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A Rank Lower Bound for Cutting Planes Proofs of Ramsey’s Theorem
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Ramsey’s Theorem is a cornerstone of combinatorics and logic. In its simplest formulation it says that for
every k > 0 and s > 0, there is a minimum number r(k, s) such that any simple graph with at least r(k, s)
vertices contains either a clique of size k or an independent set of size s. We study the complexity of proving
upper bounds for the number r(k, k). In particular, we focus on the propositional proof system cutting planes;
we show that any cutting plane proof of the upper bound “r(k, k) ≤ 4k” requires high rank. In order to do that
we show a protection lemma which could be of independent interest.
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1. INTRODUCTION

Ramsey’s Theorem for simple graphs claims that if a graph is big enough, then it has
either a clique or an independent set of moderate size. To be more specific, for any k
and s there is a number r(k, s) that is the smallest such that any graph with at least
r(k, s) vertices contains either a clique of size k or an independent set of size s.

Discovering the actual value of r(k, s) is challenging, and so far only few cases have
been computed exactly. For this reason, there is great interest in asymptotic estimates.
Regarding upper bounds, Erdős and Szekeres [1987] show that

r(k, s) ≤
(

k + s − 2
k − 1

)
. (1)

Furthermore, Erdős [1947] considers the case of diagonal Ramsey numbers (i.e., when
k = s) and gets the lower bound

r(k, k) ≥ (1 + o(1))
k√
2e

2k/2 (2)
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17:2 M. Lauria

as one of the first applications of his probabilistic method. Of course there have been
some improvements since. To the author’s knowledge, the current state of the art
regarding diagonal numbers r(k, k) is represented by a lower bound of Spencer [1977]
and an upper bound of Conlon [2009].

For the off-diagonal Ramsey numbers (i.e., r(k, s) for k �= s) the state of the art is
the lower bound by Bohman and Keevash [2010] and the upper bound by Ajtai et al.
[1980]. The maximally unbalanced numbers r(3, t) got further attention in Kim [1995]
and Ajtai et al. [1980].

The study of Ramsey’s Theorem in proof theory is well established in literature. In
bounded arithmetic there are articles attempting to classify the power of a theory in
comparison with Ramsey Theorem. It is also considered a good candidate for separating
low levels of bounded depth Frege proof systems [Pudlák 1991].

A propositional statement of the form “r(k, k) ≤ N” become easier to prove as N
increases. In particular, if m = r(k, k) then the statement “r(k, k) ≤ m” is the hardest
possible and, indeed, Krishnamurthy and Moll [1981] proposed it as a candidate hard
formula. They also proved a lower bound on the width of the clauses appearing in its
resolution refutations. Later, Krajı́ček proved an exponential lowerbound on the length
of bounded depth Frege proofs for the same statement [Krajı́ček 2011].

Proving a weaker bound should be easier. Indeed it is possible to give a short proof
that “r(k, k) ≤ 4k” in a relatively weak fragment of sequent calculus (namely, where we
just allow formulas of constant depth in the proof) [Pudlák 1991; Krajı́ček 2011]. It is not
clear how strong the proof system must be in order to prove efficiently this statement.
Recently, Pudlák has shown that the length of a resolution proof of “r(k, k) ≤ 4k” must
be exponential in the length of the formula itself (see Pudlák [2012]). The propositional
complexity of off-diagonal Ramsey upper bounds has received less attention, and the
only known results are from Carlucci et al. [2011].

In the context of proof complexity research, cutting planes is one of the most studied
proof systems after resolution, so it is natural to ask whether Ramsey’s Theorem is
hard for it. Cutting planes has been originally introduced as a technique to solve
integer programs (see Gomory [1958] and Chvátal [1973]). The idea is use an efficient
method to search for an optimum feasible point (e.g., the simplex method). If such
point is not integer, then we can “round” (and therefore strengthen) some inequality
that holds for the set of feasible solutions so that after the rounding the fractional point
is not a feasible solution anymore.

