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Abstract

The boolean satisfiability (SAT) problem is the canonical NP-
complete problem and every other NP-complete problem can be re-
duced to the SAT problem. Since the SAT problem is NP-complete
large instances of this problem should be difficult to solve. However,
in practice conflict driven clause learning (CDCL) solvers solve large
real-world instances of the SAT problem efficiently. Recently, a the-
oretical upper bound was shown for the efficiency of a certain model
of such solvers, but that solver model differs in several ways from
solvers used in practice. In this project experiments are used to in-
vestigate whether such a model is realistic and whether its theoretical
bound holds for solvers used in practice. These experiments compare
all the components that differ between the theoretical solver model
and a real implementation of a solver. The experimental results show
that the running times of the two solvers often differ substantially. At
the same time, the theoretical running time bound seems to hold for
the practical solvers. I.e. the running time of practical solvers seems
to grow polynomially for formulas for which the theoretically pre-
dicted running time is polynomial. However, some of the formulas
used should be tested further since not enough data points have been
collected for these formulas. For these formulas we cannot rule out
high asymptotic running times of real-world solvers.



Referat
Konfliktdriven klausulinlärning – en jämförelse

mellan teori och praktik

Problemet där man ska avgöra huruvida en Boolesk formel är sat-
isfierbar (SAT-problemet) är NP-fullständigt och därmed borde det
vara svårt att lösa stora sådana probleminstanser. I praktiken finns
det konfliktdrivna klausulinlärningslösare (CDCL-lösare) som löser
stora verklighetsbaserade probleminstanser effektivt, vilket motiver-
ar studier av sådana lösare. Nyligen visades en övre gräns på körtider
för en specifik modell av en CDCL-lösare. Det finns dock viktiga
skillnader mellan denna modell och lösare som används i praktiken.
I detta projekt används experiment för att utforska hur realistisk den
övre gränsen på körtider för CDCL-lösare är. Den lösarmodell som
används för att visa den övre gränsen för körtider jämförs med en
praktisk implementation av en lösare. Utifrån de resultat som produc-
eras i detta projekt verkar det finnas stora skillnader i körtid mellan
de två lösarna. Det finns heller inga bevis som pekar på att praktiska
lösare inte skulle täckas av den teoretiska körningstidsgränsen. Flera
av de formler som användes i detta projekt borde dock testas ytterli-
gare. För dessa formler har de experiment som utförts inte producerat
tillräckligt många datapunkter för att ge stabila körtidskurvor.
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Chapter 1

Introduction

1.1 General background

Within the area of computational complexity the difficulty of a problem is mea-
sured by how the running time of solving a problem instance scales with the size
of the instance. Problems are divided into complexity classes depending on their
difficulty. For example, the class P contains problems solvable in time scaling
polynomially with instance size while the class NP contains problems which can
be verified in time scaling polynomially with instance size. One of the goals of
computational complexity is to figure out whether P = NP, i.e. whether problems
verifiable in polynomial time are also solvable in polynomial time. The most dif-
ficult problems in NP are called NP-complete and we do not know whether such
problems lie in P. In the real world there are many NP-complete problems. These
seem difficult to solve and therefore many researchers think that P 6= NP.

The boolean satisfiability (SAT) problem (the problem of determining whether
a boolean formula is satisfiable) is the canonical NP-complete problem [Coo71]
and through the notion of NP-completeness each NP-complete problem can be
reduced to the SAT problem. People have been working on SAT solvers since the
60s, the time of DPLL (Davis Putnam Logemann Loveland) solvers [DLL62]. A
DPLL solver is a search algorithm which searches for a satisfying assignment for
a boolean formula. The search is carried out through assigning values to variables
in the formula. At each step in the algorithm the solver assigns some variable
and by doing this splits the search space in two — one part where the variable
is true and one where it is false. A conflict is when the current assignment of
variables falsifies the given formula. When a conflict is reached the solver back-
tracks by negating the value of the variable which was assigned most recently
(and which has not yet been negated). The solver terminates when either a sat-
isfying assignment is found or when the entire search space has been explored.
During the 90s DPLL solvers were extended with a feature called clause learn-
ing [MS99], [BS97]. Clause learning is the notion of learning from mistakes —
whenever the solver reaches a conflict it will extend its input formula by adding
the reason for reaching the current conflict. In such a way the input formula will
grow until it becomes trivially unsatisfiable — then the solver terminates. The re-
sulting solvers are called conflict driven clause learning (CDCL) SAT solvers. In
2001, an efficient implementation [MMZ+01] of a CDCL solver showed a large
improvement in performance compared to earlier solvers and because of such im-
provements CDCL solvers are today the best performing SAT solvers. Later, in
2003 MiniSat was created [ES04]. MiniSat is a simple and efficient implementa-
tion of a CDCL solver. MiniSat has been very important for adding and testing
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CHAPTER 1. INTRODUCTION

extensions to CDCL solvers just because the implementation is both simple and
efficient. Because of their great performance, CDCL solvers can today be used
profitably in many different applications such as AI planning and software testing.
More examples of applications can be seen in [Mar08].

A CDCL solver is performing a type of reasoning when running — whenever
the solver is expanding its formula the initial formula must imply the expanded for-
mula. This means that, by expanding a formula until it is trivially unsatisfiable a
CDCL solver is essentially creating a proof for the unsatisfiability of that formula.
In this way a CDCL solver can be seen as a proof system. A proof system is a veri-
fier of proofs or a way of creating proofs which can be verified in polynomial time.
I.e. a proof system which determines whether some object has a certain property
is an algorithm which takes (a representation of) an object and a potential proof
as input. This algorithm runs in time polynomial in the size of (the representation
of) the object and the length of the potential proof. If the object indeed has the
sought property there exists some proof for which the algorithm outputs 1, other-
wise the algorithm outputs 0 for every potential proof. All proof systems studied
in this report are systems showing that formulas are unsatisfiable. Showing that
a formula is satisfiable can always be done using a small proof since a satisfying
assignment of the formula can be used as such a proof. A proof of a formula being
unsatisfiable could be much longer since it must show that no assignment can be
satisfying. Therefore, when the efficiency of a CDCL solver is related to that of
some proof system only unsatisfiable formulas are considered.

Both DPLL solvers and CDCL solvers can be seen as variations of a proof
system called resolution (since DPLL solvers are based on resolution and CDCL
solvers are based on DPLL solvers). Resolution was first presented in [Bla37]
and is a (relatively simple) proof system. There is only one rule in the resolution
proof system and that rule can be used to expand a formula until it is trivially
unsatisfiable. The efficiency of a proof system for a formula can be measured as
the relation between the length of the shortest proof for that formula and the size of
the formula. The overall efficiency of a proof system is the worst-case efficiency
of the proof system taken over all possible input formulas.

DPLL solvers correspond to a restricted version of resolution (called tree-like
resolution) which for some formulas could produce proofs exponentially longer
than the shortest proofs produced by the general resolution proof system [BEGJ00]
and [BIW04]. Up until recently an important question regarding CDCL solvers
was whether a similar restriction applies to such solvers or whether CDCL solvers
produce proofs of size at most polynomially longer than those created by gen-
eral resolution. Results in for example [HBPV08] and [BKS04] show that CDCL
solvers with some extensions are as efficient as general resolution. However, these
extensions seem difficult (if not impossible) to implement and are not part of reg-
ular CDCL solvers. Therefore, these results do not reach the goal of determining
the efficiency of CDCL solvers. Recently, this goal was reached in [PD11] where
CDCL solvers were shown to be as efficient as general resolution within a polyno-
mial factor. However, that article uses a model of CDCL solvers where decisions
are made in an optimal way — i.e. when searching through its search space the
solver always picks the optimal path. In reality, picking the optimal path seems dif-
ficult — there is even a result [AR08] suggesting that the results of [PD11] cannot
be recreated using a practical algorithm (unless certain computational complexity
classes collapse). A more practical result is shown in [AFT11] where decisions
are made randomly instead of optimally. There are however several aspects re-
garding these results that could be studied further. In both [AFT11] and [PD11]
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certain assumptions are made about CDCL solvers and these assumptions do not
seem to hold for real-world solvers. The model used in [AFT11] will hereby be
called the AFT solver model. There are three major assumptions which seem to
differ between the AFT model and real-world solvers. Firstly, practical solvers of-
ten use heuristics rather than random decisions when exploring their search space.
Secondly, practical solvers sometimes remove parts of the current expanded for-
mula to save space and speed up certain solver operations. Removing parts of the
expanded formula is something the AFT solver never does. Finally, the AFT solver
restarts very often while practical solvers restart less often. A restart is performed
by removing all of the current decisions so that potentially “bad” decisions are
removed.

1.2 Project goal
The goal of this project is to find out whether the results shown in [AFT11] are
— or can be made — practical. Firstly, this involves investigating whether the
assumptions made in that article (and in [PD11]) are needed, i.e. whether similar
results can be reached when using other solver models than that of the AFT solver.
Secondly, it would be interesting to know whether these assumptions are realistic,
i.e. whether the efficiency of the AFT solver is comparable to that of a solver used
in practice. These questions are not strict mathematical statements because these
questions are about how a model used to produce theoretical results corresponds to
reality. This report does not aim to fully answer the above questions — the method
used in this project when trying to answer these questions is to run experiments,
i.e. running different solvers and comparing their running times. Experiments
cannot give a complete picture of the solvers used since only a fixed number of
formulas can be tested. However, these experiments could be used to gain some
insights regarding the differences between real-world solvers and the AFT solver.
Similarly if the experiments would show that formulas which should be equally
difficult to solve using the AFT solver actually differ in reality then some new
conclusions could be drawn regarding CDCL running times and their dependence
on different formula properties.

The major difference between the experiments of this project and earlier ex-
periments performed on CDCL solvers is that many earlier experiments compare
practical solvers in the hope of finding better solvers. This project instead involves
relating practical solvers to theoretical results. Regarding the choice of method this
project could have been more theoretical — instead of running experiments theo-
retical reasoning could have been used in an effort to answer the questions above.
However, such methods often require (or are at least simplified by) some kind of
intuition regarding their outcome, which experiments can provide. Therefore, as
stated above, this project does not aim to fully answer the questions above, but to
create intuition which can be helpful for future work within this area.

1.3 Course of action and report outline
The project explained in this report consists of two parts, one theoretical and one
practical. In the theoretical part the most important papers relevant to this project
were studied. This part resulted in expositions of [BW01], [AFT11] and [PD11].
These expositions form the theoretical background of this report which is pre-
sented in Chapters 2, 3 and 4. The aim of the theoretical part of this project is
to get a better understanding of CDCL solvers in order to reason about their effi-
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ciency. The practical part consists of running experiments using a CDCL solver
with different combinations of settings on several different kinds of formulas. To
be able to run such experiments the code of a modern implementation (MiniSat)
of a CDCL solver was modified to add extra features used in the experiments.
The implementation and the modifications are explained in Chapter 5. After mak-
ing these modifications the actual experiments were set up, the details regarding
these experiments are presented in Chapter 6. To set up the experiments, code for
generating formulas in the DIMACS format (the format MiniSat uses) had to be
written as a part of this project. Most of the code for running different solvers
and saving their output was already written for use in similar earlier experiments.
This code just needed to be modified to handle the new formulas tested and the
different changes in solver settings. The results of the experiments are presented
in Chapter 7 and some concluding remarks and suggestions for future work are
discussed in Chapter 8.
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Chapter 2

Theoretical background

In this chapter we survey some proof complexity background so that we can argue
about the efficiency of proof systems related to CDCL solvers. CDCL solvers
are descendants of the DPLL solver [DLL62] which is based on the Davis-Putnam
solver [DP60] which in turn is based on the resolution proof system. As mentioned
earlier, the efficiency of CDCL solvers can be studied through relating the running
time of a solver to the efficiency of the resolution proof system. A CDCL solver
takes a boolean formula as input and expands it — derives new formulas implied
by the initial formula — until the expanded formula is trivially unsatisfiable. In
this way a CDCL solver can be seen as a type of resolution proof system. If the
solver instead of just storing the expanded formula in some database writes down
each derivation step the solver will have produced a proof of the unsatisfiability of
the formula when the solver terminates. We should note that the way we view a
CDCL solver here is slightly simplified — for example we ignore preprocessing
which is commonly used together with CDCL solvers in practice.

2.1 Basic terminology and notation
An important subclass of the SAT problem is the conjunctive normal form (CNF)
SAT problem. The CNF SAT problem is NP-complete. For simplicity, we focus on
the CNF SAT problem rather than the general SAT problem in this report. A CNF
formula is a conjunction of clauses, where a clause is a disjunction of literals. A
literal is a variable or the negation of a variable. A unit clause is a clause containing
exactly one literal. An example of a CNF formula is

(a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a) ∧ (b ∨ c) ∧ (a ∨ c) ∧ (b ∨ c).

Here a denotes the negation of the variable a. Sometimes, it is convenient to use
the notation xr for a variable x and a number r ∈ {0, 1} to refer to the literal
xr = x if r = 1 and xr = x if r = 0.

A proof system for proving that some object has a certain property is an al-
gorithm PS(o, π) which takes as input (a representation of) an object o and a
potential proof π. The algorithm runs in time polynomial in the size of its input
|o|+ |π|. The algorithm has the following two properties: if the input object does
have the sought property there exists a proof π for which the algorithm outputs 1,
i.e. ∃π : PS(o, π) = 1. If the input object does not have the sought property then
for every potential proof the algorithm outputs 0, i.e. ∀π : PS(o, π) = 0. In this
report we will only consider propositional proof systems, i.e. proof systems for
showing the unsatisfiability of CNF formulas.
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Definition 2.1 (P-simulation). A proof system A p-simulates a proof system B
if for each formula F , the shortest proof in A refuting (showing the unsatisfiability
of) F has length at most polynomial in the size of F or the length of the shortest
proof in B refuting F .

P-simulation is a notion used to capture the relative efficiency of different proof
systems. The definition of p-simulation depends not only on the relation between
proof sizes in different proof systems but also on the relation between proof size
and the size of the input formula. This latter dependency is used because there
are formulas which can be refuted using constant size proofs. We are interested
in proof systems based on CDCL solvers and such solvers should be able to read
the entire input formula before refuting it (since this is what most solvers do in
practice as long as the formula is not trivially refutable).

To relate the running time of a CDCL solver to some proof system (in this
case resolution) we need to represent the run of a CDCL solver with some proof
system. This is done more strictly later in this report (Definition 4.6). Less strictly,
we could say that a CDCL solver works by expanding its input formula and thus
deriving new clauses. A proof system representing a CDCL solver is then a system
where clauses can be derived only if they can be derived by the CDCL solver. It
can be shown [BKS03] that the run of a CDCL solver corresponds to the creation
of a certain type of resolution proof. Therefore, any proof system representing a
CDCL solver can be seen as a subsystem of resolution. I.e. a CDCL solver can be
at most as efficient as the resolution proof system.

2.2 The resolution proof system
The resolution proof system can be used to refute CNF formulas. A resolution
proof starting with a formula F is a sequence of clauses such that each clause is
either a clause in F (an axiom) or is derived from clauses earlier in the sequence.
A clause can be derived either by the resolution rule, shown in (2.1), or by the
weakening rule, shown in (2.2). The resolution rule can be written as

A ∨ x B ∨ x
A ∨B

(2.1)

where A and B are clauses and x is a variable. Given the resolution rule and
the clause C = A ∨ B, the clauses A′ = (A ∨ x) and B′ = (B ∨ x) can be
resolved to produce the resolvent C. We can also write C = Res(A′, B′) if it
is not necessary to show which variable is being resolved over. We use the term
F ` C to denote that the clause C can be derived from the formula F using
resolution. A resolution derivation π : F `C of the clause C from the formula
F is a resolution proof starting with F and ending in C. A resolution refutation
π : F `⊥ is a derivation of the empty clause ⊥ (a clause with no literals). A
resolution refutation is a proof showing that a formula is unsatisfiable since an
empty clause cannot be satisfied (there are no literals to satisfy). More intuitively,
the only way to reach the empty clause is to resolve two contradictory unit clauses,
e.g. (x) ∧ (x), and any formula containing such clauses is trivially unsatisfiable.
An example of a resolution refutation can be seen in Figure 2.1. There the notation
Res(x, y) means that the clauses at lines x and y are resolved. The second rule that
can be used in the resolution proof system, the weakening rule, is shown below.

