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NARROW PROOFS MAY BE SPACIOUS:
SEPARATING SPACE AND WIDTH IN RESOLUTION∗

JAKOB NORDSTRÖM†

Abstract. The width of a resolution proof is the maximal number of literals in any clause of the
proof. The space of a proof is the maximal number of clauses kept in memory simultaneously if the
proof is only allowed to infer new clauses from clauses currently in memory. Both of these measures
have previously been studied and related to the resolution refutation size of unsatisfiable conjunctive
normal form (CNF) formulas. Also, the minimum refutation space of a formula has been proven to
be at least as large as the minimum refutation width, but it has been open whether space can be
separated from width or the two measures coincide asymptotically. We prove that there is a family
of k-CNF formulas for which the refutation width in resolution is constant but the refutation space
is nonconstant, thus solving a problem mentioned in several previous papers.
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1. Introduction. A proof system for a language L is an algorithm P (x, π) which
runs in time polynomial in |x| and |π| such that for all x ∈ L there is a string π (a
proof ) for which P (x, π) = 1. For x /∈ L, it should hold for all strings π that
P (x, π) = 0. The complexity of a proof system P is the smallest bounding function
g : N �→ N such that x ∈ L if and only if there is a proof π of size |π| ≤ g

(|x|) for
which P

(
x, π
)

= 1. If a proof system is of polynomial complexity, it is said to be
polynomially bounded. A propositional proof system is a proof system for tautologies
in propositional logic.

The central task of proof complexity is to construct and investigate the power of
different propositional proof systems. The purpose of this endeavor is at least twofold.

First, propositional proof complexity is closely related to the question of P versus
NP, which is recognized as a major open problem in theoretical computer science and
mathematics. Since NP is exactly the set of languages with polynomially bounded
proof systems, and since tautology can be seen to be the dual problem of satisfi-

ability, we have the famous theorem of Cook and Reckhow [24] that NP = co-NP if
and only if there exists a polynomially bounded propositional proof system. Thus, if
it could be shown that there are no polynomially bounded proof systems for propo-
sitional tautologies, P �= NP would follow as a corollary since P is closed under com-
plement. One way of approaching this distant goal is to study stronger and stronger
proof systems and try to prove superpolynomial lower bounds on proof size. However,
although great progress has been made in the last couple of decades for a variety of
propositional proof systems, it seems that we are still very far from fully understanding
the reasoning power of even quite simple ones.

Second, designing efficient algorithms for proving tautologies (or, equivalently,
testing satisfiability) is a very important problem not only in theoretical computer
science but also in applied research and industry, for instance, in the context of
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formal methods. All automated theorem provers, regardless of whether they actually
produce a written proof, explicitly or implicitly define a system in which proofs are
searched for and rules which determine what proofs in this system look like. Lower
bounds for proofs in such proof systems imply lower bounds on the running time of
corresponding automated theorem provers. In the other direction, theoretical upper
bounds on proof size in a system can give upper bounds on the running time of a
proof search algorithm, provided that the algorithm can be shown to search for proofs
in the system in an efficient manner.

Also, the field of proof complexity has rich connections to cryptography, artificial
intelligence, and mathematical logic. Some good surveys of proof complexity are
[9, 12, 21, 55].

1.1. Previous work. Any propositional logic formula can be converted to a for-
mula in conjunctive normal form (CNF) that is only linearly larger and is unsatisfiable
if and only if the original formula is a tautology. Therefore, any sound and complete
system which produces refutations of unsatisfiable CNF formulas can be considered
as a general propositional proof system.

One such proof system, arguably the most studied propositional proof system, is
resolution. The resolution proof system appeared in [17] and began to be investigated
in connection with automated theorem proving in the 1960s [26, 27, 49]. Because of
its simplicity—there is only one derivation rule—and because all lines in a proof are
clauses, this proof system is well adapted to proof search algorithms. Many real-world
automated theorem provers are based on resolution.

Being so simple and fundamental, resolution was also a natural target to attack
when developing methods for proving lower bounds in proof complexity. In this con-
text, it is most straightforward to prove bounds on the length of proofs, i.e., the num-
ber of clauses, which is easily seen to be polynomially related to the proof size. In 1968,
Tseitin [53] presented a superpolynomial lower bound on proof length for a restricted
form of resolution, called regular resolution, but it was not until almost 20 years later
that Haken [33] proved the first superpolynomial lower bound for general resolution.
This exponential lower bound of Haken has later been followed by many other strong
results on resolution proof length, for instance, in [10, 11, 16, 22, 23, 44, 47, 48, 54].

