
The Complexity of Proving That a Graph Is

Ramsey

Massimo Lauria1, Pavel Pudlák2, Vojtěch Rödl3, and Neil Thapen2

1 Royal Institute of Technology, Stockholm
lauria@kth.se

2 Academy of Sciences of the Czech Republic
{pudlak,thapen}@math.cas.cz
3 Emory University, Atlanta
rodl@mathcs.emory.edu

Abstract. We say that a graph with n vertices is c-Ramsey if it does
not contain either a clique or an independent set of size c log n. We define
a CNF formula which expresses this property for a graph G. We show
a superpolynomial lower bound on the length of resolution proofs that
G is c-Ramsey, for every graph G. Our proof makes use of the fact that
every Ramsey graph must contain a large subgraph with some of the
statistical properties of the random graph.

Introduction

The proof of the existence of c-Ramsey graphs, i.e., graphs that have no clique or
independent set of size c logn, was one of the first applications of the probabilistic
method in combinatorics [12]. The problem, posed by Erdős, of constructing such
graphs explicitly is still open [9]. In this paper we are interested in the problem:
how hard is it to certify that a graph G of size n is c-Ramsey. By definition,
c-Ramsey graphs are in coNP; finding polynomial certificates would put this set
in NP. We believe that this is not possible and our result is a first step in this
direction. We show that there is no resolution proof that G is c-Ramsey with
length shorter than nΩ(logn). Let us stress that this is not a worst-case result:
for a fixed constant c ≥ 2, the lower bound nΩ(logn) holds for every c-Ramsey
graph G. The brute force approach to checking that G satisfies the property
takes time nO(logn) and can be turned into a resolution proof. Hence our result
is asymptotically optimal.

We prove our result for one natural formalization of the c-Ramsey property,
a formalization that we call binary. For an alternative formalization, the unary
formalization, we derive the same lower bound only for tree-like resolution proofs
(see Section 1.1).

Since most SAT solvers used in practice are essentially proof search algorithms
for resolution [19], our lower bound on resolution proof size shows that the ver-
ification problem is hard for quite a large class of algorithms. Also note that,
while it does not follow from the resolution lower bound that there is no algo-
rithm which will construct a Ramsey graph in polynomial time, it does follow

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 684–695, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Complexity of Proving that a Graph Is Ramsey 685

that, given an algorithm, there is no polynomial-size resolution proof that the
algorithm decides if a graph is c-Ramsey.

The finite Ramsey theorem states that for any k, there is some N such that
every graph of size at least N contains a clique or independent set of size k. We
write r(k) for the least such N . Computing the actual value of r(k) is challenging,
and so far only a few values have been discovered. In fact, even to determine
the asymptotic behavior of the function r(k) is a longstanding open problem, in
spite of the nontrivial results proved about it, see e.g., [12,23,10].

A c-Ramsey graph is a witness that r(c log n) > n, so proving that a graph
is Ramsey is in some sense proving a lower bound for r(k). Previously, proof
complexity has focused on upper bounds for r(k). Krishnamurthy and Moll [18]
proved partial results on the complexity of proving the exact upper bound, and
conjectured that the propositional formalization of the exact upper bound is
hard in general. Kraj́ıček later proved an exponential lower bound on the length
of bounded depth Frege proofs of the tautology proposed by Krishnamurthy
and Moll [17]. The upper bound r(k) ≤ 4k has short proofs in a relatively
weak fragment of sequent calculus, in which every formula in a proof has small
constant depth [17,21]. Recently Pudlák [22] has shown a lower bound on proofs
of r(k) ≤ 4k in resolution. We discuss this in more detail in Section 1. There
are also results known about the off-diagonal Ramsey numbers r(k, s) where
cliques of size k and independent sets of size s are considered. See [13,1,14,7] for
estimates and [8] for resolution lower bounds.

The paper is organized as follows. In Section 1 we formally state our main result,
mention some open problems, and then outline the method we will use. In Section
2 we apply this to prove a simple version of our main theorem, restricted to the
case when G is a random graph. In Section 3 we prove the full version. This will
use one extra ingredient, a result from [20] that every Ramsey graph G has a large
subset with some of the statistical density properties of the random graph.

