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On the Interplay Between Proof Complexity and SAT Solving
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This paper is intended as an informal and accessible survey of proof complexity for non-experts, focusing
on some comparatively weak proof systems of particular interest in connection with SAT solving. We re-
view resolution, polynomial calculus, and cutting planes (related to conflict-driven clause learning, Gröbner
basis computations, and pseudo-Boolean solving, respectively) and some complexity measures that have
been studied for these proof systems. We also discuss briefly to what extent proof complexity could provide
insights into SAT solver performance, and how concerns related to applied SAT solving can give rise to inter-
esting complexity-theoretic questions. Along the way, we highlight a number of current research challenges.
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1. INTRODUCTION
The satisfiability problem (SAT) — i.e., to determine whether or not a given formula in
propositional logic has a satisfying assignment — is a fundamental problem in theo-
retical computer science. SAT was proven NP-complete in [Cook 1971], and because of
this the problem is widely believed to be computationally intractable in the worst case.
Proving this currently looks totally out of reach — this is one of the million dollar Mil-
lennium Problems posed by the Clay Mathematics Institute — but it is probably fair
to argue that the conventional wisdom in the computational complexity community is
that SAT should be infeasible to solve in practice.

This message does not seem to have propagated to researchers in applied SAT solv-
ing, however. Instead, this area has seen enormous improvements in performance over
the last two decades, and current state-of-the-art algorithms for deciding satisfiabil-
ity — so-called SAT solvers — can deal with real-world instances containing millions
of variables, and often run in (close to) linear time! NP-completeness did not just go
away, however — it is also possible to construct tiny formulas with just a few hundred
variables that are totally beyond reach for even the best solvers today.

This raises the question of how these SAT solvers work, and how they can perform
so well in practice. And when they sometimes miserably fail, can one explain why?

The best current SAT solvers are based on so-called conflict-driven clause learning
(CDCL). Some solvers also incorporate elements of algebraic reasoning (e.g., Gaussian
elimination) and/or geometric reasoning (e.g., linear inequalities), or use algebraic or
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geometric methods as the foundation rather than CDCL. Another augmentation of
CDCL that has attracted much interest is extended resolution. How can we analyze
the power of such algorithms? The best approach we currently have is to study the
underlying methods of reasoning and what they are able or unable to do in principle
(mostly ignoring constructive, algorithmic aspects). This brings us into the realm of
proof complexity, an area of research initiated in [Cook and Reckhow 1979].

This survey is intended as somewhat of a crash course in proof complexity, focusing
on the proof systems behind some current approaches to SAT solving. We will discuss
resolution (corresponding to CDCL), polynomial calculus (corresponding to algebraic
Gröbner basis computations) and cutting planes (corresponding to geometric or so-
called pseudo-Boolean solving), and will also briefly touch on extended resolution.

Our goal is to give an overview of some of the complexity results known about these
proof systems. Rather than giving precise, formal statements of theorems, our focus is
on showing some of the “benchmark formulas” used to prove these theorems, since they
illustrate what kind of reasoning different proof systems can or cannot do in principle.
This sometimes shows fundamental limitations on what one can hope for SAT solvers
to achieve, but sometimes instead can be viewed as challenges, when actual SAT solver
performance does not match what theory suggests should be possible.

By necessity, this brief survey has a selective and somewhat subjective coverage of
topics, and many exciting results in proof complexity are not even mentioned below.
For many of the results that are mentioned, a more detailed, formal treatment can be
found in the survey paper [Nordström 2013]. A more general-purpose proof complex-
ity survey is [Segerlind 2007]. Due to space constraints, our discussion of applied SAT
solving is even more limited (and sometimes slightly simplified to try to get the main
message across), and we have had to omit many relevant references. A very compre-
hensive overview of this latter research area is given in [Biere et al. 2009].

1.1. Outline of this Survey
We review resolution in Section 2 and describe the connection to CDCL SAT solvers
in Section 3. In Section 4 we discuss polynomial calculus and algebraic SAT solving,
and Section 5 deals with cutting planes and geometric solvers. We comment briefly on
extended resolution in Section 6. Some concluding remarks are presented in Section 7.

2. RESOLUTION
Let us start by fixing some notation and terminology:

— A literal a is a variable x or its negation x.
— A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals.
— A conjunctive normal form (CNF) formula F = C1∧· · ·∧Cm is a conjunction of clauses.
— A k-CNF formula is a CNF formula where all clauses contain at most k literals.

Throughout this paper, k will be some fixed constant unless stated otherwise.
— We will write N to denote the size of a formula, which is the total number of literals

in it counted with repetitions (or, for a k-CNF formula, the number of clauses up to a
constant linear factor).

The general set-up is that we are given an unsatisfiable CNF formula F and want to
understand how efficiently the proof system under study can certify that F is contra-
dictory. (Satisfiable formulas always have very short certificates, namely satisfying as-
signments, which is why it makes sense to focus on unsatisfiable instances if we want
to prove complexity results.) Such a proof of unsatisfiability is often referred to as a
refutation of F , and we will use the two terms “proof” and “refutation” interchangeably.

We consider clauses and formulas as sets, so that there are no repetitions and order
is irrelevant. In what follows, we will often tacitly assume for simplicity of exposition
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(b) DAG representation of refutation.

Fig. 1: Resolution refutation represented as list of clauses and directed acyclic graph.

that the formulas involved are k-CNF formulas unless stated otherwise. There is a
standard way to turn any CNF formula F into 3-CNF by converting every wide clause

a1 ∨ a2 ∨ . . . ∨ aw (1a)

into the set of 3-clauses

{y0} ∪ {yj−1 ∨ aj ∨ yj | 1 ≤ j ≤ w} ∪ {yw} , (1b)

where the yi’s denote new variables that do not appear anywhere else. This conversion
to 3-CNF most often does not change much from a theoretical point of view (though
there are some notable exceptions to this rule, which we will return to later).

In the resolution proof system [Blake 1937], we start with clauses of the input for-
mula (referred to as axioms) and derive new clauses by repeated application of the
resolution rule

C ∨ x D ∨ x
C ∨D . (2)

A resolution refutation ends when empty clause ⊥ (i.e., the clause containing no liter-
als) has been derived. We can representent a refutation either as an annotated list of
clauses as in Figure 1a or as a directed acyclic graph (DAG) as in Figure 1b. We say
that a refutation is tree-like if this DAG is a tree (which is the case in Figure 1b).

It is straightforward to show that resolution is sound, i.e., that there is a resolu-
tion refutation of a formula F only if it is unsatisfiable (simply because the resolution
rule (2) is sound), and it is also not hard to show that resolution is complete in that
any unsatisfiable formula can be refuted.

2.1. Resolution Length
The length (also referred to as the size) of a resolution refutation is the number of
clauses in it, counted with repetitions (which is relevant if we have a certain DAG rep-
resentation of the refutation in mind, such as a tree-like refutation). In general, proof
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(a) Triangle graph with odd labelling.
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(b) Corresponding Tseitin formula.

Fig. 2: Example Tseitin formula.

length/size is the most fundamental measure in proof complexity, and for resolution
length lower bounds also imply lower bounds on CDCL solver running time, since one
can in principle extract a resolution proof from a CDCL execution trace.1

Any CNF formula of size N can be refuted in resolution length exp(O(N)), and there
are formulas for which matching exp(Ω(N)) lower bounds are known. Let us discuss
some examples of formulas known to be hard with respect to resolution length.

Our first example is the pigeonhole principle (PHP), which says that “m pigeons
do not fit into n holes if m > n.” This is arguably the single most studied combinatorial
principle in all of proof complexity (see [Razborov 2002] for a survey). When written
as an unsatisfiable CNF formula, this becomes the claim that, on the contrary, m > n
pigeons do fit into n holes. To encode this, one uses variables pi,j to denote “pigeon i is
in hole j,” and write down the following clauses, where i 6= i′ range over 1, . . . ,m and
j 6= j′ range over 1, . . . , n:

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n [every pigeon i gets a hole] (3a)
pi,j ∨ pi′,j [no hole j gets two pigeons i 6= i′] (3b)

There are also variants where one in addition has “functionality” and/or “onto” axioms

pi,j ∨ pi,j′ [no pigeon i gets two holes j 6= j′] (3c)
p1,j ∨ p2,j ∨ · · · ∨ pm,j [every hole j gets a pigeon] (3d)

In a breakthrough result, [Haken 1985] proved that the PHP formula consisting of
clauses (3a) and (3b) requires length exp(Ω(n)) in resolution for m = n+ 1 pigeons, and
his proof can be extended to work also for the onto FPHP formulas consisting of all
clauses (3a)–(3d). Later work [Raz 2004; Razborov 2003; 2004] has shown that all of
the PHP formula variants remain hard even for arbitrarily many pigeons m, requiring
resolution length exp

(
Ω
(
nδ
))

for some δ > 0. What this means, intuitively, is that the
resolution proof system really cannot count — even faced with the preposterous claim
that infinitely many pigeons can be mapped in a one-to-one fashion into a some finite
number n of holes, resolution cannot find a short proof to refute this claim.

