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Abstract

The conflict-driven clause learning (CDCL)
paradigm has revolutionized SAT solving over
the last two decades. Extending this approach to
pseudo-Boolean (PB) solvers doing 0-1 linear pro-
gramming holds the promise of further exponential
improvements in theory, but intriguingly such gains
have not materialized in practice. Also intriguingly,
most PB extensions of CDCL use not the division
rule in cutting planes as defined in [Cook et al., ’87]
but instead the so-called saturation rule. To the
best of our knowledge, there has been no study
comparing the strengths of division and saturation
in the context of conflict-driven PB learning, when
all linear combinations of inequalities are required
to cancel variables.

We show that PB solvers with division instead of sat-
uration can be exponentially stronger. In the other
direction, we prove that simulating a single satu-
ration step can require an exponential number of
divisions. We also perform some experiments to see
whether these phenomena can be observed in actual
solvers. Our conclusion is that a careful combina-
tion of division and saturation seems to be crucial
to harness more of the power of cutting planes.

1 Introduction

Although the Boolean satisfiability (SAT) problem is NP-
complete [Cook, 1971], and hence expected to be intractable
from a theoretical point of view, there has been enormous
progress in performance in the last 15–20 years of SAT solvers
based on conflict-driven clause learning (CDCL) [Marques-
Silva and Sakallah, 1999; Moskewicz et al., 2001].1 Today
CDCL solvers are routinely used for large-scale real-world
problems in a wide range of areas [Biere et al., 2009].

Annoyingly, however, there also exist tiny formulas that
are completely beyond reach even for the best CDCL solvers,
which highlights two limitations of this approach:

• The conjunctive normal form (CNF) used for CDCL input
is a weak formalism for encoding constraints.

1A similar idea in the context of constraint satisfaction problems
was independently developed in [Bayardo Jr. and Schrag, 1997].

• The resolution method of reasoning used in CDCL
solvers is quite weak.

Pseudo-Boolean (PB) constraints can be exponentially more
concise than CNF, and PB reasoning (which can be thought
of as 0-1 integer linear programming with conflict analysis) is
exponentially more powerful than resolution in theory. Extend-
ing the conflict-driven framework to a pseudo-Boolean setting
would therefore seem like an attractive option. However, al-
though there are crafted benchmark formulas on which PB
solvers exponentially outperform CDCL-based approaches, in
practice they are often less efficient.

In this work, we study the rules of reasoning used in PB
solvers and how they compare to the cutting planes method on
which they are based. Interestingly, the most popular conflict-
driven PB solvers use the so-called saturation rule instead
of the division rule in [Cook et al., 1987]. Our focus is on
understanding the relative strengths of division and saturation.

Let us review some background. In this paper, by pseudo-
Boolean (PB) constraints we always mean 0-1 integer linear
constraints. In what follows, all such constraints are assumed
to be written in normalized form as non-negative linear combi-
nations of literals

∑
i aiℓi ≥ A, where the coefficients ai ∈ N0

are non-negative integers, the degree (of falsity) A ∈ N+ is
a positive integer, and literals ℓi represent variables xi or
negated variables xi (which cancel to produce xi + xi = 1,
and where at most one of xi and xi appears in any constraint).

A disjunctive clause x ∨ y ∨ z is just a special case
x+ y + z ≥ 1 of a PB constraint, and we will refer to col-
lections of such constraints as CNF formulas. Cardinality
constraints are another special case where all coefficients are 1
but the degree can be larger. By a pseudo-Boolean (PB) for-
mula we mean any collection of (general) PB constraints.

One approach to solving PB formulas is to convert them
to CNF, either lazily by learning clauses from PB constraints
during conflict analysis, as in one of the version in the Sat4j li-
brary [Le Berre and Parrain, 2010], or eagerly by re-encoding
the whole formula to CNF and running a CDCL solver as in,
e.g., MiniSat+ [Eén and Sörensson, 2006], Open-WBO [Mar-
tins et al., 2014], or NaPS [Sakai and Nabeshima, 2015].
Here we are more interested in solvers doing native pseudo-
Boolean reasoning, such as PRS [Dixon and Ginsberg, 2002],
Galena [Chai and Kuehlmann, 2005], Pueblo [Sheini and
Sakallah, 2006], Sat4j [Le Berre and Parrain, 2010], and
RoundingSat [Elffers and Nordström, 2018] (related, but
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slightly different, ideas were also explored in bsolo [Man-
quinho and Marques-Silva, 2006]). Needless to say, this dis-
cussion is far from a complete overview of PB solving or the
even richer area of PB optimization—see, e.g., the excellent
survey in [Biere et al., 2009, Chapter 22] for more information.

The cutting planes proof system [Cook et al., 1987] can be
defined as consisting of rules for literal axioms

ℓi ≥ 0
, (1)

linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA+ cBB

[cA, cB ∈ N0] , (2)

and division
∑

i aiℓi ≥ A∑
i⌈ai/c⌉ℓi ≥ ⌈A/c⌉

[c ∈ N+] . (3)

A toy example just to illustrate the rules is the derivation

6x+ 2y + 3z ≥ 5 x+ 2y + w ≥ 1
Linear comb.