1 Definitions and Results

Resolution [6] is a system for refuting propositional CNFs, that is, propositional
formulas in conjunctive normal form. A resolution refutation is a sequence of
disjunctions, which in this context we call clauses. Resolution has a single in-
ference rule: from two clauses A ∨ x and B ∨ ¬x we can infer the new clause
A ∨B (which is a logical consequence). A resolution refutation of a CNF φ is a
derivation of the empty clause from the clauses of φ. For an unsatisfiable formula
φ we define L(φ) to be the length, that is, the number of clauses, of the shortest
resolution refutation of φ. If φ is satisfiable we consider L(φ) to be infinite.

Let c > 0 be a constant, whose value will be fixed for the rest of the paper.

Definition 1 (c-Ramsey graph). We say that a graph with n vertices is
c-Ramsey if there is no set of c logn vertices which form either a clique or an
independent set.

We now describe how we formalize the c-Ramsey property in a way suitable for
the resolution proof system. Given a graph G on n = 2k vertices, we will define

686 M. Lauria et al.

a formula ΨG in conjunctive normal form which is satisfiable if and only there
is a homogeneous set (a set inducing an empty or complete subgraph) of size
ck in G, that is, if and only if G is not Ramsey. We identify the vertices of G
with the binary strings of length k. In this way we can use an assignment to k
propositional variables to determine a vertex.

The formula ΨG has variables to represent an injective mapping from a set of
ck “indices” to the vertices of G, and asserts that the vertices mapped to form
either a clique or an independent set. It has a single extra variable y to indicate
which of these two cases holds.

In more detail, for each i ∈ [ck] we have k variables xi
1, . . . , x

i
k which we think

of as naming, in binary, the vertex of G to which i is mapped. We have an
additional variable y, so there are ck2 +1 variables in total. To simplify notation
we will write propositional literals in the form “xi

b = 1”, “xi
b �= 0”, “xi

b = 0” and
“xi

b �= 1”. The first and the second are aliases for the literal xi
b. The third and

the fourth are aliases for literal ¬xi
b.

Thus the formula ΨG expressing that G is c-Ramsey is a conjunction of clauses
asserting the following:

1. The map is injective. For each vertex v ∈ V (G), represented as v1 · · · vk
in binary, and each pair of distinct i, j ∈ [ck], we have the clause

k∨

b=1

(xi
b �= vb) ∨

k∨

b=1

(xj
b �= vb).

These clauses guarantee that no two indices i and j map to the same vertex v.

2. If y = 0, then the image of the mapping is an independent set.
For each pair of distinct vertices u, v ∈ V (G), represented respectively as
u1 . . . uk and v1 . . . vk, and each pair of distinct i, j ∈ [ck], if {u, v} ∈ E(G)
we have the clause

y ∨
k∨

b=1

(xi
b �= ub) ∨

k∨

b=1

(xj
b �= vb).

These clauses guarantee that, if y = 0, then no two indices are mapped to
two vertices with an edge between them.

3. If y = 1, then the image of the mapping is a clique. For each pair
of distinct vertices u, v ∈ V (G), represented respectively as u1 . . . uk and
v1 . . . vk, and each pair of distinct i, j ∈ [ck], if {u, v} /∈ E(G) we have the
clause

¬y ∨
k∨

b=1

(xi
b �= ub) ∨

k∨

b=1

(xj
b �= vb).

These clauses guarantee that, if y = 1, then no two indices are mapped to
two vertices without an edge between them.

The Complexity of Proving that a Graph Is Ramsey 687

The formula ΨG has
(
ck
2

) (
n +

(
n
2

))
clauses in total, and so is unusual in that the

number of clauses is exponentially larger than the number of variables. However
the number of clauses is polynomial in the number n of vertices of G.

