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Abstract—We obtain the first true size-space trade-offs for
the cutting planes proof system, where the upper bounds
hold for size and total space for derivations with constant-
size coefficients, and the lower bounds apply to length and
formula space (i.e., number of inequalities in memory) even for
derivations with exponentially large coefficients. These are also
the first trade-offs to hold uniformly for resolution, polynomial
calculus and cutting planes, thus capturing the main methods
of reasoning used in current state-of-the-art SAT solvers.

We prove our results by a reduction to communication lower
bounds in a round-efficient version of the real communication
model of [Krajı́ček ’98], drawing on and extending techniques
in [Raz and McKenzie ’99] and [Göös et al. ’15]. The commu-
nication lower bounds are in turn established by a reduction to
trade-offs between cost and number of rounds in the game of
[Dymond and Tompa ’85] played on directed acyclic graphs.

As a by-product of the techniques developed to show these
proof complexity trade-off results, we also obtain an exponen-
tial separation between monotone-ACi−1 and monotone-ACi,
improving exponentially over the superpolynomial separation
in [Raz and McKenzie ’99]. That is, we give an explicit Boolean
function that can be computed by monotone Boolean circuits
of depth logi n and polynomial size, but for which circuits of
depth O(logi−1 n) require exponential size.

Keywords-proof complexity; communication complexity; cir-
cuit complexity; cutting planes; trade-offs; pebble games

I. Introduction

Ever since the discovery of NP-completeness by Cook
and Levin in [18], [39], the problem of how hard it is
to decide satisfiability of formulas in propositional logic
has played a leading role in theoretical computer science.
Although the conventional wisdom is that SAT should be
a very hard problem—to the extent that the Exponential
Time Hypothesis [32] concerning its worst-case complexity
is a standard assumption used in many other hardness
results—essentially no non-trivial lower bounds on the time
complexity of the SAT problem are known.

A less ambitious goal is to ask for lower bounds if not only
the running time but also the memory usage of the algorithm
is restricted. Yet it took until [25] to rule out a linear-
time, logarithmic-space algorithm for SAT. Later research
has shown that refuting unsatisfiable formulas on random-
access machines cannot be done non-deterministically in si-
multaneous time n41/3

and space no(1) [22] and SAT cannot

be decided deterministically in simultaneous time n1.8 and
space no(1) [50]. On Turing machines, no non-deterministic
algorithm solving SAT in time T and space s can achieve
T · s = n2/ log3 n [47]. (See [49] for a good survey of the
area with more details on this kind of results.)

For a problem that is believed to require exponential time,
the results listed above might not seem very impressive. Yet
they should not necessarily be viewed only as an illustration
of the weaknesses of current techniques for proving lower
bounds. It is important to realize that the adversary is
formidable—applied research in the last 15–20 years has
led to the development of amazingly efficient algorithms,
so-called SAT solvers, that solve many real-world instances
with millions of variables, and do so in linear time. Today,
practitioners often think of SAT as an easy problem to reduce
to, rather than a hard problem to reduce from (we refer the
reader to [11] for more on this fascinating topic).

Virtually the only tool currently available for a rigorous
analysis of the performance of such SAT solvers is proof
complexity [19], where one studies the methods of reasoning
used by the corresponding algorithms. The transcript of the
computations made can be viewed as a formal proof applying
the relevant method of reasoning, and proof complexity ana-
lyses the resources needed when all computational choices
are made optimally (i.e., non-deterministically). Even though
this is quite a challenging adversarial setting, proof complex-
ity has nevertheless managed to give tight exponential lower
bounds on the worst-case running time for many approaches
for SAT used in practice by lower-bounding proof size.

The focus of this paper is on time-space trade-offs in com-
putational models describing current state-of-the-art SAT
solvers. This research is partly driven by SAT solver running
time and memory usage—in practice, space consumption
can be almost as much of a bottleneck as running time—but
is also motivated by the fundamental importance of time and
space complexity in computational complexity.

A. Previous Work on Proof Complexity Trade-offs
In resolution [12], which is arguably the most well-

studied proof system in proof complexity, the input is an
unsatisfiable formula in conjunctive normal form (CNF) and
new disjunctive clauses are derived from this formula until



an explicit contradiction is reached (in the form of the empty
clause without literals). Resolution is also the method of rea-
soning underlying the currently most successful SAT solving
paradigm based on so-called conflict-driven clause learning
(CDCL) [3], [40], [41]. The question of time-space trade-offs
for resolution was first raised by Ben-Sasson [7], who also
obtained such trade-offs for the restricted subsystem of tree-
like resolution. Size-space trade-offs for general, unrestricted
resolution were later shown in [4], [6], [9], [43].

In contrast to the trade-off results for random-access and
Turing machines reviewed above, in these more limited
models of computation one can obtain exponential lower
bounds on proof size (corresponding to running time) for
proofs in sublinear but polynomial space [9], [43], and
results in [4], [6] even exhibit trade-offs where size has
to be superpolynomial and space has to be superlinear
simultaneously. Another difference is that these results are
true trade-offs in the sense that it is actually possible to
refute the formulas both in small size and small space, only
not simultaneously. A third nice feature of the trade-offs are
that the upper bounds are on proof size and total space,
whereas the (sometimes tightly matching) lower bounds
are on length and formula space, meaning that one only
charges one time unit for each derivation step regardless of
its complexity, and only one space unit per “formula” (for
resolution: per clause) regardless of how large it is. Thus,
the upper bounds are algorithmically achievable, while the
lower bounds hold in a significantly stronger model.