8x+ 6y + 3z + 2w ≥ 7
Division

3x+ 2y + z + w ≥ 3

(4)

The setting in this paper is that the input is a PB formula
without 0-1 solutions, and the goal is to prove unsatisfiability
by deriving 0 ≥ 1. For readers more interested in optimization,
this is also the situation when the solver should prove that the
objective function cannot be better than in the current solution.

When we want to understand the power of a method of
reasoning, we ignore algorithmic aspects and study what can
be achieved assuming optimal use of the derivation rules. (This
can also be a fruitful perspective because the sophisticated
heuristics in modern solvers are typically beyond rigorous
analysis.) In this context, it is known that cutting planes
is exponentially stronger than the resolution proof system
underlying CDCL [Haken, 1985; Cook et al., 1987].

It can be noted that literal axioms and linear combinations
are sound also over the reals, so division is where the power
of cutting planes lies. In example (4) no information is lost
when dividing the constraint, but this does not hold in general—
for instance, a further division by 3 would yield the clause
x+ y + z + w ≥ 1, which is a strictly weaker constraint.

In conflict-driven solving, linear combinations (2) are al-
ways made to cancel some variable on which the two con-
straints disagree, giving rise to the more restricted generalized
resolution rule (going back to [Hooker, 1988; 1992])

ajxj +
∑

i6=j aiℓi ≥ A bjxj +
∑

i6=j biℓi ≥ B
∑

i6=j

(
c
aj
ai +

c
bj
bi)ℓi ≥ c

aj
A+ c

bj
B − c

, (5)

where c = lcm(aj , bj). What is more, PB solvers based on
[Chai and Kuehlmann, 2005] do not use the division rule (3)
but instead the saturation rule

∑
i aiℓi ≥ A∑

i min{ai, A} · ℓi ≥ A
(6)

saying that no variable coefficient need be larger than the
maximum contribution required from that variable. Note that

saturation, too, is a “Boolean” rule in that it is not sound over
the reals. The derivation

2x+ y + z ≥ 2 3x+ 2y + u+ w ≥ 3
Res. on x

7y + 3z + 2u+ 2w ≥ 6
Saturation

6y + 3z + 2u+ 2w ≥ 6

(7)

shows how resolution and saturation can be combined.
As discussed in [Vinyals et al., 2018], this leads to the fol-

lowing combinations of cutting planes rules to consider from
an applied PB solving perspective (where 1(b)+2(b) corre-
sponds to [Cook et al., 1987]):

1. Boolean rule: (a) saturation or (b) division.

2. Linear combinations: (a) resolution or (b) no restrictions.

The use of generalized resolution seems inherent in a conflict-
driven context, but which Boolean rule to prefer is less
clear. Saturation was used in the seminal paper [Chai and
Kuehlmann, 2005] and has also been the rule of choice in
what is arguably the most popular PB solver Sat4j [Le Berre
and Parrain, 2010]. Division appeared only recently in Round-
ingSat [Elffers and Nordström, 2018] (although it was sug-
gested in a more general integer linear programming setting
in [Jovanovic and de Moura, 2013]).

But before choosing between these two Boolean rules, it
seems natural to ask how they compare in strength! Very little
is known about this. [Vinyals et al., 2018] initiated a study
of different subsystems of cutting planes, but in the context
of PB solving, when linear combinations are restricted to be
instances of generalized resolution, they failed to differentiate
between division and saturation. This limited understanding
stands in striking contrast to the extensive research on different
versions of the resolution proof system in the context of CDCL
(in, e.g., [Beame et al., 2004; Buss et al., 2008; Atserias et al.,
2011; Pipatsrisawat and Darwiche, 2011]).

In this work, we obtain the following results:

1. For cutting planes with saturation, it holds that linear
combinations can be restricted to generalized resolution
without (any significant) loss of proof power.

2. Cutting planes with division and generalized resolution
can be exponentially stronger than cutting planes with
saturation and unrestricted linear combinations.

3. To simulate a single combination of generalized reso-
lution plus saturation (as in example (7)) can require a
number of division steps that is exponential in the bitsize
of the coefficients in the constraints, even if unrestricted
linear combinations are allowed.

The first contribution is a strengthening of [Vinyals et al.,
2018], which obtained an analogous result when the input is
in CNF and all coefficients in the inequalities are restricted
to be of at most polynomial magnitude, but as far as we are
aware the second and third results are the first of their kind.

As a complement to these theoretical contributions, we
also report on a limited empirical evaluation of whether these
separations can be observed in practice as well.