If G is Ramsey, then ΨG is unsatisfiable and has only c log2 n + 1 variables.
So we can refute ΨG in quasipolynomial size by a brute-force search through all
assignments:

Proposition 1. If G is c-Ramsey, the formula ΨG has a (treelike) resolution
refutation of size nO(logn).

At this point, we should recall the formalization of the Ramsey theorem that is
more usually studied in proof complexity. This is the family RAMn of proposi-
tional CNFs, where RAMn has one variable for each distinct pair of points in [n]
and asserts that the graph represented by these variables is 1

2 -Ramsey. Hence
RAMn is satisfiable if and only if any 1

2 -Ramsey graph on n vertices exists. In
contrast, our formula ΨG is satisfiable if and only if our particular graph G is
not c-Ramsey.

Put differently, a refutation of RAMn is a proof that r(k) ≤ 22k. This was
recently shown to require exponential size (in n) resolution refutations [22]. On
the other hand a refutation of ΨG is a proof that G is c-Ramsey, and hence that
G witnesses that r(k) > 2

k
c .

We now state our main result. We postpone the proof to Section 3.

Theorem 1. Let G be any graph with n vertices. Then L(ΨG) ≥ nΩ(logn).

If G is not c-Ramsey then this is trivial, since ΨG is satisfiable and therefore
L(ΨG) is infinite by convention. If G is c-Ramsey, then by Proposition 1 this
bound is tight and we know that L(ΨG) = nΘ(logn).

1.1 Open Problems

Our formalization ΨG, apart from being natural, is motivated by the τ -tautologies
introduced by Kraj́ıček [15]. Although it has similar properties we are not able
to show that it is a τ -tautology.

We callΨG the binary encoding because the vertices of the graph are represented
by strings of propositional variables. One can also consider the unary encoding Ψu

G

in which a vertex of the graph is determined by a single propositional variable.
More precisely, the mapping from an index i to the vertices of G is represented
by n variables {piv : v ∈ V (G)} and we have clauses asserting that for each i,
exactly one of the variables piv is true. Otherwise the structure of Ψu

G is similar to
that ofΨG. As before, ifG is a c-Ramsey graph we have the brute-force upper bound
L(Ψu

G) = nO(logn). But we are not able to prove a superpolynomial lower bound
on resolution size. However we are able to prove such a lower bound if we restrict
to treelike resolution, as a corollary of our main theorem (we are grateful to Leszek
Ko�lodziejczyk for pointing out this simple proof).

Theorem 2. Let G be any c-Ramsey graph with n vertices. Then Ψu
G requires

treelike resolution refutations of size nΩ(logn).

688 M. Lauria et al.

Proof. (Sketch) Suppose we have a small treelike resolution refutation of the
unary formula Ψu

G. We can produce from it an at most polynomially larger
treelike Res(k) refutation of the binary formula ΨG as follows. Replace each
variable piv asserting that index i is mapped to vertex v with the conjunction∧k

b=1 x
i
b = vb. The substitution instance of Ψu

G is then almost identical to the
ΨG, except for the additional clauses asserting that every index maps to exactly
one vertex; but these are easy to derive in treelike Res(k).

It is well known that every treelike depth d+ 1 Frege proof can be made into
a DAG-like depth d Frege proof with at most polynomial increase in size [16].
In particular, we can turn our treelike Res(k) refutation of ΨG into a resolution
refutation. The lower bound then follows from Theorem 1.

Lower bounds for DAG-like resolution would have interesting consequences for
various areas of proof complexity [3,11]. The problem of proving a superpoly-
nomial lower bound on Ψu

G is related to the following open problem (rephrased

from [5]): consider a random graph G distributed according to G(n, n−(1+ε) 2
k−1)

for some ε > 0. Does every resolution proof that there is no k-clique in G require
size nΩ(k)?

Another natural problem is to extend our lower bound to proof systems
stronger than resolution. A superpolynomial lower bound on the proofs of ΨG in
Res(log) (resolution with logarithmic size conjunctions in clauses) would imply
a superpolynomial lower bound on general resolution proofs of Ψu

G.

