
CNFgen: A Generator of Crafted Benchmarks

Massimo Lauria1(B), Jan Elffers2, Jakob Nordström2, and Marc Vinyals2

1 Università degli studi di Roma “La Sapienza”, Rome, Italy
massimo.lauria@uniroma1.it

2 KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

Abstract. We present CNFgen, a generator of combinatorial benchmarks
in DIMACS and OPB format. The proof complexity literature is a rich
source not only of hard instances but also of instances that are theoret-
ically easy but “extremal” in different ways, and therefore of potential
interest in the context of SAT solving. Since most of these formulas
appear not to be very well known in the SAT community, however, we
propose CNFgen as a resource to make them readily available for solver
development and evaluation. Many formulas studied in proof complexity
are based on graphs, and CNFgen is also able to generate, parse and do
basic manipulation of such objects. Furthermore, it includes a library
cnfformula giving access to the functionality of CNFgen to Python pro-
grams.

1 Introduction

The Boolean satisfiability problem (SAT) is a foundational problem in computa-
tional complexity theory. It was the first problem proven NP-complete [21], and
is widely believed to be completely infeasible to solve in the worst case—indeed,
a popular starting point for many other impossibility results in computational
complexity theory is the Exponential Time Hypothesis (ETH) [33] postulating
that there are no subexponential-time algorithms for SAT.

From an applied perspective SAT looks very different, however. In the last
15–20 years there has been a dramatic increase in the performance of satisfia-
bility algorithms, or SAT solvers, and so-called conflict-driven clause learning
(CDCL) solvers [5,37,41] are now routinely used to solve real-world instances
with hundreds of thousands or even millions of variables.

Surprisingly, although the performance of current state-of-the-art SAT solvers
is very impressive indeed, our understanding of why they work so well (at least
most of the time) leaves much to be desired. Essentially the only known rigorous
method for analysing SAT solvers is to use tools from proof complexity [22] to study
the potential and limitations of the methods of reasoning they use.

The basic CDCL algorithm searches for resolution proofs [12]. Some solvers
such as PolyBoRi [14,15] use algebraic Gröbner basis computations, but it seems
hard to make them competitive with resolution-based solvers. A compromise
is to have Gaussian elimination inside a resolution-based solver as in [30,48].

Webpage: https://massimolauria.github.io/cnfgen/.

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 464–473, 2017.
DOI: 10.1007/978-3-319-66263-3 30

https://massimolauria.github.io/cnfgen/


CNFgen: A Generator of Crafted Benchmarks 465

The power of these algebraic methods is captured by the polynomial calculus
(PC) proof system [1,20]. There are also pseudo-Boolean solvers such as [18,24,
35,47] exploring the geometric proof system cutting planes (CP) [23], although
again it seems like a tough challenge to make these solvers as efficient as CDCL.
We refer to the survey [42] and references therein for a more detailed discussion
about the connections between proof complexity and SAT solving.

It seems fair to say that research in proof complexity into the proof systems
mentioned above has not yielded too much by way of interesting insights for
applied SAT solving so far. This is natural, since this research is driven mainly
by theoretical concerns in computational complexity theory. However, what this
body of work has produced is a wide selection of combinatorial formulas with
interesting properties, and these we believe could be fruitfully mined for insights
by SAT practitioners. As the SAT community starts to focus not only on pro-
ducing blisteringly fast SAT solvers, but also on understanding better why these
SAT solvers work the way they do, we expect that a study of combinatorial
benchmarks could be particularly useful.

This immediately raises a question, however: Why do we need more crafted
SAT problems? Is there really a need for more combinatorial benchmarks on top
of what is already available in the standard SAT competition benchmarks?

We believe the answer is an emphatic “yes.” In fact, it is our feeling that
the SAT community has made quite limited use of crafted benchmarks so far.
Most of these benchmarks are known to be dead hard for the resolution proof
system, and will hence quickly grow out of reach of any CDCL solver (except if
these solvers have dedicated preprocessing techniques to deal with such formulas,
such as cardinality detection or Gaussian reasoning, but even then further minor
tweaks to the benchmarks can easily make them infeasible).