The rest of this paper is organized as follows. We present the
proofs of the three results listed above in Sections 2, 3, and 4,
respectively. After discussing the results from our experiments
in Section 5, we make some concluding remarks in Section 6.
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2 On the Strength of Generalized Resolution

Let us start by investigating how much of a restriction the gen-
eralized resolution rule is. It is known that this can be a severe
limitation—on CNF inputs it causes cutting planes to collapse
to the much weaker resolution proof system regardless of
whether division or saturation is used [Vinyals et al., 2018].
Hence, for cutting planes with division this restriction incurs
an exponential loss in strength. However, we show that com-
bined with saturation the generalized resolution rule in fact
affords the same power as unrestricted linear combinations.

By way of a quick review of preliminaries, a cutting planes
derivation π from a PB formula F is a sequence of PB con-
straints π = (C1, C2, . . . , CL) such that each Ci is either
from F or is derived from previous constraints using some sub-
set of the rules (1)–(3) and (5)–(6) (depending on the flavour
of cutting planes under study). The length of a derivation is the
number of constraints in it. We say that a derivation π is a proof
(of unsatisfiability) for F , or refutation of F , if CL

.
= 0 ≥ A

for A ∈ N+ (where
.
= denotes syntactic equality). For the rest

of the paper we will use the following terminology:

• A resolution derivation is a derivation where (a) the input
is in CNF and (b) the only derivation rule is generalized
resolution (5) followed by saturation (6) in one step.

• Cutting planes with division is the proof system using
rules (1)–(3), and a division derivation (refutation) is a
derivation (refutation) in this proof system.

• Cutting planes with saturation is the system with rules
(1), (2), and (6) yielding saturation derivations.

If the linear combination rule (2) is restricted to be an in-
stance of generalized resolution (5), we say that we have a
division/saturation derivation with (generalized) resolution.
With these conventions we can now state our first theorem.

Theorem 2.1. If a PB formula F over n variables has a satu-
ration refutation π in length L, then F also has a a saturation
refutation π′ with generalized resolution in length O

(
n2 · L

)
.

Furthermore, if F is a CNF formula, then the refutation π′

obtained in Theorem 2.1 can be converted to a resolution refu-
tation of F of the same length as π′. To see this, it is sufficient
to verify that the degree of falsity in π′ can never go above 1,
meaning that the constraints are always semantically equiv-
alent to clauses. Note that coefficients larger than 1 are not
an issue when the degree is 1—they can simply be viewed as
clauses containing the same literal multiple times. Formalizing
this argument properly yields the following corollary.

Corollary 2.2. If a CNF formula F over n variables has a
saturation refutation π in length L, then there is a resolution
refutation of F in length O

(
n2 · L

)
.

A weaker form of Corollary 2.2 was shown in [Vinyals et al.,
2018], namely with the added (and significant) restriction that
all coefficients in the original refutation π have to be small.

In what remains of this section we will prove Theorem 2.1.
Starting with the refutation π = (C1, C2, . . . , CL), we will
construct π′ by representing each Ci by a set of mi constraints
Dij

.
=

∑n
k=1 aijkℓk ≥ Aij for j ∈ [mi] and associated

factors δij ∈ N+, writing Di =
{
(δij , Dij)

∣∣j ∈ [mi]
}

to

denote the constraints and factors for Ci. We will require the
following invariants to hold for all i ∈ [L]:

1. Di represents Ci in the sense that
∑mi

j=1 δij ·Dij = γ ·Ci

for some γ ∈ N+ (where the summation notation denotes
taking linear combinations as in (2) but of arbitrary arity).

2. Di has size |Di| = mi ≤ n+ 1.

3. Every variable in Di occurs with only one polarity (i.e.,
cannot appear both negated and unnegated in Di).

4. If Ci is derived from Ci′ (and Ci′′) then all constraints
in Di can be derived from Di′ (and Di′′) using at most
O
(
n2

)
generalized resolution and saturation steps.

Let us argue that Theorem 2.1 follows immediately from a
construction maintaining these invariants. The refutation π′

will consist of the constraints in the sets Di concatenated with
the intermediate derivation steps in invariant 4, using only
generalized resolution and saturation. Since the final line in the
refutation π is CL

.
= 0 ≥ A for some A ∈ N+, it follows that

all constraints in DL are of the form 0 ≥ A′, A′ ∈ N+ (since
adding all constraints in Di must yield a multiple of 0 ≥ A by
invariant 1 and no variables can cancel by invariant 3). Finally,
the length of π′ is O

(
n2 · L

)
because each constraint Ci is

replaced by n+ 1 constraints by invariant 2 in addition to the
O
(
n2

)
constraints that are used to derive Ci by invariant 4.

We can take care of invariant 2 directly, arguing similarly to
the proof of Caratheodory’s theorem. We omit the proof due to
space constraints, but the idea is that if a positive integer linear
combination of a set of constraints D yields some constraint C,
then we only need a linearly independent subset of at most
n+ 1 constraints to get a multiple of C. We now present an
inductive construction that maintains the other invariants.