A

A ∨B
(2.2)
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Formula

(a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a) ∧ (b ∨ c) ∧ (a ∨ c) ∧ (b ∨ c)

Proof
(1) a ∨ b ∨ c Axiom
(2) a ∨ b ∨ c Axiom
(3) a ∨ c Res(1, 2)
(4) a Axiom
(5) c Res(3, 4)
(6) b ∨ c Axiom
(7) b ∨ c Axiom
(8) c Res(6, 7)
(9) ⊥ Res(5, 8)

Figure 2.1. Resolution refutation example

The weakening rule is redundant — it is possible to show (using induction) that
any resolution refutation using the weakening rule, can be rewritten as a resolu-
tion refutation of at most the same length where only the resolution rule is used.
However, the weakening rule can be useful when arguing about resolution.

It is possible to show that resolution is sound, i.e. if A and B are clauses and x
is a literal and A∨B = Res(A ∨ x,B ∨ x, x) thenA∨B is implied by (A∨x)∧
(B ∨ x). Resolution can be shown to be sound (by a case analysis on the variable
which is being resolved) in the following way. Let us assume A ∨ x and B ∨ x
are both satisfied, then if x = 0, A must be satisfied and thus A ∨ B is satisfied.
Otherwise, if x = 1 then B must be satisfied and again A∨B is satisfied. It is also
possible to show that resolution is complete, i.e. each unsatisfiable formula can be
refuted using resolution. Completeness can be shown by creating a decision tree
for the given formula F— let each node be a variable and each edge represent an
assignment to that node. Since F is unsatisfiable each path in such a decision tree
must falsify some clause in F . Let each leaf node of the tree represent the clause
which is falsified by the path from the root to that leaf. A resolution derivation
can then be created from the decision tree by letting each node represent the clause
resolved from its children nodes. The root node will then represent the empty
clause.

A resolution derivation can be represented as a graph, where nodes represent
clauses in the derivation and edges represent rule uses. Thus, in such a graph
representation, for each rule usage in the represented derivation edges are drawn
from each of the initial clauses in the rule to the resulting clause. Any graph
representation of a resolution derivation is a directed acyclic graph (DAG) since
each clause must either lie in the initial formula or be derived from earlier clauses.
If the graph representation of a resolution derivation is a tree the derivation is
called tree-like. The difference between such a derivation and a general resolution
derivation is that in a tree-like derivation each time a clause is used in the derivation
it must be re-derived from axiom clauses. In general resolution each clause need
only be derived once and can then be used several times throughout the derivation.

Definition 2.2 (Trivial resolution). Trivial resolution is a restricted version of
resolution where each variable can be resolved over at most once and where the
resolution rule can only be used (except for the first usage) to resolve an axiom
together with the latest resolved clause.
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Definition 2.3 (Unit resolution). Unit resolution is resolution where whenever
the resolution rule is used at least one of the clauses being resolved must be a unit
clause.

2.2.1 Complexity measures
Just as the efficiency of a computer program is not only measured in terms of
running time but also for example memory consumption, it is possible to argue
about the efficiency of a proof system using different complexity measures.

Definition 2.4 (Size). The size S(π) of a resolution derivation π is the number
of lines (clauses) in π. The size S(F ` C) of deriving a clause C from a CNF
formula F is the minimum size over all possible derivations of C from F : S(F `
C) = minπ:F `C{S(π)}. Similarly ST (F ` C) is the minimum size over tree-like
derivations of C from F .

Size essentially represents the running time of an algorithm implementing res-
olution, it is therefore natural to study such a complexity measure.

Definition 2.5 (Width). The width W(C) of a clause C is the number of literals
in the clause. The width W(F ) of a set of clauses F , such as a formula or a
derivation, is the width of the largest clause in the set: W(F ) = max{W(C) :
C ∈ F}. Finally, the width of deriving a clause C from a formula F , denoted
W(F ` C) is the minimum width taken over all possible derivations of C from F :
W(F ` C) = minπ:F `C{W(π)}.

It is not obvious why the width of a resolution derivation should be studied.
However, it turns out that there are strong relations between the size and width of
resolution proofs (as we will see in Section 2.3). These relations essentially state
that short resolution proofs can be used to create narrow proofs which means that
if there are no narrow proofs for a certain formula then there are no short proofs
either.

Another important complexity measure is space. Assume that whenever we
have derived a clause and want to use it later (without deriving it again) we must
save it to some memory. The space complexity measure then represents the mini-
mum amount of memory needed to refute a formula. This notion is not defined in
a strict way here because it is not used (in this report) to show any results regarding
the running times of CDCL solvers.

2.2.2 Restrictions
We can restrict a formula through assigning values to some of its variables. This
can be useful since restricting a formula makes it smaller and thus (possibly) easier
to reason about. The restriction x = a on the clause C denoted C�x=a is 1 if xa

lies in C (the clause 1 represents a satisfied clause) and C \{x1−a} otherwise. It is
possible to restrict an entire derivation π : F `D (creating the restriction π�x=a),
this can be done by simply restricting each clause in the derivation, i.e. if π =
(C1, C2, . . . , Cm) then π�x=a= (C1�x=a, C2�x=a, . . . , Cm�x=a).

Lemma 2.6. Given a derivation π : F `D, a restriction π�y=a is a valid deriva-
tion of D�y=a from F�y=a.

Proof. To show that π �y=a is a valid derivation of D�y=a we simply show that
each clause in π�y=a that is not an axiom can be derived from some earlier clauses
in π�y=a. Let A′ = (A ∨ x)�y=a, B′ = (B ∨ x)�y=a and C ′ = C �y=a where
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C = Res(A ∨ x,B ∨ x, x). Let us now show that C ′ can be derived from A′

and B′. Note that if C ′ cannot be resolved from A′ and B′ then either x is the
variable being restricted, A�y=a= 1, or B �y=a= 1. In the latter case (when x
is not being restricted) C ′ = 1 because C ′ contains the literal being satisfied in
A�y=a or B�y=a since that literal is not being resolved over. The clause C ′ = 1
can always be derived through the weakening rule. If the restriction is x = 0,
then A ∨ x is restricted to A = A�x=0 and by the weakening rule (A ∨ B)�x=0
holds. The same applies for the restriction x = 1 except then B ∨ x is restricted to
B = B�x=1 which implies (A∨B)�x=1. If instead C = A∨B is derived through
the weakening rule from the clause A then C ′ = A�y=a ∨B�y=a can be derived
through the weakening rule from A�y=a.

2.3 Some fundamental resolution results
In this section we discuss some important results regarding the efficiency of reso-
lution — these results are important because CDCL solvers can be at most as effi-
cient as resolution. Maybe the most important result is that there are exponential
lower bounds for resolution, i.e. there are formulas for which any resolution refu-
tation has size at least exponential in the size of the formula being refuted. Such
results were initially presented in [Hak85] where the formula family used was an
encoding of the pigeonhole principle (PHP). The pigeonhole principle states that
if p pigeons are to be placed in h holes, where p > h, then some hole must contain
at least two pigeons. This principle can be encoded by creating a matrix of vari-
ables where each variable represents a certain pigeon flying to a certain hole. The
formula consists of two types of clauses — one which states that each pigeon must
fly to some hole and one which states that no pair of pigeons can fly to the same
hole. A more detailed explanation of PHP formulas can be seen in Section 6.1.2.

Results as that presented in [Hak85] were initially quite difficult to attain.
However, in [BW01] a new simpler method for showing resolution size lower
bounds was presented. The reason for this method being easier to use than ear-
lier methods is that it uses width lower bounds to prove size lower bounds instead
of proving size lower bounds directly. Width lower bounds can be used because
the same article ([BW01]) shows a strong relation between the size and width of
resolution proofs.

Theorem 2.7 ([BW01]). For any unsatisfiable CNF formula F ,

W(F `⊥) ≤W(F ) + log ST (F `⊥)

where ST (F `⊥) is the size of the smallest tree-like resolution refutation of F .

Theorem 2.7 describes a relation between width and size of tree-like resolu-
tion proofs. This relation was originally shown in [BW01]. The relation can be
rewritten to show how the size of refuting a formula in a tree-like manner grows
exponentially with the width of refuting the same formula (if the formula has con-
stant initial width), as can be seen in Corollary 2.8.

Corollary 2.8 ([BW01]). For any unsatisfiable CNF formula F the following
holds.

2W(F ⊥̀)−W(F ) ≤ ST (F `⊥)

Theorem 2.9 contains the slightly more complex version of the relation from
Theorem 2.7. This more complex version holds for general resolution.

9
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Theorem 2.9 ([BW01]). For any unsatisfiable CNF formulaF the following holds.

W(F `⊥) ≤W(F ) + O
(√

n ln S(F `⊥)
)

Theorem 2.9 can also be rewritten to show how the size of refuting a formula
grows exponentially with the width of refuting that same formula, as is shown
below.

Corollary 2.10 ([BW01]). For any unsatisfiable CNF formula F the following
holds.

exp(Ω(W(F `⊥)−W(F ))2/n) ≤ S(F `⊥)

Together with lower bounds on width of resolution refutations Corollaries 2.8
and 2.10 imply size lower bounds of resolution refutations. It is important to note
that, for these relations to be useful, the initial width of the formula F should be
small. Typically, if we want exponential lower bounds on size of refutations we
prove linear lower bounds on width and bound the width of the initial formula to a
constant.

Below follow proofs of the width-size relations (Theorems 2.7 and 2.9). Both
proofs are essentially the same as in [BW01]. These proof are shown (instead of
only presenting the relations) to give the reader a view of how to create a narrow
refutation given a short one. This view is important because short refutations are
not necessarily narrow (as the title of [BW01] suggests) even though it is possible
to create a narrow refutation given a short one. The proofs use induction on the
size of a refutation and the number of fat (wide) clauses in a refutation respectively.
In these proofs the initial resolution refutation is split into two smaller derivations
which by themselves cannot be used to refute the initial formula. Then, by use of
the induction assumption, these derivations are rewritten into new derivations of
small width. Finally, Lemma 2.11 is used to merge these new narrow derivations
into a derivation, of the target width, refuting the initial formula. To split the initial
refutation into smaller derivations a restriction is used — one of the variables in
the refutation is restricted first to 0 and then to 1 to create two smaller derivations.
The difference between the two proofs is the goal when splitting the refutation into
smaller derivations. The proofs use different induction assumptions which means
that showing that a derivation has small width in the first proof can be done by
showing that it has small size, while in the second proof this is done by showing
that the derivation has a small number of fat clauses.

Lemma 2.11 ([BW01]). Let F be a refutable CNF formula, and let xa be a literal.
If W(F �x=a` ⊥) ≤ k − 1 and W(F �x=1−a` ⊥) ≤ k, then W(F ` ⊥) ≤
max(W(F ), k).

Proof. Pick a refutation of F �x=a with width k − 1 and add x1−a to each axiom
clause in that refutation which contained x1−a before the use of the restriction
x = a. Then modify the refutation so that the literal x1−a is propagated accord-
ingly. I.e. whenever at least one of the clauses being resolved in the refutation
contains x1−a the resulting resolvent should also contain x1−a. The derivation
created through modifying the aforementioned refutation is a valid derivation of
x1−a from F . The derivation is valid because each axiom in the derivation is a
clause in F (and the derivation is based on a valid refutation to which we have
added x1−a without removing correctness). Furthermore, x1−a is never resolved
over in this derivation and thus instead of obtaining the empty clause the derivation
ends up deriving x1−a. Note that this derivation has width at most k − 1 + 1 = k
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since the original refutation of F �x=a has width k − 1 and we add at most one
literal to each clause in that refutation to obtain our new derivation. Now, after ob-
taining x1−a we can resolve x1−a with each clause in F containing xa. This step
can be performed using width at most W(F ) and results in the restriction F�x=1−a
which can be refuted in width k (since this is what W(F�x=1−a`⊥) ≤ k means).
Thus, F can be refuted using width max(W(F ), k).

Proof of Theorem 2.7. This is a proof by induction over b and n, where n is the
number of variables in the initial formula. The induction assumption is the follow-
ing: if ST (F `⊥) ≤ 2b then W(F `⊥) ≤ W(F ) + b. Let us start with the base
cases. If b = 0 then F must contain the empty clause. If n = 1 then F contains
at most one variable x and can be refuted using the resolution rule on x and x.
For the induction step, let us consider the last step in the tree-like refutation of F ,
which is

x x

⊥
for some variable x. Either the tree-like derivation of x or that of x must have
size less than ST (F ` ⊥)/2. Let us assume, without loss of generality, that x
is the literal that can be derived from F using a derivation of size less than half
of ST (F ` ⊥), i.e. ST (F ` x) ≤ 2b−1. By restricting such a derivation using
the restriction x = 0 we get a new derivation π : F�x=0 `⊥ (which is a valid
refutation by Lemma 2.6), also of size less than 2b−1. By induction on b we can
refute F �x=0 in width W(F �x=0) + b − 1 ≤ W(F ) + b − 1. Furthermore,
W(F �x=1`⊥) ≤ W(F �x=1) + b ≤ W(F ) + b by induction on n (since F �x=1
contains no instance of the variable x). Now, by Lemma 2.11, W(F ` ⊥) ≤
W(F ) + b.

Proof of Theorem 2.9. This proof is by induction over b and nwhere n is the num-
ber of variables in the initial formula F . Let π be a refutation of F of minimum
size. The following is the induction assumption: if the number of fat clauses in π
is strictly less than ab then W(F `⊥) ≤ W(F ) + b + d, where a = 1

1−d/2n and
a fat clause is a clause of width at least d =

√
2n ln S(F `⊥). The following are

the induction base cases. If b = 0 then π contains no fat clauses and the width of
refuting F is less than d. If n = 1 then F contains exactly one variable x and can
be refuted by resolving x with x, then W(F `⊥) ≤W(F ).

The next step is to show that restricting a refutation of F by satisfying a literal
contained in many fat clauses in the refutation will produce a restricted refutation
with few enough fat clauses to use the induction assumption. Let f be the number
of fat clauses in π. Then the number of literals contained in fat clauses is at least
df and the number of distinct literals in total is 2n. Therefore, by the pigeonhole
principle there must be some literal x contained in at least df/2n fat clauses in π.
Now let π′ = π�x=1 and note that this restriction π′ is a refutation of F �x=1 (by
Lemma 2.6). π′ contains less than (1 − d/(2n))f < (1 − d/(2n))ab = ab−1 fat
clauses since each clause containing the literal x will be satisfied by the restriction
x = 1, and can thus be removed. By induction on b, F�x=1 can be refuted in width
W(F �x=1) + b + d − 1. Also, by applying the restriction x = 0 to the original
refutation π we get a refutation of F�x=0 with less than ab fat clauses, and one less
variable. Thus by induction on n, F �x=0 can be refuted in width W(F ) + b + d.
Then by Lemma 2.11, F can also be refuted in width W(F )+b+d. Now we have
shown the induction assumption, but that assumption relates width and the number
of fat clauses in a refutation. Let us instead relate width to size. The number of
fat clauses of a refutation is at most the number of clauses in the refutation, i.e.
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the size of the refutation. So letting ab > S(F ` ⊥) will make the induction
assumption hold for any refutable formula. Now let us calculate how this bounds
the variable b (in the equations below, the actual equations are shown in the left
column and non-trivial steps are explained in the right column)

ab = (1− d/2n)−b > S(F `⊥) [a = 1
1− d/2n ]

b ln (1− d/2n) < − ln S(F `⊥) [logarithm and negation]
b ln (1− d/2n) ≤ −bd/2n < − ln S(F `⊥) [ln x ≤ x− 1]

bd/2n > ln S(F `⊥)

b >
2n ln S(F `⊥)

d

b >
2n ln S(F `⊥)√
2n ln S(F `⊥)

[d =
√

2n ln S(F `⊥)]

b >
√

2n ln S(F `⊥)

Thus, letting b =
√

4n ln S(F `⊥) will make the induction assumption entail all
refutable formulas and still fulfill b+ d ∈ O

(√
n ln S(F `⊥)

)
.
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Chapter 3

CDCL solvers and their ancestors

In this chapter we investigate the principles of how CDCL solvers work. We start
by examining the ancestors of CDCL solvers called DPLL solvers.