Since PHP formulas have size N = Θ
(
n3
)
, Haken’s lower bound is only exp

(
Ω
(

3
√
N
))

expressed in terms of formula size. The first truly exponential lower bound on length
was obtained for Tseitin formulas (an example of which is shown in Figure 2), which
encode (the negation of) the principle that “the sum of the vertex degrees in a graph
is even.” Here the variables are the edges in an undirected graph of bounded degree,
where every vertex has been labelled 0 or 1 so that the sum of all labels is odd. Then for

1This claim ignores the issue of preprocessing, which we will touch on briefly in Section 3, but a detailed
discussion of which is beyond the scope of this survey.
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every vertex one writes down the set of clauses encoding that the parity of the number
of true edges incident to that vertex is equal to the vertex label (see Figure 2b, which
displays the formula corresponding to the labelled graph in Figure 2a).

If we sum the constraints over all vertices we should get an odd number by the
construction of the labelling, but since such a sum counts each edge exactly twice it has
to be even. Thus, these formulas are indeed unsatisfiable. [Urquhart 1987] established
that Tseitin formulas require resolution length exp

(
Ω
(
N
))

if the underlying graph is a
well-connected so-called expander graph (which holds asymptotically almost surely for
a random regular graph of bounded degree, for instance). Intuitively, this shows that
resolution also is not able to count mod 2 efficiently.

Another example of exponentially hard formulas are random k-CNF formulas,
which are generated by randomly sampling ∆n k-clauses over n variables for some
large enough constant ∆ depending on k. For instance, ∆ & 4.5 is sufficient to get
unsatisfiable 3-CNF formulas asymptotically almost surely. [Chvátal and Szemerédi
1988] established that resolution requires length exp

(
Ω
(
N
))

to refute such formulas.
By now strong lower bounds have been shown for formulas encoding tiling problems

[Alekhnovich 2004], k-colourability [Beame et al. 2005], independent sets and vertex
covers [Beame et al. 2007], and many other combinatorial principles. We want to con-
clude our discussion of resolution length by mentioning perhaps the latest addition
to this long list, namely the subset cardinality formulas studied in [Spence 2010;
Van Gelder and Spence 2010; Mikša and Nordström 2014] (also known as zero-one
design or sgen formulas).

To construct these formulas, we start with an n × n (0, 1)-matrix with 4 non-zero
entries in each row and column except that one extra non-zero entry is added to some
empty cell (as in Figure 3a, where the extra 1 in the bottom row is in bold face). The
variables of the formula are the non-zero entries of the matrix, yielding a total of 4n+1
variables. For each row of 4 ones in the matrix, we write down the natural 3-CNF
formula encoding the positive cardinality constraint that at least 2 variables must be
true (as in the first set of clauses in Figure 3b), and for the row with 5 ones the 3-CNF
formula encoding that a strict majority of 3 variables must be true. For the columns
we instead encode negative cardinality constraints that the number of false variables
is at least 2 and 3, respectively (see the last set of clauses in Figure 3b). The formula
consisting of the conjunction of all these clauses must be unsatisfiable, since a strict
majority of the variables cannot be true and false simultaneously. We will have reason
to return to these formulas below when we discuss connections between CDCL and
resolution, and also when discussing cutting planes and pseudo-Boolean solving.

[Spence 2010; Van Gelder and Spence 2010] showed empirically that these formulas
are very hard for CDCL solvers, and [Mikša and Nordström 2014] proved the matching
theoretical result that subset cardinality formulas are indeed exponentially hard if the
underlying matrix is an expander (informally, if every at most medium-sized set of
rows has ones in many distinct columns).

2.2. Resolution Width
A second complexity measure for resolution, that is almost as well studied as length,
is width, measured as the size of a largest clause in a resolution refutation. It is clear
that the width needed to refute a formula is never larger than the number of vari-
ables n, which is in turn less than the total formula size N . It is also easy to see that
an upper bound w on resolution width implies an upper bound O

(
nw
)

on resolution
length, simply because the total number of distinct clauses of width at most w over
n variables is less than (3n)w. Incidentally, this simple counting argument turns out to
be essentially tight, in that there are k-CNF formulas refutable in width w that require
resolution length nΩ(w), as shown by [Atserias et al. 2014].
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1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1


(a) Matrix with row and column constraints.

(x1,1 ∨ x1,2 ∨ x1,4)

∧ (x1,1 ∨ x1,2 ∨ x1,8)

∧ (x1,1 ∨ x1,4 ∨ x1,8)

∧ (x1,2 ∨ x1,4 ∨ x1,8)

...
∧ (x4,11 ∨ x8,11 ∨ x10,11)

∧ (x4,11 ∨ x8,11 ∨ x11,11)

∧ (x4,11 ∨ x10,11 ∨ x11,11)

∧ (x8,11 ∨ x10,11 ∨ x11,11)

(b) Example cardinality constraints in CNF.

Fig. 3: Matrix and (fragment of) corresponding subset cardinality formula.

Much less obviously, however, and much more interestingly, strong enough width
lower bounds imply strong length lower bounds. [Ben-Sasson and Wigderson 2001]
showed that for a k-CNF formula of size N it holds that

refutation length ≥ exp

(
Ω

(
(refutation width)2

N

))
. (4)

This means that if one can prove that a formula requires width ω
(√
N logN

)
, this im-

mediately yields a superpolynomial length lower bound, and a width lower bound Ω(N)
implies a truly exponential exp(Ω(N)) length lower bound. Almost all known lower
bounds on resolution length can be derived via width lower bounds in this way (in
particular, all the bounds discussed in Section 2.1, although the ones predating [Ben-
Sasson and Wigderson 2001] were originally not obtained in this way).

For tree-like resolution, [Ben-Sasson and Wigderson 2001] proved a sharper version

tree-like refutation length ≥ 2refutation width (5)
of their bound in (4) for general resolution. This means that for tree-like resolution,
even width lower bounds ω

(
logN

)
yield superpolynomial length lower bounds. For

general resolution, however, a width lower bound even as large as Ω
(√
N logN

)
does

not imply anything about length. This raises the question of whether it is possible to
strengthen (4) to something closer to (5) also for general resolution. [Bonet and Galesi
2001] showed that this is not the case by studying another interesting combinatorial
benchmark formula, which we describe next.

The ordering principle says that “every finite (partially) ordered set {e1, . . . , en}
has a minimal element.” To encode the negation of this statement in CNF, we use
variables xi,j to denote “ei < ej” and write down the following clauses (for i 6= j 6= k 6= i
ranging over 1, ..., n):

xi,j ∨ xj,i [anti-symmetry; not both ei < ej and ej < ei] (6a)
xi,j ∨ xj,k ∨ xi,k [transitivity; ei < ej and ej < ek implies ei < ek] (6b)∨

1≤i≤n, i 6=jxi,j [ej is not a minimal element] (6c)

One can also add axioms
xi,j ∨ xj,i [totality; either ei < ej or ej < ei] (6d)
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to specify that the ordering is total. This yields a formula over Θ
(
n2
)

variables of total
size N = Θ

(
n3
)
. (We remark that variants of this formula also appear under the name

least number principle formula or graph tautology in the literature.)
[Krishnamurthy 1985] conjectured that these formulas should be hard for resolu-

tion, but [Stålmarck 1996] showed that they are refutable in length O(N) (even with-
out the clauses (6d)). As the formula is described above, it does not really make sense
to ask about the refutation width, since already the axiom clauses (6c) have unbounded
width. However, one can convert the formula to 3-CNF by applying the transformation
from (1a) to (1b) to the wide axioms (6c), and for this version of the formula [Bonet and
Galesi 2001] established a width lower bound Ω

(
3
√
N
)

(which is tight, and holds even
if the axioms (6d) are also added). This shows that even polynomially large resolution
width does not necessarily imply any length lower bounds for general resolution.

2.3. Resolution Space
The study of the space complexity of proofs, which was initiated in the late 1990s,
was originally motivated by considerations of SAT solver memory usage, but has also
turned out to be of intrinsic interest for proof complexity. Space can be measured in
different ways — here we focus on the most well studied measure of clause space, which
is the maximum number of clauses needed in memory while verifying the correctness
of a refutation.2 Thus, in what follows below “space” will always mean “clause space.”

The space usage of a resolution refutation at step t is the number of clauses at
steps ≤ t that are used at steps ≥ t. Returning to our example refutation in Figure 1,
the space usage at step 7 is 5 (the clauses in memory at this point are clauses 1, 3, 5, 6,
and 7). The space of a proof is obtained by measuring the space usage at each step and
taking the maximum. Phrased differently, one can view the formula as being stored
on a read-only input tape, from where clauses can be read into working memory. The
resolution rule can only be applied to clauses currently in working memory, and there
is no way to store clauses “on disk” — once they are erased from working memory,
they are gone. Then space measures how many clauses are used in working memory
to perform the resolution refutation. Incidentally, it is not hard to see that the proof
in Figure 1 is not optimal when it comes to minimizing space. We could do the same
refutation in space 4 instead by processing the clauses in the order 2, 4, 6, 1, 7, 3, 5, 8, 9.