Base Case: Ci ∈ F or Ci
.
= ℓ ≥ 0. Set Di = {(1, Ci)}.

The invariants hold trivially.
Saturation: If Ci is obtained by saturation of Ci′, which

we denote Ci = sat(Ci′), then we let Di consist of the set{
(δ, sat(D))

∣∣(δ,D) ∈ Di′
}

plus possibly {(δk, ℓk ≥ 0)} for
some literals ℓk in Di′ as discussed below. Invariant 3 holds
by construction, as it already holds for Di′. Let us argue that
Invariants 1 and 4 can be made to hold as well.

First note that if we would sum over Di′ and then saturate,
we would obtain the desired constraint sat(

∑mi′

j=1 δi′jDi′j) =

sat(γCi′) using invariant 1 and the fact that sat(γCi′) =
γ · sat(Ci′) = γCi, but now we are saturating before tak-
ing the summation. However, the degree of falsity in the
final constraint does not depend on the order of saturation and
summation, as there are no cancellations when adding the con-
straints in Di′ due to invariant 3, and saturation does not affect
the degree. Therefore, the only difference when saturating first
are the coefficients, and the only thing that can happen to them
is that they get smaller, making the final constraint stronger.

For a fixed literal ℓk, the coefficient when saturation hap-
pens first is

∑mi

j=1 δijaijk =
∑mi′

j=1 δi′j min(ai′jk, Ai′j) ≤
min(

∑
j∈[mi′]

δi′jai′jk,
∑

j∈[mi′]
δi′jAi′j), where the last ex-

pression is the coefficient if summation is done before satura-
tion. Therefore, all that is needed to get

∑mi

j=1 δijDij = γCi

is to add ℓk ≥ 0 to Di for literals ℓk with too small coefficients.
Linear Combination: If Ci is derived by linear combina-

tion, i.e., Ci = cCi′+ c′Ci′′ then we join the sets Di′,Di′′ and
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multiply the factors for each constraint by c or c′ to obtain
D′

i = {(cδ,D) | (δ,D) ∈ Di′} ∪ {(c′δ,D) | (δ,D) ∈ Di′′}.
Summing all constraints in D′

i will yield a multiple of Ci by
invariant 1 and because addition of constraints is associative,
i.e., the order of addition does not matter.

However, D′
i might be violating invariant 3. To fix this, for

every variable x and every pair of constraints containing x
with opposite polarities we can replace one of the constraints
by their resolvent over x as in (5). After each such step, it
is still true that the constraints in D′

i can be summed up to
yield a multiple of Ci, possibly after adapting the δ-factors.
To formalize this argument we need the next lemma.

Lemma 2.3. Let C1, C2 be any two constraints in which a
variable x occurs with opposite polarities, and let δ1, δ2 ∈ N+.
Then generalized resolution can be used to obtain constraints
D1, D2 such that x does not occur in D1 and there are

γ, δ̂1, δ̂2 ∈ N0 for which γ(δ1C1 + δ2C2) = δ̂1D1 + δ̂2D2.

Proof. Let a1, a2 be the coefficients of x and x respectively
in C1, C2 and let c = lcm(a1, a2), c1 = c/a1, and c2 = c/a2.
Apply generalized resolution to derive D1 = c1 ·C1 + c2 ·C2

(which by construction does not contain x). Assuming without
loss of generality (because of symmetry) that δ1c2 ≥ δ2c1, set

D2 = C1, δ̂1 = δ2, δ̂2 = δ1c2 − δ2c1, and γ = c2. Then it
holds that γ ·(δ1C1+δ2C2) = (δ1c2−δ2c1) ·C1+δ2c1 · C1+

δ2c2 · C2 = δ̂D1 + δ̂2D2, establishing the lemma.

To restore invariant 3, we apply Lemma 2.3 repeatedly to
variables x occurring with opposite polarities in D′

i as fol-
lows. Each time Lemma 2.3 is invoked one constraint (out
of at most n + 1) is replaced by another one that does not
contain x. This continues until x occurs with only one polarity
or has vanished completely, and this is maintained when the
process is repeated for the next variable. Therefore, we will
obtain a set Di that no longer violates invariant 3 after O

(
n2

)

applications of the generalized resolution rule.

3 On the Strength of Division

We now turn to studying how the division and saturation rules
compare in strength assuming that linear combinations are
restricted to generalized resolution, as is the case in conflict-
driven PB solving. Without this restriction, [Vinyals et al.,
2018] exhibited a family of CNF formulas witnessing that di-
vision can be exponentially stronger than saturation in cutting
planes. CNF formulas are of no use here, since for such inputs
cutting planes with generalized resolution is the same as the
resolution proof system regardless of which Boolean rule is
used, but nevertheless it is helpful to study these separating
CNF formulas. They contain many subsets of clauses

ℓ1 + ℓ2 + ℓ3 ≥ 1 (8a)

ℓ1 + ℓ2 + ℓ4 ≥ 1 (8b)

ℓ1 + ℓ3 + ℓ4 ≥ 1 (8c)

ℓ2 + ℓ3 + ℓ4 ≥ 1 (8d)

which can be summed up to get

3ℓ1 + 3ℓ2 + 3ℓ3 + 3ℓ4 ≥ 4 (9)

after which division by 3 recovers the cardinality constraint

ℓ1 + ℓ2 + ℓ3 + ℓ4 ≥ 2 . (10)

Although the constraints (9) and (10) are semantically equiva-
lent over the integers the former constraint is weaker over the
reals, and it turns out to be crucial to have constraints of the
latter form in order to prove contradiction efficiently.