Cutting planes was later proposed as a proof system [Cook et al. 1987]. Indeed, it is
possible to view the previous process as a sequence of inferences: A new inequality is
either a positive combination or a rounding of previously derived inequalities. Another
way to describe the rounding rule is the following: If the inequality

∑
i aixi ≤ A is

valid and all ai are integers divisible by c, then any integer solution would also satisfy∑
i

ai
c xi ≤ ⌊ A

c

⌋
. By comparison, the latter inequality is not valid for fractional solutions

unless A
c is integer.

Studying the length of proofs in cutting planes is a way to study the running time
for integer linear programming solvers based on the rounding rule. Unfortunately,
this seems to be difficult. The only lower bound known for unrestricted cutting planes
refutations is due to Pudlák [1997], and it deals with a relatively artificial formula.
Lower bounds for cutting plane proofs of restricted forms existed before (e.g., when
the numeric coefficients are small [Bonet et al. 1997] or when the proof is treelike
[Impagliazzo et al. 1994]). In another restricted form of cutting planes every proof line
has small “degree of falsity” (a complexity measure introduced in Goerdt [1992]). If
the degree of falsity is sufficiently small, then the proof system has a sub-exponential
simulation in resolution [Hirsch and Nikolenko 2005]. This implies that most strong
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resolution lower bounds generalize to this limited version of cutting planes. In partic-
ular, this is true for Pudlák [2012].

Even if Ramsey’s Theorem is likely to be a difficult formula for cutting planes, proof
length lower bounds are out of reach for the current techniques. Hence, we focus on
the “rank” of a refutation, that is, the depth (in terms of applications of the rounding
rule) of the refutation. The focus on auxiliary complexity measures is not new in proof
complexity, and it is not limited to cutting planes. Well-known examples are “width” in
resolution, “degree” in polynomial calculus, and “rank” in geometric proof systems like
Lovász-Schrijver and sums-of-squares. These measures relate with the actual proof
length, in the sense that there are proof search algorithms that run in time nO(r) on
formulas with nvariables and measure r. Indeed, Chvátal et al. [1989] prove that under
some technical conditions if there is a cutting planes proof of rank r then there is one
of size nO(r). For further information about cutting planes refutations and the notion of
rank (also called Chvátal rank), we refer to Jukna [2012, Chapter 19].

In this article we are going to prove that Ramsey’s Theorem requires rank �(2k/2). The
result does not follow from the classical protection lemma for cutting planes [Buresh-
Oppenheim et al. 2006, Lemma 3.1], so we prove a different one that could be of
independent interest.

The rest of the article has the following structure. In Section 2 we give necessary
preliminaries: We formally introduce the cutting planes proof system in Section 2.1,
we describe the integer inequalities encoding Ramsey’s Theorem in Section 2.2, and
we define the rank of a cutting planes proof in Section 2.3. In Section 3 we give the
proof of the main theorem (Theorem 3.6), and in Section 4 we discuss improvements
and related open problems.

2. PRELIMINARIES

2.1. Cutting Planes Proof System

Cutting planes is a technique to solve mixed integer linear programs. In this article we
consider an inference system for refuting unsatisfiable CNFs that is based on cutting
planes. We encode propositional clauses as affine inequalities that have 0–1 solutions
if and only if the corresponding assignments satisfy the original clauses. A clause ∨ili
translates to the inequality

∑
i fi ≥ 1 where

fi =
{

x if li = x

1 − x if li = ¬x.
(3)

For example, the clause

¬x ∨ y ∨ ¬z (4)

translates as

−x + y − z ≥ −1 (5)

after summing the constant terms.
A proof that there are no integer solutions for such a linear program is a refutation

of the corresponding CNF. The linear program that we use to encode the CNF does not
take into account the fact that we just care about integer solutions. Indeed, the initial
polyhedron contains fractional solutions that we want to ignore. We do that by adding
inequalities that preserve integer solutions but remove fractional ones. In this way, we
get a proof system for the UNSAT language, defined using the means of cutting planes.

A proof system for UNSAT is a polynomial time machine P that has in input a CNF
φ and a candidate refutation �. If the formula φ is unsatisfiable, then there must be
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some refutation � for which P(φ,�) accepts. If φ is satisfiable, then P does not accept
any pair (φ,�).