A stronger proof system than resolution is polynomial
calculus [1], [17], where the clauses of a formula are
translated to multilinear polynomials and calculations inside
the ideal generated by these polynomials (basically corre-
sponding to a Gröbner basis computation) establishes unsat-
isfiability. Among other things, polynomial calculus captures
CDCL solvers extended with reasoning about systems of
linear equations mod 2. The first size-space trade-offs for
polynomial calculus—which were not true trade-offs in the
sense discussed above, however—were obtained in [31], and
these results were further improved in [6] to true trade-offs
essentially matching the results cited above for resolution
except for a small loss in parameters.

Another proof system that is also stronger than resolution
and that has been the focus of much research is cutting
planes [21], which formalizes the integer linear program-
ming algorithm in [16], [27] and underlies so-called pseudo-
Boolean SAT solvers. In cutting planes the clauses of a
CNF formula are translated to linear inequalities, which
are then manipulated to derive a contradiction. Thus, the
question of Boolean satisfiability is reduced to the geometry
of polytopes over the real numbers. Cutting planes is much
more poorly understood than resolution and polynomial
calculus, however, and size-space trade-offs have proven
elusive. The results in [31] apply not only to resolution and
polynomial calculus but also to cutting planes, and were

improved further in [29] to hold for even stronger proof
systems, but unfortunately are not true trade-offs in the sense
discussed above.

The problem is that what is shown in [29], [31] is only
that proofs in small space for certain formulas have to be
very large, but it is not established that these formulas can
be refuted space-efficiently. In fact, for resolution it can
be shown using techniques from [8] that such small-space
proofs provably do not exist, and for polynomial calculus
there is circumstantial evidence for a similar claim. This
turns out to be an inherent limitation of the technique used.

In a recent surprising paper [26], it was shown that cutting
planes can refute any formula in constant space if we only
count the number of lines or formulas. Plugging this result
into [29], [31] yields a trade-off of sorts, since “small-space”
proofs will always exist, but the catch is that such proofs will
have exponentially large coefficients. This means that these
trade-offs do not seem very “algorithmically relevant” in the
sense that such proofs could hardly be found in practice,
and saying that a proof with exponential-size coefficients
has “constant space” somehow does not feel quite right.

B. Our Proof Complexity Contributions
In this paper we report the first true, algorithmically

realizable trade-offs for cutting planes, where the upper
bounds hold for proof size and total space and the lower
bounds apply to proof length and formula space (i.e., number
of inequalities). The trade-offs also hold for resolution and
polynomial calculus, making them the first trade-offs that
hold for essentially all methods of reasoning used in the
most successful SAT solvers to date.1

Below, we state two examples of the kind of trade-offs
we obtain (referring the reader to Section II for the missing
formal definitions). In the rest of this section we will focus
on cutting planes, since this proof system is the main target
of this work. However, all the lower bounds stated also
hold for polynomial calculus (and for the strictly weaker
proof system resolution), and since all our upper bounds are
actually proven in resolution they transfer to both polynomial
calculus and cutting planes.

The first result is a “robust trade-off” that holds all the way
from polylogarithmic to polynomial space as stated next.

Theorem 1 (Informal). There exists an explicitly con-
structible family of 6-CNF formulas {FN}∞N=1 of size Θ(N)
such that:

1We remark that this ignores the issue of formula preprocessing tech-
niques, which are heavily used in most state-of-the-art SAT solvers, and
some of which potentially require the full extended Frege proof system for
a complete formal description (but can also sometimes cause a provable
exponential loss in reasoning power). Since in practice SAT solvers fail
to solve many of the combinatorial benchmark formulas that are hard for
resolution, polynomial calculus, and cutting planes but easy for (even non-
extended) Frege, however, and since in addition it is usually not hard to
come up with formulas that foil any concrete preprocessing techniques
actually used, this seems like a reasonable simplification.
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(a) Robust trade-off
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(b) Exponential trade-off

Figure 1. Pictorial illustrations of trade-offs in Theorems 1 and 2

1) FN can be refuted by cutting planes with constant-size
coefficients in size O(N) and total space O

(
N2/5

)
.

2) FN can be refuted by cutting planes with constant-
size coefficients in total space O(log4N) and
size 2O(log4 N).

3) Any cutting planes refutation of FN , even with coef-
ficients of unbounded size, in formula space less than
N1/10−ε requires length greater than 2Ω(log2 N).

The second trade-off holds over a smaller space range, but
causes an exponential and not just superpolynomial blow-up
in proof size.

Theorem 2 (Informal). There exists an explicitly con-
structible family of 6-CNF formulas {FN}∞N=1 of size Θ(N)
such that:

1) FN can be refuted by cutting planes with constant-size
coefficients in size O(N) and total space O

(
N2/5

)
.

2) FN can be refuted by cutting planes with constant-
size coefficients in total space O

(
N1/40

)
and size

2O(N1/40).
3) Any cutting planes refutation of FN , even with coef-

ficients of unbounded size, in formula space less than
N1/20−ε requires length greater than 2Ω(N1/40).

See Figure 1 for an illustration of these results, where blue
dots denote provable upper bounds on time-space parameters
of cutting planes refutations and the shaded red areas show
ranges of parameters that are impossible to achieve.