This does not seem to be very informative—these benchmarks are hard sim-
ply because the method of reasoning employed by CDCL solvers cannot solve
them efficiently in principle. A more interesting question is how well SAT solvers
perform when there are short proofs to be found, and the solvers therefore have
the potential to run fast. Studying solvers performance on such benchmarks can
shed light on the quality of proof search, and indicate potential for improvement.

As a case in point, for the first time (to the best of our knowledge) many of
the crafted benchmarks used in the SAT Competition 2016 [4] (and generated
by CNFgen) had the property that they possess extremely short resolution proofs
and that SAT solvers can even be guided to find these proofs by, e.g., simply
following a good fixed variable decision order. Yet the competition results showed
that many of these benchmarks were beyond reach of even the best solvers.

It would seem that such formulas that are easy in theory for resolution but
hard in practice for CDCL would merit further study if we want to understand
what makes CDCL solvers fast and how they can be improved further, and
CNFgen is a convenient tool for providing such formulas. An obvious downside
is that such benchmarks can appear to be somewhat artificial in that one would
not really run into them while solving applied problems. We readily concede
this point. However, these formulas have the very attractive property that they



466 M. Lauria et al.

can be scaled freely to yield instances of different sizes—as opposed to applied
benchmarks, that typically exist for a fixed size—and running the solvers on
instances from the same family while varying the instance size makes it possible
to tease out the true asymptotic behaviour.

By judiciously choosing formulas with different theoretical properties one can
“stress-test” CDCL solvers on memory management (using formulas with size-
space trade-off properties), restart policy (for formulas that are hard for strict
subsystems of resolution), decision heuristic (for formulas that are easy with a
good fixed variable order), et cetera, as done, e.g., in [26,34].

Furthermore, even theoretically hard crafted benchmarks can yield interest-
ing insights in that they can be used to compare SAT solvers based on different
methods of reasoning, for instance by benchmarking CDCL against algebraic
solvers on formulas that are hard for resolution but easy for algebraic meth-
ods of reasoning, or against pseudo-Boolean solvers on formulas easy for cut-
ting planes. CNFgen has been heavily used in work on analysing pseudo-Boolean
solvers [25,52], which has so far generated quite intriguing and counter-intuitive
results. (In particular, state-of-the-art pseudo-Boolean solvers sometimes strug-
gle hopelessly with instances that are dead easy for the cutting planes method
which they use to search for proofs, as also confirmed by benchmarks submitted
to the Pseudo-Boolean Competition 2016 [43].)

The CNFgen tool generates all of the CNF formulas discussed above in the
standard DIMACS and OPB formats, thus making these benchmarks accessible
to the applied SAT community. The included Python library allows formulas
construction and manipulation, useful when encoding problems in SAT.

In Sect. 2 we present a small selection of the benchmarks in CNFgen and in
Sect. 3 we illustrate some of its features. Concluding remarks are in Sect. 4.

2 Some Formula Families in CNFgen

A formula generator is a Python function that outputs a CNF, given parameters.
A CNF is represented in our cnfformula library as a sequence of constrains (e.g.,
clauses, linear constraints, . . . ) defined over a set of named variables. CNFgen
command line tool is essentially a wrapper around the available generators and
the others CNF manipulation and SAT solving utilities in cnfformula.

Let us now describe briefly some examples of formulas available in CNFgen.
Due to space constraints we are very far from giving a full list, and since new fea-
tures are continuously being added such a list would soon be incomplete anyway.
Typing cnfgen --help shows the full list of available formulas. The command
cnfgen <name> <params> generates a formula from the family <name>, where
the descriptions of the parameters needed is shown by cnfgen <name> --help.