Perhaps somewhat surprisingly, an unsatisfiable CNF formula of size N can always
be refuted in resolution space at most N + O(1), as shown by [Esteban and Torán
2001],3 though the refutation thus obtained might have exponential length. Lower
bounds on space were subsequently shown for PHP formulas and Tseitin formulas
[Alekhnovich et al. 2002; Esteban and Torán 2001] and for random k-CNFs [Ben-
Sasson and Galesi 2003]. For the latter two formula families the (optimal linear) lower
bounds matched exactly previously known width lower bounds, and also the proof tech-
niques had a very similar flavour. This led to the question of whether there was some
deeper connection hidden here.

In a very elegant paper, [Atserias and Dalmau 2008] confirmed this by showing that
the inequality

refutation space ≥ refutation width + O(1) (7)

2Note, though, that this measure underestimates the actual memory usage, since storing a clause re-
quires more than a constant amount of memory. For completenes, we mention that there is also a measure
total space, counting the total number of literals in memory (with repetitions), which has been studied in
[Alekhnovich et al. 2002; Bonacina et al. 2014; Bennett et al. 2015].
3This space upper bound is obtained by simply running CDCL (or even DPLL) as described in Section 3 with
some arbitrary but fixed variable ordering.
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(a) Pyramid graph Π2 of height 2.
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∧ v
∧ w
∧ (u ∨ v ∨ x)

∧ (v ∨ w ∨ y)

∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction PebΠ2
.

Fig. 4: Example pebbling contradiction for the pyramid of height 2.

holds for resolution refutations of k-CNF formulas. The proof of (7) is beautiful but uses
a somewhat non-explicit argument based on finite model theory. A more explicit proof,
which works by simple syntactic manipulations to construct a small-width refutation
from a small-space refutation, was presented in [Filmus et al. 2015a].

Since for all formulas studied up to [Atserias and Dalmau 2008] the width and space
complexity measures turned out to actually coincide, it is natural to ask whether (7)
could be strengthened to an asymptotic equality. The answer to this question is no. As
shown in the sequence of works [Nordström 2009; Nordström and Håstad 2013; Ben-
Sasson and Nordström 2008], there are formulas that can be refuted in width O(1) but
require space Ω(N/ logN) (i.e., formulas that are maximally easy for width but exhibit
worst-case behaviour for space except for a log factor).

These formulas are pebbling contradictions encoding so-called pebble games on
bounded fan-in DAGs, which for the purposes of this discussion we additionally require
to have a unique sink. In the “vanilla version” of the formula (illustrated in Figure 4),
there is one variable associated to each vertex and clauses encoding that

— the source vertices are all true;
— if all immediate predecessors are true, then truth propagates to the successor;
— but the sink is false.

There is an extensive literature on pebbling space and time-space trade-offs from the
1970s and 80s, pebbling contradictions have been useful before in proof complexity
in various contexts, e.g., in [Raz and McKenzie 1999; Bonet et al. 2000; Ben-Sasson
and Wigderson 2001]. Since pebbling contradictions can be shown to be refutable in
constant width but there are graphs for which the pebble game requires large space,
one could hope that the pebbling properties of such DAGs would somehow carry over
to resolution refutations of pebbling formulas and help us separate space and width.

Unfortunately, this hope cannot possibly materialize — a quick visual inspection of
Figure 4b reveals that this is a Horn formula (i.e., having at most one positive literal in
each clause), and such formulas are maximally easy for length, width, and space simul-
taneously.4 However, we can modify these formulas by substituting for every variable x
an exclusive or x1 ⊕ x2 of two new variables, and then expand to CNF in the canonical
way to get a new formula. This is perhaps easiest to explain by an example. Performing
this substitution in the clause

x ∨ y (8a)

4Jumping a bit ahead to Section 3 again, this is because Horn formulas are decided by unit propagation.
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we obtain the formula

¬(x1 ⊕ x2) ∨ (y1 ⊕ y2) , (8b)

which when expanded out to CNF becomes

(x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) .

(8c)

With this XOR-substitution, it turns out that the pebbling contradiction inherits the
time-space trade-offs of the pebbling DAG in terms of which it is defined [Ben-Sasson
and Nordström 2008; 2011] (and there is nothing magical with XOR — this can be
shown to work also for substitution with other Boolean functions that have the “right
properties”). Now the strong space-width separation described above is obtained by
plugging in the pebbling DAGs studied in [Paul et al. 1977; Gilbert and Tarjan 1978].

2.4. Resolution Trade-offs
In the preceding sections, we have seen that for all the complexity measures of length,
width, and space there are formulas which are maximally hard for these measures.
Suppose, however, that we are given a formula that is guaranteed to be easy for two or
more of these measures. Can we then find a resolution refutation that optimizes these
complexity measures simultaneously? Or are there trade-offs, so that minimizing one
measure must cause a sharp increase in the other measure?

The first result along these lines was reported in [Ben-Sasson 2009], where a strong
space-width trade-off was established. Namely, there are formulas for which

— there are refutations in width O(1);
— there are also refutations in space O(1);
— but optimizing one measure causes (essentially) worst-case behaviour for the other.

This holds for the “vanilla version” of the pebbling contradictions in Figure 4b (if one
again uses the graphs studied in [Paul et al. 1977; Gilbert and Tarjan 1978]).

Regarding trade-offs between length and space, it was shown in [Ben-Sasson and
Nordström 2011; Beame et al. 2012; Beck et al. 2013] that there are formulas that

— can be refuted in short length;
— can be refuted in small space;
— but even slightly optimizing one measure causes a dramatic blow-up for the other.

This holds for substituted pebbling formulas over DAGs with strong time-space trade-
offs (as in, e.g., [Lengauer and Tarjan 1982]) and for Tseitin formulas over long, narrow
rectangular grids.5

For length versus width, we know that short refutation length implies small refu-
tation width by (4). The proof of this inequality works by transforming a given short
refutation into a narrow one, but the length blows up exponentially in the process.
Recently, [Thapen 2014] established that this blow-up is unavoidable by exhibiting
formulas for which there exist resolution refutations in short length, but for which any
refutation in width as guaranteed by (4) has to be exponentially long. These formulas
are slightly tricky to describe, however, and so we do not do so here. A technical issue

5To be precise, the results in [Beck et al. 2013] require that one adds two copies of every edge in the grid
graph, which corresponds to XOR-substitution in the Tseitin formula, but it can be shown that this substi-
tution can be eliminated with some extra work.
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with Thapen’s result is that for all other trade-offs discussed above there are k-CNF
formulas that exhibit this behaviour, but Thapen’s formulas have clauses of logarith-
mic width. It would be nice to bring this down to constant width if possible.6

3. CONNECTIONS BETWEEN RESOLUTION AND CONFLICT-DRIVEN CLAUSE LEARNING
To make the connection between the resolution proof system and conflict-driven clause
learning (CDCL) SAT solvers, let us start by describing the Davis-Putnam-Logemann-
Loveland (DPLL) method [Davis and Putnam 1960; Davis et al. 1962] that lies at the
heart of these solvers. Given a CNF formula F , this recursive method works as follows:

(1) If F contains an empty clause, return UNSAT .
(2) If F is empty, return SAT .
(3) Else decide on some variable x and set it to true, and make a recursive call with all

satisfied clauses removed and all occurrences of x in other clauses removed.
(4) Set x to false, remove satisfied clauses and occurrences of x, and make a second

recursive call.
(5) Return UNSAT if both recursive calls returned UNSAT ; otherwise return SAT .

How to pick the variable x in step (3) is a nontrivial question in general, and there are
sophisticated decision heuristics for this, the most popular of which for CDCL solvers is
VSIDS [Moskewicz et al. 2001] (which stands for variable state independent decaying
sum). There is one simple special case, however: if F contains a unit clause, meaning
a clause with only one literal (i.e., all other literals have been falsified by previous
assignments), then we can skip the case analysis in (3) and (4) — the literal has to be
set to true in order not to falsify the formula. This kind of forced assignment is known
as unit propagation, and modern SAT solvers try to choose decision variables so that
99% of assignments (literally) will be unit propagations.

It is not hard to show that the search tree generated by a DPLL solver as described
above can be viewed as a tree-like resolution refutation. This means that the running
time of DPLL is lower-bounded by the minimum length in tree-like resolution. One
problem with this is that the same work can be duplicated in different subtrees. If the
DPLL solver makes a few unfortunate variable decisions at the start of the search,
then it can spend a lot time exploring all combinations of assignments to the other
variables in an exponential number of subtrees, when in fact the right thing to do
would have been to jump back to the top and try some other assignments there.