The reason this yields nothing in a setting with generalized
resolution is that there are no literals with opposite polarity
in (8a)–(8d), and so there is no legal way to sum up these
constraints to give division the chance to go from (9) to (10).
However, a moment of thought reveals that we can “cheat” by
changing our formula to a “morally equivalent” but syntac-
tically different one. The trick is to re-encode (8a)–(8d) by
introducing helper variables x, y and z, writing

x+ y + z + ℓ1 + ℓ2 + ℓ3 ≥ 1 (11a)

x+ ℓ1 + ℓ2 + ℓ4 ≥ 2 (11b)

y + ℓ1 + ℓ3 + ℓ4 ≥ 2 (11c)

z + ℓ2 + ℓ3 + ℓ4 ≥ 2 (11d)

(where x, y, z are unique to this subset of constraints). Since
the helper variables cancel, it is now legal to apply generalized
resolution to all constraints. This results in (9), after which
division yields the inequality (10) as desired. Applying this re-
encoding trick to the separating CNF formulas used in [Vinyals
et al., 2018] leads to the following theorem.

Theorem 3.1. There is a family of PB formulas {Fn}n∈N+

with O(n) variables and constraints that can be refuted in
length O(n) in cutting planes with division and generalized
resolution, but for which any saturation refutations, even with
unrestricted linear combinations, have length exp(Ω(n)).

Proof. Let {Fn} be subset cardinality formulas as in [Mikša
and Nordström, 2014] that require exponential length for the
resolution proof system but that, once cardinality constraints
are recovered, have short refutations in cutting planes with
generalized resolution as shown in [Vinyals et al., 2018].

Let F ′
n be the formula obtained from Fn by introducing

helper variables as in (11a)–(11d). We argued above that gen-
eralized resolution followed by a division step recovers (10),
after which we can use the efficient refutation with generalized
resolution in [Vinyals et al., 2018]. It remains to argue why
F ′
n is exponentially hard for cutting planes with saturation.
Note that if we assign the helper variables to false

in (11a)–(11d), then we get back the clauses (8a)–(8d) in the
original formula Fn. Letting ρ be the partial assignment, or
restriction, that sets all helper variables in the whole formula
to false, we write C↾ρ for the result of applying ρ to a con-
straint C, and extend this notation to sets of constraints by
taking unions. It is not hard to show that if π is a saturation (or
division) refutation of F with unrestricted linear combinations,
then applying ρ to the lines of π results in a saturation (or divi-
sion, respectively) refutation π↾ρ of F↾ρ, except that we might
need to insert some linear combinations with literal axioms to
make sure that the derivation stays syntactically valid (but this
can only increase the length by a factor of n.)

Let π′ be a saturation refutation of F ′
n. Applying ρ yields

a saturation refutation π′↾ρ of F ′
n↾ρ = Fn that is at most
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a factor O(n) longer. Appealing to Corollary 2.2, we ob-
tain a resolution refutation π∗ at most a factor O(n2) longer
than π′↾ρ. But by [Mikša and Nordström, 2014] we know
that any resolution refutation π∗ of Fn must have exponential
length, and hence an exponential lower bound holds also for
the saturation refutation π′ of F ′

n. The theorem follows.

4 On the Strength of Saturation

So far in the paper we have given evidence that the division
rule can be exponentially stronger than the saturation rule in
certain contexts. In this section we show that there are settings
in which saturation can be significantly stronger than division.
Unfortunately, we are not able to get a analogous result to
Theorem 3.1, but what we can prove is that in order to go from

C1(R)
.
= Rx+Ry +

∑R
j=1 zj ≥ R (12a)

C2(R)
.
= Rx+Ry +

∑2R
j=R+1 zj ≥ R (12b)

to
CL(R)

.
= Rx+

∑2R
j=1 zj ≥ R , (13)

which can be done with one resolution step followed by one

saturation step, at least Ω
(√

R
)

applications of the division
rule are required (in addition to other steps). Note that this is
exponential in the bitsize of R.