3.1 Davis-Putnam-Logemann-Loveland solvers
Conflict driven clause learning (CDCL) solvers are based on the Davis-Putnam-
Logemann-Loveland (DPLL) solver [DLL62] which in turn is based on the Davis-
Putnam solver [DP60]. A DPLL solver is essentially a search algorithm that looks
for satisfying assignments for a given formula. The search is carried out through
restricting the given formula by assigning values to different variables. These as-
signments can be set through propagation or assumption — if some variable obvi-
ously must be assigned a certain value then the assignment of that variable is said
to be propagated. Whenever the algorithm does not immediately see that a certain
variable must be set to a certain value to make the formula satisfying the algorithm
makes an assumption regarding the value of some variable. Therefore, essentially
what the solver does is to divide the problem into subproblems, one where the
latest assumption holds and one where it does not. The formula is satisfiable if
a satisfying assignment can be found in at least one of these two subproblems.
Whenever a conflict is reached (some clause is falsified by the current assignment)
the algorithm backtracks to negate its latest assumption. Note that an assignment
is not considered an assumption if it was derived through negating an assumption
(i.e. we cannot negate the negation of an assumption). The algorithm terminates
either when a satisfying assignment is found or when the algorithm reaches a con-
flict without any assumption being made (all assumptions have been disproved).

3.2 Conflict driven clause learning solvers
Algorithm 1 contains pseudocode for a CDCL solver. Just as a DPLL solver a
CDCL solver searches for a satisfying assignment for its input formula. However,
some extensions have been added that makes a CDCL solver more efficient than a
DPLL solver. The most important extension is that of clause learning which is ex-
plained in Section 3.2.2. The solver contains a database of clauses which consists
of the clauses in the initial formula and clauses that have been learnt by the solver
during its run. At any time during a run the solver contains a sequence of assign-
ments, these can be either decision (assumption) assignments (chosen through a
decision scheme) or propagated assignments (as explained in Section 3.2.1). When
arguing about a solver we usually argue about its database restricted by the variable
assignments of the solver.
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input : CNF formula
output: SAT or UNSAT
while true do1

while Propagation is possible do2

Propagate one variable3

if Conflict then4

if No variables are assigned by decisions then5

return UNSAT6

end7

Learn conflict clause8

Backjump9

end10

end11

if Time to restart then12

Restart13

end14

if No unassigned variable left then15

return SAT16

else17

Assign unassigned variable18

end19

end20

Algorithm 1: CDCL solver pseudocode

3.2.1 Propagation
A CDCL solver only propagates assignments using unit propagation. A unit prop-
agation is carried out when a clause in the database is reduced to a unit clause
when restricted by the current variable assignments. A propagation is essentially
a decision which is obvious to the solver — when one of the clauses in the clause
database is reduced to a unit clause then the single literal in that clause must be
satisfied. For example if we run a CDCL solver on the formula

(a ∨ b ∨ c) ∧ (a ∨ b)

and decide to assign the variable a to false, then by unit propagation bmust be false
because the clause (a∨b) is reduced to the clause (b). Now the clause (a∨b∨c) is
reduced to the unit clause (c) which means that c must also be false. Therefore by
only assigning one variable by decision we have by propagation assigned two vari-
ables more. In the resolution proof system unit propagation is represented by unit
resolution (Definition 2.3), i.e. we can reach a conflict using unit propagation on a
formula F if and only if F can be refuted using unit resolution. This relation holds
because propagating a literal x is equivalent to resolving all clauses (containing x)
in our formula with the unit clause (x).

3.2.2 Conflicts and clause learning
Whenever a conflict is reached, i.e. whenever a clause in the clause database of
the solver is falsified by the current variable assignments, the CDCL solver will
try to learn the reason for the conflict. Learning the reason for a conflict is done
through clause learning — a clause is added to the clause database to make sure the
solver cannot run into the same conflict again. By learning a clause any sequence
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of decisions which include falsifying that clause are pruned from the search space.
For example making the decision a = 0 in the formula

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ b ∨ c)

will propagate b = 0 and then c = 0 (or c = 1) which will falsify the clause
(a ∨ b ∨ c) (or (a ∨ b ∨ c) if c = 1). Thus, all that needed to be done to reach
a conflict was to set a = 0, therefore a = 0 is the reason for the conflict and a
CDCL solver could learn the unit clause (a) after reaching such a conflict. If we
now continue to run our solver the assignment a = 1 will be propagated (after
backtracking) because of the learnt unit clause (a) which means that the solver
cannot reach the same conflict again.

3.2.3 Backjumping and restarts
As mentioned earlier, whenever a DPLL solver reaches a conflicting state it will
backtrack, i.e. negate the latest decision, to reach a non-conflicting state. A CDCL
solver has more information than a DPLL solver after reaching a conflict — the
CDCL solver has tried to understand the reason for the conflict through learn-
ing a clause. Because of this newly learnt clause the CDCL solver might, after
backtracking, gain new propagations that the DPLL solver will not. Therefore
backjumping is used instead of backtracking.

The difference between an algorithm using simple backtracking and an algo-
rithm using backjumping is that the one using backtracking only backtracks until it
reaches a non-conflicting state. I.e. after a conflict the simpler backtracking algo-
rithm backtracks until it has unassigned the latest assigned literal (out of those as-
signed by decision) of the newly learnt clause. A backjumping algorithm however,
can continue backtracking as long as a propagation is gained from the newly learnt
clause. I.e. a backjumping algorithm can backtrack until it reaches the assignment
of the variable in the newly learnt clause which was assigned (by decision) second
latest. This assignment is not undone since if it would be the algorithm would not
be able to directly take advantage of the propagation produced by the newly learnt
clause.

Let us consider an example where we have an unsatisfiable formula including
the variables a, b, . . . , y, z and assign all those variables by decisions in the order
they are presented and reach a conflict after assigning z. Then a DPLL solver
would negate the latest decision, i.e. the assignment of z and continue running.
This course of action is fine if all of the variables decided upon are part of the rea-
son for the conflict. But what if the reason for the conflict is only the assignments
of the variables a, b and z? Then the DPLL solver will perform many unnecessary
operations by exploring the search space where a and b are assigned since a conflict
will always be reached when z is assigned again. A CDCL solver implementing
backjumping could instead learn the clause (a ∨ b ∨ z) and undo all assignments
until that of the second latest variable (b) which was assigned by decision in the
newly learnt clause. In this case such a backjump results in undoing all assign-
ments made after b was assigned. Then because of the newly learnt clause, the
literal z will be propagated before making any new decisions — this propagation
will remove a large part of search space that the DPLL solver is searching through.

The last major difference between DPLL solvers and CDCL solvers — restarts
— removes all assignments made so far. Intuitively, restarts should be used to
remove unwanted decisions, i.e. decisions that do not contribute to reaching con-
flicts. However, the theoretical understanding of how restarts work and how they
affect the performance of CDCL solvers is limited.
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3.2.4 CDCL components
In a CDCL solver there are several components which can be altered to tune the
solver. These components can heavily alter the efficiency of a solver. The follow-
ing are such components: restart policy, learning scheme, decision scheme, and
clause removal. A restart policy determines how often a solver restarts. Usually a
restart policy is expressed as a number of conflicts between restarts. In Algorithm 1
the restart policy is run at line 12.

The learning scheme determines what types of clauses will be learnt when
reaching a conflict, i.e. it determines how the solver figures out the reason for a
conflict. In Algorithm 1 the learning scheme is used at line 8. In this report, only
asserting learning schemes are considered because they are the ones most com-
monly used in practice (for example in the solvers MiniSat [ES04] and Lingeling
[Bie13]). That a solver is using an asserting learning scheme means that it learns
only asserting clauses (defined in Definition 4.4). Such clauses will prove useful
because they will make it simple to argue about what a solver gains from learning
a new clause.

A decision scheme determines the order in which decision assignments are
made. In Algorithm 1 a decision scheme is used at line 18. One example of a de-
cision scheme is to randomly choose variables, another example is called Variable
State Independent Decaying Sum (VSIDS). VSIDS is often used in practice, for
example in the solvers MiniSat [ES04] and Lingeling [Bie13]. In VSIDS each
variable is given a counter and the variable to be assigned is always the one with
highest counter value (and that has not yet been assigned). This counter represents
the relevance — or activity — of a variable, whenever a new clause is learnt the
counters of the variables in that clause are incremented. The values of the counters
decay by periodic multiplication with some value between 0 and 1 so that the coun-
ters are affected more by recent activity than older activity. If several variables are
tied for the highest counter value one of those variables is chosen randomly.

The last CDCL component is clause removal which is the act of removing
some of the clauses learnt during a CDCL run. The removal of clauses is done to
save memory and speed up operations performed by the solver. Clause removal can
be inserted into the CDCL algorithm shown in Algorithm 1 for example between
lines 14 and 15.
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Chapter 4

CDCL solvers efficiency results

This chapter contains explanations of results regarding the efficiency of CDCL
solvers. These results relate the running times of CDCL solvers to the efficiency
of the resolution proof system. The main goal of this project is to find out how
the CDCL solver models used in this chapter, and the results acquired, are re-
lated to practical solvers and their running times. As mentioned earlier we can
view a DPLL solver run as the creation of a proof in a restricted version of the
resolution proof system (more specifically a tree-like resolution proof). For some
formulas this restricted version creates proofs exponentially longer than the short-
est proofs in general resolution. An important question regarding CDCL solvers is
whether these only simulate some restricted version of the resolution proof system
or whether CDCL solvers can simulate general resolution.

In [PD11], it was shown that a proof system representing a CDCL solver
p-simulates general resolution. However, an optimal decision scheme is used
which makes these results impractical. Such results seem to require an unreal-
istic scheme, since [AR08] indicate that similar results cannot be produced for
realistic CDCL solvers. [AFT11] on the other hand uses a decision scheme which
picks variables randomly. The use of such a scheme leads to a worse bound, but
the model can be implemented in reality. These two results were obtained using a
very similar proof strategy for expressing the efficiency of CDCL solvers in terms
of resolution measures. This strategy is presented below, in the form of an expo-
sition of [AFT11] and [PD11]. The strategy is based on an earlier strategy used
in for example [BKS04] and [HBPV08]. The goal of that earlier strategy was to
let the solver learn an entire resolution refutation one clause at a time. The strat-
egy worked partially — the attempts were successful but the models used were
not quite those of CDCL solvers. In [BKS04] the model used makes decisions on
already assigned variables. In [HBPV08] it is instead shown that CDCL solvers
effectively p-simulate resolution. This expression means that instead of directly
comparing the length of the shortest proof in a CDCL proof system to that of res-
olution a preprocessing step is added when creating CDCL proofs. This prepro-
cessing step maps the input formula to a new formula (which must be satisfiable
if and only if the initial formula is satisfiable) and runs in polynomial time in the
size of the initial input formula. So essentially what [HBPV08] shows is that there
is some preprocessing step that together with a CDCL solver simulates resolution.

The reason for trying to learn an entire proof is that resolution refutations al-
ways end with two contradictory unit clauses (x) and (x). When a CDCL solver
learns two contradictory unit clauses it will terminate before making any more
decisions since such clauses provide contradictory unit propagations. The earlier
attempts to show that CDCL solvers simulate resolution needed artificial models
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of CDCL solvers because learning an entire resolution refutation is difficult — at
each step of a run the next clause in the refutation must be learnt within a rea-
sonable amount of time. Both [AFT11] and [PD11] solve this problem by using
an improved strategy where each clause in the resolution refutation is not learnt
explicitly — instead each clause in the resolution refutation is learnt implicitly
by learning some other set of clauses. Learning a clause implicitly can be done
because the benefits a CDCL solver gains from learning a clause are unit propaga-
tions, and therefore, instead of learning a certain clause the solver can learn some
other clauses providing the same unit propagations. Thus, instead of showing how
long it takes for a CDCL solver to learn each clause in a resolution refutation we
show how long it takes for a solver to acquire the same unit propagations as those
provided by each of the clauses in a resolution refutation.

4.1 Notation and terminology

To be able to calculate the time it takes for a CDCL solver to acquire some unit
propagations we need to define what happens during a CDCL run and how new
clauses are learnt (or new propagations are acquired).

Definition 4.1 (Round [AFT11]). A round is a run of a CDCL solver, starting
with a set of clauses D (the database of the solver) and an empty sequence of
assignments S0 = {}, until either ⊥ ∈ D�Sr or D�Sr does not contain any unit
clauses, where Sr is the sequence of assignments made until the rth assignment of
the round.

Definition 4.1 introduces the concept of a round. A round is a run of the CDCL
algorithm, starting with an empty sequence of assignments, until either the algo-
rithm reaches a conflict or a new decision must be made. We should note that an
assignment can only set a variable which is not currently assigned. An assignment
can be either a decision or a propagation. A propagation is carried out when some
clause in the clause database is restricted to a unit clause. A decision assignment
can only be carried out when there are no unit clauses in the database of the solver
(otherwise a propagation assignment is carried out).

If the CDCL algorithm reaches a conflict the current round is conclusive. A
round that is not conclusive is inconclusive. The notion of an inconclusive round is
important because in such a round all possible unit propagations are carried out —
in a conclusive round, on the other hand, there could be unit propagations which
are never carried out before the algorithm reaches a conflict. Note that we are only
interested in assignments made starting from an empty decision sequence until a
conflict is reached. Even though the solver might backjump and continue making
propagations after a conflict is reached we ignore those propagation assignments
(and any potential new conflicts). Such propagations will not pose a problem since
any efficiency bounds reached will be expressed using the number of restarts of
the solver run. The number of restarts corresponds to the number of conclusive
rounds of the run since the restart policy used will make the solver restart after
each conflict. Furthermore, it can be shown (Lemma 4.10) that a CDCL solver
cannot reverse any of its progress (progress here essentially means how large part
of a resolution proof the solver has learnt implicitly) by learning new clauses.
Therefore, letting the solver carry out propagations (and potentially reach new
conflicts) after reaching a conflict will not affect the solver in a negative way.
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Definition 4.2 (Decision level [AFT11]). The decision level of a variable x during
a round R is the number of decisions performed until assigning x during the round
R.

The following is an example of how decision levels work. If we decide to
assign a = 0 and this yields the propagations b = 1 and c = 0 and finally decide
to assign d = 0 then the decision level of a, b and c is 1 while the decision level of
d is 2.

4.1.1 Clause learning
Now we study what kind of clauses a CDCL solver learns during a run so that we
can reason about the progress the solver makes by learning clauses.

Definition 4.3 (Conflict clause). A conflict clause for a conclusive roundR, start-
ing from the set of clauses D, is a clause C which is falsified by R and such that
any round starting with D which falsifies C is conclusive.

A conflict clause is meant to capture the reason for a conflict. Therefore, fal-
sifying a conflict clause must be enough to reach a conflict. Furthermore, for a
clause to be a potential reason for the current conflict it must have been falsified
during the current round. All clauses learnt by a CDCL solver are conflict clauses
for the round at which they are learnt. Therefore, a learnt clause is always implied
by the clause database of the solver (at the time of the learning) since falsifying
a conflict clause yields a contradiction. This implication is important because the
database of the solver is then implied by the input formula, which means that re-
futing the database proves that the input formula is unsatisfiable. Thus, during
a run a CDCL solver is essentially expanding its input formula (in the form of a
clause database) until the formula is trivially refutable (through unit propagation)
and then terminates.

Definition 4.4 (Asserting clause). An asserting clause of a round R is a conflict
clause of R with exactly one literal at the last decision level of R.

Asserting clauses are especially useful when proving efficiency bounds on
CDCL running times (and are also commonly used in practice, as explained in
Section 3.2.4). There is a bound on the number of times one can perform a certain
round (or rather make the same sequence of decisions) over and over again when
using an asserting learning scheme (a scheme only choosing asserting clauses).
This bound stems from the fact that there is a limited number of variables of the
highest decision level for any round — and after each conflict one more such vari-
able will be propagated at a lower level.

4.1.2 Optimal decision scheme
To take advantage of the full power of CDCL solvers an optimal decision scheme
will be used when proving that CDCL solvers simulate resolution. Actually the
scheme used is not necessarily optimal but we get to choose the order of decisions
so we could use an optimal scheme.

Definition 4.5 (Branching sequence [PD11]). A branching sequence is a se-
quence of variable assignment decisions.

An example of a branching sequence is 〈a = 1, b = 0, c = 1, a = 0, c =
0, b = 1〉, where a, b, c are variables in the input formula.
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It is possible to show (Lemma 4.14) that a conflict clause of a round starting
from the database D can be derived from D using trivial resolution. Because
conflict clauses (and thus learnt clauses) can be derived in such a way we can
create a proof system using a CDCL solver where a proof is the concatenation of
trivial resolution proofs deriving clauses learnt by the solver.

