some proof systems stronger than δ-regular Resolution,
such as Resolution itself, Polynomial Calculus + Resolution, RES(k), Cutting Planes,
for which we know that there are some unsatisfiable CNFs in n variables which require
refutations of size 2�(n). Are those proof systems consistent with SETH?

2 Preliminaries

A literal is either a variable x or its negation¬x . A clause C is a disjunction of literals
and by its width we mean the number of literals appearing in C and we denote this by
|C |. A Conjunctive Normal Form (CNF) formula is a conjunction of a set of clauses.

Given a boolean function f on a set of variables X , a partial assignment is a function
ρ : X → {0, 1, ∗}. We call domain of ρ, dom(ρ) the set ρ−1({0, 1}). The restriction
of f to ρ denoted by f |ρ is a function on ρ−1(∗) obtained from f by fixing the value
of all variables in ρ−1(0) ∪ ρ−1(1) according to ρ. We write ρ ⊆ σ if for all x ∈ X ,
ρ(x) �= ∗ implies σ(x) = ρ(x). For a partial assignment ρ for which ρ(x) = ∗, by
ρ ∪ {(x, b)} we denote a partial assignment ρ′ such that for all y �= x , ρ′(y) = ρ(y)
and ρ′(x) = b. Given a (partial) assignment ρ and a subset B ⊆ X , ρ|B is a partial
assignment defined only on the variables in B such that for all x ∈ B, ρ|B(x) = ρ(x).

Resolution [7,24] is a proof system for refuting unsatisfiable CNF formulas. The
only inference rule in Resolution is given as follows

C ∨ x, D ∨ ¬x

C ∨ D
,

where C and D are clauses and x is a variable. We say that x is resolved and C ∨ D
is called the resolvant of C ∨ x and D ∨ ¬x . A Resolution derivation of a clause D
from a CNF ϕ is a sequence 
 = 〈C1, . . . ,Cτ 〉 of clauses such that Cτ = D and
each Ci is either an axiom, that is a clause from ϕ, or it is derived by applying the
Resolution rule on some clause C j and C j ′ such that j, j ′ < i . We will denote this
by 
 : ϕ � D. When defining subsystems of Resolution we consider hardcoded in
the sequence of clauses 
 also a function providing from which previous clauses a
clause in 
 is inferred or if it is a clause from ϕ. Having at hand such function then
a Resolution derivation 
 is given a structure of a DAG and hence we can talk of
paths in the derivation intending paths in the DAG associated to the derivation. If ϕ is
an unsatisfiable formula, a Resolution refutation of ϕ is a derivation of ⊥, the empty
clause, from ϕ. Resolution is sound and complete, that is we can derive ⊥ from a CNF
formula if and only if it is unsatisfiable.

A δ-regular Resolution derivation of a clause D from a formula ϕ in n variables
is a Resolution derivation in which along any derivation path at most a fraction of δ

variables are resolved multiple times. Hence a 0-regular Resolution refutation is just
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a standard regular refutation and a 1-regular Resolution refutation is one without any
constraint.

The size of a Resolution derivation is the number of clauses appearing in it. We
denote the minimum size of a derivation of D from ϕ by size(ϕ � D). We also denote
the minimum size of a δ-regular derivation of D from ϕ by sizeδ(ϕ � D). Similarly
we define the width of a derivation to be the width of the largest clause appearing in
it. We denote the minimum width of a derivation of D from ϕ by width(ϕ � D).

3 A Game View of Resolution

In this sectionwepresent a common framework,Definition3.1, for the gamesdescribed
by Atserias and Dalmau [1] and Pudlák [22] and then we recall the characterizations
of width and size in Resolution.

Definition 3.1 (Game(ϕ,R ) ). Given an unsatisfiable CNF formula ϕ in n variables
and a set of partial assignmentsR containing the empty assignment, we define a game,
Game(ϕ,R ) , between two players Prover (he) and Delayer (she).

At each step i of the game a partial assignment αi ∈ R is maintained (α0 is the
empty partial assignment), then at step i + 1 the following moves take place:

1. Prover picks some variable x /∈ dom(αi ).
2. Delayer then has to answer x = b for some bit b ∈ {0, 1}.
3. Prover set αi+1 ∈ R such that αi+1 ⊆ αi ∪ {(x, b)}.
If at any point in the game αi falsifies ϕ then Prover wins; otherwise we say that
Delayer wins. As customary, we say that Prover has a winning strategy for the game
if for any strategy of Delayer , he can play so that he wins the game. Otherwise we
say that Delayer has a winning strategy.