1.2 Resolution Width and Combinatorial Games

The width of a clause is the number of literals it contains. The width of a CNF φ
is the width of its widest clause. Similarly the width of a resolution refutation Π
is the width of its widest clause. The width of refuting an unsatisfiable CNF φ is
the minimum width of Π over all refutations Π of φ. We will denote it by W (φ).

A remarkable result about resolution is that it is possible to prove a lower
bound on the proof length by proving a lower bound on the proof width.

Theorem 3 ([4]). For any CNF φ with m variables and width k,

L(φ) ≥ 2
Ω

(
(W (φ)−k)2

m

)
.

Now consider a game played between two players, called the Prover and the
Adversary. The Prover claims that a CNF φ is unsatisfiable and the Adversary
claims to know a satisfying assignment. At each round of the game the Prover
asks for the value of some variable and the Adversary has to answer. The Prover
saves the answer in memory, where each variable value occupies one memory
location. The Prover can also delete any saved value, in order to save memory. If
the deleted variable is asked again, the Adversary is allowed to answer differently.
The Prover wins when the partial assignment in memory falsifies a clause of φ.
The Adversary wins if he has a strategy to play forever.

The Complexity of Proving that a Graph Is Ramsey 689

If φ is in fact unsatisfiable, then the Prover can always eventually win, by ask-
ing for the total assignment. If φ is satisfiable, then there is an obvious winning
strategy for the Adversary (answering according to a fixed satisfying assign-
ment). However, even if φ is unsatisfiable, it may be that the Prover cannot win
the game unless he uses a large amount of memory. Indeed, it turns out that
the smallest number of memory locations that the Prover needs to win the game
for an unsatisfiable φ is related to the width of resolution refutations. (We only
need one direction of this relationship – for a converse see [2].)

Lemma 1. Given an unsatisfiable CNF φ, it holds that W (φ) + 1 memory lo-
cations are sufficient for the Prover in order to win the game against any Ad-
versary.

1.3 The Clique Formula

For any graph G, the formula ΨG�y=1 is satisfiable if and only if G has a clique
of size ck. We will call this restricted formula Clique(G). Dually, ΨG �y=0 is
equivalent to Clique(Ḡ). Since fixing a variable in a resolution refutation results
in a refutation for the corresponding restricted formula, we have

max
{
L(Clique(G)), L(Clique(Ḡ))

} ≤ L(ΨG).

Furthermore we can easily construct a refutation of ΨG from refutations of
ΨG�y=1 and ΨG�y=0. In this way we get

L(ΨG) ≤ L(Clique(Ḡ)) + L(Clique(G)) + 1.

We can now describe our high-level approach. To lower-bound L(ΨG) it is enough
to lower-bound L(Clique(G)), which we will do indirectly by exhibiting a good
strategy for the Adversary in the game on Clique(G). This game works as follows:
the Adversary claims to know ck strings in {0, 1}k which name ck vertices in G
which form a clique. The Prover starts with no knowledge of these strings but
can query them, one bit at a time, and can also forget bits to save memory. The
Prover wins if at any point there are two fully-specified strings for which the
corresponding vertices are not connected by an edge in G.

We will give a strategy for the Adversary which will beat any Prover limited
to εk2 memory for a constant ε > 0. It follows by Lemma 1 that Clique(G) is not
refutable in width εk2. The formula Clique(G) has ck2 variables and has width
2k. Hence applying Theorem 3 we get

L(ΨG) ≥ L(Clique(G)) ≥ 2
Ω

(
(εk2−2k)2

ck2

)
≥ 2Ω(k2) ≥ nΩ(logn).

1.4 Other Notation

We will consider simple graphs with n = 2k vertices. We identify the vertices
with the binary strings of length k. For any vertex v ∈ G we denote its binary
representation by v1 · · · vk.

690 M. Lauria et al.

A pattern is a partial assignment to k variables. Formally, it is a string p =
p1 · · · pk ∈ {∗, 0, 1}k, and we say that p is consistent with v if for all i ∈ [k] either
pi = vi or pi = ∗. The size |p| of p is the number of bits set to 0 or 1. The empty
pattern is a string of k stars.