Definition 4.6. Let D be a set of clauses, let B be a branching sequence and let
C1, . . . , Cm be the clauses learnt by a CDCL solver running with D as initial
clause database and B as branching sequence. Let π1, . . . , πm be trivial resolution
proofs of C1, . . . , Cm from the corresponding databases of the solver at the time
the clauses are learnt. Then we define Der(D,B) to be the concatenation of these
resolution proofs: Der(D,B) = π1, . . . , πm and we let |Der(D,B)| denote the
size of Der(D,B).

Definition 4.6 describes proofs from a proof system representing a CDCL
solver. Such proofs will not end in the empty clause since that would imply that
the solver learns the empty clause. However, since the database of the solver is
conflicting under unit propagation when the solver terminates we can simply add
a unit resolution proof (simulating the unit propagation) to reach the empty clause.
This unit resolution proof will always be short (each variable need only be propa-
gated at most once) and will therefore be ignored in the rest of this report.

4.1.3 Concepts for determining solver progress
This section contains concepts which are used when relating the efficiency of
CDCL solvers and the resolution proof system. These concepts make the dif-
ference between the new successful efficiency results of [AFT11] and [PD11] and
older results where artificial models of CDCL solvers were used. The first concept
is called absorption and is meant to capture the benefits of learning a clause with-
out actually learning it. As mentioned earlier learning a clause implicitly means
that the solver gains the unit propagations the clause would have provided when
learnt.

Definition 4.7 (Absorption [AFT11]). A clause C is absorbed at a literal xa ∈ C
by a set of clauses D if for each inconclusive round R falsifying C \ xa, the round
R contains the assignment x = a. C is absorbed by D if C is absorbed by D at
each literal xa in C.

What Definition 4.7 says is that a clause C is absorbed at a certain literal l if
falsifying every literal in C except l will always mean that l is set to true (unless a
conflict is reached). It can be shown ([AFT11]) that any clause absorbed by a set
of clauses is also implied by those clauses, however the other direction does not
hold (as we will see shortly in Example 4.9). If all implied clauses would be ab-
sorbed then CDCL solvers would directly be able to determine the satisfiability of
a formula since an unsatisfiable formula implies all possible clauses. For example
the clauses (x) and (x) are implied by such a formula, and if a solver absorbs (x)
and (x) it will run into a conflict immediately and return UNSAT. Let us further
investigate the concept of absorption through a couple of examples.

Example 4.8 (Successful absorption). The formula F = (a ∨ b) ∧ (b ∨ c) absorbs
the clause (a ∨ c), i.e. a CDCL solver can absorb the latter clause by learning the
first two clauses. This absorption holds because falsifying a reduces (a ∨ b) to (b)
which propagates the assignment b = 1 which in turn reduces (b∨ c) to (c), finally
propagating c = 1. Thus (a ∨ c) is absorbed by F at c. Similarly if c is falsified
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then (b ∨ c) is reduced to (b) which propagates b = 0 and reduces (a ∨ b) to (a)
which propagates a = 1. Therefore (a ∨ c) is absorbed by F at a and then since
(a ∨ c) is absorbed by F at both a and c, it is entirely absorbed by F .
Example 4.9 (Failed absorption). The formula F = (a∨ b)∧ (b∨ c)∧ (b∨ c∨ d)
implies, but does not absorb, the clause (a ∨ d). This clause is not absorbed since
falsifying d yields no unit propagations in F .

The only difference between a learnt clause and an absorbed (non-learnt) clause
is that the learnt clause is contained in the memory of the solver. If someone would
watch the solver without seeing its database that person would not be able to deter-
mine whether a clause is learnt or only absorbed by observing the running solver
since the same propagations are carried out in both cases.

Lemma 4.10 presents several important properties of absorption. For brevity
these properties are not proven in this report. The first property is arguably the
most intuitive — absorption is supposed to capture the sense of learning a clause
implicitly, therefore any learnt clause should also be absorbed. The second prop-
erty can be useful in the same way the weakening rule can be useful when arguing
about resolution. The third property implies that by learning clauses, a CDCL al-
gorithm cannot “unabsorb” a clause. This is important because then we know that
whichever new clauses the algorithm learns it cannot lose any of the progress made
in terms of absorption.

Lemma 4.10 ([AFT11]). For clauses A and B and sets of clauses D and E the
following statements hold.

1. If A ∈ D then A is absorbed by D.

2. If A ⊆ B and D absorbs A then D absorbs B.

3. If D ⊆ E and D absorbs A then E also absorbs A.

Now since we have defined the notion of implicitly learning a clause we can
implicitly learn — absorb — an entire resolution refutation step by step. To cal-
culate the time it takes to absorb an entire resolution refutation we calculate the
time it takes to absorb the next clause in the refutation given that the first part of
the refutation is already absorbed. To make sure that the next clause can always be
absorbed efficiently we are only interested in a certain type of clauses which are
easily absorbed. In this report such clauses will be called semiabsorbed clauses.
Those are clauses for which there exist so called beneficial rounds, as defined be-
low.

Definition 4.11 (Beneficial round [AFT11]). An inconclusive round is beneficial
for a clauseC at a literal x, x ∈ C if the round falsifiesC\{x} but does not assign a
value to x and extending that round through falsifying x through a decision creates
a conclusive round. That conclusive round is also said to be beneficial for C at x.
Also all decisions made during the round must assign values to variables contained
in C, i.e. the round cannot decide on variables not contained in C.

A beneficial round for a clause C at the literal x indicates that the solver al-
most absorbs C at x. I.e. we could think of a beneficial round as a step towards
absorption.

4.2 Absorbing a resolution refutation
We showed earlier that a CDCL solver terminates after absorbing an entire reso-
lution refutation. In this chapter we investigate how a resolution refutation can be
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absorbed so that we can then bound the running time of a CDCL solver. The first
step towards showing that CDCL solvers can efficiently absorb resolution proofs
is to show that in each proof that is not yet absorbed by a certain CDCL solver
there is some clause which is semiabsorbed by that solver. We can then calculate
how many conflicts and restarts it takes to absorb a semiabsorbed clause and fi-
nally (since a clause can never be “unabsorbed” by Lemma 4.10) we can calculate
how many conflicts and restarts it takes to absorb an entire resolution refutation.
Lemma 4.12 is used as a helper lemma for Lemma 4.13 which shows that any
resolution refutation that is not fully absorbed contains a semiabsorbed clause.

Lemma 4.12 ([PD11]). For any CNF formula F and clauses A and B absorbed
by F , if C = Res(A,B) and C is not absorbed by F then there exists a beneficial
round for C, starting with F .

Proof. Assume that x is the variable being resolved over to derive C from A and
B. Then A = (A′ ∨ x), B = (B′ ∨ x) and C = (A′ ∨ B′). Since C is not
absorbed by F there must be some round which falsifies all literals in C except
one, without the last literal being assigned. This round is beneficial for C since by
falsifying the remaining literal in C we reach a conflict (after unit propagation). A
conflict is reached because A and B are absorbed by F and therefore both x and x
must be propagated when falsifying C. Propagating x and x yields a conflict since
a variable cannot be assigned two distinct values simultaneously. Note that the
round described here does not necessarily decide only upon variables in C (which
is one of the criteria for a round being beneficial). However, it has been shown
that given a round assigning a certain set of variables in C there exists a round
deciding only upon variables in C that makes the same assignments on variables
in C. There is a formal proof of this statement in [AFT11] but in this report it has
been left out for brevity. Intuitively the statement holds because we can simply
ignore decisions on variables not in C from the original round and instead decide
only upon variables in C. In this way we can reproduce assignments of variables
inC from the original round without producing any propagations that are not made
in the original round since we are never assigning any variables that the original
round is not assigning.

Lemma 4.13 ([PD11]). For any CNF formula F , which cannot be refuted using
only unit resolution, and a refutation of that formula π : F `⊥ there exists a
clause in π which is semiabsorbed with respect to F .

Proof. Simply pick the first non-absorbed clause in the refutation π. There is
some such clause in the refutation since the refutation is not yet fully absorbed
— if the refutation would be absorbed then F would be refutable using only unit
resolution. The chosen clause cannot lie in the initial formula since by Lemma 4.10
every clause in the initial formula is absorbed. Therefore the chosen clause can be
resolved from two earlier clauses in the proof and those clauses are absorbed by
F since the chosen clause is the first non-absorbed clause in the proof. Thus by
Lemma 4.12 there exists a beneficial round for the chosen clause and that clause is
therefore semiabsorbed with respect to F .

Now a refutation of the input formula is also a refutation of the clause database
of the solver since that database contains the input formula. Therefore, as we run
our CDCL solver its database can be plugged into Lemma 4.13 together with a
refutation of the input formula. Thus, at every step of a CDCL run there is some
clause in the given refutation that is semiabsorbed by the current CDCL database.
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Now all we need to do is to show how efficiently a CDCL solver can absorb a
semiabsorbed clause. Then at each step of the CDCL run the solver will work on
absorbing the next semiabsorbed clause. When this clause has been absorbed there
will be a new semiabsorbed clause waiting to be absorbed and this procedure will
reiterate until the entire refutation is absorbed.

Lemma 4.14 ([PD11]). Any conflict clause of a CDCL solver can be derived using
a trivial resolution proof from the database of that solver at the time of the clause
being conflicting.

Lemma 4.14 was proven in [PD11] and will not be proven here. Essentially,
Lemma 4.14 holds because conflict clauses (Definition 4.3) can be reached from
the currently conflicting database clause C by replacing variables in C with the
clauses from which those variables were propagated. I.e. if C = (a ∨ b) is the
conflicting database clause and a was propagated because of the clause E = (x ∨
y ∨ a) we can resolve C with E over a since we know that one clause contains
a and the other contains a. This procedure corresponds to trivial resolution since
one of the clauses resolved will always be from the database — the one which
propagated the variable we want to resolve over. Moreover each variable can only
be propagated once which means we will never resolve over the same variable
twice.

The next step towards showing how to efficiently absorb an entire resolution
refutation is to show what it takes to absorb a semiabsorbed clause. This step is
partially performed in Lemma 4.15. When we know what it takes to absorb a
single semiabsorbed clause we know that this procedure can be performed at most
S times where S is the size of the resolution refutation we want to absorb. This
limit exists because each clause in the refutation can be absorbed at most once as
implied by Lemma 4.10. To show that CDCL solvers p-simulate resolution we can
then simply bound the size of the proof created when absorbing a semiabsorbed
clause. To instead bound the running time of a CDCL solver using a random
decision scheme we need to calculate the probability of absorbing a semiabsorbed
clause after a certain number of rounds.

Lemma 4.15. Let D be a set of clauses and C be a clause semiabsorbed by D
such that there exists a beneficial round for C at the literal x, starting from D.
Then a CDCL solver using an asserting learning scheme andD as initial database
absorbs C at x after at most n conclusive beneficial rounds for C at x, where n is
the number of variables in D.

Proof. When we perform a beneficial round for C at x we first falsify all literals in
C except x. The next decision made is that to falsify x, which will make the solver
reach a conflict and learn a new clause. Since we are using an asserting learning
scheme (i.e. we only learn asserting clauses, described in Definition 4.4) the next
time we perform exactly the same round there will be one more propagation just
after falsifying C \{x}. After at most n such rounds we will have absorbed C at x
since then all possible propagations (including x) fromC\{x} are contained in our
database. Note that the negation of x is not a valid propagation since a clause learnt
by the solver must be falsified at the round it is learnt (by the definition of a conflict
clause). Therefore, a clause learnt during a beneficial round falsifying x cannot
contain x since then the clause would be satisfied by that beneficial round.
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4.3 The CDCL proof system p-simulates resolution
This section contains the theoretical CDCL efficiency result showing that (a theo-
retical model of) CDCL solvers p-simulate resolution. We discuss this result before
the one using an implementable solver because when deriving the more theoretical
result we get to choose the order in which our solver makes decisions (i.e. we
use a branching sequence, Definition 4.5). Later, when we want to show results
regarding an implementable solver a random decision scheme will be used. The
random decision scheme is more difficult to argue about since we cannot choose
which decisions it will make.

Lemma 4.16 ([PD11]). Let F be a set of clauses with n variables, and let C
be a clause in π : F `⊥ such that C is semiabsorbed by F . Let S be a CDCL
solver with an asserting learning scheme and starting with clause database F .
Then there exists a branching sequence B such that if D is the database of S after
running with B as branching sequence, the following statements hold.

• D absorbs C.

• |Der(F,B)| ∈ O(n4)
Proof. According to Lemma 4.15 it takes at most n conclusive beneficial rounds
to absorb a semiabsorbed clause C at a certain literal. Since there are at most n
literals in C it takes at most n2 rounds to entirely absorb C. During each round
the solver used learns one clause, meaning that the solver should need to learn at
most n2 clauses to absorb a semiabsorbed clause C. But during each such round
the solver might backjump and then propagate some variables and reach a new
conflict before restarting. There can be at most n such backjumps and conflicts
per round since each backjump removes one decision (i.e. one decision level) and
there are at most n decision levels per round. For each such backjump the solver
might learn a new clause, therefore the solver learns at most n3 clauses when
absorbing a semiabsorbed clause. Finally, by Lemma 4.14 each clause learnt has a
trivial proof, and each trivial proof has size at most n since all resolved variables
in a trivial proof are distinct. Therefore absorbing a semiabsorbed clause yields a
CDCL proof of size at most n4.

In Lemma 4.16 we obtain the length of a proof for absorbing a single clause in
a resolution refutation. This result will now be used (Theorem 4.17) to calculate
the length of a CDCL proof needed to absorb an entire resolution refutation and
thus refute the given formula.

Theorem 4.17 (CDCL solvers p-simulate resolution [PD11]). Let F be an un-
satisfiable CNF formula and π : F `⊥ be a resolution proof. Then there exists
a branching sequence B such that for a CDCL solver, using an asserting learning
scheme, with F as input andD as database after running with branching sequence
B, D absorbs π and |Der(F,B)| ≤ n4S(π).

Proof. By Lemma 4.13, in each resolution refutation of a formula F there exists
some clause which is semiabsorbed by F . Therefore if we run a CDCL solver
starting with the formula F , at each step of the run there will be some clause
in π semiabsorbed by the database of the solver. Also by Lemma 4.16 a clause
semiabsorbed by a certain formula can be absorbed by a solver starting with that
formula using a CDCL proof of size at most n4. Now all we need to do is run the
CDCL algorithm and in each step absorb the next clause in π semiabsorbed from
the current database. Since, by Lemma 4.10 each clause in a proof can be absorbed
at most once this results in a CDCL proof of size at most n4S(π).
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4.4 Running time of an implementable CDCL solver

Instead of calculating the proof size for a CDCL solver using a branching sequence
to absorb a resolution proof we now calculate the running time of a solver using
a random decision scheme. We should note that even though a random decision
scheme is implementable in practice it is seldom used. It is more common to
use heuristics such as the VSIDS decision scheme (described in Section 3.2.4).
However, some of the proofs described in this section rely upon the use of a random
decision scheme and it is not clear whether these proofs could be rewritten to
incorporate other decision schemes.

To calculate the running time of a solver using a random decision scheme we
start by looking at how many rounds of random decisions it takes to reach a ben-
eficial round for a certain clause, this is done in Lemma 4.18. Using Lemma 4.15
we can then calculate how long it takes to absorb a semiabsorbed clause. Finally,
we can simply apply this calculation to each clause in an entire resolution proof to
find out how long it takes to absorb the proof.

Lemma 4.18 ([AFT11]). Let F be a set of clauses and let C be a clause semi-
absorbed by F . Let D1, . . . Dt be the different databases of a CDCL solver (with
input F ) at the beginnings of t consecutive rounds. The probability of none of the
t rounds being beneficial for C and none of D1, . . . , Dt absorbing C is at most
e−t/(2n)k

, where k is the width of C, i.e. the number of literals in C, and n is the
number of variables in the F .

Proof. Let Ri be the probability that the ith round is beneficial for C and let Di
be the probability that Di absorbs C. Then the probability we want to bound is the
following.