Pigeonhole principle formulas (php) claim that m pigeons can be placed in
n separate holes, where the variable xi,j encodes that pigeon i flies to hole j and
the indices range over all i ∈ [m] and j ∈ [n] below. Pigeon clauses

∨n
j=1 xi,j

enforce that every pigeon goes to a hole, and hole clauses xi,j ∨ xi′,j for i < i′



CNFgen: A Generator of Crafted Benchmarks 467

forbid collisions. One can optionally include functionality clauses xi,j ∨ xi,j′ for
j < j′ and/or onto clauses

∨m
i=1 xi,j specifying that the mapping is one-to-one

and onto, respectively. PHP formulas are unsatisfiable if and only if m > n
and if so require exponentially long proofs for all variants in resolution [29,44].
Functional onto-PHP formulas are easy for polynomial calculus (PC) but the
other versions are hard (at least for a linear number of pigeons m = O(n)) [40].
All versions are easy for cutting planes (CP).

Tseitin formulas (tseitin) encode linear equation systems over GF(2) gen-
erated from connected graphs G = (V,E) with charge function χ : V → {0, 1}.
Edges e ∈ E are identified with variables xe, and for every vertex v ∈ V we
have the equation

∑
e�v xe ≡ χ(v) (mod 2) encoded in CNF, yielding an unsat-

isfiable formula if and only if
∑

v∈V χ(v) �≡ 0 (mod 2). When G has bounded
degree and is well-connected, the formula is hard for resolution [50] and for PC
over fields of characteristic distinct from 2 [16], but is obviously easy if one can
do Gaussian elimination (as in PC over GF(2)). Such Tseitin formulas are also
believed to be hard for CP, but this is a major open problem in proof com-
plexity. For long, narrow grid graphs, Tseitin formulas exhibit strong time-space
trade-offs for resolution and PC [6,7].

Ordering principle formulas (op) assert that there is a partial ordering �
of the finite set {e1, . . . , en} so that no element is minimal, where variables
xi,j , i �= j ∈ [n], encode ei � ej . Clauses xi,j ∨ xj,i and xi,j ∨ xj,k ∨ xi,k for
distinct i, j, k ∈ [n] enforce asymmetry and transitivity, and the non-minimality
claim is encoded as clauses

∨
i∈[n]\{j} xi,j for every j ∈ [n]. The total ordering

principle also includes clauses xi,j ∨ xj,i specifying that the order is total.
The graph ordering principle (gop) is a “sparse version” where the non-
minimality of ej must be witnessed by a neighbour ei in a given graph (which
for the standard version is the complete graph). For well-connected graphs these
formulas are hard for DPLL but easy for resolution [13,49]. If the well-connected
graphs are sparse, so that all initial clauses have bounded size, the formulas
have the interesting property that any resolution or PC proof must still contain
clauses/polynomials of large size/degree [13,27].

Random k-CNF formulas (randkcnf) with m clauses over n variables are
generated by randomly picking m out of the 2k

(
n
k

)
possible k-literal clauses

without replacement. These formulas are unsatisfiable with high probability for
m = Δk · n with Δk a large enough constant depending on k, where Δ2 = 1
(provably) and Δ3 ≈ 4.26 (empirically). Random k-CNFs for k ≥ 3 are hard for
resolution and PC [3,19] and most likely also for CP, although this is again a
longstanding open problem.

Pebbling formulas (peb) are defined in terms of directed acyclic graphs
(DAGs) G = (V,E), with vertices v ∈ V identified with variables xv, and con-
tain clauses saying that (a) source vertices s are true (a unit clause xs) and



468 M. Lauria et al.

(b) truth propagates through the DAG (clauses
∨�

i=1 xui
∨ xv for each non-

source v with predecessors u1, . . . , u�) but (c) sinks z are false (a unit clause xz).
Pebbling formulas are trivially refuted by unit propagation, but combined with
transformations as described in Sect. 3 they have been used to prove time-space
trade-offs for resolution, PC, and CP [7–9,32] and have also been investigated
from an empirical point of view in [34].