The idea behind CDCL [Bayardo Jr. and Schrag 1997; Marques-Silva and Sakallah
1999; Moskewicz et al. 2001] is that the SAT solver should avoid such duplication
of work by performing a conflict analysis when reaching a falsifying assignment and
learn a reason for the failure in the form of a new clause C, which is added to the for-
mula F . After this the solver has to unset variables until C is no longer falsified, and
in general this might involve not just the latest decision but a whole sequence of previ-
ous decisions. This means that the solver will typically not just backtrack one level but
backjump several levels. The clause C will then make sure that the SAT solver does
not go into the same search subtree again. There are well-developed heuristics for how
to learn clauses, and the most popular learning scheme is known as 1UIP (an abbre-
viation of first unique implication point). All of these learning schemes are essentially
resolution derivations with very particular structural constraints.

Another feature of CDCL solvers is that they frequently clear the list of variable
assignments and start the search all over again when their restart policy says so.

6We also want to mention in this context that in a recent, very intriguing work [Razborov 2015] obtained
doubly exponential size-width trade-offs in tree-like resolution (this is measured in the number of variables
in the formulas, which have exponential size and polynomial width).
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Restarts turn out to be very important in practice, although exactly why is poorly
understood. Furthermore, since learned clauses accumulate very rapidly, solvers have
a clause deletion policy that aggressively removes most of the learned clauses at reg-
ular intervals (up to 95% of the clauses over a complete run of the solver). A solver
implementing all of the ideas above that has been very influential for later develop-
ments is MiniSat [Eén and Sörensson 2004], which was enhanced by [Audemard and
Simon 2009] with the currently most successful heuristic for measuring which clauses
to keep or delete (which can be viewed as a generalized clause width measure).

Finally, a very important aspect of modern solvers is that before the main algorithm
even starts, extensive preprocessing of the input is performed, using a number of tech-
niques that are known to be theoretically very bad in the worst case, but are completely
indispensable in practice. Some solvers, such as the current SAT competitions7 cham-
pion Lingeling [Biere 2010], even interleave preprocessing and CDCL search, which
is known as inprocessing [Järvisalo et al. 2012a]. Most, though not all, of these pre-
/inprocessing techniques can also be formalized within resolution.

3.1. CDCL Versus Resolution
The resolution refutations found by CDCL solvers have a very specific structure. Ev-
ery learned clause is derived by trivial resolution, where one keeps just one clause
and resolves it sequentially with clauses currently in the clause database (i.e., axiom
clauses and previously learned clauses). Moreover, the clauses used are exactly those
triggering unit propagation, resolved over in reverse order of the propagations. What
this means is that these refutations will look like long, sparse chains, which are tree-
like except for non-local edges from previously learned clauses. This is very different
from general resolution proofs, which can have very “bushy” DAG-like structure.

Since CDCL is only looking for structurally very restricted proofs, it is natural to ask
how efficient CDCL proof search can be compared to the best possible general resolu-
tion proof. As mentioned above, the DPLL method corresponds to tree-like resolution,
which can be exponentially worse than general resolution (see, e.g., [Ben-Sasson et al.
2004]). What about CDCL? Is it also asymptotically weaker than resolution, or could it
be the case that CDCL implements efficient proof search in the sense that the method
is never more than polynomially worse, say, than the shortest resolution proof?

This is a hard question, and we cannot quite expect a fully constructive affirmative
answer since this would lead to collapses in parameterized complexity [Alekhnovich
and Razborov 2008]. A line of works including [Beame et al. 2004; Hertel et al. 2008;
Buss et al. 2008] culminated in the paper [Pipatsrisawat and Darwiche 2011] showing
that CDCL viewed as a proof system polynomially simulates resolution, a result that
holds for CDCL solvers with any reasonable learning scheme and restart policy. The
non-constructive part is in the decision strategy, which needs to be chosen in a specific
way to make the simulation go through. One possible way of interpreting this result
might be that if the decision heuristic is good enough, then CDCL solvers at least have
the potential to run fast on any formulas that possess short resolution proofs.

In independent work, [Atserias et al. 2011] obtained an alternative, constructive
version of this result by showing that if a formula F has a resolution refutation in
bounded width, then CDCL using a decision strategy with enough randomness will
decide F efficiently. At first sight this might not seem so impressive — after all, ex-
haustive search in bounded width also runs fast — but the point is that a CDCL solver
is very far from doing exhaustive width search and does not care at all about the exis-
tence or non-existence of narrow refutations.

7See http://www.satcompetition.org.
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The downside of both of these results is that they crucially need that the clause
deletion policy is never to delete clauses. As should be clear from the discussion above,
this is a very unrealistic assumption. It would be nice to extend the model of CDCL in
[Atserias et al. 2011; Pipatsrisawat and Darwiche 2011] to capture memory usage in a
more realistic way, and then study the question of whether CDCL can simulate resolu-
tion efficiently with respect to both time and space. A question that seems particularly
interesting in this context is whether something like the theoretical time-space trade-
offs in Section 2.4 could show up also in practice. The lower bounds in these trade-offs
hold also in the CDCL model, but the question is whether CDCL could find resolution
proofs achieving the matching upper bounds, or whether the DAG structure of these
proofs are beyond anything that CDCL could possibly produce.

3.2. Theoretical Complexity Measures and Hardness in Practice
The next topic we want to discuss is whether practical hardness for CDCL is in any
way related to the complexity measures of resolution length, width, and space. One
interesting observation in this context is that it follows from the results reviewed in
Section 2 — if we “normalize” length by taking a logarithm since it can be exponential
in the formula size N whereas the worst-case upper bounds for width and space are
linear — that for any k-CNF formula the inequalities

log(refutation length) . refutation width . refutation space (9)

hold. Thus, length, width, and space form a hierarchy of increasingly strict hardness
measures. Let us briefly discuss the measures again in this light:

— We know that length provides a lower bound on CDCL running time8 and that
CDCL polynomially simulates resolution [Pipatsrisawat and Darwiche 2011]. How-
ever, the results in [Alekhnovich and Razborov 2008] suggest that short resolution
proofs should be intractable to find in the worst case.

— Regarding width, searching for proofs in small width is apparently a well-known
heuristic in the AI community, and [Atserias et al. 2011] proved that CDCL should
run fast if such proofs exist.

— As to space, memory consumption is an important bottleneck for SAT solvers
in practice, and space complexity results provide lower bounds on CDCL clause
database size. One downside of this is that the bounds can be at most linear, and the
solver would certainly use a linear amount of memory just to store the input. How-
ever, it is important to note that the space lower bounds hold even in a model where
the solvers knows exactly which clauses it needs to keep. It could be argued that in
reality probably much more memory than the bare minimum should be needed.

Are width or even space lower bounds relevant indicators of CDCL hardness? Or
could it be true in practice that CDCL does essentially as well as resolution with re-
spect to length/running time? These are not mathematically well-defined questions,
since CDCL solvers are a moving target, but perhaps it may still be possible to per-
form experiments and draw interesting conclusions? Such an approach was proposed
by [Ansótegui et al. 2008], and [Järvisalo et al. 2012b] performed what seems to have
been the first systematic attempt to implement this program.

In view of the discussion above it seems too optimistic that length complexity should
be a reliable indicator of CDCL hardness. [Järvisalo et al. 2012b] therefore focused
on comparing width and space by running extensive experiments on formulas with
constant width complexity (and linear length complexity) but varying space complexity
to see whether running time correlated with space. These experiments produced lots

8Except if some non-resolution-based preprocessing techniques happen to be very successful.
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of interesting data, but it seems fair to say that the results are inconclusive. For some
families of formulas the correlation between running time and space complexity looks
very nice, but for other formulas the results seem quite chaotic.

In fact, one problem is that formulas with low width complexity and varying space
complexity are hard to find — pretty much the only known examples are the substi-
tuted pebbling formulas discussed in Section 2.3. Thus, it is not even clear whether
the experiments measured differences in width and space or some other property spe-
cific to these particular formulas. This problem seems inherent, however. One cannot
just pick arbitrary benchmark formulas and compute the width and space complex-
ity for them before running experiments, since deciding width is EXPTIME-complete
[Berkholz 2012] and deciding space appears likely to be PSPACE-complete.

As a general comment, CDCL solver performance on combinatorial benchmark for-
mulas is sometimes quite surprising. For instance, it seems to be folklore that if one
wants to solve PHP formulas as quickly as possible, it is better to switch off the ad-
vanced heuristics that are otherwise very important for performance. For the partial
ordering principle formulas in (6a)–(6c), it turns out that they are very sensitive to
settings in the VSIDS decision heuristics, with small differences seemingly making all
the difference between linear and exponential running time. And sometimes theoret-
ically easy formulas are much harder than provably hard ones! For instance, for very
regular matrices, such as the one in Figure 3a, subset cardinality formulas are easy
even for tree-like resolution. However, even small such instances are superhard for
CDCL solvers in practice (and harder than instances generated from random matri-
ces). Again, this seems to depend on the variable decision heuristic — keeping every-
thing else at default settings but swapping out VSIDS for a good fixed-variable decision
order (based on the structure of the matrix) makes the solver run very fast.