A second complexity measure for resolution, first made explicit by Galil [31],
is the width, measured as the maximal size of a clause in the proof. Ben-Sasson
and Wigderson [16] showed a strong upper bound on width in terms of length, thus
providing a new method for proving lower bounds on proof length by proving lower
bounds on width.

The tight connection between proof length and proof width raised the question of
whether other complexity measures could yield interesting insights as well. In [29, 51],
Esteban and Torán introduced the concept of space in resolution, transforming a
previous definition from [36]. Intuitively, the space of a resolution proof is the maximal
number of clauses one needs to keep in memory while verifying the proof. This measure
is related to the memory required by the family of so-called DPLL algorithms for
propositional satisfiability based on [26, 27].

A number of upper and lower bounds for proof space in resolution and other proof
systems were subsequently presented in, for instance, [3, 14, 28, 30]. In several of these
papers, it was noted that, somewhat unexpectedly, the lower bounds on resolution
proof space for different formula families exactly matched previously known lower
bounds on proof width. Atserias and Dalmau [7] showed that this was not a coinci-
dence but that the minimum space of refuting any unsatisfiable k-CNF formulaF is at
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least as large as the minimum width of refuting it minus a small constant depending
on k.

1.2. Questions left open by previous research. Some natural remaining
open questions in this line of research relating the proof complexity measures of length,
width, and space in resolution are as follows:

1. The main theorem in [7] says that (essentially) space ≥ width, but it leaves
open whether this relationship is tight up to additive or multiplicative con-
stants. Do refutation space and width always coincide, or is there a formula
family that separates the two measures asymptotically?

2. What is the relation between space and length? It is not too hard to see
that upper bounds on width imply upper bounds on length, and as a con-
sequence of [7] this must be true for space with respect to length as well.
In the other direction, we have the result from [16] discussed above that
upper bounds on length imply upper bounds on width. Is there a similar
Ben-Sasson–Wigderson-style upper bound on space in terms of length, or can
short resolution proofs be arbitrarily complex with respect to space?

3. A third, intimately connected question is to determine the refutation space of
the formula family of pebbling contradictions defined in terms of pebble games
on directed acyclic graphs (DAGs). Nonconstant lower bounds on the space of
refuting pebbling contradictions would separate space and width and possibly
also clarify the relation between space and length if the bounds were good
enough. On the other hand, a constant upper bound on the refutation space
would improve the trade-off results for different proof complexity measures
for resolution in [13].

The above three questions have been mentioned as interesting open problems in
[13, 28, 30, 52].

1.3. Our contribution. In this paper, we answer the first question above by
separating space and width. This is done by proving an asymptotically tight bound
on space for pebbling contradictions over binary trees, thus at least partially solving
the open problem about the space complexity of pebbling contradictions as well.

More precisely, our results are as follows (formal definitions are given in sections
3 and 4).

Theorem 1.1. The space of refuting pebbling contradictions over complete binary
trees of height h in resolution grows as Θ(h), provided that the number of variables
per vertex in the pebbling contradictions is at least 2.

Corollary 1.2. For all k ≥ 4, there is a family {Fn}∞n=1 of k-CNF formu-
las of size O(n) that can be refuted in width W(Fn � 0) = O(1) but require space
Sp(Fn � 0) = Θ(logn).

2. Proof overview and paper organization. We now outline how this paper
is organized and in the process try to give an intuitive, high-level description of the
lower bound proof that is the main component in Theorem 1.1.

2.1. Preliminaries. We start in section 3 by defining the resolution proof sys-
tem (Definition 3.2) and the measures length, width, and space. This then allows us
to give more precise statements of the results referred to in section 1.1.

A quick, informal summary of section 3 is that a resolution refutation of a CNF
formula F is a sequence of derivation steps. In each step we can write a clause from F
on the blackboard, erase a clause from the blackboard, or derive some new disjunctive
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(a) DAG encoding calculation. (b) After pebbling with results filled in.