Stone formulas (stone) are similar to pebbling formulas, but here each vertex
of the DAG contains a stone, where (a) stones on sources are red and (b) a non-
source with all predecessors red also has a red stone, but (c) sinks have blue
stones. This unsatisfiable formula has been used to separate general resolution
from so-called regular resolution [2] and has also been investigated when com-
paring the power of resolution and CDCL without restarts [17].

k-clique formulas (kclique) declare that a given graph G = (V,E) has a k-
clique. Variables xi,v, i ∈ [k], v ∈ V , constrained by

∑
v∈V xi,v = 1 identify

k vertices, and clauses xi,u ∨ xj,v for every non-edge {u, v} �∈ E and i �= j ∈ [k]
enforce that these vertices form a clique. For k constant it seems plausible that
their proof length should scale roughly like |V |k in the worst case but this remains
wide open even for resolution and only partial results are known [10,11].

Subset cardinality formulas (subsetcard). For a 0/1 n×n matrix A = (ai,j),
identify positions where ai,j = 1 with variables xi,j . Letting Ri = {j | ai,j =
1} and Cj = {i | ai,j = 1} record the positions of 1s/variables in row i and
column j, the formula encodes the cardinality constraints

∑
j∈Ri

xi,j ≥ |Ri|/2
and

∑
i∈Cj

xi,j ≤ |Ci|/2 for all i, j ∈ [n]. In the case when all rows and columns
have 2k variables, except for one row and column that have 2k + 1 variables,
the formula is unsatisfiable but is hard for resolution and polynomial calculus
if the positions of the variables are “scattered enough” (such as when M is
the bipartite adjacency matrix of an expander graph) [39,51]. Cutting planes,
however, can just add up all constraints to derive a contradiction immediately.

Even colouring formulas (ec) are defined on connected graphs G = (V,E)
with all vertices having bounded, even degree. Edges e ∈ E correspond to vari-
ables xe, and for all vertices v ∈ V constraints

∑
e�v xe = deg(v)/2 assert that

there is a 0/1-colouring such that each vertex has an equal number of incident
0- and 1-edges. The formula is satisfiable if and only if the total number of
edges is even. For suitably chosen graphs these formulas are empirically hard for
CDCL [36], but we do not know of any formal resolution lower bounds. Despite
being easy for CP, they still seem hard for pseudo-Boolean solvers.

3 Further Tools for CNF Generation and Manipulation

Formula transformations. A common trick to obtain hard proof complexity
benchmarks is to take a CNF formula and replace each variable x by a Boolean



CNFgen: A Generator of Crafted Benchmarks 469

function g(x1, . . . , x�) of arity � over new variables. As an example, XOR sub-
stitution y ← y1 ⊕ y2, z ← z1 ⊕ z2 applied to the clause y ∨ z yields

(y1 ∨ y2 ∨ z1 ∨ z2) ∧ (y1 ∨ y2 ∨ z1 ∨ z2) ∧ (y1 ∨ y2 ∨ z1 ∨ z2) ∧ (y1 ∨ y2 ∨ z1 ∨ z2) .

Note that such transformations can dramatically increase formula size, and so
they work best when the size of the initial clauses and the arity � is small. Sim-
ilar substitutions, and also other transformations such as lifting, shuffling, and
variable compression from [45], can be applied either in CNFgen during formula
generation (using command line options -T), or alternatively to a DIMACS file
using the included cnftransform program. Multiple occurrences of -T <params>
results in a chain of transformations as in, e.g., this 2-xorified pebbling formula
over the pyramid graph of height 10, with random shuffling.

$ cnfgen peb --pyramid 10 -T xor 2 -T shuffle

Formulas based on graphs. Many formulas in CNFgen are generated from
graphs, which can be either read from a file or produced internally by the tool.
In the next example we build a Tseitin formula over the graph in the file G.gml
and then a graph ordering principle on a random 3-regular graph with 10 vertices.