The study of proof systems was initially motivated by the fact that NP is the class of
languages with short proof of membership. So in order to separate NP from coNP, we
may show that all proof systems for UNSAT require super-polynomial length refutations
for some formulas.

Proving lower bounds on the length of proofs, even if we restrict to interesting (and
powerful) textbook proof systems like Frege and Extended Frege, seems extremely dif-
ficult. Nowadays, a lot of research focuses on the (much weaker) proof systems that
model actual SAT solvers, automatic theorem provers and algorithms for combinatorial
optimization. Here the study of the refutation complexity usually gives insight on the
performance of such algorithms. In particular, most of these algorithms use heuristics
to solve what computer science considers hard problems; a proof system has a nonde-
terministic nature, so it models the best-possible heuristic, and any lower bound on
(for example) proof length usually translates to a lower bound on the running time of
all algorithms that fit the model.

A refutation in cutting planes (as defined in Cook et al. [1987]) is an inference process
that starts with the inequalities encoding the CNF and ends with a false inequality
1 ≤ 0. We have inference rules

aT · x ≤ A bT · x ≤ B

(αa + βb)T · x ≤ (αA+ βB)
(Positive linear combination) (6)

for any non-negative integer α, β, and

(ca)T · x ≤ A

aT · x ≤ ⌊ A
c

⌋ (Integer division with rounding). (7)

Observe that all the coefficients of any derived inequality are integer. Positive linear
combination is clearly sound. Integer division with rounding is only sound on integer
solutions. The rule says that if the integer coefficients of the variables have a common
factor c, then dividing everything by c keeps the left side of the inequality to be integer.
Thus it is possible to strengthen the right side to the closest integer. Cutting planes
is complete for propositional refutations, since it is easy to transform a resolution
refutation of a CNF into a cutting planes refutation of the same CNF. It is a little bit
more tricky to see that cutting planes can actually refute any incompatible system of
integer inequalities [Chvátal 1973].

2.2. Ramsey Statement

Informally, the classical “Ramsey’s Theorem” claims that any big-enough structure,
however complicated, contains an instance of a regular substrucure. A specific instance
of Ramsey’s theorem for graphs claims that for any two numbers k and s there is an
minimum integer number r(k, s) such that any graph with r(k, s) vertices has either a
clique of size k or an independent set of size s. Erdős and Szekeres [1987] prove that
r(k, k) ≤ 4k or, equivalently, that any graph with n vertices has either a clique or an
independent set of size

⌈ log n
2

⌉
.

THEOREM 2.1 ([ERDŐS AND SZEKERES 1987]). Any graph with
( k+s−2

k−1

)
vertices has either

a clique of size k or an independent set of size s.

COROLLARY 2.2. Any graph with 4k vertices has either a clique or an independent set
of size k.
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We study cutting planes proofs of this latter corollary. Actually, we study refutations
of its negation, encoded as a CNF. For any unordered pair of vertices {i, j} we indiffer-
ently denote by either xi, j or xj,i the propositional variable whose intended meaning is
that an edge connects vertices i and j. Let U be a set of vertices; we have two types of
clauses,

NoCli(U ) :=∨
{i, j}∈

(
U
2

) ¬xi, j, (8)

NoInd(U ) := ∨
{i, j}∈

(
U
2

) xi, j . (9)

We encode “r(k, k) > 4k” as the following CNF, which has
(4k

2

)
variables and 2

(4k

k

)
clauses of width

(k
2

)
,

RAMk :=

⎛
⎜⎝ ∧

U∈
(

[4k]
k

) NoCli(U )

⎞
⎟⎠ ∧

⎛
⎜⎝ ∧

U∈
(

[4k]
k

) NoInd(U )

⎞
⎟⎠ . (10)

In cutting planes refutations the clauses are represented as

NoCli(U ) :
∑

{i, j}∈
(

U
2

) xi, j ≤
(

k
2

)
− 1, (11)

NoInd(U ) :
∑

{i, j}∈
(

U
2

) xi, j ≥ 1, (12)

which can be succinctly represented as

1 ≤
∑

{i, j}∈
(

U
2

) xi, j ≤
(

k
2

)
− 1. (13)

In the rest of the article we express every quantity as a function of k. To get a picture
on the proof complexity of this formula it is useful to state it at least once in term of
the number n of vertices in the graph. This is customary for propositional formulas
related to graph theory. Here n = 4k: The formula has �(n2) variables and n�(log n)

clauses of width �(log n), so it has quasi-polynomial length with respect to the number
of variables. In Theorem 3.6 we will show that its rank is �( 4

√
n).