Fig. 1. Example of modeling calculation as pebbling of DAG.

clause implied by the current content of the blackboard.1 The refutation ends when we
reach the contradictory empty clause. The width of a resolution refutation is the size
of the largest clause in the refutation. The space is the maximum number of clauses
on the blackboard simultaneously. We write W(F � 0) to denote the minimum width
of any refutation of F , and Sp(F � 0) to denote the minimum space of any refutation.

Section 4 introduces pebble games and CNF formulas defined in terms of these
games.

Pebble games on DAGs model the calculations described by these DAGs, where
the source vertices contain the input and nonsource vertices specify operations on the
values of the predecessors (see Figure 1). Placing a pebble on a vertex v corresponds
to storing in memory the partial result of the calculation described by the subgraph
rooted at v. Removing a pebble from v corresponds to deleting the partial result of
v from memory. A pebbling of a DAG G is a sequence of moves starting with the
empty graph G and ending with all vertices in G empty except for a pebble on the
(unique) sink vertex. The cost of a pebbling is the maximal number of pebbles used
simultaneously at any point in time during the pebbling. The pebbling price of a
DAG G is the minimum cost of any pebbling, i.e., the minimum number of memory
registers required to perform the complete calculation described by G.

The pebble game on a DAG G can be encoded as an unsatisfiable CNF formula
Pebd

G, a so-called pebbling contradiction (Definition 4.4). See Figure 2 for a small
example. Very briefly, pebbling contradictions are constructed as follows:

• Associate d variables x(v)1, . . . , x(v)d with each vertex v for some fixed d (in
Figure 2 we have d = 2).

• Specify that all sources have at least one true variable (for example, the clause
x(r)1 ∨ x(r)2 for the vertex r).

• Add clauses saying that truth propagates from predecessors to successors (for
instance, for u with predecessors r and s, clauses 4–7 in Figure 2 are the CNF
encoding of (x(r)1 ∨ x(r)2) ∧ (x(s)1 ∨ x(s)2) → (x(u)1 ∨ x(u)2)).

• To get a contradiction, conclude the formula with x(z)1∧· · ·∧x(z)d for z the
sink of the DAG.

In section 4.2, we define these formulas formally and review what is known about them.
In particular, we recall that pebbling contradictions can be refuted in resolution in
constant width (Theorem 4.5).

1The resolution derivation rule is as in (3.2) on page 67, but for our purposes, it turns out that
the exact definition of the rule is not essential—our lower bound holds for any sound derivation rule.
What is important is that we are only allowed to derive new clauses that follow logically from the
set of clauses currently on the blackboard.
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(x(r)1 ∨ x(r)2) ∧ (x(u)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(s)1 ∨ x(s)2) ∧ (x(u)1 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(t)1 ∨ x(t)2) ∧ (x(u)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)2 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2) ∧ x(z)1
∧ (x(r)2 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ x(z)2
∧ (x(r)2 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2)

∧ (x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

Fig. 2. The pebbling contradiction Peb2
Π2

for the pyramid graph Π2 of height 2.

2.2. Tentative proof idea. Now one could try to argue that if we pick DAGs
G with high pebbling price, since the corresponding pebbling contradictions encode
calculations which require large memory, any resolution proofs refuting these formulas
should require large space.

More specifically, what we would like to do is to establish a connection between
resolution refutations of pebbling contradictions on the one hand, and the so-called
black-white pebble game modeling the nondeterministic computations described by
the underlying graphs on the other. Our intuition is that resolution should have to
conform to the combinatorics of the pebble game in the sense that from any resolution
refutation of a pebbling contradiction Pebd

G we should be able to extract a pebbling
of the DAG G in terms of which the pebbling contradiction is defined.

Ideally, we would like to give a proof of a lower bound for the refutation space of
pebbling contradictions along the following lines:

1. First, find a natural interpretation of sets of clauses currently “on the black-
board” in a resolution refutation of Pebd

G in terms of black and white pebbles
on the vertices of G.

2. Then, prove that this interpretation of clauses in terms of pebbles captures
the pebble game in the following sense: for any resolution refutation of Pebd

G,
looking at consecutive sets of clauses on the blackboard and considering the
corresponding sets of pebbles in the graph yields a black-white pebbling of G
in accordance with the rules of the pebble game.

3. Finally, show that the interpretation captures resolution space in the sense
that if some blackboard clause configuration induces a lot of pebbles on the
graph, then there must be many clauses on the blackboard.