A formal proof follows below, but let us first sketch the idea.
It can be shown by a simple inductive argument that for any
constraint containing negated literals x or zj we can instead
derive the same constraint without these literals. Therefore, it
is only necessary to consider constraints Ci of the form

aix+ biy + ciy +
∑2R

j=1 dijzj ≥ Ai (14)

(where min{bi, ci} = 0). For such a constraint Ci we write
Bi = 2ai + bi + ci and define the potential P(Ci) to be

P(Ci) = ln
(
Bi/Ai

)
. (15)

Note that P(C1(R)) = P(C2(R)) = ln(3) > ln(2) =
P(CL(R)). What we will prove in Lemma 4.2 is that only
division can decrease the potential of derived constraints, and

only does so by an amount of at most 1/
√
R. This shows that

Ω(
√
R) divisions are required to derive CL(R) from C1(R)

and C2(R). Our formal result is as follows.

Theorem 4.1. Let R = K2 for K ∈ N+ and let π be a divi-
sion derivation of CL(R) from C1(R) and C2(R) (with unre-

stricted linear combinations). Then π contains Ω(
√
R) appli-

cations of the division rule.

We remark that the lower bound is tight except possibly for
the square root. As discussed in [Vinyals et al., 2018], for con-
straints with coefficients of size at most R it is always possible
to simulate saturation with O(R) division and unrestricted
linear combination steps.

To establish Theorem 4.1, we start with a preprocessing step
to ensure that the degree Ai of any constraint Ci ∈ π obtained

by division is sufficiently large, namely Ai ≥
√
R+ 1.

Suppose Ai1 <
√
R+ 1 for some constraint Ci1 resulting

from division. Since
√
R is an integer by assumption, we have

Ai1 ≤
√
R. We claim that Ci1 can be satisfied by setting at

most
√
R variables zj to true. To see why, note that C1(R)

and C2(R) are satified by setting all zj to true, and hence
any constraint derived from them must also be satisfied by
this assignment since the proof system is sound. Furthermore,

for Ci1 it must be sufficient to assign a subset of at most
√
R

variables zj , since every zj contributes at least 1 to the left-

hand side and the degree on the right is Ai1 ≤
√
R. Let ρ1 be

such a partial assignment to at most
√
R variables zj fixing Ci1

to true and consider the restricted derivation π↾ρ1
(where Ci1↾ρ

has been removed since it is now a trivial constraint).

Suppose the derivation π↾ρ1
, contains some constraint Ci2

with degree Ai2 <
√
R + 1 (note that degrees might have

decreased after the restriction ρ1). Argue as above to find a

restriction ρ2 to at most
√
R variables zj satisfying Ci2 , and

continue with the derivation π↾ρ1∪ρ2
. We repeat this procedure

for T steps if possible as long as T ≤
√
R/6. If at the end

of this process there is still some constraint Ci with degree

Ai <
√
R+ 1, then we have counted

√
R/6 division steps,

which is enough to obtain the lower bound in Theorem 4.1.
Otherwise, it now holds for ρ = ρ1 ∪ · · · ∪ ρT that all con-

straints in π↾ρ have degree Ai ≥
√
R + 1 and that ρ assigns

at most (
√
R/6) ·

√
R = R/6 variables zj .

For the rest of the proof we will focus on the restricted
derivation π↾ρ. It is immediate from (15) that the poten-
tial of the constraints can only increase compared to π,
since restricting variables can only cause the degree of fal-
sity to go down. Hence, for the initial constraints we have
min{P(C1(R)↾ρ) ,P(C2(R)↾ρ)} ≥ ln(3). But the potential
does not increase too much—since ρ sets at most R/6 vari-
ables zj , for the final constraint we have P(CL(R)↾ρ) ≤
ln(2R/(R−R/6)) = ln(12/5). Therefore, the difference is
still at least ln(3) − ln(12/5) = ln(15/12) ≥ 1/6. We will
now show that the potential can only decrease after a division

step, and only by 1/
√
R, which establishes Theorem 4.1.

For convenience, we split the linear combination rule (2)
into two rules for multiplying a constraint and adding two
constraints. Also, when dividing a constraint C by k ∈ N+

as in (3), which we denote div(C, k), we assume k divides
all coefficients in C. This is without loss of generality, since
literal axioms (1) can be added as needed to make this true.

Lemma 4.2. For any constraints Ci and Ci′ of the form (14)
derived from (12a) and (12b) (possibly with some variables zj
restricted to true), for any literal axiom E as in (1), and for
any k ∈ N+, it holds that:

1. P(k · Ci) = P(Ci).

2. P(Ci + k · E) ≥ P(Ci).

3. P(Ci + Ci′) ≥ min{P(Ci) ,P(Ci′)}.

4. P(div(Ci, k)) ≥ P(Ci) − 1/
√
R, assuming that

div(Ci, k) has degree at least
√
R+ 1.

Proof. Part 1 is obvious from the definition in (15).