If in each run of the game Prover can query at most a fraction of δ variables, we
call the corresponding game Gameδ(ϕ,R ) .

For a suitable choice of R the Game(ϕ,R ) is exactly the one used by Atserias
and Dalmau [1] to characterise the minimal width of Resolution refutations of ϕ. In
particular in [1] the following result is shown (rephrased here with the notations we
just set up).

Theorem 3.2 (Atserias and Dalmau [1]). Let ϕ be an unsatisfiable CNF formula and
let R be the set of all possible partial assignments with a domain of size strictly less
than w. The following are equivalent

1. Prover has a winning strategy for Game(ϕ,R ) ;
2. width(ϕ � ⊥) < w.

Due to this equivalence, for this particular choice ofR , we will denoteGame(ϕ,R )

by width-Game(ϕ,w) .

The next result is essentially due to Pudlák [22]: he shows that we can also charac-
terize the minimal size of Resolution refutations of ϕ in terms of these games. From a
Resolution refutation 
 we can construct a winning strategy for Prover with a setR
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of the same size of 
 and vice versa. Moreover a play of the Gameδ(ϕ,R ) corre-
sponds to a path in 
 and, if 
 is δ-regular, in each run the set of variables Prover is
going to query many times is at most a δ fraction of the total number of variables.

Theorem 3.3 Let ϕ be an unsatisfiable CNF and let δ be any real in the interval [0, 1].
The following are equivalent

1. there exists a set of partial assignmentsR such that |R | ≤ s for whichProver has
a winning strategy for Gameδ(ϕ,R ) ;

2. sizeδ(ϕ � ⊥) ≤ s.

Notice that this Theorem states an equivalence but in what follows we will only
use the fact that (2) implies (1).

4 Games and Xorifications

Given a CNF formula ϕ on the variables x1, . . . , xn , we define the �-xorification of ϕ

as follows: it is a formula on the new variables y j
i , where 1 ≤ i ≤ n and 1 ≤ j ≤ �

and it is obtained by replacing each xi with y1i ⊕ · · · ⊕ y�
i and expanding the formula

as a CNF formula. We denote the obtained CNF formula by ϕ[⊕�] and note that if ϕ is
a k-CNF in n variables, then ϕ[⊕�] is a k�-CNF in n� variables. Due to this notation
we will refer to the variables of ϕ as the x-variables and to the variables of ϕ[⊕�] as
the y-variables. Moreover we say that all the y-variables y1i , . . . , y

�
i form a block of

variables corresponding to the x-variable xi . We say that a partial assignment over the
y-variables fixes a value for a x-variable xi if it assigns all the y-variables in the block
corresponding to xi .

Restated Theorem 1.2 Let ϕ be an unsatisfiable CNF formula in n variables and w,
δ and � be parameters. If the width to refute ϕ is Resolution is at least w then the size

to refute ϕ[⊕�] in δ-regular Resolution is at least 2(1−ε)w�, where ε = 1
�
log( e

3�n
w

) +
δn
w
log e3�

δ
.

Proof For each partial assignment α over the y-variables there is naturally associated
a partial assignment α′ over the x-variables, defined as follows

α′(xi ) =
{

α(y1i ) ⊕ · · · ⊕ αr (y�
i ) if ∀ j = 1, . . . , �, y j

i ∈ dom(α),

∗ otherwise.

By Theorem 3.3, it is enough to show that if Prover wins Gameδ(ϕ[⊕�],R ) then

|R | ≥ 2w(�−log( e
3�n
w

)− δ�n
w

log e3�
δ

).