2.3. The Rank of a Cutting Planes Refutation

We shall now proceed to describe the Chvátal rank, which is a complexity measure
for cutting planes. Other geometric proof systems, with their specific inference rules,
have similar notions of rank. In this article we only discuss cutting planes proof, and,
therefore, we will use the term generic term rank to refer to Chvátal rank.

Definition 2.3 (Chvátal Rank). Consider a cutting planes derivation. All initial
inequalities have rank 0. The rank of a proof line obtained applying the “positive linear
combination” rule to two lines of rank r1 and r2 is max{r1, r2}. The rank of a proof line
obtained from a line of rank r using the “integer division and rounding” rule is r + 1.

The rank of a derivation is the largest among the rank of its proof lines. The rank of
an integer inequality is the smallest rank among all derivations of that inequality, from
the initial system. The rank of an unsatisfiable system of inequalities is the minimum
rank needed to derive the contradiction.
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The notion of rank has a geometric interpretation: A point p has rank r if there is
an inequality of rank r + 1 that is not satisfied by p but p still satisfies all inequalities
of rank r. More concretely, we can think of the inequalities as defining a chain of
polyhedrons P0 ⊇ . . . ⊇ Pi ⊇ . . . ⊇ PI , where Pi contains all points of rank ≥ i, and PI
is the convex hull of all integer solutions of the linear program. It is a well-known fact
that there is some r ≥ 0 such that Pr = PI .

To show that the rank of a refutation is at least r is sufficient to show that there is a
point in Pr. The basic tool is a protection lemma, a type of result that says that a point
has rank r + 1 when there is a set of points of rank r around it, positioned in a certain
configuration (a protection set).

In particular, it is possible to define a prover-delayer game as follows: Prover chal-
lenges the delayer to exhibit a protection set for a point p0. Delayer either gives up or
shows a set S0. At the next round the prover picks a point p1 ∈ S0 and asks again for
a protection set. If the Delayer has a strategy to play the game for r rounds, then the
point p0 has rank at least r.

3. A PROTECTION LEMMA FOR FRACTIONAL GRAPHS

The fractional points that we use in this article have a peculiar structure. We use half
integral points (i.e., each coordinate is either 0, 1

2 , or 1) to encode partially specified
graphs: 0 encodes non-edges, 1 encodes edges, and 1

2 encodes unspecified edges. Fur-
thermore, we enforce additional structure on the edges with integer values according
to the following definition.

Definition 3.1 (Fractional Graph). A “fractional graph” on the vertex set V is a pair
G = (V, E), where E is a function from

(V
2

)
to {0, 1

2 , 1}. Furthermore, there must exist
some U ⊆ V such that for all {u, v}

E({u, v}) = 1
2

if and only if {u, v} �⊆ U.

We say that G is integral on the vertex set U , which is called the integral part of G.

Observe that the integral part of a fractional graph is unique. A fractional graph is
a half-integral point in the space [0, 1](

V
2), and therefore the notion of rank applies.

Remark on notation: we use xi, j to denote the variables referring to edges, and we
denote an inequality by “a · x ≤ b” or “ax ≤ b.” We denote by G both the fractional graph
and the corresponding point in [0, 1](

V
2). Indeed, for a fractional graph G = (V, E) the

notation “a · G” indicates the expression∑
{u,v}∈

(
V
2

) au,v E({u, v}).

We can make convex combinations of fractional graphs and still get a point in [0, 1](
V
2).

For this article we just need the average between two graphs.