Part 2 is trivially true if no cancellation occurs as only
the numerator in the potential can increase. Suppose that
the degree decreases by k′ ≤ k through cancellation on x.
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Analogously to the argument in the preprocessing step, set-
ting x to true satisfies C1(R) and C2(R) and hence also Ci.
Thus, ai ≥ Ai and Bi ≥ 2 · Ai, from which it follows that
exp(P(Ci + k · E)) = (Bi − 2k′)/(Ai − k′) ≥ Bi/Ai =
exp(P(Ci)). It is straightforward to verify that if the cancella-
tion is due to some other variable than x, then the numerator
can only be larger, and hence so will the potential.

For part 3, assuming that P(Ci) ≤ P(Ci′) (without loss of
generality due to symmetry), we have (Bi+Bi′)/(Ai+Ai′) ≥
Bi/Ai. As in part 2, we have Bi ≥ 2 ·Ai and Bi′ ≥ 2 ·Ai′. Let
k be the decrease in degree due to cancellation on y (other vari-
ables do not occur negated in (14) and cannot cancel). Then we
get exp(P(Ci + Ci′)) = (Bi +Bi′ − 2k)/(Ai +Ai′− k) ≥
(Bi +Bi′)/(Ai +Ai′) ≥ Bi/Ai = exp(P(Ci)).

For part 4, since all coefficients are divisible by k this
also holds for Bi. Therefore, P(Ci) − P(div(Ci, k)) =
ln(Bi/Ai)− ln

(
(Bi/k)/⌈Ai/k⌉

)
= ln

(
⌈Ai/k⌉/(Ai/k)

)
≤

ln
(
(Ai/k + 1)/(Ai/k)

)
≤ k/Ai ≤ 1/

√
R, where the sec-

ond to last inequality is just ln(1+x) ≤ x and the last inequal-

ity holds since Ai/k ≥ ⌈Ai/k⌉ − 1 ≥
√
R by the assumption

about the degree ⌈Ai/k⌉ of div(Ci, k).

5 Empirical Evaluation

We have shown that division and saturation are incomparable
in strength as rules of reasoning. It is important to understand,
however, that these results speak only about the existence of
proofs and not about whether pseudo-Boolean solvers will
actually be able to find such proofs. Although our main focus
in this paper is on the former question, in this section we report
on some limited experiments to shed some light on the latter.

We have run instrumented versions of Sat4j, which uses sat-
uration, and RoundingSat, which defaults to division but has
an option to use saturation instead. All experiments were per-
formed on 4 AMD Opteron 6238 (Interlagos) 12-core 2.6 GHz
processors with 128 GB RAM with a 5000-second time-out.

The heuristics for PB solvers are not at all as well-tuned as
those for CDCL solvers, and small changes in internal settings
can have huge, and currently not so well understood, effects
on performance. In order to measure the overall impact of di-
vision versus saturation—rather than of some other, unrelated
settings—we have therefore run the solvers with several differ-
ent parameter settings and measured for each PB instance the
best result with division and saturation, thus obtaining virtual
best solvers (VBS) for division and saturation, respectively.
More details about the experiments and full results can be
found at www.csc.kth.se/∼jakobn/DivisionVsSaturation.

To obtain benchmarks that are easy for division but hard for
saturation, we use subset cardinality formulas as in Section 3,
generated from 4-regular random bipartite graphs with an addi-
tional random edge added (see [Mikša and Nordström, 2014]

for more details). Almost all the constraints in these formulas
are of the form ℓ1 + ℓ2 + ℓ3 + ℓ4 ≥ 2, and we have compared
solver performance on this “unobfuscated” version with the
“division-friendly” version based on the clausal encoding in
(8a)–(8d), enhanced with helper variables as in (11a)–(11d).
We have run the solvers on instances of increasing size to see
how the performance scales asymptotically.
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Figure 1: Virtual best division/ saturation solver for division-friendly
formula compared to clausal and unobfuscated encoding.

As shown in Figure 1, we have consistently very poor solver
performance for the clausal encoding. This is as expected,
since this version is exponentially hard for both division- and
saturation-based solvers. Furthermore, while the unobfus-
cated encoding is easy for both division and saturation, for
the division-friendly encoding the saturation-VBS again strug-
gles whereas the division-VBS is able to harness the helper
variables to achieve a performance close to that of the unob-
fuscated encoding. This all fits perfectly with theory. Before
we get too carried away by this, however, it should be noted
that this result is rather fragile. Whether the division-based
solver works well or not depends heavily also on how other
internal parameters are adjusted, and it turns out to be even
more crucial exactly how the helper variables are added.

It is not known whether there exist PB formulas that are
easy for saturation but provably hard for division—this is a
very interesting question left open by our work. What we
can do to obtain interesting benchmarks, though, is to use
inspiration from Section 4 to design formulas that are easy for
saturation but appear to be tricky for division. To this end, we
construct a pigeonhole principle-like formula which we think
of as being defined in terms of a (2R+ 2)× (2R+ 1) matrix,
where we scale R to increase the instance size. The variables
are xij , i ∈ [2R+ 2], j ∈ [2R+ 1], with coefficients aii = R
and aij = 1 for i 6= j. We first consider an “unobfuscated”
formula with constraints

∑2R+1
j=1 aijxij ≥ R for i ∈ [2R+ 2] (16a)

∑2R+2
i=1 aijxij ≤ R for j ∈ [2R+ 1] (16b)

which is easily seen to be unsatisfiable by adding all row
constraints (16a) and all column constraints (16b) separately.
This proof can be carried out using only generalized resolution,
and so these formulas are easy in theory for all PB solvers
regardless of which Boolean rule they use.