So suppose Prover wins Gameδ(ϕ[⊕�],R ) for some set of partial assignments
R . Since width(ϕ � ⊥) ≥ w, by Theorem 3.2, there is a winning strategy σ for
Delayer in the game width-Game(ϕ,w) .
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For each total assignmentβ on the y-variables, consider a strategyσβ forDelayer in
the game Gameδ(ϕ[⊕�],R ) as follows. Let αr be the partial assignment on y-
variables at stage r of the game Gameδ(ϕ[⊕�],R ) and yij the variable queried by
Prover at stage r + 1. Then the strategy σβ for Delayer goes as follows:

1. if there exists j ′ �= j such that y j ′
i /∈ dom(αr ), set y

j
i to β(yij );

2. otherwise, if for all j ′ �= j , y j ′
i ∈ dom(αr ), then look at the value b ∈ {0, 1} the

strategy σ sets the variable xi when given the partial assignment α′
r . Then set y j

i
to q ∈ {0, 1} such that

q ⊕
⊕

j ′ �= j

αr (y
j
i ) = b.

This can be done since xi ≡ y1i ⊕ · · · ⊕ y�
i and the value of xi can be set freely to

0 or 1 appropriately even after all but one of y1i , . . . , y
�
i have been set. Moreover,

by induction on r , it is easy to see that the strategy σ must provide an answer when
challenged byProver by any variable xi not on the recordαr , hence σβ is well-defined.

Moreover, it is easy to see that for each total assignmentβ over the y-variables, σβ is
a winning strategy for Delayer in the game width-Game(ϕ[⊕�], w�) . Since we are
assuming that Prover has a winning strategy for Gameδ(ϕ[⊕�],R ) , in particular,
this means that for any β he wins against the Delayer ’s strategy σβ . This means
that for each total assignment β over the y-variables, R must contain some partial
assignment, denoted by ρβ , with domain of size at least w� and such that at least
w blocks of y-variables are completely fixed by ρβ . Without loss of generality we
assume that each ρβ fixes exactly w blocks of y-variables, that is if ρβ is setting more
y-variables we simply ignore some of the variables and only consider w blocks. Our
goal is to show that we have ‘many distinct’ such partial assignments ρβ .

Let B ⊆ [n] denote a generic set of size w and consider for each possible such
B the set SB of the total assignments βs such that ρβ is fixing all the y1i , . . . , y

�
i

corresponding to some i in B. There are 2n� possible total assignments β and
(n
w

)

possible sets B, hence by the pigeonhole principle, there is a set B∗ ⊆ [n] of size w

such that

|SB∗ | ≥ 2n�

(n
w

) . (1)

Let S′
B∗ be the set of partial assignments β|B∗ where β ∈ SB∗ . We clearly have that

|SB∗ | ≤ |S′
B∗ | · 2n�−�|B∗| = |S′

B∗ | · 2n�−w�.

By Eq. (1), we get

|S′
B∗ | ≥ 2w�

(n
w

) . (2)

We have now that both S′
B∗ and {ρβ ∈ R : β ∈ SB∗} consist of assignments with

domain the y-variables y j
i such that i ∈ B∗ and 1 ≤ j ≤ �. We show that |{ρβ ∈ R :
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β ∈ SB∗}| cannot be too small compared to |S′
B∗ |, this will be, intuitively, due to the

fact that the βs we start with are very different.
Let Zβ be the set of variables that Prover re-queried when playing against σβ and

for any i = 1, . . . , n let Zβ
i = Zβ ∩ {y1i , . . . , y�

i }. By hypothesis, Prover is allowed
to re-query in each game at most a δ fraction of variables, hence |Zβ | ≤ δ�n.

When Delayer follows the strategy σβ and fixes all y-variables in a block corre-

sponding to xi , the assignment produced ρβ is within Hamming distance |Zβ
i | + 1

from β in that block. This means that for each β ∈ SB∗ and for each i , ρβ |{yi1,...,yi�} has
Hamming distance at most |Zβ

i |+ 1 from some partial assignment in S′
B∗ restricted to

{yi1, . . . , yi�}. Let Z be the set of all possible sets Z that are subsets of the y-variables
of size δ�n and such that there exists β ∈ SB∗ with Zβ ⊆ Z . For any i = 1, . . . , n let
Zi = Z ∩ {y1i , . . . , y�

i }. Then, by counting the variables where ρβ and an assignment
in S′

B∗ could differ, we have that

|S′
B∗ | ≤ |{ρβ ∈ R : β ∈ SB∗}| ·

∑

Z∈Z

∏

i∈B∗
2|Zi |+1

(

�

|Zi | + 1

)

. (3)

Hence we have the following chain of inequalities

|S′
B∗ | eq.(3)≤ |{ρβ ∈ R : β ∈ SB∗}| ·

∑

Z∈Z

∏

i∈B∗
2|Zi |+1

(

�

|Zi | + 1

)