For any vertex v ∈ V (G) we let N(v) be the set {u∣∣{v, u} ∈ E(G)} of neigh-
bors of v. Notice that v �∈ N(v). For any U ⊆ V (G) we let N(U) be the set of
vertices of G which neighbor every point in U , that is,

⋂
v∈U N(U). Notice that

U ∩N(U) = ∅.

2 Lower Bounds for the Random Graph

We consider random graphs on n vertices given by the usual distribution G(n, 1
2)

in the Erdős-Rényi model.

Theorem 4. If G is a random graph, then with high probability L(ΨG) = nΩ(logn).

We will use the method outlined in Section 1.3 above, so to prove the theorem it
is enough to give a strategy for the Adversary in the game on Clique(G) which
forces the Prover to use a large amount of memory. This is Lemma 3 below. We
first prove a lemma which captures the property of the random graph which we
need.

Lemma 2. For a random graph G, with high probability, the following property
P holds. Let U ⊆ V (G) with |U | ≤ 1

3k and let p be any pattern with |p| ≤ 1
3k.

Then p is consistent with at least one vertex in N(U).

Proof. Fix such a set U and such a pattern p. The probability that an arbitrary
vertex v /∈ U is in N(U) is at least 2−

1
3k = n− 1

3 . The pattern p is consistent with

at least n
2
3 − |U | vertices outside U . The probability that no vertex consistent

with p is in N(U) is hence at most

(
1 − n− 1

3

)n
2
3 −|U|

≤ e−(1−o(1))n
1
3 .

We can bound the number of such sets U by n
1
3k ≤ nlogn and the number of

patterns p by 3k ≤ n2, so by the union bound property P fails to hold with

probability at most 2−Ω(n
1
3).

Lemma 3. Let G be any graph with property P. Then there is an Adversary
strategy in the game on Clique(G) which wins against any Prover who uses at
most 1

9k
2 memory locations.

Proof. For each index i ∈ [ck], we will write pi for the pattern representing the
current information in the Prover’s memory about the ith vertex. The Adver-
sary’s strategy is to answer queries arbitrarily (say with 0) as long as the index
i being queried has |pi| < 1

3k − 1. If |pi| = 1
3k − 1, the Adversary privately fixes

the ith vertex to be some particular vertex vi of G consistent with pi, and then

The Complexity of Proving that a Graph Is Ramsey 691

answers queries to i according to vi until, through the Prover forgetting bits,
|pi| falls below 1

3k again, at which point the Adversary considers the ith vertex
no longer to be fixed.

If the Adversary is able to guarantee that the set of currently fixed vertices
always forms a clique, then the Prover can never win. So suppose we are at a
point in the game where the Adversary has to fix a vertex for index i, that is,
where the Prover is querying a bit for i and |pi| = 1

3k − 1. Let U ⊆ V (G) be
the set of vertices that the Adversary currently has fixed. It is enough to show
that there is some vertex consistent with pi which is connected by an edge in G
to every vertex in U . But by the limitation on the size of the Prover’s memory,
no more than 1

3k vertices can be fixed at any one time. Hence |U | ≤ 1
3k and the

existence of such a vertex follows from property P.

3 Lower Bounds for Ramsey Graphs

We prove Theorem 1, that for any c-Ramsey graph G on n vertices, L(ΨG) ≥
nΩ(logn). As in the previous section we will do this by showing, in Lemma 5
below, that the Adversary has a strategy for the game on Clique(G) which
forces the Prover to use a lot of memory.

Definition 2. Given sets A,B ⊆ V (G) we define their mutual density by

d(A,B) =
e(A,B)

|A||B|

where we write e(A,B) for the number of edges in G with one end in A and the
other in B. For a single vertex v we will write d(v,B) instead of d({v}, B).