Pr
[

t⋂
i=1
Ri ∩ Di

]
=

t∏
i=1

Pr
[
Ri ∩ Di

∣∣∣ Ri ∩ Di]

≤
t∏
i=1

Pr
[
Ri
∣∣∣ Ri]

Thus, we reach an expression where all we need to calculate is the probabil-
ity of not reaching a beneficial round given that none of the earlier rounds have
been beneficial, and C not being absorbed. We can produce an upper bound for
not reaching a beneficial round through calculating a lower bound for reaching a
beneficial round. To calculate such a bound we will make use of the random de-
cision scheme. The lower bound can be calculated by looking at the probability
of randomly deciding on assignments such that the beneficial round is carried out.
To obtain such a round we must falsify C in the same order as the beneficial round
produced by Lemma 4.12:

Pr [Ri | Ri] ≥
1

2n
1

2(n− 1) · · ·
1

2(n− k + 1) ≥
1

(2n)k

Note that the bound shown above is a lower bound, it could be that some of the
literals in the clause are falsified by unit propagation in which case the solver
would not need to decide on falsifying assignments for those literals. Finally, we
plug the bound on the probability of performing a beneficial round for C into the
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bound on the probability of none of t rounds being beneficial for C.

t∏
i=1

Pr
[
Ri
∣∣∣ Ri] ≤ t∏

i=1

(
1− 1

(2n)k
)

=
(

1− 1
(2n)k

)t
≤ e−t/(2n)k

In [AFT11] the corresponding result of Lemma 4.18 yields a probability of
e−t/4n

k
instead of e−t/(2n)k

. The result of Lemma 4.18 is worse because it does not
use the property that the assignments of any inconclusive round can be reordered
without changing the set of assignments carried out during the round (since this
property is not proven in this report).

As mentioned earlier, now that we have a bound on the probability of reaching
a beneficial round for a certain clause after a number of rounds we can calculate
the number of rounds needed before absorbing that clause. Such a calculation can
be carried out by declaring a new set of variables to represent the progress made
when trying to absorb a clause. The variable ulCD denotes the number of variables
not being assigned during an inconclusive beneficial round for C at l, starting at
D. If there is no such round ulCD is 0. uCD is defined in the following way.

uCD =
∑
l∈C

ulCD

Thus, when uCD is 0 the clause C is absorbed by the database D since then all
variables are assigned during a beneficial round for C (or there is no beneficial
round for C). It can be shown [AFT11] that the values of these progress variables
never increase during a CDCL solver run. It can also be shown that when the
solver, using an asserting learning scheme, reaches a beneficial round for a clause
C and learns a conflict clause for that round the corresponding progress value will
strictly decrease. This decrease stems from the use of an asserting learning scheme
which ensures that some variable assigned at the highest level of the corresponding
conclusive beneficial round instead will be propagated at some earlier level if the
same round is carried out again.

Lemma 4.19 ([AFT11]). Given a sequence of events e0 . . . ei for which Pr [e0] =
0 and Pr [ej | ej ] ≤ p, j ∈ {1, . . . , i} then Pr [ei] ≤ ip.

Proof. By the law of total probability the following statement holds.

Pr [ei] =

Pr [ei | ei] Pr [ei−1] + Pr [ei | ei] Pr [ei−1] ≤

Pr [ei | ei] + Pr [ei−1]

Thus we have bounded Pr [ei] recursively, this bound can be written explicitly
as is shown below.

Pr [ei] ≤ Pr [e0] +
i∑

j=1
Pr [ej | ej ] ≤ ip
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Lemma 4.19 bounds the probability of the final event — in a sequence of events
— happening given that each event in the sequence is dependent on the previous
event. Below, we represent the progress made during a CDCL solver run by some
sequence of events. We use this representation to bound the probability of making
progress by using Lemma 4.19.

Lemma 4.20 ([AFT11]). Let D be a set of clauses, C be a clause semiabsorbed
with respect toD and S be CDCL solver with an asserting learning scheme, choos-
ing decision variables randomly and using D as initial database. The probability
of S not absorbing C after tnk rounds is at most nke−t/(2n)k

, where k is the width
of C and n is the number of variables in D.

Proof. Let Di be the database at the beginning of the ith round (D0 = D). We
want to bound the probability that C is not absorbed by Dtnk. To bound this
probability we can define ei to be the event that uCDit ≤ uCD−i. Because uCD0 =
uCD we have Pr [e0] = 0 and because of Lemma 4.18 we get Pr [ej | ej ] ≤
e−t/(2n)k

for j > 0. Therefore we can plug in the sequence e0, . . . , euCD into
Lemma 4.19 to get

Pr [euCD ] ≤ uCDe−t/(2n)k ≤ nke−t/(2n)k

where the last step holds since uCD ≤ nk because ulCD ≤ n and uCD is the sum
of ulCD for k different literals l ∈ C.

Lemma 4.20 bounds the probability of absorbing a semiabsorbed clause after
a certain number of rounds. Now all we need to do to bound the running time of
a CDCL solver is to apply Lemma 4.20 to absorb an entire resolution proof. This
action is performed in Theorem 4.21 which is (a simplified version of) the main
result of [AFT11].

Theorem 4.21 ([AFT11]). Given a CNF formula F and a refutation π : F `⊥,
such that W(π) = k and S(π) = m. With probability at least 1/2 a CDCL solver
using an asserting learning scheme and picking decision variables randomly re-
turns UNSAT after mk ln(2mnk)(2n)k+1 conflicts and restarts.

Proof. As noted earlier if the solver absorbs an entire resolution proof (or at least
every clause except the empty clause) then the solver terminates without making
any more decisions. Let Ci be the ith clause of π and let Dit be the database of the
solver after itnk rounds. Let ei be the event thatDit absorbs the clausesC1, . . . , Ci
(we can let e0 be an event that is always true to be able to use Lemma 4.19).
From Lemma 4.20 we know that Pr [ei | ei] ≤ nke−t/(2n)k

and by letting t =
ln(2mnk)(2n)k we get Pr [ei | ei] ≤ 1/2m. Then by using Lemma 4.19 we get
the following statement.

Pr [em] ≤ m

2m = 1
2

Event em corresponds to the solver database absorbing π after mtnk =
mk ln(2mnk)(2n)k+1 rounds.

As mentioned earlier the bound produced in Lemma 4.18 is not as good a
bound as that in [AFT11]. This bound also affects the results following that lemma.
Therefore in Theorem 4.21 we reach the conclusion that a CDCL solver (with cer-
tain settings) terminates with probability at least 1/2 after mk ln(mnk)(2n)k+1

conflicts and restarts while in [AFT11] the corresponding number of conflicts and
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restarts is 4km ln(4knm)nk+1. It is also possible to show ([AFT11]) that a refu-
tation of width k over n variables has length at most 4nk. Plugging this expression
into the main result of [AFT11] yields the result that a CDCL solver, running on
a formula with n variables and refutable in width k, terminates with probability at
least 1/2 after 16k(k + 1) ln(16kn)n2k+1 conflicts and restarts.
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Chapter 5

MiniSat

In order to perform experiments on a modern CDCL solver an already existing
implementation of a CDCL solver was chosen. The solver used in this project is
called MiniSat 2.2 and was chosen mainly because of its simplicity but also be-
cause MiniSat has performed well in several SAT solver competitions, e.g. SAT-
Race 2008 [SATb] and SAT competition 2005 and 2007 [SATa]. MiniSat is a very
small implementation of a CDCL solver and because of its simplicity it is easy to
add new extensions to this solver. Because of both its simplicity and its perfor-
mance MiniSat is one of the standard solvers to use when performing CDCL ex-
periments and has therefore played an important role in the development of CDCL
solvers. As an example of the importance and simplicity of MiniSat, recent SAT
competitions have included a competition track called MiniSat hack track, where
competitors make small adjustments to the MiniSat solver to try to improve its
performance.

To be able to run experiments using the AFT model some changes had to be
carried out in the code of the MiniSat solver. We survey the main parts of MiniSat
in Section 5.1 and summarize the changes made to MiniSat in Section 5.2.

5.1 Important functions

This section presents code snippets representing the main parts of the MiniSat
solver and also modifications made to the code. In some places the code has been
removed or reformatted (when inserted into this report) to make it easier to read.
For more information about the original MiniSat solver see e.g. [ES04]. MiniSat is
written in C++. The parts of MiniSat presented in this section are, the main solver
loop (Listing 5.1), the search function (Listing 5.2) called from the main loop, the
clause learning function (Listing 5.3), the propagation function (Listing 5.4) and
finally, the decision function (Listing 5.5).

The main solver loop of MiniSat is presented in Listing 5.1. A few adjust-
ments have been made in that code to be able to run the AFT model. The code
is essentially just calling the search function, shown in Listing 5.2, over and over
again until the search function finds out whether the input formula is satisfiable.
The parameter passed to the search function is the minimum number of conflicts
before a restart should be triggered. When the solver wants to restart it will re-
turn from the search function to the solver loop and then rerun the search function,
potentially using a new number of conflicts before the next restart. In the origi-
nal MiniSat code the only way the search function was called in Listing 5.1 was
through the call at line 20. In this project the calls at line 16 and line 18 were added
to represent the cases where the solver restarts after each conflict and where the
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1 lbool Solver::solve_()
2 {
3 lbool status = l_Undef;
4
5 // Search:
6 while (status == l_Undef){
7 random_round_index = random_round_freq ?
8 (random_round_index+1) % random_round_freq :
9 1;

10
11 double rest_base = luby_restart ?
12 luby(restart_inc, curr_restarts) :
13 pow(restart_inc, curr_restarts);
14
15 if( restart_mode == 2 ) // restart after each conflict
16 status = search(1);
17 else if( restart_mode == 0 ) // never restart
18 status = search(-1);
19 else // default restart policy
20 status = search(rest_base * restart_first);
21 }
22
23 return status;
24 }

Listing 5.1. MiniSat main solver loop

solver never restarts respectively. The default restarting policy in MiniSat is to use
a Luby sequence (introduced in [LSZ93]) as can be seen at line 12. This sequence
is multiplied by a factor of 100 (the variable restart_first at line 20), the
first part of the MiniSat restarting sequence is 100, 100, 200, 100, 100, 200, 400.

In Listing 5.1 the code at lines 7 to 9 has been added to update the variable
random_round_index. That variable controls whether the search function
is to pick decision variables randomly or through the MiniSat heuristic (VSIDS
which is presented in Section 3.2.4). Whenever random_round_index is zero
decision variables are picked randomly, otherwise the VSIDS heuristic is used.

In Listing 5.2 we see the main search loop of the MiniSat solver. That code
is essentially meant to implement the pseudocode presented in Algorithm 1, i.e.
the main search procedure of a CDCL solver. Here, nof_conflicts (line 1)
determines the number of conflicts between restarts. conflictC (defined on
line 4) is a counter keeping track of the number of conflicts since the last restart.
The function propagate() propagates variables which are waiting to be propa-
gated and returns a conflicting clause if a conflict was reached while propagating.
The code for propagating variables can be seen in Listing 5.4. The function on
line 14 analyze(conflict, learnt_clause, backtrack_level)
is the clause learning function of MiniSat. It takes a conflict in the form of
a reference to a clause, and returns the learnt clause and the decision level to
backtrack to after learning the clause, the code for this function can be seen in
Listing 5.3. The cancelUntil(level) function (line 27) backtracks to the
decision level level, i.e. it undoes all assignments above that level. The function
reduceDB() (line 34) implements clause removal, i.e. it removes some clauses
from the database. The nAssigns() function returns the number of assigned
variables. Each assignment has a reason for being used, which takes the form of
a clause. Therefore the clauses being reasons for assignments cannot be removed
from the database. Because each assignment can prevent one clause from being
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1 lbool Solver::search(int nof_conflicts)
2 {
3 int backtrack_level;
4 int conflictC = 0;
5 vec<Lit> learnt_clause;
6
7 while(true){
8 CRef confl = propagate();
9 if (confl != CRef_Undef){

10 // CONFLICT
11 conflictC++;
12 if (decisionLevel() == 0) return l_False;
13
14 analyze(confl, learnt_clause, backtrack_level);
15 cancelUntil(backtrack_level);
16
17 if (learnt_clause.size() == 1)
18 enqueueAssignment(learnt_clause[0]);
19 else
20 add_to_database(learnt_clause);
21
22 }else{
23 // NO CONFLICT
24 if (nof_conflicts >= 0 &&
25 conflictC >= nof_conflicts){
26 // Reached bound on number of conflicts:
27 cancelUntil(0);
28 return l_Undef; }
29
30 if (learnts_removal &&
31 learnts.size()-nAssigns() >=
32 max_nof_learnts_clauses)
33 // Reduce the set of learnt clauses:
34 reduceDB();
35
36 Lit next = lit_Undef;
37
38 // New variable decision:
39 next = pickBranchLit();
40
41 if (next == lit_Undef)
42 // No unassigned variables left
43 return l_True;
44
45 // Increase decision level and enqueue ’next’
46 newDecisionLevel();
47 enqueueAssignment(next);
48 }
49 }
50 }

Listing 5.2. MiniSat search loop
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deleted the number of assignments is subtracted from the number of learnt clauses
when checking whether the database should be reduced (line 31). The variable
learnts_removal (line 30) was added as a part of this project to be able to
turn off clause removal. The function pickBranchlit() decides upon a vari-
able to assign. The code for this function can be seen in Listing 5.5.

The code displayed in Listing 5.3 is the MiniSat clause learning algorithm. The
algorithm implemented is called 1-UIP and applies trivial resolution starting with
the current conflict clause until the resulting clause contains only one variable of
the highest decision level (thus 1-UIP is an asserting learning scheme). The vari-
able pathC (line 6) keeps track of the number of literals which need to be resolved
over. The for-loop ranging from line 18 to line 28 essentially iterates through the
newest clause that is being resolved to check which literals in that clause have not
been resolved over (line 21). On line 23 the algorithm checks if the current lit-
eral is of the highest decision level — if so it should be resolved over, otherwise
the literal is directly added to the output clause (line 26). At lines 31 to 35 the
next literal to resolve over, and its reason clause (the next clause to resolve), are
found. The algorithm resolves over literals in reverse order of the trail which
is the sequence of assignments made during the current round. When there is
only one literal of highest decision level left the variable pathC will be 0 and the
while-loop at line 37 will terminate. The literal of highest decision level will then
have been stored in the variable p which is added to the output clause at line 38.
simplify_conflict_clause(conflict_clause) at line 40 represents
a block of code simplifying the learnt clause by removing redundant literals.

Listing 5.4 shows the MiniSat code for propagating a literal. The most impor-
tant concepts here are watchers and blockers. Watchers are intended to speed up
the operation of checking whether a clause is reduced to a unit clause. There are
two watchers per clause and each of these are connected to a literal. Whenever a
literal becomes falsified, instead of restricting each clause containing that literal
the solver restricts only the clauses containing watchers connected to that literal.
The restriction is carried out through finding a new (non-falsified) literal to watch,
if no such literal can be found the clause is a unit clause (under the restriction of
the current assignments). However, if the second watcher for the current clause is
also falsified (which could have happened while the first watcher was still waiting
to be updated) the clause is conflicting. Aside from watchers each clause also has
a literal called a blocker. The reason for having such a literal is to be able to skip
examining a clause which is satisfied. If the blocker is satisfied then the clause is
also satisfied and can be ignored when watchers are updated.