(4)

≤ |{ρβ ∈ R : β ∈ SB∗}| ·
∑

Z∈Z

∏

i∈B∗

(

e2�

|Zi | + 1

)|Zi |+1

(5)

≤ |{ρβ ∈ R : β ∈ SB∗}| ·
∑

Z∈Z

( ∑

i∈B∗ e2�
∑

i∈B∗(|Zi | + 1)

)

∑

i∈B∗ (|Zi |+1)

(6)

≤ |{ρβ ∈ R : β ∈ SB∗}| ·
(

�n

δ�n

)

·
(∑

i∈B∗ e2�

w

)δ�n+w

(7)

= |{ρβ ∈ R : β ∈ SB∗}| ·
(

�n

δ�n

)

·
(

e2�
)δ�n+w

(8)

The inequality (6) follows from the weighted AM-GM inequality 1 and the inequality
(7) follows from the fact that w ≤ ∑

i∈B∗(|Zi | + 1) ≤ δ�n + w. Putting all together
we have that

1 The weighted Arithmetic Mean - Geometric Mean inequality says that given non-negative numbers
a1, . . . , an and non-negative weights w1, . . . , wn then

∏

i

a
wi
i ≤

(
∑

i wi ai
w

)w

,

where w = ∑

i wi . We applied this inequality with ai = e2�
|Zi |+1 and wi = |Zi | + 1.
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|R | (††)≥ |{ρβ ∈ R : β ∈ SB∗}| ≥ |S′
B∗ |

( n�
δ�n

) (

e2�
)δ�n+w

(eq. 2)≥ 2w�

(n
w

)(

�n
δ�n

) (

e2�
)δ�n+w

≥ 2w�

( en
w

)w
( e

δ

)δ�n (

e2�
)δ�n+w

= 2w(�−log( e
3�n
w

)− δ�n
w

log e3�
δ

),

where the inequality (††) follows by the definition of ρβ . ��

The next step now is to obtain formulas which require very large Resolution width.
Such a construction is given by Beck and Impagliazzo in [5] and improved in [8].

Theorem 4.1 ([8]) For any large n and k, there exist an unsatisfiable k-CNF formula
ϕ on n variables and some ζk = ˜O(k−1/3) such that

width(ϕ � ⊥) ≥ (1 − ζk)n.

Now, we have set all the preliminary results to prove Theorem 1.1 and in particular,
our SETH lower bound for Resolutionwill follow from the existence of a CNF formula
requiring very high Resolution width (Theorem 4.1) and the previous theorem about
xorifications (Theorem 1.2).

Restated Theorem 1.1 (Main theorem) For any large n and k, there exists an unsat-
isfiable k-CNF formula ψ on n′ ≥ n variables such that any δ-regular Resolution
refutation of ψ requires size at least 2(1−εk )n where both εk and δ are ˜O(k−1/4).

Proof Let ϕ be the k-CNF formula given by Theorem 4.1, in particular width(ϕ �
⊥) ≥ (1−ζk)nwhere ζk = ˜O(k−1/3). Thenϕ[⊕�] is a k′-CNF formula on n� variables
where k′ = k�. By the choice of � = ˜�(k1/3), δ = ˜O(k−1/3) and by Theorem 1.2, it
follows that

sizeδ(ϕ[⊕�] � ⊥) ≥ 2(1−ζk)n(�−log( e
3�n
w

)− δ�n
w

log e3�
δ

)

(†)= 2(1−ζk )n(�−O(log k)−�˜O(k−1/3)) = 2(1−˜O(k−1/3))n�

= 2(1−εk′ )n�.

In particular the equality (†) follows from the choice of � = ˜�(k1/3) and δ =
˜O(k−1/3). To obtain the asymptotic behaviour of εk′ with respect to k′, just observe
that k′ = k� = ˜�(k4/3) and εk′ = ˜O(k−1/3), hence εk′ = ˜O(k′−1/4). Similarly we get
the asymptotic behaviour of δ as a function of k′. So the formula ψ in the statement
is the constructed formula ϕ[⊕�]. ��
Acknowledgements We would like to thank Nicola Galesi for discussions on the topic. We would also
like to thank Jakob Nordström and Massimo Lauria for discussions on Resolution size and strong width
lower bounds.
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