Our main tool in our analysis of Ramsey graphs is the statistical property shown
in Corollary 1 below, which plays a role analogous to that played by Lemma 2
for random graphs. We use the following result proved in [20, Case II of Theorem
1]:

Lemma 4 ([20]). There exists constants β > 0, δ > 0 such that if G is a c-

Ramsey graph, then there is a set S ⊆ V (G) with |S| ≥ n
3
4 such that, for all

A,B ⊆ S, if |A|, |B| ≥ |S|1−β then δ ≤ d(A,B) ≤ 1 − δ.

Now fix a c-Ramsey graph G. Let S, β and δ be as in the above lemma, and
let m = |S|. Notice that since our goal is to give an Adversary strategy for
the formula Clique(G), we will only use the lower bound δ ≤ d(A,B) from the
lemma.

Corollary 1. Let X,Y1, Y2, . . . , Yr ⊆ S be such that |X | ≥ rm1−β and
|Y1|, . . . , |Yr| ≥ m1−β. Then there exists v ∈ X such that d(v, Yi) ≥ δ for each
i = 1, . . . , r.

692 M. Lauria et al.

Proof. For i = 1, . . . , r let

Xi = {u ∈ X | d(u, Yi) < δ}.
By Lemma 4, each |Xi| < m1−β. Hence X \⋃i Xi is non-empty and we can take
v to be any vertex in X \⋃i Xi.

The next lemma implies our main result, Theorem 1.

Lemma 5. There is a constant ε > 0, independent of n and G, such that there
exists a strategy for the Adversary in the game on Clique(G) which wins against
any Prover who is limited to ε2k2 memory locations.

Proof. Let ε > 0 be a constant, whose precise value we will fix later. As in the
proof of Lemma 3, the Adversary’s replies when queried about the ith vertex will
depend on the size of pi, the pattern representing the current information known
to the Prover about the ith vertex. If |pi| < εk − 1 the Adversary can reply in
a somewhat arbitrary way (see below), but if |pi| = εk − 1 then the Adversary
will fix a value vi for the ith vertex, consistent with pi, and will reply according
to vi until |pi| falls back below εk, at which point the vertex is no longer fixed.
By the limitation on the Prover’s memory, no more than εk vertices can be fixed
simultaneously, which will allow the Adversary to ensure that the set of currently
fixed vertices always forms a clique.

Let S, β and δ be as in Lemma 4 and let m = |S|. We will need to use
Corollary 1 above to make sure that the Adversary can find a vi with suitable
density properties when fixing the ith vertex. But here there is a difficulty which
does not arise with the random graph. Corollary 1 only works for subsets of
the set S, and S may be distributed very non-uniformly over the vertices of
G. In particular, through some sequence of querying and forgetting bits for i,
the Prover may be able to force the Adversary into a position where the set of
vertices consistent with a small pi has only a very small intersection with S, so
that it is impossible to apply Corollary 1.

Let α be a constant with 0 < α < β, whose precise value we will fix later.
We write Cp for the set of vertices of G consistent with a pattern p. We write
Pεk for the set of patterns p with |p| ≤ εk. To avoid the problem in the previous
paragraph, we will construct a non-empty set S∗ ⊆ S with the property that,
for every p ∈ Pεk, either

Cp ∩ S∗ = ∅ or |Cp ∩ S∗| > m1−α.

In the second case we will call the pattern p active. The Adversary can then
focus on the set S∗, in the sense that he will pretend that his clique is in S∗ and
will ignore the vertices outside S∗.

We construct S∗ in a brute-force way. We start with S0 = S and define a
sequence of subsets S0, S1, . . . where each St+1 = St\Cp for the lexicographically
first p ∈ Pεk for which 0 < |St ∩ Cp| ≤ m1−α, if any such p exists. We stop as
soon as there is no such p, and let S∗ be the final subset in the sequence. To
show that S∗ is non-empty, notice that at each step at most m1−α elements are