Definition 3.2 (Graph Average). Given two fractional graphs G1 = (V, E1) and G2 =
(V, E2), we consider the average of them (denoted as 1

2 G1 + 1
2 G2) to be the point H =(

V, E1+E2
2

)
.

The average of two fractional graphs is not necessarily a fractional graph according
to our definition. It is under the conditions enforced by the definition of protection sets.
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Definition 3.3 (Protection Set). Consider a fractional graph G which is integral on
the vertices in I. A protection set for G is a set of graph pairs (G

′
{u,v}, G

′′
{u,v}), one pair for

each two distinct vertices u �∈ I and v �∈ I, such that for any such pair

—both G
′
{u,v} and G

′′
{u,v} are integral on I ∪ {u, v};

—G = 1
2 G

′
{u,v} + 1

2 G
′′
{u,v}.

Notice that the protection set does not have a graph pair for vertices {u, v}, when
u ∈ I and v �∈ I. A point p in [0, 1](

V
2) is an alternative representation of a fractional

graph G = (V, E) when each coordinate pa,b is equal to E({a, b}).1 The following simple
lemma highlights the peculiar structure of a protection set for G.

LEMMA 3.4. Consider a graph G with integral part I and choose a pair
(
G

′
{u,v}, G

′′
{u,v}

)
from some protection set for G. Let p, p′, p′′ be the points representing G, G

′
{u,v}, G

′′
{u,v},

respectively. The following holds:

(1) for any {a, b} ⊆ I, pa,b = p′
a,b = p′′

a,b;
(2) for any {a, b} � I and {a, b} ⊆ I ∪ {u, v}, pa,b = 1

2 and p′
a,b = 1 − p′′

a,b.

PROOF. Point (1) holds because edge {a, b} is in the integral part: pa,b must be integer
and equal to p′

a,b+p′′
a,b

2 , so the values of p′
a,b and p′′

a,b must be equal to pa,b; to prove
(2) notice that {a, b} �⊆ I immediately implies that pa,b = 1

2 . Both G′
{u,v} and G′′

{u,v} have
integral edge {a, b}, so the values p′

a,b, p′′
a,b must be opposite in order to average to 1

2 .

The following protection lemma for fractional graphs shows that the definition of
protection set is useful to get rank lower bounds. Our protection lemma differs from
the ones in the literature. In those constructions the new integer coordinates must be
disjoint and set independently (see Buresh-Oppenheim et al. [2006]). Here this is not
needed, and, hence, we can use protection sets made by fractional graphs.

We now focus on the sequence of polytopes [0, 1](
V
2) ⊇ P0 ⊇ P1 ⊇ · · · ⊇ Pi ⊇ · · · , where

Pi is the set of points of rank at least i.

LEMMA 3.5 (PROTECTION LEMMA). Let G be a fractional graph with an even number of
vertices and an integral part of even size. If G has a protection set where all graphs in
all graph pairs are in Pi, then G is in Pi+1.

PROOF. The fractional graph G is the average of two points in Pi by construction, so
G ∈ Pi as well. Assume, by contradiction, that G �∈ Pi+1; it then holds that a · G > b
where ax ≤ b is an inequality of rank i + 1. We can derive such inequality by integer
division from an inequality a′x ≤ b′ of rank i, where

a′
u,v = qau,v b′ = qb + r for some q, r ∈ Z with 0 < r < q. (14)

Since G ∈ Pi we have a′ · G ≤ b′ < q(b + 1). Putting it all together we have that
b < a · G < b + 1.

Fix I to be the integral vertices of G and fix J to be V (G)\I.
The value of a · G is strictly less than b + 1 but it is strictly larger than b, so it must

be b + 1
2 because G is half-integral and the coefficient vector a is integral. This means

1For every point p in [0, 1]
(

V
2

)
and pair {a, b} ∈ ( V

2

)
, we denote the corresponding coordinate in p both as

pa,b or pb,a.
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that the sum of the coefficients of the variables with value 1
2 must be odd. Namely,∑

{u,v}∈(J
2)

au,v +
∑

u∈J,w∈I

au,w ≡ 1 (mod 2), (15)

because otherwise a · G would be integral. Equation (15) implies the following claim
that we prove later.