Combining this with known lower bounds on the pebbling price of G, this would imply
a lower bound on the refutation space of pebbling contradictions. As a corollary, we
would get a separation of space and width in resolution.

Let us sketch what the formal argument would look like: Consider an arbitrary
resolution refutation of Pebd

G. From this refutation we extract a pebbling of G. At
some point in the obtained pebbling, there must be a lot of pebbles on the vertices
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(u)1 ∨ x(u)2

x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a) Clauses on blackboard. (b) Corresponding pebbles in the graph.

Fig. 3. Example of intuitive correspondence between sets of clauses and pebbles.

of G, since G was chosen with high pebbling price. But this means that at some
point in the proof, there are a lot of clauses on the blackboard. Since this holds for
any resolution refutation, the refutation space of Pebd

G must be large. The separation
result follows from the fact that we know that pebbling contradictions can be refuted
in constant width.

Unfortunately, we will not quite be able to make this proof idea work. In the
next subsection, we describe the modifications that we are forced to make. We then
state precisely the results that we need and show how the bits and pieces fit together
to yield Theorem 1.1 and Corollary 1.2.

2.3. Detailed overview of formal proof. The black-white pebble game played
on a DAG G can be viewed as a way of proving the end result of the calculation de-
scribed by G. Black pebbles correspond to proven partial results of the computation.
White pebbles correspond to assumptions about partial results which have been used
to derive other partial results (i.e., black pebbles), but these assumptions will have to
be verified for the calculation to be complete. The final goal is a black pebble on the
sink z and no other pebbles in the graph, which corresponds to us having uncondi-
tionally proven the end result of the calculation, having eliminated any assumptions
made along the way.

Translating this to pebbling contradictions, it turns out that a fruitful way to
think of a black pebble on v is that it should correspond to truth of the disjunction∨d

i=1 x(v)i of all positive literals over v, or to “truth of v.” A white pebble on a
vertex w can be understood to mean that we need to assume the partial result on w
to derive the black pebbles above w in the graph. Needing to assume the truth of w is
the opposite of knowing the truth of w, so extending the reasoning above we get that
a white-pebbled vertex should correspond to “falsity of w,” i.e., to all negative literals
x(w)i, i ∈ [d], over w. Using this intuitive correspondence, we can translate clauses
of a resolution refutation of Pebd

G into black and white pebbles in G as in Figure 3.
The translation from sets of clauses to sets of black and white pebbles sketched

in the previous paragraph is rather straightforward and seems to yield well-behaved
black-white pebblings for all “sensible” resolution refutations of Pebd

G. The problem
is that we have no guarantee that the refutations will be “sensible.” Although it
might seem more or less clear how an optimal resolution refutation of a pebbling
contradiction should proceed, a particular refutation might contain unintuitive and
seemingly nonoptimal derivation steps that do not make much sense from a pebble
game perspective.

A first idea would be to try to prove that such derivation steps are indeed non-
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optimal and can be eliminated, but it appears tricky to nail down formally wherein
the supposed “nonoptimality” lies. Also, it seems hard to interpret clauses in terms
of pebbles in such a way that such apparently arbitrary derivation steps comply with
the rather restrictive set of rules of the black-white pebble game. Instead, what we
do is to modify the pebbling rules.

The most important change is that we have to allow “sliding moves” of black
pebbles downward and of white pebbles upward in the graph. As we will see, this
leads to serious technical difficulties. Another, less far-reaching, modification of the
game can be motivated as follows. Looking at the clauses and pebbles in Figure 3,
it somehow seems that the white pebbles on s and t are relevant only for the black
pebble on v. The black pebble on u corresponding to

∨d
i=1 x(u)i is wholly independent

of these white pebbles, although strictly from a pebbling perspective it is not, since
the white pebble on s is below u. It turns out that it is important to formalize
and keep track of this “dependence” relation between black and white pebbles, so we
will have to label each black pebble in the graph with the white-pebbled vertices it
depends on. Because of this property, we name the new game the labeled pebble game
(Definition 5.2).

Once we have defined this labeled pebble game in section 5, we continue according
to the proof outline of section 2.2. However, for reasons that will be clear below, we
restrict our attention to binary trees.

In section 6, we show that a resolution refutation of a pebbling contradiction
defined over a binary tree induces a pebbling of this tree in our modified pebble
game.