C. Previous Work in Monotone Circuit Complexity
Since this paper also makes contributions to monotone

circuit complexity, we next review some relevant background
in this area. After superpolynomial lower bounds on the
size of monotone circuits computing explicit functions were
obtained in [2], [46], the first step towards the natural
next goal of establishing a depth hierarchy for monotone
circuits was taken in [34], proving that connectivity, which
is in monotone-NC2, requires depth Ω(log2 n) for monotone
circuits with fan-in 2. This implies a separation between
monotone-NC1 and monotone-NC2. The same approach was

used in [45] to prove a separation between monotone-NCi−1

and monotone-NCi for every i. This result can be rephrased
as saying that there is a family of Boolean functions

{
f i
}

such that f i can be computed by monotone circuits of depth
logi n, fan-in 2, and polynomial size but cannot be computed
by any monotone circuit of depth o(logi n) and fan-in 2.
This result was later extended in [33] to circuits of semi-
unbounded fan-in—i.e., with AND-gates of fan-in 2 and
OR-gates of unbounded fan-in.

Going into more details, the function in [45] that
witnesses the separation between monotone-NCi−1 and
monotone-NCi can be computed by a monotone circuit of
depth logi−1 n, polynomial fan-in, and polynomial size, and
therefore the separation is between monotone-NCi−1 and
monotone-ACi−1. This immediately implies a separation
between monotone-ACi−1 and monotone-ACi as well, since
monotone-ACi−1 is contained in monotone-NCi. However,
this separation only guarantees a superpolynomial circuit
size lower bound. Furthermore, the function f i only depends
on log40i n variables and so it can be computed by a mono-
tone DNF of size 2log40i n, i.e., there is a quasipolynomial
upper bound.

We remark that it is clearly not possible to prove a
superpolynomial separation between monotone-NCi−1 and
monotone-NCi in view of the simple fact that circuits in
these classes have fan-in 2, and hence it only makes sense
to talk about superpolynomial versus exponential separations
in the monotone-AC hierarchy. It should be noted that expo-
nential separations between monotone circuits of bounded
depth were previously known, but only for depth less than
logarithmic. It was shown in [35] that the complete tree of
depth k, arity n1/k, and size Θ(n), with alternating levels
of AND and OR, requires size 2Ω(n1/k/k) to compute with
circuits of depth k−1. This result was later reproven in [42]
using the communication complexity of the pointer jumping
function (see also [44]).

D. Our Monotone Circuit Complexity Contributions
In this paper, we establish an exponential separation in

the monotone-AC hierarchy. More precisely, for each i ∈ N
we exhibit a Boolean function f i that can be computed
by monotone circuits of depth logi n but such that every
monotone circuit of depth at most O(logi−1 n) requires
size 2n

Ω(1)

(where the hidden constant in the lower bound
depends inversely on that in the upper bound).

Theorem 3. For every i ∈ N there is a Boolean function
over n variables that can be computed by a monotone
circuit of depth logi n, fan-in n4/5, and size O(n), but for
which every monotone circuit of depth q logi−1 n requires
size 2Ω(n1/(10+4ε)q).

E. Discussion of Techniques
Let us now briefly discuss the techniques we use to

establish the above results, focusing for concreteness on



Theorems 1 and 2. These theorems are proven by a careful
chain of reductions as follows.

1) Our first step is to use the connection made explicit
in [31], and also used in [29], that short and space-
efficient proofs for a CNF formula F can be converted
to efficient communication protocols for the falsified
clause search problem for F . Going beyond [29], [31],
however, we make the simple but absolutely crucial
additional observation that protocols obtained in this
way are also round-efficient. Furthermore, in contrast
to [29], [31] we do not study randomized communica-
tion, but instead focus on the real communication model
introduced by Krajı́ček [36] with the purpose of getting
a tighter correspondence with cutting planes.

2) We next generalize the communication-to-decision-tree
simulation theorem for composed search problem in
the celebrated paper by Göös et al. [30] to the real
communication model, and then extend it further to be
able to handle rounds using the parallel decision trees
introduced by Valiant [48]. This part is inspired by [13],
where the simulation theorem in the precursor [45]
of [30] was proven for real communication but without
taking round efficiency into account.

3) To leverage this machinery we need a base CNF
search problem, and just as in [6], [9], [29], [31]
(and many other papers) the pebbling formulas PebG
from [10] turn out to be handy here, provided that they
are defined over appropriately chosen directed acyclic
graphsG. These formulas are then lifted (corresponding
to composition of search problems) as described in [5],
though the parameters of the lifting are different (and
unfortunately significantly worse than in [31]).

4) The following step is the relatively straightforward
observation that efficient parallel decision trees for
formulas PebG yield good strategies in the pebble game
of Dymond and Tompa [23] played on the underlying
graph G. At the same time, this is a somewhat unex-
pected twist, since in previous papers such as [6], [8],
[9] size and space lower bounds for pebbling formulas
always followed from the black-white pebble game [20]
on G, but we cannot make use of that latter game here.

5) Since we have to use the Dymond–Tompa game rather
than the black-white pebble game, as a consequence we
also have to use different graphs than in [6], [9], [31]—
in particular, modifying the construction of graphs with
good black-white pebbling trade-offs in [38]—and as a
concluding step we prove Dymond–Tompa trade-offs
for these graphs.

Putting all these pieces together, we obtain a general
theorem saying that graphs with Dymond–Tompa trade-offs
yield explicit 6-CNF formulas with size-space trade-offs
for cutting planes (and polynomial calculus and resolution).
Theorem 3 follows by a similar chain of reductions.

F. Paper Outline
In Section II we give a more detailed overview of the

steps in the proofs of our main theorems, introducing formal
definitions of the concepts discussed above as need arises.
Due to space constraints we can only sketch the proofs
in this extended abstract, however, and therefore refer to
the upcoming full-length version for all missing details.
We conclude in Section III with a discussion of possible
directions for future research.