$ cnfgen tseitin -i G.gml --charge randomodd | minisat

UNSATISFIABLE

$ cnfgen gop --gnd 10 3 | minisat

UNSATISFIABLE

The CNFgen command line provides some basic graph constructions and also
accepts graphs in different formats such as, e.g., Dot [46], DIMACS [38], and
GML [31]. Inside Python there is more flexibility since any NetworkX [28] graph
object can be used, as sketched in the next example.

from cnfformula import GraphColoringFormula

G= ... # build the graph

GraphColoringFormula(G,4). dimacs () # Is G is 4-colourable?

As already discussed in Sect. 2, the hardness of many formulas generated from
graphs are governed by (different but related notions of) graph expansion. Going
into details is beyond the scope of this paper, but in many cases a randomly
sampled regular graph of bounded vertex degree almost surely has the expansion
required to yield hard instances.

OPB output format. CNFgen supports the OPB format used by pseudo-
Boolean solvers, which use techniques based on cutting planes. CNFgen can pro-
duce formulas that are easy for cutting planes but seem quite hard for pseudo-
Boolean solvers (e.g., subset cardinality formulas, even colouring formulas, some
kinds of k-colouring instances).



470 M. Lauria et al.

4 Concluding Remarks

We propose CNFgen as a convenient tool for generating crafted benchmarks in
DIMACS or OPB. CNFgen makes available a rich selection of formulas appear-
ing in the proof complexity literature, and new formulas can easily be added
by using the cnfformula library. It is our hope that this tool can serve as
something of a one-stop shop for, e.g., SAT practitioners wanting to benchmark
their solvers on tricky combinatorial formulas, competition organizers looking
for crafted instances, proof complexity researchers wanting to test theoretical
predictions against actual experimental results, and mathematicians performing
theoretical research by reducing to SAT.

Acknowledgments. The first author performed most of this work while at KTH
Royal Institute of Technology. The authors were funded by the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)
/ ERC grant agreement no. 279611 as well as by Swedish Research Council grant 621-
2012-5645. The first author was also supported by the European Research Council
under the European Union’s Horizon 2020 Research and Innovation Programme / ERC
grant agreement no. 648276 AUTAR.

References

1. Alekhnovich, M., Ben-Sasson, E., Alexander, A., Razborov, A.A., Wigderson, A.:
Space complexity in propositional calculus. SIAM J. Comput. 31(4), 1184–1211
(2002). Preliminary version in STOC ’00

2. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and general resolution. Theor. Comput. 3(5), 81–102 (2007).
Preliminary version in STOC ’02

3. Alekhnovich, M., Alexander, A. Razborov, A.A.: Lower bounds for polynomial
calculus: Non-binomial case. In: Proceedings of the Steklov Institute of Mathemat-
ics, 242, 18–35 (2003). http://people.cs.uchicago.edu/∼razborov/files/misha.pdf.
Preliminary version in FOCS ’01

4. Balyo, T., Marijn, J., Heule, H., Järvisalo, M.: Proceedings of SAT competition
2016: Solver and benchmark descriptions. Technical report B-2016-1, University of
Helsinki (2016). http://hdl.handle.net/10138/164630

5. Roberto, J., Bayardo, Jr., Schrag, R.: Using CSP look-back techniques to solve real-
world SAT instances. In Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI 1997), pp. 203–208 (1997)

6. Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: Super-
polynomial lower bounds for superlinear space. In: Proceedings of the 44th Annual
ACM Symposium on Theory of Computing (STOC 2012), pp. 213–232 (2012)

7. Beck, C., Nordström, J., Tang, B.: Some trade-off results for polynomial calculus.
In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC 2013), pp. 813–822 (2013)