Theorem 2.1. Let Pebd
Th

denote the pebbling contradiction of degree d ≥ 1 over
the complete binary tree Th of height h. Then there is a translation function from
sets of clauses derived from Pebd

Th
into sets of pebbles in Th such that any resolution

refutation π of Pebd
Th

corresponds to a labeled pebbling Lπ of Th under this translation.
In section 7, we prove that if the number of variables d associated to each vertex

is at least 2, then the cost of the labeled pebbling Lπ in Theorem 2.1 is related to the
space of the resolution refutation π.

Theorem 2.2. If π is a resolution refutation of a pebbling contradiction Pebd
Th

of degree d > 1, then the cost of the associated labeled pebbling Lπ is asymptotically
bounded by the space of π, or in formal notation, cost(Lπ) = O(Sp(π)).

Finally, we need a lower bound for the pebbling price of binary trees in the labeled
pebble game.

Theorem 2.3. Any complete labeled pebbling L of Th must have cost at least
linear in the tree height h. That is, the labeled pebbling price of Th is L-Peb(Th) =
Ω(h).

We establish this result by transforming labeled pebblings to pebblings in the
standard black-white pebble game and then using known bounds on the black-white
pebbling price of binary trees (Theorem 4.3). The technically quite complicated proof
is given in the appendix. The reason that we consider only binary trees is that the
analogue of Theorem 2.3 does not hold for more general DAGs. For instance, it is
false for the pyramid graph in Figure 3 (Lemma 5.3).

Putting all of this together, we can now prove our main theorem.
Theorem 1.1 (restated). Let Th denote the complete binary tree of height h and

Pebd
Th

the pebbling contradiction of degree d > 1 defined over Th. Then the space of
refuting Pebd

Th
by resolution is Sp

(
Pebd

Th
� 0
)

= Θ(h).
Proof. The upper bound Sp

(
Pebd

Th
� 0
)

= O(h) is the easy part. It follows
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from Theorems 4.3 and 4.8, since the refutation space of a pebbling contradiction is
upper-bounded by the black pebbling price of its underlying graph, and binary trees
of height h have black pebbling price O(h).

For the lower bound, let π be any resolution refutation of Pebd
Th

. Consider the
associated labeled pebbling Lπ provided by Theorem 2.1.

On the one hand, we know that cost(Lπ) = O(Sp(π)) by Theorem 2.2, provided
that d > 1. On the other hand, Theorem 2.3 tells us that the cost of any pebbling
of Th is Ω(h), so in particular we must have cost(Lπ) = Ω(h). Combining these
two bounds on cost(Lπ), we see that Sp(π) = Ω(h). Since this bound holds for any
resolution refutation π, it follows that the minimum clause space of refuting Pebd

Th
is

Sp
(
Pebd

Th
� 0
)

= Ω(h) for d > 1.
The theorem follows.
The pebbling contradiction Pebd

G is a (2+d)-CNF formula, and for fixed d the
size of the formula is linear in the number of vertices of G (compare Figure 2). Thus,
for binary trees, Pebd

Th
has size exponential in the tree height h. Also, Theorem 4.5

tells us that Pebd
G can be refuted in width W

(
Pebd

G � 0
)

= O(d) for any graph G.
The separation of space and width in Corollary 1.2 follows from this if we fix

d > 1 and set Fn = Pebd
Th

for h = �log(n + 1)� in Theorem 1.1.
Corollary 1.2 (restated). For all k ≥ 4, there is a family of k-CNF formulas{

Fn

}∞
n=1

of size O(n) such that W(Fn � 0) = O(1) but Sp(Fn � 0) = Θ(log n).

2.4. Paper organization. The preliminaries about resolution and pebbling are
presented in sections 3 and 4, respectively. In section 5, we introduce the modified
pebble game that we will work with. Theorem 2.1 is proven in section 6 and Theo-
rem 2.2 in section 7, while the quite lengthy proof of Theorem 2.3 is postponed to
the appendix. We conclude the paper proper in section 8 by giving suggestions for
further research.

3. The resolution proof system. A literal is either a propositional logic vari-
able or its negation, denoted x and x, respectively. We define x = x. Two literals a
and b are strictly distinct if a �= b and a �= b, i.e., if they refer to distinct variables.

A clause C = a1 ∨ · · · ∨ ak is a set of literals. Throughout this paper, all clauses
C are assumed to be nontrivial in the sense that all literals in C are pairwise strictly
distinct (otherwise, C is trivially true). We say that C is a subclause of D if C ⊆ D.
A clause containing at most k literals is called a k-clause.