CLAIM 1. There is at least one pair {u, v} ⊆ J for which

au,v +
∑
w∈I

au,w +
∑
w∈I

av,w ≡ 1 (mod 2). (16)

We pick {u, v} as in Claim 1. We write a ·G as the sum of three contributions: the sum
over the integral edges of G, the sum over the edges enumerated in Equation (16) for
the chosen pair {u, v}, and the sum over the rest of the edges. Let us call these sums A,
B, and C respectively: Clearly, A+ B + C = b + 1

2 . All edges in G corresponding to the
sum B have value 1

2 , so by Equation (16) B is half integral, and, furthermore, A+ C is
an integer.

Consider the pair of graphs
(
G

′
{u,v}, G

′′
{u,v}

)
in the protection set. By definition, the

two graphs must differ from G only on the edges which coefficients are in the sum-
mation (16), thus a · G′

{u,v} = A + B′ + C and a · G′′
{u,v} = A + B′′ + C for some B′ and

B′′. On these edges the two graphs have integral values, so B′ and B′′ are integers.
Hence, numbers a · G′

{u,v} and a · G′′
{u,v} are integral, too. Being the two graphs in Pi,

these numbers are strictly smaller than b + 1. Hence,

a · G = 1
2

a · G′
{u,v} + 1

2
a · G′

{u,v} ≤ b, (17)

which contradicts the hypothesis that G �∈ Pi+1.

PROOF OF CLAIM 1. We denote bu := ∑
w∈I au,w for all u ∈ J, so Equations (16) can be

rewritten as

au,v + bu + bv ≡ 1 (mod 2). (18)

We partition J into two classes, J0 = {u ∈ J : bu ≡ 0 (mod 2)} and J1 = {u ∈ J : bu ≡ 1
(mod 2)}. Notice that ∑

u∈J,w∈I

au,w ≡
∑
u∈J0

bu +
∑
u∈J1

bu ≡ |J1| (mod 2). (19)

Assume that Equation (18) does not hold for any pair of vertices in J. It follows that
au,v ≡ 1 (mod 2) if and only if {u, v} intersects both J0 and J1, therefore∑

{u,v}∈
(

J
2

) au,v ≡ |J0||J1| (mod 2), (20)

and we can rewrite Equation (15) using Equtions (19) and (20) to get

1 ≡
∑

{u,v}∈
(

J
2

) au,v +
∑
u∈J

bu ≡ |J0||J1| + |J1| (mod 2), (21)

which leads to a contradiction: |J| is even and, therefore, |J0||J1| + |J1| is even, too.

We are now ready to prove the lower bound on rank of cutting planes proof of the
Ramsey number upper bound.

ACM Transactions on Computation Theory, Vol. 8, No. 4, Article 17, Publication date: June 2016.



A Rank Lower Bound for Cutting Planes Proofs of Ramsey’s Theorem 17:9

THEOREM 3.6. For all even k ≥ 4, cutting planes rank of formula RAMk is at least
2k/2−1.

PROOF. Consider the following prover-delayer game:

—Initial choice (round 0): let P0 be the polytope described by the linear system of
RAMk, and let G0 be the fractional graph with empty integral part (i.e., all edges have
value 1

2 ).
—Delayer choice (round i > 0): Delayer shows a protection set for Gi−1 contained

in P0.
—Prover choice (round i > 0): Prover sets Gi to be an arbitrary element of an

arbitrary pair in the protection set of Gi−1 shown by Delayer.

For k ≥ 4, fractional graph G0 satisfies inequalities (13), and thus it is a point of the
initial polytope P0.

We now argue that if Delayer has a strategy for playing until round 2k/2−1 no matter
how Prover chooses, then G0 has rank at least 2k/2−1. Consider the tree of all possible
games played by this Delayer against any possible Prover, so the branching from level
i − 1 to level i ≤ 2k/2−1 corresponds to the Prover’s decision of which the graph in the
protection set of Gi−1 is picked to be Gi, and each node of the tree at level i corresponds
to the specific value of Gi obtained so far.