Although CDCL performance on crafted combinatorial instances admittedly might
not be immediately relevant for large-scale real-world instances,9 it nevertheless
seems that explanations of the above phenomena could lead to a better understand-
ing of CDCL, which is a question that is of great interest also in the applied SAT
community. One important difference from industrial instances is that combinatorial
benchmarks are easy to scale up and down to study the asymptotics of SAT solver
behaviour, and we believe that a more systematic study of formulas such as those re-
viewed in Section 2 could potentially yield important insights.

4. POLYNOMIAL CALCULUS
Polynomial calculus was introduced in [Clegg et al. 1996], but we describe below a
slightly modified version from [Alekhnovich et al. 2002].10 In this proof system we in-
terpret clauses as polynomials in the ring F[x, x, y, y, z, z, . . .], where x, x, y, y, z, z, . . . are
all formally distinct variables and F is a field (which would be GF(2) in practical SAT
solving applications but can be any field from the point of view of proof complexity).

In the context of polynomial calculus we identify 0 with true and 1 with false and
translate a clause such as x ∨ y ∨ z to the polynomial equation xyz = 0, so that clauses
evaluating to true corresponds to polynomials vanishing. To prove that a CNF formula
is unsatisfiable, we want to show that the equations obtained from the clauses are
inconsistent.

It is important to observe, however, that from an algebraic point of view x and x are
independent variables,11 and also variables can take as values any elements in the

9Though formulas with a “crafted flavour” turn up in, e.g., circuit verification and cryptographic problems.
10This modified version is known as polynomial calculus (with) resolution or PCR in the literature.
11In fact, in practical applications there would be no formal variables x, y, z, . . ., but they allow for a cleaner
theoretical treatment of the proof system.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article ZZ, Publication date: July 2015.



ZZ:14 J. Nordström

x ∨ y ∨ z y ∨ z
x ∨ y

(a) Resolution step.

xyz = 0

yz = 0

xyz = 0

z + z − 1 = 0

yz + yz − y = 0

xyz + xyz − xy = 0

−xyz + xy = 0

xy = 0

(b) Corresponding polynomial calculus derivation.

Fig. 5: Example of simulation of resolution step by polynomial calculus.

field F. Hence, we need to add constraints enforcing 0/1 assignments that in addition
respect the meaning of negation. This leads to the following set of derivation rules:

Boolean axioms
x2 − x = 0

(10a)

Negation
x+ x− 1 = 0

(10b)

Linear combination p = 0 q = 0

αp+ βq = 0
(α, β ∈ F) (10c)

Multiplication p = 0

xp = 0
(x any variable) (10d)

A polynomial calculus refutation ends when 1 = 0 has been derived, showing that the
polynomial equations have no common root, or equivalently that no assignment can
simultaneously satisfy all the clauses. Polynomial calculus is sound and complete, not
only for CNF formulas but for inconsistent systems of polynomial equations in general.

To define the complexity measures of size, degree, and space, we write out polynomi-
als in a refutation as linear combinations of monomials, where we note that without
loss of generality we can assume that all polynomials are multilinear (because of the
Boolean axioms (10a)). Then the size of a refutation, which is the analogue of resolution
length, is the total number of monomials in the refutation (counted with repetitions),
the degree, corresponding to resolution width, is the largest degree of any monomial in
it, and the (monomial) space, which is the analogue of resolution (clause) space, is the
maximal number of monomials in memory at any point during the refutation (again
counted with repetitions). One can also define a length measure for polynomial cal-
culus, which is the number of derivation steps, but this can be exponentially smaller
than the size, which is the more relevant measure to study here.

4.1. Polynomial Calculus and Resolution
Polynomial calculus can simulate resolution efficiently with respect to length/size,
width/degree, and space simultaneously simply by mimicking refutations step by step.
This means that all worst-case upper bounds for resolution immediately carry over
to polynomial calculus. For an example of how this works, see the simulation of the
resolution step in Figure 5a by the derivation in Figure 5b, where the equations corre-
sponding to the simulated clauses are in bold face.

Polynomial calculus can be strictly stronger than resolution with respect to size and
degree. For instance, over GF(2) it is not hard to see that Tseitin formulas can be
refuted in size O(N logN) and degree O(1) by doing Gaussian elimination. Another
example is the set of onto FPHP formulas (3a)–(3d), which [Riis 1993] showed to be
easy. It remains open, however, whether such separations can also be found for space.
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OPEN PROBLEM 1. Prove (or disprove) that polynomial calculus is strictly stronger
than resolution with respect to space.

4.2. Polynomial Calculus Size and Degree
A lot of what is known about length versus width in resolution carries over to size
versus degree in polynomial calculus. A degree upper bound d implies a size upper
bound nO(d) for refuting formulas over n variables by [Clegg et al. 1996], which is
qualitatively similar to the bound for resolution although the argument is a bit more
involved. Just as for resolution, this bound is essentially tight by [Atserias et al. 2014].

In the other direction, a lower bound on size in terms of degree exactly analogous
to the bound (4) for resolution holds for polynomial calculus as shown in [Impagliazzo
et al. 1999]. Interestingly, this paper is a precursor to [Ben-Sasson and Wigderson
2001], and although it was far from obvious at the time, it turns out that one can
run exactly the same proof for both of these bounds. As for resolution, the ordering
principle formulas in (6a)–(6d) witness the optimality of this size-degree lower bound,
as shown by [Galesi and Lauria 2010]. As for resolution, almost all size lower bounds
are derived via degree lower bounds, but obtaining degree lower bounds seems much
harder than width lower bounds and the machinery is much less well developed.

With the exception of Tseitin formulas and onto FPHP formulas, all the formulas in
Section 2.1 are equally hard also with respect to polynomial calculus size, which can
be shown via degree lower bounds arguments:

— Hardness of the standard CNF encoding (3a)–(3b) of PHP formulas12 follows from
[Alekhnovich and Razborov 2003], with some earlier work on other non-CNF en-
codings in [Razborov 1998; Impagliazzo et al. 1999]. The proof in [Alekhnovich and
Razborov 2003] works also if onto clauses (3d) are added, and recently [Mikša and
Nordström 2015] showed that FPHP formulas with clauses (3a)–(3c) are also hard
(whereas with both onto and functionality axioms added the formulas are easy, as
noted above).

— Strong degree and size lower bounds on random k-CNF formulas were shown by
[Ben-Sasson and Impagliazzo 1999] for polynomial calculus over fields of charac-
teristic distinct from 2, and lower bounds in any characteristic including 2 were
established by different methods in [Alekhnovich and Razborov 2003].

— For the subset cardinality formulas in Figure 3 [Mikša and Nordström 2014] also
proved polynomial calculus degree and size lower bounds.

— Also, “Tseitin formulas with the wrong modulus” are hard — one can define Tseitin-
like formulas encoding counting modulo primes q, and such formulas are hard over
fields of characteristic p 6= q [Buss et al. 2001; Alekhnovich and Razborov 2003].

4.3. Polynomial Calculus Space
Recall that for resolution we measure space as the number of clauses in memory, and
since clauses turn into monomials in polynomial calculus the natural analogue here is
monomial space. The first monomial space lower bounds were shown for PHP formulas
in [Alekhnovich et al. 2002]. These formulas have wide axioms, however, and if one
applies the 3-CNF conversion from (1a) to (1b) the lower bound proof breaks down.

Monomial space lower bounds for formulas of bounded width were proven only in
2012 (journal version in [Filmus et al. 2015b]) for an obfuscated 4-CNF version of PHP
formulas. This was followed by optimal, linear lower bounds for random 4-CNF formu-
las [Bonacina and Galesi 2015], and then for Tseitin formulas over expanders but with
the added assumptions that either these graphs are sampled randomly or one adds two

12Here a twist is needed since these formulas have high initial degree, but we will not go into this.
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copies of every edge to get a multigraph [Filmus et al. 2013].13 Somewhat intriguingly,
none of these papers could show any nontrivial lower bounds for any 3-CNF formulas.
This barrier was finally overcome by [Bennett et al. 2015], who proved optimal lower
bounds on random 3-CNFs. However, the following open problems show that we still
do not understand polynomial calculus space very well.

OPEN PROBLEM 2. Prove polynomial calculus space lower bounds (optimal, linear
bounds, or even any bounds) for Tseitin formulas over d-regular expander graphs for
d = 3 or even d > 3 using no other assumptions than expansion only.

OPEN PROBLEM 3. Prove that PHP formulas require large monomial space in poly-
nomial calculus even when converted to 3-CNF.

Another intriguing question is whether an analogue of the lower bound (7) on space
in terms of width in resolution holds for k-CNF formulas also for polynomial calculus.

OPEN PROBLEM 4. Is it true that space ≥ degree + O(1) in polynomial calculus?