II. Preliminaries and Proof Overview
In this section, we describe which components are needed

for our results stated in Section I and how they fit together.
Our goal is to give an accessible high-level outline of the
proofs, but still make clear what are the main technical points
in the arguments and also indicate some of the challenges
that have to be overcome.

Let us start by reviewing the concepts we need from
proof complexity. Throughout this paper all logarithms are
to base 2 unless otherwise specified, and we write [n] to
denote the set {1, 2, . . . , n}.

A. Proof Complexity Basics and Cutting Planes
For x a Boolean variable, a literal over x is either the

variable x itself or its negation, denoted x. It will also be
convenient to use the notation x1 = x and x0 = x. A clause
C = a1 ∨ · · · ∨ ak is a disjunction of literals and a CNF
formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses.
We will think of clauses and CNF formulas as sets, so that
the ordering is inconsequential and there are no repetitions.
A k-CNF formula is a CNF formula consisting of clauses
containing at most k literals.

We write α, β to denote truth value assignments, i.e.,
functions to {0, 1}, where we identify 0 with false and 1
with true (thus, xb is the literal satisfied by setting x = b).
We have the usual semantics that a clause is true under α,
or satisfied by α, if at least one literal in it is true, and a
CNF formula is satisfied if all clauses in it are satisfied. We
write ⊥ to denote the empty clause without literals, which
is false under all truth value assignments.

Following [1], [24], we view a proof of unsatisifiability of
a CNF formula F , or refutation of F , as a non-deterministic
computation, with a special read-only input tape from which
the clauses of the formula F being refuted (which we refer
to as axioms) can be downloaded and a working memory
where all derivation steps are made. In a cutting planes (CP)
derivation, memory configurations are sets of linear inequal-
ities

∑
j ajxj ≥ c with aj , c ∈ Z. We translate clauses C

to linear inequalities L(C) by identifying the clause
∨
j x

bj
j

with the inequality
∑
j(−1)1−bjxj ≥ 1−

∑
j(1−bj). A CP

refutation of F is a sequence of configurations (L0, . . . ,Lτ )
such that L0 = ∅, the inequality 0 ≥ 1 occurs in Lτ , and
for t ∈ [τ ] we obtain Lt from Lt−1 by one of the following
rules:



Axiom download: Lt = Lt−1 ∪ {L} for L being either
the encoding L(C) of an axiom clause C ∈ F or a variable
axiom xj ≥ 0 or −xj ≥ −1 for any variable xj .

Inference: Lt = Lt−1 ∪{L} for L inferred by addition∑
j ajxj ≥ c

∑
j bjxj ≥ d∑

j(aj + bj)xj ≥ c+ d
, (1)

multiplication ∑
j ajxj ≥ c∑

j kajxj ≥ kc
, (2)

or division ∑
j kajxj ≥ c∑

j ajxj ≥ dc/ke
(3)

for k ∈ N+.
Erasure: Lt = Lt−1 \ {L} for some L ∈ Lt−1.

The length of a CP refutation is the number of linear
inequalities L appearing in download and inference steps,
counted with repetitions. We obtain the size of a refutation
by also summing the sizes of the coefficients and constant
terms in the inequalities, i.e., each inequality

∑
j ajxj ≥ c

contributes log|c| +
∑
j log|aj |. The formula space of a

configuration L = {
∑
j ai,jxi,j ≥ ci | i ∈ [s]} is the

number of inequalities s in it, and the total space of L is∑
i∈[s]

(
log|ci|+

∑
j log|ai,j |

)
. We obtain the formula space

or total space of a refutation by taking the maximum over all
configurations in it. Finally, the length, size, formula space,
and total space of refuting a formula F is obtained by taking
the minimum over all CP refutations of the formula with
respect to the corresponding complexity measure.

B. Composed Search Problems and Lifted CNF Formulas

Informally speaking, the idea behind lifting, or compo-
sition, is to take a relation over some domain and extend
it to tuples from the same domain by combining it with a
selector function that determines on which coordinates from
the tuples the relation should be evaluated.

Let S be any relation on the Cartesian product A×Q. We
will think of S as a search problem with input domain A
and output range Q, where given a ∈ A the task is to find
some q ∈ Q such that (a, q) ∈ S (assuming that S is such
that there always exists at least one solution). Throughout
this paper, we will have A = {0, 1}m for some m ∈ N+, so
for simplicity we fix A to be such a domain from now on.

For any ` ∈ N+, we define the lift of length ` of S to be a
new search problem Lift`(S) ⊆

(
[`]m×{0, 1}m·`

)
×Q with

input domain [`]m×{0, 1}m·` and output range Q such that
for any x ∈ [`]m, any bit-vector {yi,j}i∈[m],j∈[`], and any
q ∈ Q, it holds that

(x, y, q) ∈ Lift`(S) if and only if(
(y1,x1 , y2,x2 , . . . , ym,xm), q

)
∈ S . (4)

In what follows, we will refer to the coordinates of the
x-vector as selector variables and those of the y-vector as
main variables, and we will sometimes use the notation

select(xi, yi) = yi,xi (5)

to denote the bit in yi selected by xi. We extend this notation
to vectors to write select(x, y) = yx = (y1,x1

, . . . , ym,xm).
As in [29], [31], we obtain our results by studying lifted

search problems defined in terms of CNF formulas and
proving communication lower bounds for such problems.
Syntactically speaking, however, these objects are not them-
selves CNF formulas, which is what we use to feed to our
proof system. Therefore, we need an additional step which
translates the lifted search problems back to CNF as follows.