The Complexity of Proving that a Graph Is Ramsey 693

removed. Furthermore there are at most |Pεk| steps, since a set of vertices Cp

may be removed at most once. Recall that n = 2k and m ≥ n
3
4 . We have

|Pεk| =

εk∑

i=0

2i
(
k

i

)
≤ 2εk

εk∑

i=0

(
k

i

)
≤ nεnH(ε),

where H(x) is the binary entropy function −x log x− (1 − x) log(1 − x), and we

are using the estimate
∑εk

i=0

(
k
i

) ≤ 2kH(ε) which holds for 0 < ε < 1. Then

|S∗| ≥ |S| − |Pεk| ·m1−α ≥ n
3
4 − εk · nε+H(ε)n

3
4 (1−α),

so, for large n, S∗ is non-empty as long as we choose α and ε satisfying

3
4α > ε + H(ε). (
)

Notice that if S∗ is non-empty then in fact |S∗| > m1−α, since S∗ must intersect
at least the set Cp where p is the empty pattern.

We can now give the details of the Adversary’s strategy. The Adversary
maintains the following three conditions, which in particular guarantee that the
Prover will never win.

1. For each index i, if |pi| < εk then pi is active, that is, Cpi ∩ S∗ �= ∅.
2. For each index i, if |pi| ≥ εk then the ith vertex is fixed to some vi ∈ Cpi∩S∗;

furthermore the set U of currently fixed vertices vj forms a clique.
3. For every active p ∈ Pεk and every U ′ ⊆ U , we have

|Cp ∩ S∗ ∩N(U ′)| ≥ |Cp ∩ S∗| · δ|U ′|.

(Recall that 0 < δ < 1 is the constant from Lemma 4.) These are true at the
start of the game, because no vertices are fixed and each pi is the empty pattern.

Suppose that, at a turn in the game, the Prover queries a bit for an index i
for which he currently has information pi. If |pi| < εk − 1, then by condition 1
there is at least one vertex v in Cpi ∩ S∗. The Adversary chooses an arbitrary
such v and replies according to the bit of v. If |pi| ≥ εk, then a vertex vi ∈ Cpi

is already fixed, and the Adversary replies according to the bit of vi.
If |pi| = εk − 1, then the Adversary must fix a vertex vi for i in a way that

satisfies conditions 2 and 3. To preserve condition 2, vi must be connected to
every vertex in the set U of currently fixed vertices. To preserve condition 3, it
is enough to choose vi such that

d(vi, Cp ∩ S∗ ∩N(U ′)) ≥ |Cp ∩ S∗ ∩N(U ′)| · δ
for every active p in Pεk and every U ′ ⊆ U . To find such a vi we will apply
Corollary 1, with one set Y for each pair of a suitable p and U ′. We put

X = Cpi ∩N(U) ∩ S∗

Y(p,U ′) = Cp ∩N(U ′) ∩ S∗ for each active p ∈ Pεk and each U ′ ⊆ U

r = |{pairs (p, U ′)}| ≤ |Pεk| · 2|U|.

694 M. Lauria et al.

We know |U | ≤ εk. By condition 1 we know pi is active, hence |Cpi∩S∗| > m1−α.
So by condition 3 we have

|X | ≥ m1−αδεk = m1−α+ 4
3 ε log δ.

For similar reasons we have the same lower bound on the size of each Y(p,U ′).
Furthermore

r ≤ 2εk · εk · nε+H(ε) = εk · n2ε+H(ε) = εk ·m 8
3 ε+

4
3H(ε).

To apply Corollary 1 we need to satisfy |X | ≥ rm1−β and |Y(p,U ′)| ≥ m1−β .
Both conditions are implied by the inequality

β − α > 8
3ε + 4

3H(ε) − 4
3ε log δ. (†)

We can now fix values for the constants α and ε to satisfy the inequalities (
)
and (†). Since H(ε) goes to zero as ε goes to zero, we can make the right hand
sides of (
) and (†) arbitrary small by setting ε to be a small constant. We then
set α appropriately.

Finally, it is straightforward to check that if the Prover forgets a bit for an
index i, then the three conditions are preserved.