A CNF formula F = C1∧· · ·∧Cm is a set of clauses. A k-CNF formula is a CNF
formula consisting of k-clauses.

In this paper, when nothing else is stated we let A, B, C, D denote clauses; C, D
denote sets of clauses; x, y denote propositional variables; a, b, c denote literals; α, β
denote truth value assignments; and ν denote a truth value 0 or 1. We define

(3.1) αx=ν(y) =

{
α(y) if y �= x,

ν if y = x.

We let Vars(C) denote the set of variables and Lit(C) the set of literals in a clause
C.2 This notation is extended to sets of clauses by taking unions. Also, we employ
the standard notation [n] = {1, 2, . . . , n}.

2Although the notation Lit(C) is slightly redundant given the definition of a clause as a set of
literals, we include it for clarity.
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The size of a formula F is the total number of literals in F counted with repeti-
tions. More often, we will be interested in the number of clauses |F | of F .

A resolution derivation π : F � A of a clause A from a CNF formula F is a
sequence of clauses π = {D1, . . . , Dτ} such that Dτ = A and each line Di, i ∈ [τ ], is
either one of the clauses in F (axioms) or is derived from clauses Dj , Dk in π with
j, k < i by the resolution rule

(3.2)
B ∨ x C ∨ x

B ∨ C
.

We refer to (3.2) as resolution on the variable x and to B∨C as the resolvent of B∨x
and C ∨x on x. A resolution refutation of a CNF formula F is a resolution derivation
of the empty clause 0 (the clause with no literals) from F .

For a formula F and a set of formulas G = {G1, . . . , Gn}, we say that G implies F ,
denoted G � F , if every truth value assignment satisfying all formulas G ∈ G satisfies
F as well. It is well known that resolution is sound and implicationally complete.
That is, if there is a resolution derivation π : F � A, then F � A, and if F � A,
then there is a resolution derivation π : F � A′ for some A′ ⊆ A. In particular, F is
unsatisfiable if and only if there is a resolution refutation of F .

With every resolution derivation π : F � A we can associate a DAG Gπ , with the
clauses in π labeling the vertices and with edges from the assumption clauses to the
resolvent for each application of the resolution rule. There might be several different
derivations of a clause C in π, but if so, we can label each occurrence of C with a
timestamp when it was derived and keep track of which copy of C is used where. A
resolution derivation π is tree-like if any clause in the derivation is used at most once
as a premise in an application of the resolution rule, i.e., if Gπ is a tree. (We may
make different “time-stamped” vertex copies of the axiom clauses in order to make
Gπ into a tree.)

The length L(π) of a resolution derivation π is the number of clauses in it. The
length of deriving a clause A from a formula F is L(F � A) = minπ:F�A {L(π)}, where
the minimum is taken over all resolution derivations of A. In particular, the length of
refuting F by resolution is L(F � 0). The length of refuting F by tree-like resolution
LT(F � 0) is defined by taking the minimum over all tree-like resolution refutations
πT of F .

The width W(C) of a clause C is |C|. The width of a set of clauses C is W(C) =
maxC∈C{W(C)}. The width of deriving A from F by resolution is W(F � A) =
minπ:F�A{W(π)}, and the width of refuting F is denoted W(F � 0). (Note that the
minimum width measures in general and tree-like resolution coincide, so it makes no
sense to define WT(F � 0).)

If a resolution refutation has constant width, it is easy to see that it must be of
size polynomial in the number of variables (just count the maximum possible number
of distinct clauses). Conversely, if all refutations of a formula are very wide, it seems
reasonable that any refutation of this formula must be very long as well. This intuition
was made precise by Ben-Sasson and Wigderson.

Theorem 3.1 (see [16]). The width of refuting a CNF formula F is bounded
from above by

W(F � 0) ≤ W(F ) + c ·
√

n log L(F � 0) ,

where n is the number of variables in F and c is a universal constant independent
of F .
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Bonet and Galesi [19] showed that this bound on width in terms of length is
essentially optimal.

We next define the measure of space. Following the exposition in [29], a proof can
be seen as a Turing machine computation, with a special read-only input tape from
which the axioms can be downloaded and a working memory where all derivation
steps are made. The clause space of a resolution proof is the maximum number of
clauses that need to be kept in memory simultaneously during a verification of the
proof. The variable space is the maximum total space needed, where also the width
of the clauses is taken into account.