Definition 4 (Lifted formula [5]). Given ` ∈ N+ and a
CNF formula F over variables u1, . . . , un, the lift of length `
of F , denoted Lift`(F ), is the formula over variables
{xi,j}i∈[n],j∈[`] (selector variables) and {yi,j}i∈[n],j∈[`]

(main variables) containing the following clauses:
• For every i ∈ [n], an auxiliary clause

xi,1 ∨ xi,2 ∨ · · · ∨ xi,` . (6a)

• For every clause Ci ∈ F , where Ci = u
bi1
i1
∨ · · · ∨ ubisis

for some i1, . . . , is ∈ [n], and for every tuple
(j1, . . . , js) ∈ [`]s, a main clause

x0
i1,j1 ∨ y

bi1
i1,j1
∨ · · · ∨ x0

is,js ∨ y
bis
is,js

. (6b)

Intuitively, we can think of the selector variables as
encoding the vector x ∈ [`]m in the lifted search problem (4).
Since xi,j ∨yi,j is equivalent to the implication xi,j → yi,j ,
we can rewrite (6b) as(

xi1,j1 → y
bi1
i1,j1

)
∨ · · · ∨

(
xis,js → y

bis
is,js

)
, (7)

from which we can see that for every clause Ci the auxiliary
clauses encode that there is at least one choice of selector
variables xi,j which are all true, and for this choice of
selector variables the yi,j-variables in the lifted main clause
will play the role of the ui-variables, giving us back the
original clause Ci. It is easily verified that F is unsatisfiable
if and only if H = Lift`(F ) is unsatisfiable, and that if F is
a k-CNF formula with m clauses, then H is a max(2k, `)-
CNF formula with at mostm`k+n clauses. A small technical
issue for us compared to [29], [31] is that ` � k will not
be constant, but we can convert the wide clauses in (6a) to
constant width using extension variables, and so we will just
ignore this issue in our proof overview.

C. Pebbling Contradictions
An important role in many proof complexity trade-off

results is played by so-called pebbling contradictions. For
our purposes it suffices to say that they are defined in terms
of directed acyclic graphs (DAGs) G, where for simplicity
we assume that all vertices have indegree 0 or 2. We refer
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(a) Pyramid graph Π2 of height 2.

u

∧ v
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∧ (u ∨ v ∨ x)

∧ (v ∨ w ∨ y)

∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction PebΠ2
.

Figure 2. Example pebbling contradiction for the pyramid of height 2.

to vertices with indegree 0 as sources and assume that there
is a unique sink vertex with outdegree 0. What the pebbling
contradiction over G says is that the sources are true and
that truth propagates from predecessors to successors, but
that the sink is false.

Definition 5 (Pebbling contradiction [10]). Let G be a
DAG with sources S and a unique sink z, and with all non-
sources having indegree 2. Then the pebbling contradiction
over G, denoted PebG, is the conjunction of the following
clauses over variables {v | v ∈ V (G)}:
• for every source s ∈ S, a unit clause s (source axioms),
• For all non-sources w with immediate predecessors
u, v, a clause u ∨ v ∨ w (pebbling axioms),

• for the sink z, the unit clause z (sink axiom).

If G has n vertices, the formula PebG is an unsatisfiable
3-CNF formula with n+ 1 clauses over n variables. For an
example of a pebbling contradiction, see the CNF formula
in Figure 2b defined in terms of the graph in Figure 2a.

D. Real Communication and Clause Search Problems

For our communication complexity results we study a
two-player communication model, referring to the players
as Alice and Bob following tradition. We first briefly discuss
the basic deterministic model, and then explain how we need
to extend it, directing the reader to [37] for any omitted
standard communication complexity facts.

In the communication problem of computing a function
f : X × Y → Q, Alice is given an input x ∈ X , Bob
is given an input y ∈ Y , and they are required to find
f(x, y) while minimizing the communication between them.
A communication protocol is a binary tree where Alice and
Bob start at the root, every node specifies who is going to
speak, the value of the spoken bit is only a function of the
node v and the input x if Alice speaks or y if Bob does,
and leaves are labelled by correct values f(x, y). Similarly,
for any relation S ⊆ X × Y × Q, the communication
problem for S is one in which Alice is given x ∈ X , Bob
is given y ∈ Y , and they are required to communicate
to find some q such that (x, y, q) ∈ S. The cost of a

protocol is the maximum number of bits communicated on
any input, and the number of rounds is the maximum number
of alternations between Alice and Bob speaking.

In order to obtain trade-offs for cutting planes, we need to
study the more general real communication model in [36],
where Alice and Bob interact via a referee, and also intro-
duce the concept of rounds in this model. It is convenient
to describe the protocol as a (non-binary) tree, where at
node v in the protocol tree Alice and Bob send kv real
numbers φv,1(x), . . . , φv,kv (x) and ψv,1(y), . . . , ψv,kv (y),
respectively, to the referee. The referee announces the results
of the comparisons φv,i(x) ≤ ψv,i(y) for i ∈ [kv] as a
kv-bit binary string, after which the players move to the
corresponding next node in the protocol tree. The number of
rounds r of a protocol is the depth of the tree and the cost c is
the total number of comparisons made by the referee for any
input. It is easy to see that this model can simulate standard
deterministic communication (for instance, if Alice wants to
send a message, she sends the complement of that message
to the referee and Bob sends a list of the same length with
all entries 1/2) and is in fact strictly stronger (since equality
can be solved with just two bits of communication).