Every path in this tree has length at least 2k/2−1, and all the children of the frac-
tional graph corresponding to an internal node of the tree form a protection set for
it. Lemma 3.5 immediately implies that the fractional graphs at level i are contained
in P2k/2−1−i, and in particular that G0 is in P2k/2−1 . Therefore to prove the theorem it is
sufficient to show a strategy for Delayer for playing up to round 2k/2−1.

At each step i in the prover-delayer game, Gi is a fractional graph with an integral
part of 2i vertices, since each application of Lemma 3.5 adds exactly two vertices.
Furthermore, at each step we keep a bijection σi between the integral part of Gi and
{1, . . . , 2i}.

We are going to build the protection sets using a model graph H on vertex set
{1, . . . , 2k/2}. The indicator variable hu,v is either 1 if {u, v} ∈ E(H) or 0 otherwise. We
call “diagonal pair” any pair of the form {2i − 1, 2i} for some i ∈ [2k/2−1]. We want H to
have the properties stated in the following claim.

CLAIM 2. There exists a graph H on vertex set {1, . . . , 2k/2} such that

—H has neither a clique nor an independent set of size k;
—the previous property holds for every H′ obtained from H by arbitrarily adding and

removing diagonal edges;
—given any diagonal pair {2i − 1, 2i} and any vertex a < 2i − 1, it holds that

ha,(2i−1) = 1 − ha,2i. (22)

This graph H must have 2k/2 vertices, so the fact that it has no clique and no
independent set of size k does not necessarily violate Ramsey’s Theorem. Indeed, we
will show later that such graph H exists.

Delayer strategy: Delayer uses such H to define the strategy against Prover. The
main idea is that at each round Delayer picks a new diagonal pair of vertices in H. The
integral part of each Gi in the trace of the game is almost a copy of the graph induced
by the vertices {1 . . . 2i} on H. We say “almost” because the edges on the diagonal pair
will be arbitrarily added or removed, depending on the Prover choices. We call σi the
mapping at round i, and we define σ0 to be the empty mapping.
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At round i we want to show a protection set for Gi−1, which has integral part I with
|I| = 2i − 2. For each u and v not in I, we define the two graphs G′

{u,v} and G′′
{u,v} by

adding {u, v} to the integral part in the following way: for every a ∈ I we set

p′
a,u := hσi−1(a),(2i−1)

p′
a,v := hσi−1(a),2i

p′′
a,u := hσi−1(a),2i

p′′
a,v := hσi−1(a),(2i−1)

p′
u,v := 0

p′′
u,v := 1,

where p, p′, p′′ are the point representing fractional graphs Gi, G′
{u,v}, and G′′

{u,v}, respec-
tively. The other coordinates of p′ and p′′ are the same as in p. By construction, these
graphs form a protection set of Gi, because they satisfy the conditions of Definition 3.3.

After prover choice: Prover can choose either G′
{u,v} or G′′

{u,v} from the pair cor-
responding to some edge {u, v}. If Prover chooses G′

{u,v}, then we extend σi−1 to σi by
mapping u �→ (2i − 1) and v �→ 2i. Otherwise, we do it by mapping u �→ 2i and
v �→ (2i − 1).

Finally, we show that Delayer can play for e = 2k/2−1 rounds. In order to play that
many rounds, we need to argue that Ge is contained in P0 or, equivalently, that it sat-
isfies the bounds in (13). Take an arbitrary set of vertices K ⊆ V (Ge) of size k ≥ 4:
If there is even a single vertex out of the integral part, then the sum in Equa-
tion (13) contains at least two half-integral variables and therefore the bounds are
satisfied.

If K is contained in the integral part of Ge, then we use that the latter is isomorphic
to some H′ which is obtained from H by arbitrarily changing the edges on the diagonal
pairs. By Claim 2 graph H′ does not contain cliques of independent sets of size k,
therefore the bounds in (13) are satisfied.

We have proved that Ge ∈ P0. That means (using Lemma 3.5) that Ge−1 ∈ P1,
Ge−2 ∈ P2, . . . , and so on until G0 ∈ Pe. This shows that Pe is not the empty polytope,
and that inequality 0 ≤ −1 has rank larger than e. This concludes the proof of the
theorem.