Acknowledgements. Part of this work was done while Lauria was at the In-
stitute of Mathematics of the Academy of Sciences of the Czech Republic, sup-
ported by the Eduard Čech Center. Lauria, Pudlák and Thapen did part of this
research at the Isaac Newton Institute for the Mathematical Sciences, where
Pudlák and Thapen were visiting fellows in the programme Semantics and Syn-
tax. Pudlák and Thapen were also supported by grant IAA100190902 of GA AV
ČR, and by Center of Excellence CE-ITI under grant P202/12/G061 of GA ČR
and RVO: 67985840.

We would also like to thank the anonymous referees for their comments and
corrections.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. Journal of Com-
binatorial Theory, Series A 29(3), 354–360 (1980)

2. Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. J.
Comput. Syst. Sci. 74(3), 323–334 (2008)

3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. (JAIR) 40, 353–373
(2011)

4. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made sim-
ple. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, pp. 517–526 (1999)

5. Beyersdorff, O., Galesi, N., Lauria, M., Razborov, A.A.: Parameterized bounded-
depth frege is not optimal. ACM Trans. Comput. Theory 4(3), 7:1–7:16 (2012)

The Complexity of Proving that a Graph Is Ramsey 695

6. Blake, A.: Canonical Expressions in Boolean Algebra. PhD thesis, University of
Chicago (1938)

7. Bohman, T., Keevash, P.: The early evolution of the h-free process. Inventiones
Mathematicae 181(2), 291–336 (2010)

8. Carlucci, L., Galesi, N., Lauria, M.: Paris-harrington tautologies. In: Proc. of IEEE
26th Conference on Computational Complexity, pp. 93–103 (2011)

9. Chung, F.R.K., Erdős, P., Graham, R.L.: Erdős on Graphs: His Legacy of Unsolved
Problems, 1st edn. AK Peters, Ltd. (January 1998)

10. Conlon, D.: A new upper bound for diagonal ramsey numbers. Annals of Mathe-
matics 170(2), 941–960 (2009)

11. Dantchev, S., Martin, B., Szeider, S.: Parameterized proof complexity. Computa-
tional Complexity 20, 51–85 (2011), doi:10.1007/s00037-010-0001-1

12. Erdös, P.: Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53,
292–294 (1947)

13. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. In: Gessel, I., Rota,
G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp.
49–56. Birkhäuser, Boston (1987)

14. Kim, J.H.: The Ramsey number r(3, t) has order of magnitude t2/ log(t). Random
Structures and Algorithms 7(3), 173–208 (1995)

15. Krajicek, J.: Tautologies from pseudo-random generators. Bulletin of Symbolic
Logic, 197–212 (2001)

16. Kraj́ıček, J.: Lower bounds to the size of constant-depth propositional proofs. Jour-
nal of Symbolic Logic 59(1), 73–86 (1994)

17. Kraj́ıček, J.: A note on propositional proof complexity of some Ramsey-type state-
ments. Archive for Mathematical Logic 50, 245–255 (2011), doi:10.1007/s00153-
010-0212-9

18. Krishnamurthy, B., Moll, R.N.: Examples of hard tautologies in the propositional
calculus. In: STOC 1981, 13th ACM Symposium on Th. of Computing, pp. 28–37
(1981)

19. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning sat solvers as
resolution engines. Artificial Intelligence 175(2), 512–525 (2011)

20. Prömel, H., Rödl, V.: Non-ramsey graphs are c log n-universal. Journal of Combi-
natorial Theory, Series A 88(2), 379–384 (1999)

21. Pudlák, P.: Ramsey’s theorem in Bounded Arithmetic. In: Schönfeld, W., Börger,
E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 308–317.
Springer, Heidelberg (1991)

22. Pudlák, P.: A lower bound on the size of resolution proofs of the Ramsey theorem.
Inf. Process. Lett. 112(14-15), 610–611 (2012)

23. Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Mathemat-
ics 20, 69–76 (1977)

	The Complexity of Proving That a Graph Is Ramsey
	Definitions and Results
	Open Problems
	Resolution Width and Combinatorial Games
	The Clique Formula
	Other Notation

	Lower Bounds for the Random Graph
	Lower Bounds for Ramsey Graphs