The communication problem that we are interested in is
the (falsified) clause search problem. This is the problem
of, given an unsatisfiable CNF formula F and a truth value
assignment α, finding a clause C ∈ F falsified by α. We
denote this problem by Search(F ). In fact, from a com-
munication complexity point of view we will be interested
in lifts of this search problem Lift (Search(F )), while for
our proof complexity trade-offs the perspective is slightly
different in that we need to study the CNF formula Lift (F )
from Definition 4 and relate the hardness of this formula
to the communication complexity of the falsified clause
search problem Search(Lift (F )). Happily, this distinction
does not really matter to us, since a good communication
protocol for Search(Lift (F )) can also be used to solve
Lift (Search(F )), and hence a lower bound for the latter
communication problem applies also to the former.

Observation 6. Suppose that F is an unsatisfiable CNF
formula. Then any two-player real communication protocol
for Search(Lift`(F )) where all selector variables xi,j in the
same block are given to the same player can be adapted to
a protocol for Lift`(Search(F )) with the same parameters.

We refer to, e.g., [31] for the easy proof (which is indepen-
dent of the concrete communication model under consider-
ation). Thanks to this observation, we can freely switch per-
spectives between Lift`(Search(F )) and Search(Lift`(F ))
when we want to prove lower bounds for the latter problem.
The reason that such lower bounds are interesting, in turn, is
that if a CNF formula H has a CP refutation in short length
and small space, then such a proof can be used to construct a
round- and communication-efficient protocol for Search(H).



Lemma 7. If a CNF formula H can be refuted by cutting
planes in length L and formula space s, then for any
partition of the variables of H between Alice and Bob there
is a real communication protocol solving Search(H) in
dlogLe rounds with communication cost at most s · dlogLe.

Sketching the proof very briefly, given a truth value
assignment α Alice and Bob can do binary search over
the refutation (L0 = ∅,L1, . . . ,LL) of H until they find
a t ∈ [L] such that Lt evaluates to true under α but Lt−1

evaluates to false. Then the derivation step at time t must
be a download of an axiom C ∈ H falsified by α. For
the details we can reuse the proof from [31] verbatim, just
adding the one simple but absolutely crucial observation that
the protocol obtained in this way is also round-efficient,
since all communication needed to evaluate a particular
configuration Lt can be performed in parallel.

It is worth noting that although we state Lemma 7 for cut-
ting planes here, there is nothing that really uses the syntactic
properties of the cutting planes refutation. Thus, the proof
works equally well for resolution, polynomial calculus, or
any proof system for which configurations can be evaluated
by round-efficient protocols where the communication scales
as the space of the configuration.

E. Simulations of Protocols by Parallel Decision Trees

A parallel decision tree [48] for a search problem S ⊆
{0, 1}m × Q is a tree T such that each node v is labelled
by a set of variables Vv and has exactly one outgoing edge
for each of the 2|Vv| possible assignments to these variables,
and such that for every α ∈ {0, 1}m the path from the root
of T defined by the edges consistent with α ends at a leaf
labelled by some q ∈ Q such that (α, q) ∈ S (where again
the tacit assumption is that S is such that such a solution
always exists). The number of queries of T is the maximal
sum of set sizes |Vv| along any path in T , and the depth
of T is the length of a longest path.

Any decision tree T for a search problem S can be
simulated by a communication protocol for the lifted prob-
lem Lift (S) in a straightforward way, where if T wants
to query the ith variable Alice and Bob can communicate
to find yi,xi and then walk in T according to this value.
Such a walk will end in a leaf labelled by a q such that(
(y1,x1

, y2,x2
, . . . , ym,xm), q

)
∈ S, i.e., a solution to the

lifted search problem, and thus the query complexity of the
original search problem provides an upper bound on the
communication cost of the lifted problem. If in addition
there is a parallel decision tree with small depth, then a
protocol simulating such a tree will also be round-efficient.
The main technical result of our paper is that simulating such
a parallel decision tree is essentially the best any round-
efficient protocol can do (provided that the lifting of the
search problem is done with appropriate parameters).

Theorem 8 (Simulation theorem). Let S be a relation with
domain {0, 1}m and let ` = m3+ε for some constant ε > 0.
If there is an r-round real communication protocol in cost c
that solves Lift`(S), then there is a parallel decision tree in
depth r solving S using O(c/ log `) queries.

We remark that similar simulation theorems have pre-
viously been shown for both deterministic communica-
tion [30], [45] and real communication [13], but unfortu-
nately they fail to take round efficiency into account. Our
proof of Theorem 8 follows the approach in these papers to
build a decision tree for the original problem that simulates
the communication protocol for the lifted problem. In order
to obtain an efficient simulation we have to maintain (in an
amortized sense) that the decision tree queries a variable
only when a noticeable amount of communication has taken
place. To prove that the decision tree constructed in this
way is correct, we need to show that at the end of the
simulation there exists a pair of inputs to Alice and Bob
that are compatible both with the transcript and with a lift
of the original input. Towards this end, during the simulation
we maintain a set of such compatible inputs, which must not
be allowed to shrink too fast.

In order for the proof to work we need to be able to
handle two kinds of events: communication events, where
we simulate the players communicating; and query events,
where the decision tree under construction queries some
variable and gets its actual value. Both of these events force
us to prune the set of compatible communication inputs. In
the first case we want to choose a communication message
that removes as few inputs as possible, whereas in the second
case we have to restrict the communication inputs to a subset
that is compatible with the value returned by the decision
tree query. We make sure to query a variable only when the
transcript “reveals too much information” about Alice’s and
Bob’s lifted input related to that variable, and thanks to this
we can argue that query events do not happen too often and
that the amount of communication provides an upper bound
on the total number of queries.