PROOF OF CLAIM 2. Consider any i ≤ 2k/2−1. We sample uniformly independently
at random the 0–1 values of ha,(2i−1) for all vertices a < 2i − 1, and we set ha,2i :=
1 − ha,(2i−1). This definition immediately enforces the third condition of the claim. We
get the first and the second condition by probabilistic method: We show that with
positive probability any set of vertices of size k contains both an edge and a non-edge
that are not on diagonal pairs. This is true by construction for any set K containing
a diagonal pair {2i − 1, 2i} plus some other vertex a < 2i − 1. Let K0 be the family of
sets of size k with no diagonal pair and K1 the family of sets of size k such that the two
smallest elements form a diagonal pair. The size of the families are

|K0| = 2k
(

n/2
k

)
|K1| = 2k−2

(
n/2

k − 1

)
. (23)

If k < 8, then families K0 and K1 are empty, and, hence, graph H has no homogeneous
sets of size k by construction. Consider k ≥ 8. There are

(k
2

)
independent random edges

in sets from K0 and
(k

2

) − 1 in sets from K1. Fix n = 2k/2, and notice that n is even. Then
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Pr[H has a homogeneous set of size k] ≤
∑
K∈K

Pr[K is homogeneous] ≤

≤ |K0| 2

2(k
2)

+ |K1| 2

2(k
2)−1

≤ 2

2(k
2)

[
2k

(
n/2
k

)
+ 2k−1

(
n/2

k − 1

)]
< 1, (24)

for n = 2k/2.

4. CONCLUSION

We have seen that Ramsey’s Theorem requires refutations of large rank. Of course,
the actual rank depends on the value of r(k, k) itself: The proof may focus on the first
r(k, k) vertices and the corresponding

( r(k,k)
2

)
edge variables. Thus, in order to improve

the rank lower bound, it is necessary to understand better the Ramsey number itself,
in particular its lower bounds.

Rank is just an auxiliary complexity measure: The interest of proof complexity re-
volves around the length of proofs. Unfortunately, there is very little understanding
about the length of cutting planes refutations: The only lower bound known is based
on the interpolation technique [Pudlák 1997] that only works on formulas with a very
peculiar structure. Such a lower bound has been proved by harnessing the connection
between cutting planes inferences and monotone computation [Pudlák 1997; Bonet
et al. 1995]. It is an open problem how to prove length lower bounds for natural formu-
las, in particular using combinatorial techniques that allow us to study more general
CNFs.

A natural question is whether the rank has a role here. In other proof systems
(e.g., resolution and polynomial calculus), a good lower bound on an auxiliary com-
plexity measure implies proof length lower bounds [Ben-Sasson and Wigderson 2001;
Impagliazzo et al. 1999]. It is interesting to notice that even if this implication is true,
then it must have some limitations, since there are formulas with large rank (i.e., the
square root of the number of variables) and small refutations [Buresh-Oppenheim et al.
2006]. The latter also happens in resolution and polynomial calculus (with width and
degree complexity measure, respectively. See Bonet and Galesi [2001] and Galesi and
Lauria [2010]). Nevertheless, the study of such auxiliary measures led to size lower
bounds.

In order to understand the relation between rank and length of cutting planes proof
the following question is unavoidable:

OPEN PROBLEM 1. Is there any k-CNF formula on n variables with polynomial length
refutations and cutting planes rank �(n)?

As mentioned before, there is a formula on n variables, polynomial length refuta-
tion, and rank �(

√
n) (see Buresh-Oppenheim et al. [2006]). Thus, any rank-length

connection that holds in general would not be useful to prove a length lower bound
for Ramsey’s Theorem, given the current knowledge. So even if a useful rank-length
relation is discovered, that would not solve the following problem.

OPEN PROBLEM 2. Does RAMk have a cutting planes refutation of polynomial length?

For further open problems about cutting planes refutations, we suggest referring to
the book by Jukna [2012, Chapter 19].
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