This last problem remains wide open, but [Filmus et al. 2013] made what can be
described as some limited progress by showing that if a formula requires large reso-
lution width (which is a necessary, but not sufficient, condition for high degree), then
the XOR-substituted version (as in (8a)–(8c)) requires large space. When applied to
Tseitin-like formulas over expander graphs, this result yields an optimal separation of
space and degree. Namely, it follows that these formulas can be refuted in degree O(1)
but require space Ω(N). To obtain such separations we have to commit to a finite
characteristic p of the underlying field, however, and the formulas encoding count-
ing mod p will separate space and degree only for fields of this characteristic. It would
be nice to get a separation that would work in any characteristic, and the candidate
formulas to obtain such a result readily present themselves.

OPEN PROBLEM 5. Prove (or disprove) that substituted pebbling formulas require
monomial space lower-bounded by the pebbling space of the underlying DAG (which if
true would yield a space-degree separation independent of the field characteristic).

4.4. Polynomial Calculus Trade-offs
When it comes to trade-offs in polynomial calculus we again recognize most of the
picture from resolution, but there are also some differences:

— For space versus degree we know strong, essentially optimal trade-offs from [Beck
et al. 2013], and the formulas exhibiting such trade-offs are the same vanilla peb-
bling contradictions as for resolution (for which we get exactly the same bounds).

— [Beck et al. 2013] also showed strong size-space trade-offs, and again the formulas
used are pebbling contradictions over appropriate DAGs and Tseitin formulas over
long, skinny grids. Here there is some loss in parameters as compared to resolution,
however, which seems to be due to limitations of the proof techniques rather than to
actual differences in formula behaviour.

— We do not yet know for sure whether the size blow-up in [Impagliazzo et al. 1999]
when degree is decreased, is necessary, however, since the analysis in [Thapen 2014]
works only for resolution (at least so far). This leads to the final open problem about
polynomial calculus that we want to highlight in this section.

OPEN PROBLEM 6. Are there size-degree trade-offs in polynomial calculus in the
sense that size has to blow up when degree is decreased in [Impagliazzo et al. 1999]?

13It is worth noting that these space lower bounds hold for any characteristic, so although Tseitin formulas
have small-size refutations over GF(2), such refutations still require large space.
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4.5. Algebraic SAT Solving
We conclude this section with a brief discussion of algebraic SAT solving. There seems
to have been quite some excitement, at least in the theory community, about the
Gröbner basis approach to SAT solving after the paper [Clegg et al. 1996] appeared.
However, the improvement in performance that this method seemed to promise failed
to materialize in practice. Instead, the CDCL revolution happened . . .

Today there are some Gröbner basis SAT solvers such as PolyBoRi [Brickenstein
and Dreyer 2009; Brickenstein et al. 2009], but they do not seem competitive with
resolution-based solvers. Some SAT solvers such as March successfully implement
Gaussian elimination [Heule and van Maaren 2005], but this is only a very limited
form of polynomial calculus reasoning.

Is it harder to build good algebraic SAT solvers than CDCL solvers? Or is it just that
too little work has been done? (Witness that it took 40 years for resolution-based SAT
solvers to become really efficient.) Or is it perhaps a little bit of both?

Whatever the answer is to these questions, it seems clear that one needs to find some
kind of shortcut to use Gröbner bases for efficient SAT solving. A full Gröbner basis
computation does too much work, since it not only decides satisfiability but yields the
number of satisfying assignments, which is believed to be a strictly harder problem.

5. CUTTING PLANES
In the cutting planes proof system introduced in [Cook et al. 1987], clauses are in-
terpreted as linear inequalities over the reals with integer coefficients, so that our
example clause x ∨ y ∨ z gets translated to x + y + (1 − z) ≥ 1, or x + y − z ≥ 0 if we
move all additive constants to the right-hand side (note that in contrast to polynomial
calculus we now think of 1 as true and 0 as false, as we are more commonly used to).
The derivation rules are

Variable axioms
0 ≤ x ≤ 1

(11a)

Multiplication
∑
i aixi ≥ A∑
i caixi ≥ cA

(11b)

Addition
∑
i aixi ≥ A

∑
i bixi ≥ B∑

i (ai + bi)xi ≥ A+B
(11c)

Division
∑
i caixi ≥ A∑

i aixi ≥ dA/ce
(11d)

where ai, bi, c, A, andB are all integers, and the goal is to show that a formula is unsat-
isfiable by deriving 0 ≥ 1 from the linear inequalities corresponding to the clauses of
the formula. Once again it is clear that such a derivation can exist only if the formula
is indeed unsatisifiable, and the other direction of this implication also holds. We want
to highlight that in the division rule (11d) we can divide with the common factor c on
the left and then divide and round up the constant term on the right to the closest
integer, since we know that we are only interested in 0/1 solutions. This division rule
is where the power of cutting planes lies.

5.1. Cutting Planes Size, Length, and Space
The length of a cutting planes refutation is the total number of lines/inequalities in
it, and the size also sums the sizes of all coefficients (i.e., the bit size of representing
them). The natural generalization of clause space in resolution is to define cutting
planes (line) space as the maximal number of linear inequalities needed in memory
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during a refutation, since every clause is translated into a linear inequality. There is
no useful analogue of width/degree known for cutting planes.

Cutting planes can simulate resolution efficiently with respect to length/size and
space simultaneously by mimicking the resolution steps one by one, and hence just as
was the case for polynomial calculus we get the same worst-case upper bounds.

Cutting planes is strictly stronger than resolution with respect to length and size,
since it can refute PHP formulas (3a)–(3b) efficiently [Cook et al. 1987]. The reason
for this is that in contrast to resolution (and polynomial calculus), cutting planes can
count. PHP formulas are refuted simply but summing up the number of pigeons and
holes, after which the observation can immediately be made that there are too many
pigeons to fit into the holes. It seems probable that cutting planes and polynomial
calculus are incomparable with respect to size, i.e., that for both proof systems one can
find hard formulas that are easy for the other system. PHP formulas show that this is
true in one direction, but the other direction is open.

When it comes to space, cutting planes is very much stronger than both resolution
and polynomial calculus — [Galesi et al. 2015] recently showed that any CNF formula
can be refuted in constant line space 5 by cutting planes!14 This proof works by starting
with a linear inequality/hyperplane that cuts away the all-zero point of the Boolean
hypercube {0, 1}n from the candidate list of satisfying assignments (there has to exist
a clause falsified by this assignment, from which the hyperplane can be obtained), and
then uses 4 auxiliary hyperplanes to remove further points α ∈ {0, 1}n one by one
in lexicographical order until all possible assignments have been eliminated, showing
that the formulas is unsatisifiable. During the course of this refutation the size of
the coefficients of the hyperplanes become exponentially large, however, which the
line space measure does not charge for. If coefficient sizes are also counted, i.e., if one
measures the total space of cutting planes refutations, then it is not hard to show a
linear lower bound (for instance by combining [Ben-Sasson and Wigderson 2001] and
[Beck et al. 2013]) and a quadratic worst-case upper bound is immediately implied by
resolution. For resolution this quadratic upper bound is known to be tight by [Bonacina
et al. 2014], but to the best of our knowledge no superlinear lower bounds are known
on total space in cutting planes.

OPEN PROBLEM 7. Are there superlinear total space lower bounds for cutting
planes refutations with polynomial-size coefficients? Or with constant-size coefficients?

Proving such lower bounds, if they exist, seems challenging, however. It might be
worth noting in this context that already cutting planes with coefficients of absolute
size 2 (which is the minimum needed to simulate resolution) is quite powerful — this is
sufficient to construct space-efficient refutations of PHP formulas [Galesi et al. 2015].

Essentially the only formulas that are known to be hard for the cutting planes proof
system with respect to length/size are the clique-coclique formulas claming (the
negation of) that “a graph with an m-clique cannot be (m− 1)-colourable.” The formu-
las consist of clauses:

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n [some vertex is the kth member of the clique] (12a)
qk,i ∨ qk′,i [clique members are uniquely defined] (12b)
pi,j ∨ qk,i ∨ qk′,j [clique members are neighbours] (12c)
ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 [every vertex i has a colour] (12d)
pi,j ∨ ri,` ∨ rj,` [neighbours have distinct colours] (12e)

14Recall that this means that the formula is kept on a read-only input tape, and the working memory never
contain more than 5 inequalities at any given time.
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where variables pi,j are indicators of the edges in an n-vertex graph, variables qk,i
identify the members of an m-clique in the graph, and variables ri,` specify a colouring
of the vertices, for indices ranging over 1 ≤ i 6= j ≤ n, i < j, 1 ≤ k 6= k′ ≤ m, and
1 ≤ ` ≤ m− 1.

[Pudlák 1997] proved that these formulas are hard by using a so-called interpola-
tion argument, specifically tailored to work for formulas with the right structure. He
showed that from any short cutting planes refutation of the formula, one can extract
a small monotone circuit for clique, which reduces the problem to a question about
proving size lower bounds for monotone circuits.

It seems plausible that the Tseitin formulas in Figure 2 should require long cutting
planes refutations, since it should be hard to count mod 2 using linear inequalities,
and if this could be shown it would follow that cutting planes and polynomial calculus
are incomparable with respect to proof size. It also seems very likely that random
k-CNF formulas should be very hard, but no such lower bounds are known, nor any
other lower bounds not using the interpolation method. These are all longstanding
open problems in proof complexity.