Extending these techniques to round-efficient protocols
and simulations by parallel decision trees causes significant
additional complications, however. Very briefly, one issue is
that we cannot let the tree query an individual variable as
soon as sufficient information has been “revealed” about it
during the simulation, but have to wait until we can issue a
whole set of queries corresponding to a single message of
the protocol. This makes it challenging to maintain a set of
compatible inputs for variables we have not yet been allowed
to query. Another issue is that, in contrast to deterministic
communication protocols, real protocols do not partition the
input domain into combinatorial rectangles. While this is
not a big problem for a single comparison by the referee, it
becomes more challenging when we want to handle a round
consisting of many simultaneous comparisons.



F. From Decision Trees to Dymond–Tompa Trade-offs
The Dymond–Tompa game [23]2 is played in rounds

on a DAG G by two players Pebbler and Challenger. In
the first round, Pebbler places pebbles on a non-empty
subset of vertices of G including the unique sink z and
Challenger picks some vertex in this set. In all subsequent
rounds, Pebbler places pebbles on some non-empty subset
of vertices not yet containing pebbles, and Challenger either
challenges a vertex in this new set (jumps) or re-challenges
the previously chosen vertex (stays). This repeats until at the
end of a round Challenger is standing on a vertex with all
immediate predecessors pebbled (or on a source, for which
the condition vacuously holds), at which point the game
ends. We say that Pebbler wins the r-round Dymond–Tompa
game on G in cost c if there is a strategy such that Pebbler
can always finish the game in at most r rounds placing a total
of at most c pebbles regardless of how Challenger plays.

In order to obtain lower bounds on the query complexity
of parallel decision trees of bounded depth, we use an adver-
sary argument and describe strategies that give as unhelpful
answers as possible for variables queried by the decision
trees. If we specialize this to the clause search problem for
pebbling contradictions PebG, such adversary strategies are
equivalent to Challenger strategies in the Dymond–Tompa
game on G. For standard binary decision trees and the
Dymond–Tompa game with unlimited number of rounds this
was proven in [14],3 and we show that this equivalence
extends also to our more general setting.

Lemma 9. If there is a parallel decision tree for
Search

(
PebG

)
in depth r using at most c queries, then

Pebbler has a winning strategy in the r-round Dymond–
Tompa game on G in cost at most c+ 1.

It follows from this lemma that round-cost trade-offs
for Dymond–Tompa pebbling implies depth-query trade-
offs for parallel decision trees. To conclude the proof of
the lower bound in our trade-off results, we need to find
a family of graphs for which we can prove lower bounds
for the cost of Pebbler strategies in the Dymond–Tompa
game with bounded number of rounds. Towards this end,
we establish that graphs that satisfy a certain connectivity
property possess trade-offs between number of rounds and
cost, and then exhibit such graphs. These graphs were
inspired by graphs for which black-white pebbling trade-offs
were shown in [38], but we need to make some modifications
in order to obtain Dymond–Tompa trade-offs. To the best of
our knowledge such round-cost trade-offs in the Dymond–
Tompa game have not been studied before.

Lemma 10. For any n, r ∈ N+ there exists an explicitly
constructible DAG G(n, r) with O(rn log n) vertices such

2We give a slightly different, but essentially equivalent, description of
the Dymond–Tompa game that is closer to recent papers such as [14], [15].

3This game on decision trees is called the Raz–McKenzie game in [14].

that the cost of the r-round Dymond–Tompa game onG(n, r)
is at least Ω(n).

The graph G(n, r) is structured in r + 1 layers and we
obtain the lemma by showing that as long as Pebbler does
not place too many pebbles Challenger can make sure that
in the ith round the challenged pebble is above the ith layer.
Hence, the game does not end within r rounds.

G. Proofs of Main Theorems
Combining all the components discussed above we can

now prove the following trade-off lower bound.

Theorem 11. Let G be a DAG over m vertices such that any
winning strategy for Pebbler in the r-round Dymond–Tompa
game has cost Ω(c) and let ε > 0 and ` = m3+ε. Then
Lift`

(
PebG

)
is a 6-CNF formula over Θ(m4+ε) variables

and N = Θ(m10+3ε) clauses such that any cutting planes
refutation in formula space less than c

r logN , even with
coefficients of unbounded size, requires length at least 2Ω(r).

Proof: Suppose for the sake of contradiction that there
is a cutting planes refutation of Lift`

(
PebG

)
in length 2o(r)

and formula space less than c
r logN . By Lemma 7 this

implies that there is a real communication protocol that
solves Lift`

(
Search(PebG)

)
in o(r) rounds and total cost

o(c logN). Using Theorem 8 we obtain a parallel decision
tree computing Search(PebG) using o(c) queries and depth
o(r). But if so, by Lemma 9 Pebbler wins the o(r)-round
Dymond–Tompa game on G in cost o(c), which contradicts
the assumption of the theorem.

In order to attain our trade-off results we also need upper
bounds on refutations of these formulas. Small-size upper
bounds follow by essentially the same approach of lifting
black pebbling upper bounds as in [9], [31], although more
care is needed since our lifts are of non-constant length.
For the small-space refutations, this technique does not
work because the space loss due to the large lift length
is larger than the upper bound we are aiming for. Luckily,
we can instead prove upper bounds in the Dymond–Tompa
game with unlimited rounds and then convert them into
refutations in small space. Theorems 1 and 2 then follow
from Theorem 11 applied to an appropriate family of graphs
that exhibit Dymond–Tompa trade-offs as in Lemma 10.