What the code in Listing 5.4 does is to propagate all literals currently on the
trail (the current sequence of assignments) which have not yet been assigned. For
each such literal, the solver goes through the watchers associated with that literal
(line 11). For each watcher it checks whether the corresponding clause is satisfied
by first checking its blocker literal (line 14) and then checking the other watcher
of the clause (line 30). If the clause is satisfied it does not need to be inspected
any further and the solver thus skips ahead to the next watcher. If the blocker and
the first watcher of the given clause are not satisfied then the solver searches for
a new watcher (a literal which is not falsified, line 34 to line 38), if one is found
the current falsified watcher is replaced by the new one. If a new watcher is not
found then the clause is either a unit clause under the reduction of the current
assignments, or the solver has reached a conflict. If the clause is unit then the
single literal of that unit clause is added to the trail (line 50), otherwise no more
literals are propagated (line 44 to line 48) and the function returns a reference to
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1 void Solver::analyze(
2 CRef confl,
3 vec<Lit>& out_learnt,
4 int& out_btlevel)
5 {
6 int pathC = 0;
7 Lit p = lit_Undef;
8
9 // Generate conflict clause:

10 //
11 out_learnt.push(); // leave room for the asserting literal
12 int index = trail.size() - 1;
13
14 do{
15 Clause& c = ca[confl];
16
17 int start = (p == lit_Undef) ? 0 : 1;
18 for (int j = start; j < c.size(); j++){
19 Lit q = c[j];
20
21 if (!seen[var(q)] && level(var(q)) > 0){
22 seen[var(q)] = 1;
23 if (level(var(q)) >= decisionLevel())
24 pathC++;
25 else
26 out_learnt.push(q);
27 }
28 }
29
30 // Select next clause to look at:
31 while (!seen[var(trail[index--])]);
32 p = trail[index+1];
33 confl = reason(var(p));
34 seen[var(p)] = 0;
35 pathC--;
36
37 }while (pathC > 0);
38 out_learnt[0] = ~p;
39
40 simplify_conflict_clause(out_learnt);
41
42 out_btlevel = find_backtrack_level();
43
44 for (int j = 0; j < analyze_toclear.size(); j++)
45 seen[var(analyze_toclear[j])] = 0; // clear seen[]
46 }

Listing 5.3. MiniSat clause learning
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1 CRef Solver::propagate()
2 {
3 CRef confl = CRef_Undef;
4 while (qhead < trail.size()){
5 // ’p’ is enqueued fact to propagate.
6 Lit p = trail[qhead++];
7 vec<Watcher>& ws = watches.lookup(p);
8 Watcher *i, *j, *end;
9

10 i = j = (Watcher*)ws;
11 for (end = i + ws.size(); i != end;){
12 // Try to avoid inspecting the clause:
13 Lit blocker = i->blocker;
14 if (value(blocker) == l_True){
15 *j++ = *i++; continue; }
16
17 // Make sure the false literal is data[1]:
18 CRef cr = i->cref;
19 Clause& c = ca[cr];
20 Lit false_lit = ~p;
21 if (c[0] == false_lit)
22 c[0] = c[1], c[1] = false_lit;
23 assert(c[1] == false_lit);
24 i++;
25
26 // If 0th watch is true,
27 // then clause is already satisfied.
28 Lit first = c[0];
29 Watcher w = Watcher(cr, first);
30 if (first != blocker && value(first) == l_True){
31 *j++ = w; continue; }
32
33 // Look for new watch:
34 for (int k = 2; k < c.size(); k++)
35 if (value(c[k]) != l_False){
36 c[1] = c[k]; c[k] = false_lit;
37 watches[~c[1]].push(w);
38 goto NextClause; }
39
40 // Did not find watch --
41 // clause is unit under assignment:
42 *j++ = w;
43 if (value(first) == l_False){
44 confl = cr;
45 qhead = trail.size();
46 // Copy the remaining watches:
47 while (i < end)
48 *j++ = *i++;
49 }else // enqueue assignment and save reason clause
50 enqueueAssignment(first, cr);
51
52 NextClause:;
53 }
54 ws.shrink(i - j);
55 }
56 return confl;
57 }

Listing 5.4. MiniSat propagation
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the conflicting clause.
The modified MiniSat code for making decisions on variables can be seen

in Listing 5.5. The default mode for MiniSat is to make decisions using the
VSIDS scheme (explained in Section 3.2.4). Actually, the VSIDS scheme used
in MiniSat 2.2 is a variant of the original VSIDS scheme. In MiniSat, whenever
a variable propagation is carried out the reason for that propagation is stored in
the solver. The reason is a clause — the clause from which the propagation origi-
nated. Reason clauses are used when deriving clauses to be learnt from conflicts.
In MiniSat 2.2 the activity of all variables in all reason clauses used when learn-
ing a new clause is increased. In the original VSIDS scheme only the activity of
variables in the learnt clause is increased. A heap is used to store variable activity.
The variable to be chosen is the one with the highest activity of all the unassigned
variables. We should note that in the original VSIDS decision scheme whenever
several variables share the highest activity one of those variables is chosen ran-
domly. In MiniSat however, the order of the activity heap is used which means
that when several variables share the highest activity randomness is not used to
break the tie (though activities are represented by real values so ties should be
rare).

When it comes to making only uniformly random decisions during an entire
round the heap can easily be used to make random decisions efficiently. Such
decisions can be made because the heap (used in MiniSat) provides a method for
removing an arbitrary element from the heap, and also because the underlying
array is packed (all elements lie within the same block, there are no holes in the
array). Therefore all you need to do to pick an element randomly from the heap
is to pick a random index in the underlying array and remove the corresponding
element from the heap. This procedure is performed in Listing 5.5 on lines 14
to 16. Picking a variable based on activity is done on line 28. An alternative for
using the heap to make random decisions is to add an additional data structure
to the solver to store variables in. The use of an additional data structure could
speed up the making of random decisions. However, the heap was chosen for
making random decisions in order to make as small an impact as possible on the
MiniSat solver. The while-loops at lines 6 and 21 make sure that the solver keeps
picking variables from the heap until it has found one which has not yet been
assigned a value. The choice of polarity (the value of an assignment, 0 or 1)
should also be mentioned. In this project the rnd_pol variable seen on line 38 and
line 39 is always set to 1 which means that during random rounds polarity is chosen
randomly. During non-random rounds (VSIDS rounds) the polarity is chosen using
a polarity vector which stores the latest used polarity for each variable.

5.2 Summary of code modifications

Here follows a summary of the changes made to MiniSat to be able to use the
settings of the AFT model. The differences between the CDCL components used
in the two articles [AFT11] and [PD11] and MiniSat can be seen in Table 5.1.
The learning scheme of MiniSat was not modified since it was already asserting
(1-UIP). Turning off clause removal was simply a matter of adding an option and
checking the value of that option every time clause removal were to be used (as
can be seen in Listing 5.2 on line 30). Similarly the number of conflicts between
restarts can be passed as a parameter to the MiniSat search function (Listing 5.2) —
this is done in Listing 5.1 from line 15 to line 20. To include entire rounds where
decisions are made uniformly at random first the possibility to perform random
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1 Lit Solver::pickBranchLit()
2 {
3 Var next = var_Undef;
4
5 if( rnd_round_index == 0 ){ // random round
6 while (next == var_Undef ||
7 value(next) != l_Undef ||
8 !decision[next]){
9 if( order_heap.empty() ){

10 next = var_Undef;
11 break;
12 }else{
13 // choose randomly from order_heap
14 next = order_heap[
15 irand(random_seed,order_heap.size())];
16 order_heap.remove(next);
17 }
18 }
19 }
20 else{ // activity based decision
21 while (next == var_Undef ||
22 value(next) != l_Undef ||
23 !decision[next])
24 if (order_heap.empty()){
25 next = var_Undef;
26 break;
27 }else
28 next = order_heap.removeMin();
29 }
30
31 // Choose polarity
32 // user_pol is undefined by default
33 // rnd_pol is 1 by default
34 if (next == var_Undef)
35 return lit_Undef;
36 else if (user_pol[next] != l_Undef)
37 return mkLit(next, user_pol[next] == l_True);
38 else if (rnd_pol == 2 ||
39 (rnd_pol == 1 && rnd_round_index == 0) )
40 return mkLit(next, drand(random_seed) < 0.5);
41 else
42 return mkLit(next, polarity[next]);
43 }

Listing 5.5. MiniSat assignment decision

[AFT11] [PD11] MiniSat
Clause removal Off Off On
Conflicts between restarts 1 1 Luby × 100
Decision scheme Random Optimal VSIDS
Learning scheme Any asserting Any asserting 1-UIP (asserting)

Table 5.1. Comparison of CDCL models
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decisions was added (Listing 5.5 from line 14 to line 16). Then a counter was
added that would determine what kind of round the solver is running. That counter
is called random_round_index and is updated on lines 7 to 9 in Listing 5.1.

37





Chapter 6

Experiments

This chapter describes how the experiments performed during this project were
set up. The goal of these experiments is to investigate how the theoretical results
shown in Chapter 4 compare to practice. The formulas used during the experi-
ments are presented in Section 6.1 and the different parameters used are presented
in Section 6.2. These parameters affect the running time of the experiments and
determine what kind of conclusions we can draw from the experiments (e.g. in-
creasing the number of data points increases the reliability of the results). Finally,
a specification of the hardware used for the experiments is presented in Section 6.3.

6.1 Experiment formulas
When choosing formulas an important constraint is for each formula to be refutable
in low (constant) width. This constraint stems from the results of Chapter 4 which
suggest that CDCL solvers should be able to solve formulas refutable in low width
efficiently.

6.1.1 Tseitin formulas
A Tseitin formula [Tse68] is a formula representing the fact that the sum of vertex
degrees of a graph is even. This principle can be encoded in the following way.
Given a graph G, a boolean function f : V (G) → {0, 1} over the vertices V (G)
ofG, is odd-weight if the sum of the function’s values over all vertices ofG is odd,
i.e. ∑

v∈V (G)
f(v) ≡ 1 mod 2.

When creating a Tseitin formula from a certain graph, an odd-weight function is
used to label the nodes of the graph. Given a graph G, let each edge e in G be
represented by a variable xe and then create a parity constraint

PARITYv :
∑
v∈e

xe ≡ f(v) mod 2

for each vertex v inG. The expression v ∈ emeans that e is an edge incident to the
vertex v. A parity constraint for the vertex v can be written as a CNF formula of
size at most 2d(v)−1, and width d(v), where d(v) is the degree of v. A CNF clause
is falsified only by one specific assignment of its variables. Therefore, to create a
CNF clause representing a parity constraint we can use exactly those clauses which
are falsified by the assignments which falsifies the parity constraint. For example
the constraint a+ b ≡ 1 mod 2 has two falsifying assignments: a = 0, b = 0 and

39



CHAPTER 6. EXPERIMENTS
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(a) Graph with labeled vertices

a+ b ≡ 1 mod 2
a+ c ≡ 0 mod 2

b+ d+ e ≡ 0 mod 2
c+ d+ f ≡ 0 mod 2

e+ g ≡ 0 mod 2
f + g ≡ 0 mod 2

(b) PARITY constraints

a ∨ b a ∨ b
a ∨ c a ∨ c

b ∨ d ∨ e b ∨ d ∨ e
b ∨ d ∨ e b ∨ d ∨ e
c ∨ d ∨ f c ∨ d ∨ f
c ∨ d ∨ f c ∨ d ∨ f

e ∨ g e ∨ g
f ∨ g f ∨ g

(c) Tseitin formula

Figure 6.1. Tseitin formula example

a = 1, b = 1. Therefore, this parity constraint can be written as (a ∨ b) ∧ (a ∨ b)
since (a ∨ b) is falsified by a = 0, b = 0 and (a ∨ b) is falsified by a = 1, b = 1.
The Tseitin formula

τ(G, f) =
∧

v∈V (G)
PARITYv

is a CNF formula of width at most d(G) and size less than |V (G)|2d(G), where
d(G) = max d(v) : v ∈ V (G). Such a formula can be formed by converting
each parity constraint to a CNF formula and then taking the conjunction of those
formulas. Thus, by choosing a graph of degree bounded to some constant, the size
of our Tseitin formula τ(G, f) will be bounded linearly by the number of vertices
in G and the width of the formula will be bounded to a constant. In Figure 6.1 we
can see an example of a labeled graph together with the corresponding PARITY
constraints and Tseitin formula. A Tseitin formula τ(G, f) is unsatisfiable if f is
odd-weight with respect to G. This unsatisfiability holds because the parity con-
straints of the formula state that the sum of the values of the edge variables in the
formula must be odd. But each edge variable is counted exactly two times (be-
cause each edge is connected to two vertices which together represent two parity
constraints) and therefore the sum of their values must be even.

The graphs used to create Tseitin formulas during this project are narrow grids
(i.e. grids of width between 2 and 5). We can see an example of a Tseitin formula
representing a grid of width 2 and length 3 in Figure 6.1. The reason for using
such graphs is that the width of the grid determines the width of refuting the cor-
responding Tseitin formula. A grid of width w can be refuted in resolution width
w + 1 by refuting the formula layer by layer (in a straight-forward way) and only
keeping track of variables connected to the current layer. It can also be shown that
the width of refuting a Tseitin grid is at least the width of the grid. This result
follows from a result in [BW01] which states that the width of refuting a Tseitin
formula is at least the expansion of the corresponding graph (the expansion is es-
sentially the size of the minimum cut in the graph such that the two vertex sets
created by the cut have similar size). For a Tseitin grid the size of the expansion is
at least the width of the grid. The size of refuting the Tseitin formula is at least the
number of nodes in the grid — if we do not use this many clauses we cannot have
“inspected” all nodes and thus we cannot know whether the sum of the node labels
is odd. It can also be shown that the layer by layer refutation described above has
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size linear in the number of nodes in the grid. This result holds because the width
of the grid is constant and for each layer of the grid we need only resolve a certain
number of clauses which is directly dependent on the width of the grid. Therefore,
if we keep the grid width (and thus the refutation width) to a small constant CDCL
solvers (or at least the AFT solver) should solve these formulas efficiently. Then
it is interesting to see whether different solvers will run as efficiently as the AFT
solver should do. Regarding the running time of the AFT solver, given a chain
of width w, the results from Chapter 4 state that the running time should be at
most O(mnw+1 ln(nm)) = O(nw+2 ln(n)) where m is the size of the refutation
explained above and n is the number of variables in the formula.

6.1.2 Relativized pigeonhole principle formulas
Relativized pigeonhole principle formulas (RPHP) have been studied in [AMO13]
and [ALN14]. RPHP formulas are based on pigeonhole principle formulas which
are meant to represent the pigeonhole principle. The pigeonhole principle states
that given p pigeons and h holes, p > h if we fit each pigeon in a hole then there
must be some hole containing at least two pigeons. A pigeonhole principle formula
contains a matrix of variables ai,j , i ∈ {1, . . . , p}, j ∈ {1, . . . , h} where variable
ai,j represents the ith pigeon staying in hole j. There are two types of clauses in
such formulas. One represents the statement that a pigeon must fly to some hole,
i.e.  h∨

j=1
ai,j


for each i ∈ {1, . . . , p}. The other type states that no pair of pigeons can fly to the
same hole, i.e.

(ai,j ∨ ai′j)

for i, i′ ∈ {1, . . . , p}, i 6= i′ and j ∈ {1, . . . , h}. Pigeonhole principle formulas
are unsatisfiable (if there are more pigeons than holes) since they essentially state
that each pigeon must fly to a hole and no more than one pigeon can fit in each
hole.

An RPHP formula is a variant of a pigeonhole principle formula where resting
holes are added. In RPHP formulas pigeons first fly to resting holes and then from
these resting holes fly to their final holes (there can be no more than one pigeon
in each resting hole). As long as the number of destination holes is smaller than
the number of pigeons these formulas are also unsatisfiable. These new formulas
can essentially be encoded using a combination of two basic pigeonhole principle
formulas — the first for sending pigeons to resting holes and the second for con-
necting occupied resting holes to destination holes. In this project the number of
destination holes is always one less than the number of pigeons, i.e. p − 1. There
are k resting holes. Thus, a matrix of variables ai,j , i ∈ {1, . . . , p}, j ∈ {1, . . . , k}
can be used to encode pigeons flying to resting holes. For this matrix basic pi-
geonhole principle clauses are added to map pigeons to resting holes as described
above. Furthermore, a sequence of variables r1, . . . , rk is used for representing
each resting hole being occupied. To ensure that a resting hole is marked as occu-
pied when a pigeon has flown there we can add the clauses

(ai,j ∨ rj)

for all i ∈ {1, . . . , p} and j ∈ {1, . . . , k}. To represent a pigeon in resting hole
j flying to destination hole d we can use a matrix containing variables qj,d, for

41



CHAPTER 6. EXPERIMENTS

(a1,1 ∨ a1,2)∧ (a2,1 ∨ a2,2)∧
(a3,1 ∨ a3,2)∧ (a1,1 ∨ a2,1)∧
(a1,2 ∨ a2,2)∧ (a1,1 ∨ a3,1)∧
(a1,2 ∨ a3,2)∧ (a2,1 ∨ a3,1)∧
(a2,2 ∨ a3,2)∧ (a1,1 ∨ r1)∧

(a1,2 ∨ r2)∧ (a2,1 ∨ r1)∧
(a2,2 ∨ r2)∧ (a3,1 ∨ r1)∧
(a3,2 ∨ r2)∧ (r1 ∨ q1,1 ∨ q1,2)∧

(r2 ∨ q2,1 ∨ q2,2)∧ (r1 ∨ r2 ∨ q1,1 ∨ q2,1)∧
(r1 ∨ r2 ∨ q1,2 ∨ q2,2)

Figure 6.2. RPHP formula example with 3 pigeons and 2 resting holes

j ∈ {1, . . . , k} and d ∈ {1, . . . , p−1}. We then need to add some clauses to make
sure occupied resting holes are connected to destination holes. Firstly, clauses

(rj ∨ qj,1 ∨ · · · ∨ qj,p−1)

for j ∈ {1, . . . , k} ensure that a pigeon in a resting hole flies to a destination hole.
Secondly, clauses

(rj ∨ rj′ ∨ qj,d ∨ qj′,d)

for j, j′ ∈ {1, . . . , k}, j 6= j′ and d ∈ {1, . . . , p−1} ensure that no two pigeons fly
to the same destination hole. Figure 6.2 contains an example of an RPHP formula.