OPEN PROBLEM 8. Prove length lower bounds for cutting planes refutations of
Tseitin formulas or random k-CNF formulas, or for any formula family by using some
technique other than interpolation.

5.2. Size-Space Trade-offs for Cutting Planes
Given our very limited understanding of cutting planes, it is perhaps not so surprising
that not very much is known about size-space trade-offs for this proof system.

[Göös and Pitassi 2014] showed that short cutting planes refutations of Tseitin for-
mulas on expanders must have large space, but this does not provide a real trade-off
since it seems likely that such short refutations do not exist at all, regardless of their
space complexity. [Huynh and Nordström 2012] proved that short cutting planes refu-
tations of one particular version of pebbling contradictions (slightly different from the
substituted pebbling contradictions discussed in Section 2.3) over one particular fam-
ily of DAGs require large space — a result that was strengthened and generalized by
[Göös and Pitassi 2014] — and for pebbling contradictions such short refutations do
exist. Interestingly, and somewhat unexpectedly, all of these results follow from reduc-
tions to communication complexity. The state of knowledge regarding pebbling con-
tradictions is much worse here than for resolution and polynomial calculus, however
— for the latter two proof systems we know of general methods to translate pebbling
trade-offs for (essentially) arbitrary graphs into proof complexity size-space trade-offs.

Since [Galesi et al. 2015] established that any CNF formula has a a constant-space
refutation, the lower bounds for pebbling contradictions in [Huynh and Nordström
2012; Göös and Pitassi 2014] yield true size-space trade-off results for cutting planes,
with formulas that can be refuted in both small size and small space, but where op-
timizing both measures simultaneously is impossible. However, the “space-efficient”
refutations have coefficients of exponential size. It would be more convincing to obtain
trade-offs where the small-space refutations also have small coefficients (which would
follow if known resolution and polynomial calculus results for pebbling contradictions
or Tseitin formulas over long, skinny grids could be lifted also to cutting planes).

OPEN PROBLEM 9. Are there trade-offs where the space-efficient CP refutations
have small coefficients (say, of polynomial or even constant size)?

5.3. Pseudo-Boolean SAT Solving
Work on so-called pseudo-Boolean solvers exploring (a subset of) cutting planes has
been done by, e.g., [Dixon and Ginsberg 2002; Dixon et al. 2004; Chai and Kuehlmann
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(a) Eulerian graph.

(u ∨ w) ∧ (w ∨ x ∨ y)

∧ (u ∨ w) ∧ (w ∨ x ∨ z)
∧ (u ∨ z) ∧ (w ∨ y ∨ z)
∧ (u ∨ z) ∧ (x ∨ y ∨ z)
∧ (v ∨ x) ∧ (w ∨ x ∨ y)

∧ (v ∨ x) ∧ (w ∨ x ∨ z)
∧ (v ∨ y) ∧ (w ∨ y ∨ z)
∧ (v ∨ y) ∧ (x ∨ y ∨ z)

(b) Corresponding CNF formula.

u+ w ≥ 1

−u− w ≥ −1

u+ z ≥ 1

−u− z ≥ −1

v + x ≥ 1

−v − x ≥ −1

v + y ≥ 1

−v − y ≥ −1

x+ y + z + w ≥ 2

−x− y − z − w ≥ −2

(c) Pseudo-Boolean encoding.

Fig. 6: Example of Markström’s even colouring (EC) formula (satisfiable instance).

2005; Sheini and Sakallah 2006; Le Berre and Parrain 2010], but it seems like a very
tough challenge to make these solvers as efficient as CDCL solvers. This is underlined
by the fact that a competitive option for pseudo-Boolean solving is to simply translate
the input to CNF and run a CDCL solver, as shown by [Eén and Sörensson 2006].

As it turns out, one problem with current pseudo-Boolean solvers is that if they get
their input in CNF, they cannot even go beyond resolution. Solvers such as Sat4j [Le
Berre and Parrain 2010] solve PHP formulas very efficiently, but they crucially depend
on the input being given as linear inequalities:

pi,1 + pi,2 + · · ·+ pi,n ≥ 1 [every pigeon i gets a hole] (13a)
−p1,j − p2,j − · · · − pn+1,j ≥ −1 [no hole j gets two pigeons] (13b)

If the input is instead presented in CNF, with the cardinality constraints in Equa-
tion (13b) encoded as the clauses in Equation (3b), then Sat4j runs in exponential
time. The same holds for subset cardinality formulas — if a pseudo-Boolean solver is
fed the formula encoded as cardinality constraints, then it runs fast, but on the CNF
version in Figure 3b it cannot possibly do better than the exponential lower bound on
resolution length in [Mikša and Nordström 2014].

Thus, an algorithmic challenge is to make pseudo-Boolean solvers reason more ef-
ficiently with CNF inputs, so that they could, e.g., detect and use the cardinality
constraints hidden in (3a)–(3b) to get performance comparable to when the input is
given as (13a)–(13b). It is possible to do a preprocessing step to recover cardinality
constraints encoded in CNF, and for PHP formulas and subset cardinality formulas
this works well [Biere et al. 2014], but full preprocessing of the input to try to detect
cardinality constraints is probably not an efficient approach in general.

This is not the only challenge for pseudo-Boolean solvers, however. Another quite
intriguing family of benchmark formulas in this context are the even colouring (EC)
formulas constructed by [Markström 2006] and shown in Figure 6. Here one starts
with a connected graph G having an Eulerian cycle, i.e., with all vertex degrees even,
and writes down constraints that edges should be labelled 0/1 in such a way that for
every vertex v in G the number of 0-edges and 1-edges incident to v is equal. If the total
number of edges in the graph is even, then this formula is satisfiable — just fix any
Eulerian cycle and label every second edge 0 and 1, respectively. If the number of edges
is odd, however, then cutting planes can sum the at-least-2 constraints in Figure 6c (the
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ones with positive coefficients) over all vertices to derive 2·
∑
e∈E(G) e ≥ |E(G)| and then

divide by 2 and round up to obtain
∑
e∈E(G) e ≥ (|E(G)| + 1)/2. By instead summing

up all at-most-2 constraints (the ones with negative coefficients) and dividing by 2 one
obtains

∑
e∈E(G) e ≤ (|E(G)|−1)/2, and subtracting these two inequalities yields 0 ≥ 1.

One interesting aspect to observe here is that in contrast to PHP and subset cardi-
nality formulas, the above argument uses crucially that variables are integer-valued.
To see the difference, suppose that we are given a PHP or subset cardinality formula
encoded as linear constraints. Then for cutting planes it is sufficient to simply add
up the inequalities to derive a contradiction. No integer-based reasoning is needed.
Even if we allow putting fractional pigeons into fractional holes, there is no way one
can make a pigeon mass of n + 1 fit into holes of total capacity n. This set of lin-
ear inequalities is unsatisfiable even over the rationals, i.e., the polytopes defined by
the constraints is empty. Similarly, for subset cardinality formulas there is no way
4n + 1 variables could have a total “true mass” of at least 2n + 1 and a total “false
mass” of 2n+ 1 simultaneously. But for collections of linear constraints as in Figure 6c,
assigning all edges value 1

2 is a satisfying fractional solution. The polytope defined by
the linear inequalities is not empty, but it does not contain any integer points. Hence,
refuting EC formulas in cutting planes crucially requires the division rule (11d), and
pseudo-Boolean solvers need to implement this rule (or some other form of integer-
based reasoning) to decide these formulas efficiently. Based on some limited experi-
ments, however, EC formulas appear to be much harder for pseudo-Boolean solvers
than the cutting planes upper bound would suggest, which seem to indicate that the
solvers are still quite far from using the full power of cutting planes reasoning.

6. EXTENDED RESOLUTION
A topic of considerable interest in the applied SAT community lately has been if and
how SAT solvers can be enhanced to use extended resolution, an approach that was
proposed in, e.g., [Sinz and Biere 2006; Audemard et al. 2010]. What this means is
that one starts with a CDCL solver searching for resolution proofs as usual, but adds
the option of introducing new variables as names of subformulas. What can proof com-
plexity say about such an approach to SAT solving?

Not too much — if there are no restrictions on how these new variables can be added,
then this corresponds to the proof system extended Frege, which is an extremely strong
proof system for which essentially no lower bounds are known. So this means that the
potential gains in performance are enourmous, but of course the question is how the
new variables should be added to realize this potential.

In order to make it possible to study the kind of extended resolution used in CDCL
solvers, one needs to describe in more detail the rules actually used for adding new
variables. Once one has such a description, such as, e.g., for the bounded variable
addition used in [Manthey et al. 2013], it is possible to reason about what such a
limited form of extended resolution could or could not do (although proving formal
theorems about this might still be a formidable problem).