The tools we have developed also allow us to prove the
monotone circuit separation in Theorem 3. The function that
witnesses the separation is inspired by the PYRAMID-GEN
function of [45] adapted to the graphs in Lemma 10. Then
we translate the Dymond–Tompa trade-off into a lower
bound for deterministic communication protocols with few
rounds, which we then transform into a lower bound for cir-
cuits of small depth via the Karchmer–Wigderson game [34].

III. Concluding Remarks
In this paper we report the first true size-space trade-

offs for cutting planes, exhibiting CNF formulas which



have small-size and small-space proofs with constant-size
coefficients but for which any short proofs must use a lot of
memory, even when using exponentially large coefficients
and even when we measure just the number of lines (i.e.,
inequalities) rather than total size. Furthermore, these results
also hold for resolution and polynomial calculus, and are
thus the first trade-offs to uniformly capture the proof
systems underlying the currently best SAT solvers.

The main technical component in our proof is a reduction
to communication complexity as in [29], [31], but with the
crucial difference that we reduce to round-efficient protocols
in the real communication model of [36]. Extending the
techniques in [13], [30], [45] to this more general setting,
and combining them with new trade-off results for Dymond–
Tompa pebbling [23], yields our results. Using the same
approach we are also able to obtain an exponential separation
between monotone-ACi−1 and monotone-ACi, improving on
the superpolynomial separation in [45].

An interesting challenge would be to extend our reduction
to stronger communication models such as two-party ran-
domized or multi-party real communication, which would
yield trade-offs for stronger proof systems. A recent result
in this direction is [28], but unfortunately it seems hard to
incorporate round-efficiency in this framework.

Another question concerns the size of the lifting gadgets
we need to construct formulas exhibiting trade-offs. Our gad-
gets have large polynomial size, which incurs a substantial
loss in the results. It would be nice to construct constant-size
gadgets, which could lead to tighter trade-off results.

Many proof complexity trade-offs have been obtained by
reducing to the black-white pebble game [20], but in this pa-
per we use the Dymond–Tompa game. It would be desirable
to obtain a better understanding of the role of these games
and what kind of trade-offs can be obtained from them.

Finally, from a proof complexity perspective we have
very few examples of formula families that exhibit size-
space trade-offs. Apart from the pebbling formulas studied
in this work, the only natural examples4 are the Tseitin
contradictions over long, narrow grids in [4], [6]. It would
be interesting to prove size-space trade-offs for the latter
formulas also in cutting planes, or to find other formulas
with size-space trade-offs for this or other proof systems.
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[36] J. Krajı́ček, “Interpolation by a game,” Mathematical Logic
Quarterly, vol. 44, pp. 450–458, 1998.

[37] E. Kushilevitz and N. Nisan, Communication complexity.
Cambridge University Press, 1997.

[38] T. Lengauer and R. E. Tarjan, “Asymptotically tight bounds
on time-space trade-offs in a pebble game,” Journal of the
ACM, vol. 29, no. 4, pp. 1087–1130, Oct. 1982, preliminary
version in STOC ’79.

[39] L. A. Levin, “Universal’nye zadachi perebora,” Problemy
Peredachi Informatsii, vol. 9, no. 3, pp. 115–116, 1973, in
Russian.

[40] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search
algorithm for propositional satisfiability,” IEEE Transactions
on Computers, vol. 48, no. 5, pp. 506–521, May 1999,
preliminary version in ICCAD ’96.

[41] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik, “Chaff: Engineering an efficient SAT solver,”
in Proceedings of the 38th Design Automation Conference
(DAC ’01), Jun. 2001, pp. 530–535.

[42] N. Nisan and A. Wigderson, “Rounds in communication com-
plexity revisited,” SIAM Journal on Computing, vol. 22, no. 1,
pp. 211–219, Feb. 1993, preliminary version in STOC ’91.

[43] J. Nordström, “A simplified way of proving trade-off results
for resolution,” Information Processing Letters, vol. 109,
no. 18, pp. 1030–1035, Aug. 2009.

[44] A. Rao and A. Yehudayoff, “Communication complexity,”
2016, manuscript in preparation.

[45] R. Raz and P. McKenzie, “Separation of the monotone NC
hierarchy,” Combinatorica, vol. 19, no. 3, pp. 403–435, Mar.
1999, preliminary version in FOCS ’97.

[46] A. A. Razborov, “Lower bounds for the monotone complexity
of some Boolean functions,” Soviet Mathematics Doklady,
vol. 31, no. 2, pp. 354–357, 1985.

[47] R. Santhanam, “Lower bounds on the complexity of recogniz-
ing SAT by Turing machines,” Information Processing Letters,
vol. 79, no. 5, pp. 243–247, Sep. 2001.

[48] L. G. Valiant, “Parallelism in comparison problems,” SIAM
Journal on Computing, vol. 4, no. 3, pp. 348–355, Mar. 1975.

[49] D. van Melkebeek, “A survey of lower bounds for satisfiability
and related problems,” Foundations and Trends in Theoretical
Computer Science, vol. 2, no. 3, pp. 197–303, Oct. 2007.

[50] R. Williams, “Time-space tradeoffs for counting NP solutions
modulo integers,” Computational Complexity, vol. 17, no. 2,
pp. 179–219, May 2008, preliminary version in CCC ’07.