8. Ben-Sasson, E., Nordström, J.: Short proofs may be spacious: An optimal separa-
tion of space and length in resolution. In: Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2008), pp. 709–718 (2008)

http://people.cs.uchicago.edu/~razborov/files/misha.pdf
http://hdl.handle.net/10138/164630


CNFgen: A Generator of Crafted Benchmarks 471

9. Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separa-
tions and trade-offs via substitutions. In: Proceedings of the 2nd Symposium on
Innovations in Computer Science (ICS 2011), pp. 401–416 (2011)

10. Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search
procedures. ACM Trans. Comput. Logic 14(3), 20:1–20:21 (2013). Preliminary
version in SAT ’11

11. Beyersdorff, O., Galesi, N., Lauria, M., Razborov, A.A.: Parameterized bounded-
depth Frege is not optimal. ACM Trans. Comput. Theor. 4, 7:1–7:16 (2012). Pre-
liminary version in ICALP ’11

12. Blake, A.: Canonical expressions in boolean algebra. PhD thesis, University of
Chicago (1937)

13. Bonet, M.L., Galesi, N.: Optimality of size-width tradeoffs for resolution. Comput.
Complex. 10(4), 261–276 (2001). Preliminary version in FOCS ’99

14. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner-basis computa-
tions with Boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009)

15. Brickenstein, M., Dreyer, A., Greuel, G.-M., Wedler, M., Wienand, O.: New devel-
opments in the theory of Gröbner bases and applications to formal verification. J.
Pure Appl. Algebr. 213(8), 1612–1635 (2009)

16. Buss, S.R., Grigoriev, D., Impagliazzo, R., Pitassi, T.: Linear gaps between degrees
for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci. 62(2),
267–289 (2001). Preliminary version in CCC ’99

17. Buss, S.R., Ko�lodziejczyk, L.: Small stone in pool. Logic. Method. Comput. Sci.
10, 10:16–16:22 (2014)

18. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 24(3), 305–317 (2005). Preliminary
version in DAC ’03

19. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

20. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to
find proofs of unsatisfiability. In: Proceedings of the 28th Annual ACM Symposium
on Theory of Computing (STOC 1996), pp. 174–183 (1996)

21. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing (STOC 1971), pp. 151–158
(1971)

22. Cook, S.A., Reckhow, R.: The relative efficiency of propositional proof systems. J.
Symbol. Logic 44(1), 36–50 (1979)

23. Cook, W.: Collette Rene Coullard, and György Turán. On the complexity of
cutting-plane proofs. Discr. Appl. Math. 18(1), 25–38 (1987)

24. Dixon, H.E., Ginsberg, M.L., Hofer, D.K., Luks, E.M., Parkes, A.J.: Generalizing
Boolean satisfiability III: Implementation. J. Artif. Intell. Res. 23, 441–531 (2005)

25. Elffers, J., Giráldez-Crú, J., Nordström, J., Vinyals, M.: Using combinatorial
benchmarks to probe the reasoning power of pseudo-Boolean solvers (2017, Sub-
mitted)

26. Elffers, J., Nordström, J., Simon, L., Sakallah, K.A.: Seeking practical CDCL
insights from theoretical SAT benchmarks. In: Presentation at the Pragmatics of
SAT 2016 workshop (2016). http://www.csc.kth.se/∼jakobn/research/TalkPoS16.
pdf

27. Galesi, N., Lauria, M.: Optimality of size-degree trade-offs for polynomial calculus.
ACM Trans. Comput. Logic 12, 4:1–4:22 (2010)

http://www.csc.kth.se/~jakobn/research/TalkPoS16.pdf
http://www.csc.kth.se/~jakobn/research/TalkPoS16.pdf


472 M. Lauria et al.

28. Hagberg, A.A., Schult, D., Swart, P.S.: Exploring network structure, dynamics, and
function using NetworkX. In: Proceedings of the 7th Python in Science Conference
(SciPy2008), Pasadena, CA USA, pp. 11–15 (2008)

29. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308
(1985)

30. Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Hoos,
H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 145–156. Springer,
Heidelberg (2005). doi:10.1007/11527695 12

31. Himsolt, M.: GML: A portable graph file format. Technical report, Universität of
Passau (1996)

32. Huynh, T., Nordström, J.: On the virtue of succinct proofs: Amplifying communi-
cation complexity hardness to time-space trade-offs in proof complexity (Extended
abstract). In: Proceedings of the 44th Annual ACM Symposium on Theory of Com-
puting (STOC 2012), pp. 233–248 (2012)

33. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001). Preliminary version in CCC ’99

34. Järvisalo, M., Matsliah, A., Nordström, J., Živný, S.: Relating proof complexity
measures and practical hardness of SAT. In: Milano, M. (ed.) CP 2012. LNCS, pp.
316–331. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7 25

35. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59–64 (2010)

36. Markström, K.: Locality and hard SAT-instances. J. Satisf. Boolean Model. Com-
put. 2(1–4), 221–227 (2006)

37. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). Preliminary version in
ICCAD ’96

38. Massey, B.: DIMACS graph format (2001). http://prolland.free.fr/works/research/
dsat/dimacs.html. Accessed 11 Feb 2016

39. Mikša, M., Nordström, J.: Long proofs of (seemingly) simple formulas. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 121–137. Springer, Cham (2014).
doi:10.1007/978-3-319-09284-3 10

40. Mikša, M., Nordström, J.: A generalized method for proving polynomial calculus
degree lower bounds. In: Proceedings of the 30th Annual Computational Com-
plexity Conference (CCC 2015). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 33, pp. 467–487 (2015)

41. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Chaff, M.S.: Engineering
an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference
(DAC 2001), pp. 530–535 (2001)

42. Nordström, J.: On the interplay between proof complexity and SAT solving. ACM
SIGLOG News 2(3), 19–44 (2015)

43. Pseudo-Boolean competition (2016). http://www.cril.univ-artois.fr/PB16/
44. Razborov, A.A.: Resolution lower bounds for perfect matching principles. J. Com-

put. Syst. Sci. 69(1), 3–27 (2004). Preliminary version in CCC ’02
45. Razborov, A.A.: A new kind of tradeoffs in propositional proof complexity. J. ACM

63, 16:1–16:14 (2016)
46. AT and T Research: Dot Language. http://www.graphviz.org/content/

dot-language. Accessed 11 Feb 2016
47. Sheini, H.M., Sakallah, K.A.: Pueblo: a hybrid pseudo-Boolean SAT solver. J.

Satisf. Boolean Model. Comput. 2(1–4), 165–189 (2006). Preliminary version in
DATE ’05

http://dx.doi.org/10.1007/11527695_12
http://dx.doi.org/10.1007/978-3-642-33558-7_25
http://prolland.free.fr/works/research/dsat/dimacs.html
http://prolland.free.fr/works/research/dsat/dimacs.html
http://dx.doi.org/10.1007/978-3-319-09284-3_10
http://www.cril.univ-artois.fr/PB16/
http://www.graphviz.org/content/dot-language
http://www.graphviz.org/content/dot-language


CNFgen: A Generator of Crafted Benchmarks 473

48. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 24

49. St̊almarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta
Inform. 33(3), 277–280 (1996)

50. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
51. Gelder, A., Spence, I.: Zero-one designs produce small hard SAT instances. In:

Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 388–397. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14186-7 37

52. Vinyals, M., Elffers, J., Giráldez-Crú, J., Gocht, S., Nordström, J.: In between
resolution and cutting planes: A study of proof systems for pseudo-Boolean SAT
solving (2017, Submitted)

http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/978-3-642-14186-7_37

	CNFgen: A Generator of Crafted Benchmarks
	1 Introduction
	2 Some Formula Families in CNFgen
	3 Further Tools for CNF Generation and Manipulation
	4 Concluding Remarks
	References