To get a formula that is easy for saturation but potentially
tricky for division, we observe that for the rows i < 2R+ 2
the constraint (16a) is of the form (13) and can be “split” into

Rxi,i +Ryi +
∑R′

i

j=1;j 6=i aijxij ≥ R (17a)

Rxi,i +Ryi +
∑2R+1

j=R′

i
+1;j 6=i aijxij ≥ R (17b)
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Figure 2: Virtual best division/ saturation solver for saturation-
friendly formula compared to unobfuscated encoding as baseline

similar to (12a)–(12b), where R′
i = R + 1 if i ≤ R and

R′
i = R if i > R. It is straightforward to verify that this

does not change anything from a saturation point of view—
the new formula can still be solved in O(R) steps by first
using generalized resolution plus saturation to go from (17a)
and (17b) back to (16a), reverting the obfuscation, and then
adding all constraints (16a) and (16b) in a cancelling way as
discussed above. If we use division instead of saturation, the
formula can be solved in O

(
R2

)
steps, since each recovery of

a constraint (16a) from (17a)–(17b) can be done with at most
R divisions and linear combinations [Vinyals et al., 2018],
but we know from Section 4 that any proof starting by such

a “recovery phase” requires Ω
(
R ·

√
R
)
= Ω

(
R3/2

)
steps.

Furthermore, it should be noted that the refutation in length
O
(
R2

)
employs non-cancelling linear combinations, and it

is not clear what the best approach is if we insist on using
generalized resolution, as PB solvers do. Thus, we could hope
that formulas of this type should be significantly harder for
solvers using division than for solvers using saturation.

Sadly, however, the experimental results fail to confirm this
intuition. The problem is not that these formulas are too easy
for division, but rather that they are too hard for saturation
(see Figure 2). While the baseline version is easy as expected,
the obfuscated formula is hard for both division and saturation
with no clear difference between the two.

This finding illustrates what we discussed at the begin-
ning of this section, namely the difference between the non-
constructive existence of short proofs and the constructive,
algorithmic search for such short proofs. In this case, not
only the choice of rules is important, but also the order in
which these rules are applied. To illustrate this, let R = 2 and
consider, e.g., the “split” row constraint (17a)–(17b) for i = 1
and the column constraint (16b) for j = 2, i.e.,

2x11 + 2y1 + x12 + x13 ≥ 2 (18a)

2x11 + 2y1 + x14 + x15 ≥ 2 (18b)

x12 + 2x22 + x32 + x42 ≥ 3 (18c)

(where (18c) is just (16b) written in normalized form). Per-
forming generalized resolution on (18a) and (18b) followed
by saturation recovers the unobfuscated row constraint

2x11 + x12 + x13 + x14 + x15 ≥ 2 , (19)

and resolving this constraint with (18c) yields

2x11 + x13 + x14 + x15 + 2x22 + x32 + x42 ≥ 4 . (20)

If we instead apply the resolution rule on (18c) with (18a) and
then resolve the resulting constraint with (18b), we get

4x11 + x13 + x14 + x15 + 2x22 + x32 + x42 ≥ 4 . (21)

Note that the difference between (20) and (21) is that the
coefficient of x11 is 4 instead of 2 in the latter, resulting in a
strictly weaker constraint.

It is possible to force a saturation-based solver to find short
proofs for formulas with obfuscated constraints (17a)–(17b)
(in particular, by hard-coding a specific decision order for
the variables), but this is nothing that a solver with default
heuristics is currently able to do. This suggests that in addition
to carefully choosing the set of derivation rules, optimizing
the order in which these rules are applied during search is an
important part of improving pseudo-Boolean solvers further.

6 Concluding Remarks

In this work we study the relative strength of division and
saturation in pseudo-Boolean reasoning. We show that there
are formulas for which PB solvers using division can be ex-
ponentially faster than solvers using saturation. In the other
direction, we prove that the number of division steps needed
to simulate a single saturation step can be exponential, but
leave open the question of whether saturation-based solvers
can ever be strictly stronger than division-based solvers.

By necessity, the formulas we use to obtain these results
are crafted so as to be amenable to rigorous mathematical
analysis. It would be nice to find more natural benchmarks,
and also to study whether the difference in reasoning power
between division and saturation ever comes into play in an
applied context. Our limited experiments on crafted bench-
marks indicate that other aspects of the search heuristics can
easily become more important, but this also points to room for
improvement of these heuristics (perhaps by, e.g., adaptively
choosing between, or combining, division and saturation).
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