As is shown in [ALN14] the size of refuting a pigeonhole principle formula
with resting holes using resolution is nΘ(w), where n is the number of variables in
the formula and w is the number of pigeons in the formula. In [ALN14], it is also
shown that such a formula can be refuted in width O(w). Therefore, according to
the results in Chapter 4, the running time of the AFT solver running on an RPHP
formula should be similar to the size of the shortest resolution refutation for that
formula. The reason for running experiments on these formulas is to see if practical
solvers perform as well as the AFT solver should do for these formulas.

For the results of Chapter 4 to work (i.e. for an implementable CDCL solver to
terminate within reasonable time) the width of the initial formula must be constant.
The formula family described above does not fulfill this constraint — there are
clauses of width equal to the number of pigeons in the formula (and also clauses
of width equal to the number of resting holes in the formula). There is a standard
way to solve such a problem — by introducing extension variables and splitting
up wide clauses using these variables as “glue” to keep the original meaning of
the clauses. If we have the clause (

∨n
i=1 xi) and then add extension variables

y1, . . . , yn−3 in the standard way (to create a 3-CNF formula) we get the formula
(x1∨x2∨y1)∧(y1∨x3∨y2)∧· · ·∧(yn−3∨xn−1∨xn). Actually, the corresponding
formulas used in this project are 4-CNF formulas. Such formulas can be created in
a way similar to that in which 3-CNF formulas are created except one more original
variable can be stored in each 4-CNF clause. I.e. using e extension variables the
clause (

∨n
i=1 xi) would become (x1 ∨ x2 ∨ x3 ∨ y1)∧ (y1 ∨ x4 ∨ x5 ∨ y2)∧ · · · ∧

(ye ∨ xn−2 ∨ xn−1 ∨ xn).
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a b c

d e

f

(a) Pebbling pyramid graph

(a)∧
(b)∧
(c)∧

(a ∨ b ∨ d)∧
(b ∨ c ∨ e)∧
(d ∨ e ∨ f)∧

(f)

(b) Pebbling pyramid formula

Figure 6.3. Pebbling formula example

6.1.3 Pebbling formulas

Pebbling formulas [BW01] represent pebbling games which have been shown to
be very useful when proving gaps between different proof systems (which is done
for example in [BW01]). An important property of pebbling formulas is that it is
possible to create different formulas which can be refuted in similar size and width
but different space [Nor06, NH08, BN08].

A pebbling formula is created by taking a directed acyclic graph (DAG) with a
single sink (a node without successors) and letting each node represent a variable
or a small formula. Each node in the DAG must have either zero or two prede-
cessors. The formula encodes the statement that each node in the graph is implied
by its predecessors. Each source node (a node without predecessors) in the graph
represents a positive variable or formula. For example if each node is represented
by a single variable a source node represents a positive unit clause. The sink node
represents a negative variable or formula. In the case where each node is repre-
sented by a single variable the sink represents a negative unit clause. The source
nodes imply the sink node by transitivity since each node in the graph is implied
by its predecessors. Since the sink is represented by a negative variable or formula
each pebbling formula is unsatisfiable. See Figure 6.3 for an example of a pebbling
formula where each node is represented by a single variable.

A pebbling formula where each node is represented by a single variable is
refutable using only unit propagation. Such a refutation can be formed by simply
propagating all source node variables (since the formula contains unit clauses for
those variables). The restricted formula created through those propagations will
then represent a graph where the successors of the previous source nodes are now
the new source nodes. This procedure of propagating source node variables can
then be repeated until the sink node is reached.

One way to create more difficult formulas is to substitute each variable in the
pebbling graph using some function so that each node is instead represented by a
formula. We can still refute a pebbling formula with substitutions in a similar way
to that through which we refuted a formula with single variables, i.e. through re-
cursively using source nodes to derive successors of source nodes. This procedure
shows that if we can derive a certain node from its predecessors in a certain reso-
lution width we can then use that width to bound the width of refuting the entire
pebbling formula. The width of our refutation is the maximum width taken over
the derivations of all nodes in the formula from their predecessors. Therefore the
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structure of the pebbling graph used to create a pebbling formula does not affect the
width in which the formula can be refuted (as long as the number of predecessors
of each node is the same). The width of refuting a pebbling formula is determined
by the substitution used. Similarly, the size of a derivation from a pair of nodes to
their common successor will depend only on the substitution used and not on the
size of the pebbling graph. Therefore, the size of the refutation explained above
will grow linearly with the size of the given pebbling graph. Below, the pebbling
graphs and substitutions used in this project are presented.

Depending on what kind of graphs you use when creating pebbling formulas
you can produce formulas with different properties when it comes to refuting the
formulas using resolution. The graphs used in this project are chains of width
2 and 5, pyramids and Gilbert-Tarjan graphs. Examples of such graphs can be
seen in Figures 6.4 and 6.5. Gilbert-Tarjan graphs were created in [GT78] and are
based on graphs shown in [PTC77]. The name “Gilbert-Tarjan graphs” is based
on the names of the authors of [GT78]. The reason for using the four graph fam-
ilies presented above is that their corresponding pebbling formulas have differ-
ent space complexities when refuted using resolution. Chain formulas have space
complexity linear in the width of the chain, which in this case is constant (2 and
5). Pyramid formulas have space complexity linear in the height of the pyramid
(Ω(
√
n) for formulas of size n). The space complexity of Gilbert-Tarjan formulas

is Ω(n/ logn) (actually Ω(n/ log2 n) for the formulas used in this project) for for-
mulas of size n. These space complexities are listed in [JMNŽ12] but were proven
in [Nor06, NH08, BN08] by connecting space complexity of pebbling formulas to
the pebbling price of the corresponding pebbling graphs.

Three different substitutions are used in this project, the first is or over two
variables (denoted or of arity 2) which can simply be encoded as (x1 ∨ x2). An
implication from the nodes (x1 ∨ x2) and (y1 ∨ y2) to the node (z1 ∨ z2) can be
written as

(x1∨y1∨z1∨z2)∧(x1∨y2∨z1∨z2)∧(x2∨y1∨z1∨z2)∧(x2∨y2∨z1∨z2). (6.1)

By using resolution, it is possible to derive (z1 ∨ z2) from (x1 ∨ x2), (y1 ∨ y2),
and the clauses in (6.1) in width 4 (in a straight-forward way). Furthermore,
since the clauses in (6.1) have width 4, (z1 ∨ z2) cannot be derived using width
lower than 4. As described above the size of refuting a pebbling formula is lin-
ear in the size of the pebbling graph used. Therefore, a CDCL solver should be
able to solve pebbling formulas with substitution or of arity two in running time
O(mnk+1 ln(nm)) = O(n6 ln(n)). This calculation can be derived from the re-
sults in Chapter 4 by letting k = 4 be the width of refuting the formula, m ∈ O(n)
the size of refuting the formula and n the number of variables in the formula.

The second substitution used in this project is xor over two variables, i.e. x1⊕
x2 which can be encoded as (x1∨x2)∧ (x1∨x2). The encoding of an implication
of a node in a pebbling formula of substitution xor of arity 2 has here been omitted
for brevity. A node in such a formula can be derived from its predecessors using
a resolution proof of width 6 (in a straight-forward way). This width is also the
minimum width needed to derive a node from its predecessors (because clauses
encoding the implication of a node have width 6). A formula using the substitution
xor of arity 2 should be solvable in running time (or rather number of conflicts and
restarts) O(n8 ln(n)) where n is the number of variables in the formula. This
result can be reached by using a similar argument as for pebbling formulas with
substitution or of arity 2.

The last substitution used is not-all-equal (nae or neq) of order 3 which means
using three variables that cannot all be equal. A formula created from such a sub-

44



6.1. EXPERIMENT FORMULAS

Figure 6.4. Gilbert-Tarjan graph with 8 source nodes
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(a) Chain graph
of width 2 and
length 10

(b) Chain graph of width 5 and length 10

(c) Pyramid graph of height 5

Figure 6.5. Examples of pebbling graphs
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stitution can be encoded as (x1∨x2∨x3)∧(x1∨x2∨x3). Just as for the substitution
xor the encoding of the implication of one node from its two predecessors using
the neq substitution is here omitted. A node in such a formula can be derived from
its predecessors using a resolution proof of width 7 (in a straight-forward way).
This width is also the minimum width needed to derive a node from its predeces-
sors (because the clauses encoding the implication of a node have width 7). For
pebbling formulas with substitution neq of arity 3 the CDCL solver running time
should be at most O(n9 ln(n)).

Initially a substitution called lifting of order 4 was also investigated, but this
substitution was removed during pre-experiments because the results were very
similar to those of or of order 2 and xor of order 2. The initial four substitutions
were chosen based on suggestions from the supervisor of this project, which in
turn were based on earlier experiments, e.g. those in [JMNŽ12].

6.1.4 Cartesian product formulas

We can define the Cartesian product of a pair of CNF formulas F and G as the
formula where each clause of G has been added to each clause of F . For example
if F = (a ∨ b) ∧ (b) and G = (d) ∧ (e ∨ f) then the Cartesian product of F and
G is (a ∨ b ∨ d) ∧ (a ∨ b ∨ e ∨ f) ∧ (b ∨ d) ∧ (b ∨ e ∨ f).

Cartesian products of formulas are interesting because they can be refuted in
width equal to the sum of the widths needed to refute the initial formulas. To refute
the Cartesian product of a pair of formulas we can essentially use the refutation of
one of the initial formulas to derive the other formula from their Cartesian product,
and then refute that formula. Let us say that we have produced the Cartesian
product P of the formulas F andG and want to derive the clause C that is a clause
in G. Now assume we can refute F in width w then we can derive C from P
in width w + W(C) by simply using the refutation of F on the clauses (A ∨ C)
for all A ∈ F . This procedure can be carried out for each clause C that is used
as an axiom in a minimal width refutation of G. Finally we can simply refute G
using that minimal width refutation. The entire refutation will have width at most
W(F `⊥) + W(G `⊥).

In this project formulas created using Cartesian products are created from peb-
bling formulas with no substitutions (i.e. each node in a pebbling graph is replaced
with a single variable). Furthermore the Cartesian product formulas used in this
project are always created through taking the Cartesian product of a formula with
itself. The reason for using Cartesian product formulas is to try to “trick” the
CDCL solvers used. The Cartesian product of a pair of formulas refutable in low
width produces a formula also refutable in low width. Therefore according to
the results in Chapter 4 the newly produced formula should still be easy to solve.
However, the added complexity of “merging” two formulas might make the result-
ing formula more difficult to solve for some solvers. More specifically a pebbling
formula with no substitution can be refuted in width 3 and therefore the Cartesian
product of such a formula with itself can be refuted in width 6. The size of re-
futing a pebbling formula with no substitution grows linearly with the number of
variables in the formula. However, when we want to refute the Cartesian prod-
uct of such a formula with itself, using the refutation explained above, the size of
our refutation will grow quadratically in the number of variables in the pebbling
formula. The refutation size grows in this way because for each clause in the peb-
bling formula we will use the original pebbling formula refutation once. Thus, the
worst-case bound for the running time of the AFT solver running on these formulas
is O(mnw+1 ln(n)) = O(n2n6+1 ln(n)) = O(n9 ln(n)) where n is the number of
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variables in the formula, m is the size of refuting the formula and w is the width
of refuting the formula.

6.2 Experiment parameters

Let us next discuss the different parameters used during the experiments. As men-
tioned earlier, we want to compare the components or settings that differ between
the AFT solver and a practical solver (in this case the MiniSat solver using de-
fault settings). The different solver settings used during the experiments can be
seen in Figure 6.6. All combinations of those settings are tested in this project, i.e.
2∗3∗2∗2∗2 = 48 combinations in total. There are many more settings in MiniSat
which could have been altered — regarding these settings only default values were
used. These settings for example determine the aggressiveness of the clause re-
moval used. It should be noted that changing the values of these settings could
have a major impact on the outcome of the experiments, as is shown in [AS08].
However, performing an investigation of how these settings could affect the results
of these experiments does not fall within the scope of this project (since doing so
would increase the running time of the experiments).

Here follow descriptions of the solver settings shown in Figure 6.6. Regarding
restarting policies, a solver either restarts as quickly as possible after a conflict or
uses the default MiniSat restarting policy. When it comes to decision schemes,
a solver uses either an entirely random scheme, the default MiniSat scheme, or a
mix of the two. When using the mixed scheme, random decisions are performed
every fourth round and during the rest of the rounds the VSIDS scheme is used.
As described in Section 3.2.4 clause removal is the act of removing clauses from
the clause database in order to save memory and speed up certain operations of the
solver.

Neither the option of preprocessing nor shuffling a formula is included in the
results of Chapter 4. However, these options are included in the experiments be-
cause they are often used together with CDCL solvers in practice. Preprocessing is
simply the act of processing a formula in some way before sending it to the solver.
The preprocessing algorithm used during these experiments is the one included in
MiniSat 2.2. Shuffling is the act of reordering the clauses of a formula and also
reordering the literals in each clause of the formula before letting the solver handle
the formula. Shuffling could change the performance of a solver since it could
change the order in which variables and clauses are stored in the solver.

The experiments described in this section were performed in the following
way. The experiments were run for about a month on circa 30 computers simulta-
neously. Each solver (solver setting combination) was run 5 times on each formula
in each formula family. The result of the runs of a solver running on a single for-
mula is the median of those 5 running times. If a single run would take longer
than 30 minutes, the run was interrupted. If such an interruption would occur for
the same solver for each run on more than 3 consecutive formulas in a formula
family, then the solver was not allowed to run on more formulas in that family. A
summary of the parameters described above can be seen in Table 6.1.

The formula families used in these experiments are Tseitin grids of width 2,
3, 4, and 5 and RPHP formulas with 2, 3, 4, and 5 pigeons. Furthermore, the
experiments include Cartesian products of pebbling formulas with no substitutions
over the four pebbling graph families mentioned in Section 6.1.3. Finally, the
experiments include pebbling formulas of all combinations of the four pebbling
graph families and the three substitutions mentioned in Section 6.1.3.
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1. Restarts

a) As often as possible

b) MiniSat default (Luby)

2. Decision scheme

a) Random

b) MiniSat default (VSIDS)

c) Mixed (alternating between random and VSIDS)

3. Clause removal

4. Preprocessing

5. Shuffling

Figure 6.6. Experiment solver settings

Solver setting combinations 48
Number of formula families 24
Formulas per family 40
Runs/instances per formula 5
Maximum number of time-outs 3
Time-out 30 minutes

Table 6.1. Experiment parameter summary

The value of each parameter that highly affects the overall runtime of the exper-
iments (e.g. time-out length and number of runs per formula) was chosen through
running pre-experiments. One important parameter is the number of formulas per
family. In order to fit the running times of the CDCL solvers to different functions
this parameter should have a high value. Otherwise, the running times could be fit
to functions not representing their actual growth rates. The value of this param-
eter was set to 40 so that the most important solvers would solve at least 20-30
formulas before reaching the time-out limit.

Here follow a couple of notes regarding the experiments. Firstly, the only dif-
ference between the 5 runs of a solver on a single formula is the random seed sent
to the solver for use for example when making random decisions. After running
the experiments the author of this report found that the solvers using the VSIDS
decision scheme do not use any (pseudo-) randomness. This discovery implies
that the 5 instances that should be different are exactly the same for solvers using
the VSIDS decision scheme. Therefore, the results for solvers using the VSIDS
scheme in this project are not as reliable as the results for other solvers. Secondly,
the formula sizes used in these experiments sometimes differ between runs for
solvers using clause removal and those not using clause removal. This differ-
ence was added so that the most efficient solvers would solve slightly larger input
formulas while at the same time letting the most important solvers solve enough
formulas before timing out.
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6.3 Hardware
The experiments were run on a computer named Ferlin, consisting of a number of
nodes where each node has two quad-core AMD Opteron 2,2 GHz CPUs (2374
HE) and 16 GB memory. However, each run was limited to 8 GB memory to make
sure that the experiment computer would never run out of memory. At most one
instance of solver setting combinations and formulas was run at a single node at
any time during the experiments in order to avoid potential interference between
different cores accessing the same memory simultaneously.
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Chapter 7

Results

In this chapter we examine the results of the experiments performed in this project.
The main goal of these experiments is to find out how the results presented in
Chapter 4 correspond to practice. We know that a certain setting (e.g. random
decisions) in the AFT solver is needed in the theoretical results if by using another
setting we get running times exponential in the size of the input formula. To inves-
tigate which settings are needed for the theoretical results and which settings seem
practical we simply compare running times of CDCL solvers containing different
combinations of component settings.