7. CONCLUDING REMARKS
In this column, we have presented an overview of the proof systems resolution, poly-
nomial calculus and cutting planes, motivated by the fact that these systems serve
as foundations for SAT solvers using conflict-driven clause learning (CDCL), algebraic
Gröbner basis computations, and pseudo-Boolean techniques, respectively. The dis-
cussion has intentionally been kept at a high level, with only informal statements of
results. For many of the proof complexity results mentioned in this paper it is possible
to find exact, formal statements in the survey paper [Nordström 2013].
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On the proof complexity side, the main take-away message is that resolution is fairly
well understood, although there are still some interesting open questions left (which
we mostly did not discuss). For polynomial calculus we also have a fair amount of
knowledge, although there are many more open problems than for resolution. For in-
stance, the techniques for proving degree lower bounds (and hence size lower bounds)
are not yet very well developed, and the hardness status of several interesting for-
mula families remain open. Also, we do not understand very well the relations be-
tween degree and monomial space. For cutting planes, almost nothing is known, and
any progress on the open problems listed in this survey would be very exciting.

When it comes to applied SAT solving, we still have quite a poor understanding of
why different formulas are easy or hard. It would be interesting to investigate fur-
ther whether there could be any relevant connections here between proof complexity
measures and hardness of SAT, or whether tools and techniques from proof complexity
could help to shed light on the inner workings on SAT solvers.

Finally, the main algorithmic challenge we want to highlight is if and how one can
build efficient SAT solvers based on stronger proof systems than resolution. Is it really
the case that CDCL, originating in the DPLL method from the early 1960s [Davis and
Putnam 1960; Davis et al. 1962; Robinson 1965], is the best conceivable paradigm?
Or could it be possible that is it now time, over 50 years later, to take the next step
and build fundamentally different SAT solvers based on algebraic and/or geometric
methods? Are there perhaps fundamental limitations why efficient proof search can-
not be implemented within these proof systems? Or could it be that a sustained long-
term effort would yield powerful new SAT solving paradigms, just as the immense
work spent on optimizing CDCL solvers over the years have led to improvements in
performance of several orders of magnitude?
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Instances. In Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI ’08). 222–228.

Albert Atserias and Vı́ctor Dalmau. 2008. A Combinatorial Characterization of Resolution Width. J. Comput.
System Sci. 74, 3 (May 2008), 323–334. Preliminary version in CCC ’03.

Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. 2011. Clause-Learning Algorithms with Many
Restarts and Bounded-Width Resolution. Journal of Artificial Intelligence Research 40 (Jan. 2011),
353–373. Preliminary version in SAT ’09.

Albert Atserias, Massimo Lauria, and Jakob Nordström. 2014. Narrow Proofs May Be Maximally Long. In
Proceedings of the 29th Annual IEEE Conference on Computational Complexity (CCC ’14). 286–297.

Gilles Audemard, George Katsirelos, and Laurent Simon. 2010. A Restriction of Extended Resolution for
Clause Learning SAT Solvers. In Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI ’10). 15–20.

Gilles Audemard and Laurent Simon. 2009. Predicting Learnt Clauses Quality in Modern SAT Solvers. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI ’09). 399–404.

Roberto J. Bayardo Jr. and Robert Schrag. 1997. Using CSP Look-Back Techniques to Solve Real-World SAT
Instances. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI ’97). 203–208.

Paul Beame, Chris Beck, and Russell Impagliazzo. 2012. Time-Space Tradeoffs in Resolution: Superpoly-
nomial Lower Bounds for Superlinear Space. In Proceedings of the 44th Annual ACM Symposium on
Theory of Computing (STOC ’12). 213–232.

Paul Beame, Joseph C. Culberson, David G. Mitchell, and Cristopher Moore. 2005. The Resolution Complex-
ity of Random Graph k-Colorability. Discrete Applied Mathematics 153, 1-3 (Dec. 2005), 25–47.

Paul Beame, Russell Impagliazzo, and Ashish Sabharwal. 2007. The Resolution Complexity of Independent
Sets and Vertex Covers in Random Graphs. Computational Complexity 16, 3 (Oct. 2007), 245–297.

Paul Beame, Henry Kautz, and Ashish Sabharwal. 2004. Towards Understanding and Harnessing the Poten-
tial of Clause Learning. Journal of Artificial Intelligence Research 22 (Dec. 2004), 319–351. Preliminary
version in IJCAI ’03.

Chris Beck, Jakob Nordström, and Bangsheng Tang. 2013. Some Trade-off Results for Polynomial Calculus.
In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC ’13). 813–822.

Eli Ben-Sasson. 2009. Size-Space Tradeoffs for Resolution. SIAM J. Comput. 38, 6 (May 2009), 2511–2525.
Preliminary version in STOC ’02.

Eli Ben-Sasson and Nicola Galesi. 2003. Space Complexity of Random Formulae in Resolution. Random
Structures and Algorithms 23, 1 (Aug. 2003), 92–109. Preliminary version in CCC ’01.

Eli Ben-Sasson and Russell Impagliazzo. 1999. Random CNF’s are Hard for the Polynomial Calculus. In
Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’99).
415–421. Journal version in [Ben-Sasson and Impagliazzo 2010].

Eli Ben-Sasson and Russell Impagliazzo. 2010. Random CNF’s are Hard for the Polynomial Calculus. Com-
putational Complexity 19 (2010), 501–519. Issue 4. Preliminary version in FOCS ’99.

Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. 2004. Near Optimal Separation of Tree-Like and
General Resolution. Combinatorica 24, 4 (Sept. 2004), 585–603.

Eli Ben-Sasson and Jakob Nordström. 2008. Short Proofs May Be Spacious: An Optimal Separation of Space
and Length in Resolution. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS ’08). 709–718.

Eli Ben-Sasson and Jakob Nordström. 2011. Understanding Space in Proof Complexity: Separations and
Trade-offs via Substitutions. In Proceedings of the 2nd Symposium on Innovations in Computer Science
(ICS ’11). 401–416.

Eli Ben-Sasson and Avi Wigderson. 2001. Short Proofs are Narrow—Resolution Made Simple. J. ACM 48, 2
(March 2001), 149–169. Preliminary version in STOC ’99.

Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony Huynh, Mike Molloy, and Paul Wollan. 2015. Space
Proof Complexity for Random 3-CNFs. Technical Report 1503.01613. arXiv.org.

Christoph Berkholz. 2012. On the Complexity of Finding Narrow Proofs. In Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’12). 351–360.

Armin Biere. 2010. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Technical Report 10/1.
FMV Reports Series, Institute for Formal Models and Verification, Johannes Kepler University.

Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh (Eds.). 2009. Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press.

Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey. 2014. Detecting cardinality con-
straints in CNF. In Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14) (Lecture Notes in Computer Science), Vol. 8561. Springer, 285–301.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article ZZ, Publication date: July 2015.



ZZ:24 J. Nordström

Archie Blake. 1937. Canonical Expressions in Boolean Algebra. Ph.D. Dissertation. University of Chicago.
Ilario Bonacina and Nicola Galesi. 2015. A Framework for Space Complexity in Algebraic Proof Systems. J.

ACM 62, 3, Article 23 (June 2015), 23:1–23:20 pages. Preliminary version in ITCS ’13.
Ilario Bonacina, Nicola Galesi, and Neil Thapen. 2014. Total Space in Resolution. In Proceedings of the 55th

Annual IEEE Symposium on Foundations of Computer Science (FOCS ’14). 641–650.
Marı́a Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. 2000. On the Relative Complexity

of Resolution Refinements and Cutting Planes Proof Systems. SIAM J. Comput. 30, 5 (2000), 1462–1484.
Preliminary version in FOCS ’98.

Marı́a Luisa Bonet and Nicola Galesi. 2001. Optimality of Size-Width Tradeoffs for Resolution. Computa-
tional Complexity 10, 4 (Dec. 2001), 261–276. Preliminary version in FOCS ’99.

Michael Brickenstein and Alexander Dreyer. 2009. PolyBoRi: A framework for Gröbner-basis computations
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Mika Göös and Toniann Pitassi. 2014. Communication Lower Bounds via Critical Block Sensitivity. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC ’14). 847–856.

Armin Haken. 1985. The Intractability of Resolution. Theoretical Computer Science 39, 2-3 (Aug. 1985),
297–308.

Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. 2008. Clause Learning Can Effec-
tively P-Simulate General Propositional Resolution. In Proceedings of the 23rd National Conference on
Artificial Intelligence (AAAI ’08). 283–290.

Marijn Heule and Hans van Maaren. 2005. Aligning CNF- and Equivalence-Reasoning. In 7th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’04), Selected Revised Papers (Lec-
ture Notes in Computer Science), Vol. 3542. Springer, 145–156.

Trinh Huynh and Jakob Nordström. 2012. On the Virtue of Succinct Proofs: Amplifying Communication
Complexity Hardness to Time-Space Trade-offs in Proof Complexity (Extended Abstract). In Proceed-
ings of the 44th Annual ACM Symposium on Theory of Computing (STOC ’12). 233–248.
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