7.1 Plots

In this section we discuss some of the plots produced when running the experi-
ments of this project. These plots make up a small part of the plots created from
the experiments. The rest of the plots can be found at https://github.com/
GSennton/thesis. Many of the plots in this section are log-log plots. Such
plots can be used to estimate whether a curve grows like an exponential or a poly-
nomial function. A polynomial should look like a linear function when plotted on
a log-log scale while an exponential function should look like it grows faster than
linearly. We should note that performing a rigorous experimental investigation of
the growth rate of algorithms is difficult, especially using only 30-40 data points
when the curves investigated could be high degree polynomials. Therefore this
section simply aims to provide some indications regarding the growth rates of the
solvers tested.

As a general comment, none of the plots acquired during this project suggest
that any of the solver versions run in time exponential in the size of their input
formula. However, there are some formulas where we do not have enough data
points to rule out exponential growth. These formulas are RPHP formulas and
Tseitin grids, especially RPHP formulas with 4 or 5 pigeons and Tseitin grids
of width 4 or 5. The plots for several of these formulas are not shown in this
report but can be found together with the rest of the plots at the location specified
above. As another general comment it seems like shuffling the formulas used in
these experiments does not affect the running times of the solvers significantly. I.e.
plots of running times including shuffling look very similar to those not including
shuffling even though the difference between single data points sometimes vary
much. Therefore the plots in this section do not include running times where
formulas have been shuffled. As a final general comment, none of the solvers
reached the memory limit given during any of the experiments.

Table 7.1 shows the abbreviations used to represent different solver settings in
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Abbreviation Description
ASAP Restart policy: Restart after each conflict
Luby Restart policy: Luby restart sequence
random Decision scheme: random decisions
mixed Decision scheme: random every 4th round, VSIDS otherwise
VSIDS Decision scheme: VSIDS
remove Clause removal: On
noremove Clause removal: Off

Table 7.1. Descriptions of abbreviations used in experiment plots
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Figure 7.1. Running time comparison of solver settings (log-log scale), pebbling formulas, xor
of arity 2, chains of width 5

the experiment plots of this chapter. Expressed in terms of these abbreviations the
AFT solver uses the settings ASAP-random-noremove while the MiniSat default
solver uses the settings Luby-VSIDS-remove.

Even though the Luby sequence is used as default restart policy in MiniSat
there are cases where this is not the best choice. See e.g. Figure 7.1 where solvers
are compared using pebbling formulas on chains of width 5 with substitution xor of
arity 2. In this plot preprocessing is not used since preprocessing by itself seems to
solve the formulas tested here (when using preprocessing all solvers have similar
running times which implies that the formulas are solved by the preprocessor). The
ASAP restart policy seems to perform slightly better than the Luby restart policy
for these formulas. This difference is most clear when using random decisions
(the Luby-random solver is clearly the worst version) and less clear when using
VSIDS decisions. When it comes to mixed decisions there seems to be no major
difference between the ASAP restart policy and the Luby restart policy for these
formulas. Regarding decision schemes, the VSIDS decision scheme seems best
for these formulas, followed by the mixed decision scheme (and then the random
decision scheme).
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Figure 7.2. Log-log plot comparison of solver settings, pebbling formulas, neq of arity 3,
pyramid graphs

Figure 7.2 shows comparisons between solvers running on pebbling formulas
of pyramid graphs with the substitution neq of arity 3. Important to note is that
pebbling formulas using this substitution do not seem to be solved by the MiniSat
preprocessor (unlike the other pebbling formulas used in this project). That prepro-
cessing does not solve these formulas cannot be seen by only studying Figure 7.2.
However, comparing that plot to one including preprocessing shows that there is
no major difference between the two. An interesting observation here is that the
running time curve of the AFT solver seems to grow at a similar rate as that of
the default MiniSat solver for these formulas (though the latter solver needs only a
couple of seconds to solve formulas for which the AFT solver requires about 1000
seconds to solve). This observation is especially interesting because preprocessing
does not simplify these formulas significantly. Therefore, there are formulas for
which the AFT solver (without any extra extension such as preprocessing) seems
to be as efficient (asymptotically) as the MiniSat model with preprocessing turned
on. Clause removal does not seem to affect solvers using the ASAP restart policy
in Figure 7.2 while the solvers using the Luby restart policy are negatively affected
by clause removal. Just as in Figure 7.1 the VSIDS decision scheme seems to be
the best decision scheme in Figure 7.2.

In Figure 7.3 we can see a comparison of solvers running on pebbling formulas
of chains of width 2 with substitution or of arity 2. Figure 7.3a uses a log-log scale
while Figure 7.3b uses a lin-lin scale. The former figure shows that the running
times seem to grow polynomially while the latter figure is meant to give a pic-
ture of how the running time curves actually look. Regarding the decision scheme
the VSIDS scheme seems best for these formulas, followed by the mixed decision
scheme. The impact of clause removal seems to depend on the decision scheme
used. When using random decisions clause removal has a significant positive im-
pact while when using the VSIDS decision scheme clause removal seems to have
a small negative impact.
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(a) Log-log plot
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(b) Lin-lin plot

Figure 7.3. Comparisons of solver settings, pebbling formulas, or of arity 2, chains of width 2
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Figure 7.4 shows comparisons of different solver versions running on Cartesian
products of pyramid pebbling formulas. Figure 7.4a does not include preprocess-
ing but Figure 7.4b does. As can be seen in Figure 7.4b, the MiniSat preprocessor
seems to solve these formulas by itself. However, the most efficient solvers in
Figure 7.4 seem to be solving these formulas quicker than the MiniSat preproces-
sor. Actually all solvers except the ones using the Luby restart policy together with
the random decision scheme seem to solve these formulas at least as efficiently as
the MiniSat preprocessor. The ASAP restart policy seems to perform better than
the Luby policy for all different solver versions in Figure 7.4. Clause removal
seems to have a very small effect (or none at all) on running times. When it comes
to the decision scheme the VSIDS decision scheme and the mixed decision scheme
seem to perform better than the random decision scheme.

Figure 7.5 displays results from running CDCL solvers on Tseitin grids of
width 4. This figure is interesting because here the AFT solver performs very
badly compared to other solvers — the slope of the AFT solver running time curve
seems to be greater than that of many other solvers. In this figure the Luby-mixed-
noremove solver seems to perform very well. Aside from that the VSIDS decision
scheme seems to be the most efficient decision scheme while clause removal af-
fects solvers using the random decision scheme positively and all other solvers
negatively. One problem with Figure 7.5 is that some of the fastest solvers fin-
ish solving the formulas given in less than one second. Having such small running
times makes it difficult to say how the running times of those solvers actually grow
— it would be interesting to see how the running times grow when larger formulas
are used.

Note that in Figure 7.5 the AFT solver seems to time-out for formulas con-
taining 100 variables. In Figure 7.2 the AFT solver instead solves formulas with
up to approximately 6000 variables before reaching the time-out limit. This re-
lation is interesting because the formulas used in Figure 7.5 are Tseitin grids of
width 4 and can therefore be refuted in width 5. On the other hand, the formulas
used in Figure 7.2 are pebbling formulas with substitution neq of arity 3 and have
refutation width 7. This comparison could remind us that the refutation width of
a formula is not the only property that determines the running time of a CDCL
solver in the results of Chapter 4. Furthermore, those results are upper bounds
which means that the actual running times of CDCL solvers could differ signifi-
cantly from the theoretical results.

Figure 7.6 contains a comparison of solver versions running on RPHP formulas
with 3 pigeons. Here, it seems most solvers have similar running times (or at
least the running times grow at a similar pace). Clause removal seems to have a
significant effect on some of the worst solver versions in Figure 7.6, for example it
seems to have a strong negative effect on the AFT solver. The best solvers in that
figure, including the default MiniSat solver, seem unaffected by clause removal.

7.2 Discussion

As mentioned earlier, it seems like the running times of most solvers used in
this project grow polynomially in the number of variables of the given formula.
However, for some of the plots (e.g. Figure 7.5) the most efficient solvers termi-
nate very quickly. It is difficult to say whether the running times of such solvers
actually grow polynomially and it would therefore be interesting to see how these
solvers would perform on larger formulas. Running with such large formulas was
not part of this project since that would increase the amount of time spent on the
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Figure 7.4. Log-log plot comparisons of solver settings, Cartesian products of pyramid peb-
bling formulas
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Figure 7.5. Log-log plot comparison of solver settings, Tseitin grids of width 4
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Figure 7.6. Log-log plot comparison of solver settings, RPHP formulas with 3 pigeons
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experiments (which is already a month).
The AFT solver does not seem practical in terms of running time when com-

pared to the default MiniSat solver — in several cases the AFT solver is up to a
hundred times slower (Figures 7.1 and 7.2). This result is not very surprising since
if the AFT solver would have been practical it would probably have been used
more often in practice. On the other hand, the difference in growth rates between
the running times of the AFT solver and the default MiniSat solver seems to be
quite small for many formula families (see e.g. Figures 7.2 and 7.6). This result
is more surprising since it suggests that the AFT solver and the MiniSat solver
could have similar asymptotic running times (for some formula families). If we
instead compare the components of the solvers the VSIDS decision scheme seems
to outperform the random decision scheme for most formulas tested in this project.
Interestingly, the solver created through changing the decision scheme of the AFT
solver to the VSIDS scheme seems to perform just as well, or even better than the
default MiniSat solver in many of the experiments performed in this project.

Intuitively clause removal should have a positive effect on solvers using bad
decision schemes since such solvers should learn many unnecessary clauses. Since
the VSIDS decision scheme seems to work better than the random scheme in the
experiments of this project clause removal should be more beneficial for solvers
using the random scheme. This theory seems to hold for several of the formulas
tested. For example, clause removal has a positive impact on solvers using the
random decision scheme and negative impact on solvers using the VSIDS decision
scheme in Figure 7.3. However, for some other formulas clause removal has a
negative impact on solvers using the random decision scheme (e.g. Figure 7.6).
In the light of the discussion above this result is surprising — especially since the
impact of clause removal on the AFT solver in Figure 7.6 is significantly negative.

Regarding restart policies the Luby restart policy often works well together
with the VSIDS decision scheme (e.g. Figures 7.3 and 7.6). This correlation
might hold because the order of the decisions made by the VSIDS decision scheme
should not change much between consecutive rounds and because the Luby policy
seldom restarts. Restarting often will only make a solver using VSIDS remake
decisions similar to those made in previous rounds and therefore waste time. On
the other hand, the ASAP restart policy should work well together with decision
schemes which make many bad decisions. By restarting often those bad deci-
sions will be removed. Therefore, it is interesting to see that for some formulas
the ASAP restart policy works better than the Luby policy for both the random
decision scheme and the VSIDS decision scheme (Figure 7.1). This observation
suggests that when running on these formulas the VSIDS decision scheme is mak-
ing many bad decisions since it is working better together with the ASAP restart
policy than the Luby policy.

The effects of clause removal and restart policies seem to depend much on the
current settings (CDCL components and formula used). Therefore, the greatest
difference between the AFT solver and the MiniSat default solver (for the formu-
las used in this project) seems to be the decision scheme. Intuitively, the better
the decision scheme is the less impact the other components will have. If the de-
cision scheme would make many good decisions the restart policy could be less
aggressive (restart less often) since we would not need to remove unwanted deci-
sions as often as for a bad decision scheme. Similarly, if the decision scheme is
good enough so that the solver learns very few irrelevant clauses the use of clause
removal is not as beneficial as if the solver would learn many irrelevant clauses.

We should note that the experiments performed in this project use only a
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few formula families. Therefore we should be careful when drawing conclusions
regarding the importance of different solver components. It could be that the
structure of the formulas used affect the performance of the solver components.
Another practical aspect that might change the effect of the different solver com-
ponents is the running time given for solving a formula. If a solver would run long
enough for there to be a risk of running out of memory then the effect of clause
removal should be far more positive than that seen in this report. It is also possible
that tuning the parameters of the MiniSat solver could drastically change the effect
of the different solver components.

As mentioned earlier, comparing Figures 7.5 and 7.2 it seems more difficult to
solve Tseitin grids than pyramid pebbling formulas of substitution neq of arity 3
(for the AFT solver) even though the Tseitin grids have lower width. There could
be several reasons for this relation. For example the results shown in Chapter 4
only handle the worst-case scenario i.e. the scenario where each clause in a proof
has maximum width. In reality many of the clauses in a proof could have low
width. I.e. it could be that the amount of clauses having low width is higher
in pebbling formula proofs than in Tseitin grid proofs, making pebbling formulas
easier to solve. Another possibility is that the number of ways in which a proof can
be reordered differ between the two formula families. This difference would imply
that for one family of formulas there are more clauses which could be absorbed at
each step of a CDCL run. If more clauses can be absorbed then the probability of
making progress at each step is increased and the running time of the CDCL solver
is lowered.

Finally, each solver version runs five times on each formula (using different
random seeds for each run) and the plots shown in this report show the median of
those 5 values. Yet, solvers using the VSIDS decision scheme sometimes produce
quite erratic plots. These plots are erratic because the solvers using the VSIDS
decision scheme do not use the random seeds given to the solvers (those solvers
do not use any pseudorandomness) as mentioned in Section 6.2. Because these
solvers do not use the random seeds the five runs which should be different are
actually similar runs. This problem could be solved by instead of using different
random seeds for solvers using VSIDS for example shuffle the input formula using
different shuffle seeds for each run.
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Chapter 8

Final notes

In this report we have surveyed theoretical results regarding the running times of
CDCL solvers. These results depend on some assumptions regarding the solver
model used. The goal of this project is to determine how this model is related to
solvers used in practice. Experiments have been used to compare the theoretical
solver model with a real-world implementation of a solver. In this section we
discuss the conclusions drawn from these experiments and the questions which are
still left unanswered.

8.1 Conclusions
None of the experiments performed in this project suggest that CDCL solver run-
ning times grow exponentially with formula size for the formulas tested. These
results are consistent with CDCL running times being polynomial for formulas of
constant resolution refutation width not only for the theoretical AFT solver but
also for the real-world MiniSat solver.

Regarding the question of whether the AFT solver is practical, the solver does
not seem very practical when measuring running times. On the other hand, the
growth rate of those running times often (but not always) seem similar to those of
the more practical MiniSat solver. The majority of the difference in running time
between the two solvers seems to stem from the use of different decision schemes.
However, it should be noted that only a few formula families have been tested in
this report and therefore it could be that the other solver components are far more
important when running on other formulas.

The growth rate of solvers in practice do not seem to depend only on the width
of refuting the input formula — sometimes formulas of small refutation width are
more difficult to solve than formulas of higher refutation width. This shows that
one should be careful when using the theoretical upper bound on CDCL running
times shown in [AFT11] to estimate the efficiency of CDCL solvers in practice.

8.2 Future work
There are some formulas for which the experiments of this project do not rule out
exponential running times and therefore it would interesting to further study those
formulas and perform experiments using larger formula sizes and time-outs. The
most interesting formulas to study further are RPHP formulas and Tseitin grids.

Because the most significant difference between the AFT solver and the default
MiniSat solver seems to be their decision schemes it would be interesting to further
investigate the VSIDS decision scheme. It would be especially interesting to see
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whether the VSIDS decision scheme always performs as well (asymptotically) as
the random decision scheme or if there are formulas which fool the VSIDS scheme
into making too many bad decisions.

It would also be interesting to see how much the AFT solver can be improved
without jeopardizing the assumptions which makes this solver a good model for
deriving bounds on its running time. There are several cases in the experiments
performed in this project where adding clause removal to the AFT solver makes the
solver more efficient. One potential (practical) improvement to the model could be
to remove clauses which are absorbed by the rest of the clause database. Removing
only such clauses would never remove any progress made by the solver and thus
the theoretical worst-case results would still hold.

Finally, the running times of solvers in practice do not seem similar to the the-
oretical upper bounds on CDCL running times. Therefore, it would be interesting
to see which properties in a formula determine how long it takes before a CDCL
solver terminates in the average case rather than the worst case.
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