For the formal definitions, it is convenient to use an alternative definition of
resolution introduced in [3].

Definition 3.2 (resolution). A clause configuration C is a set of clauses. A
sequence of clause configurations {C0, . . . , Cτ} is a resolution derivation from a CNF
formula F if C0 = ∅ and for all t ∈ [τ ], Ct is obtained from Ct−1 by one3 of the
following rules:
Axiom download. Ct = Ct−1 ∪ {C} for some C ∈ F .
Erasure. Ct = Ct−1 \ {C} for some C ∈ Ct−1.
Inference. Ct = Ct−1 ∪ {D} for some D inferred by resolution from C1, C2 ∈ Ct−1.
A resolution derivation π : F � A of a clause A from a formula F is a derivation
{C0, . . . , Cτ} such that Cτ = {A}. A resolution refutation of F is a derivation of 0
from F .

Definition 3.3 (clause space [3, 13]). The clause space of a resolution derivation
{C0, . . . , Cτ} is maxt∈[τ ]{|Ct|}. The clause space of deriving the clause A from the
formula F is Sp(F � A) = minπ:F�A{Sp(π)}. Sp(F � 0) is the minimum clause
space of any resolution refutation of F .

Definition 3.4 (variable space [3]). The variable space of a configuration C is
VarSp(C) =

∑
C∈C

W(C). The variable space of a resolution derivation {C0, . . . , Cτ}
is maxt∈[τ ]{VarSp(Ct)}, and VarSp(F � 0) is the minimum variable space of any
resolution refutation of F .

Restricting the resolution derivations to tree-like resolution, we get the measures
SpT(F � 0) and VarSpT(F � 0) in analogy with LT(F � 0) defined above.

In this paper, we will be almost exclusively interested in the clause space of general
resolution refutations. When we write simply “space” (for brevity), we mean clause
space.

All contradictory CNF formulas can be refuted in clause space linear in the for-
mula size. This is stated more precisely in the following theorem.

Theorem 3.5 (see [29]). Any unsatisfiable CNF formula F can be refuted in
clause space Sp(F � 0) ≤ max

{|Vars(F )| + 2, |F | + 1
}
.

Hence, the interesting question is which formulas demand this much space, and
which formulas can be refuted in, for instance, logarithmic or even constant space. It
has been shown that there are polynomial-size formulas that meet the upper bounds
of Theorem 3.5 up to a multiplicative constant.

Theorem 3.6 (see [3, 51]). There is a polynomial-size family {Fn}∞n=1 of unsat-
isfiable 3-CNF formulas such that Sp(F � 0) = Ω(|F |) = Ω(|Vars(F )|).

Lower bounds on clause space have been presented for a number of different
CNF formula families [3, 14, 51]. As was mentioned above, in these papers it was

3In some previous papers, resolution is defined so as to allow every derivation step to combine
one or zero applications of each of the three derivation rules. Therefore, some of the bounds stated
in this paper for space as defined next are off by a constant as compared to the cited sources.
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observed that the lower bounds on refutation space coincided with the lower bounds
on refutation width. This lead to the conjecture that the width measure is a lower
bound for the clause space measure, a conjecture that was proven true by Atserias
and Dalmau.

Theorem 3.7 (see [7]). Let F be an arbitrary unsatisfiable CNF formula. Then
it holds that Sp(F � 0) − 3 ≥ W(F � 0) − W(F ).4

In other words, the extra clause space exceeding the minimum 3 needed for any
resolution derivation is bounded from below by the extra width exceeding the width
of the formula. An immediate corollary of this theorem is that for polynomial-size
k-CNF formulas, constant clause space implies polynomial proof length.

Thus, upper bounds on clause space imply upper bounds on length and width.
As was discussed in the introduction, it has remained open what holds in the other
direction. In particular, a natural follow-up question to [7] is whether the space
and width measures coincide asymptotically or whether there is a formula family
separating them. We remark that in order for this question to be interesting, we
should restrict our attention to families of k-CNF formulas. Any resolution refutation
of an unsatisfiable CNF formula F with minimum clause width k can be shown to
require clause space at least k+2 (see [29]), so it is easy to find CNF formulas {Fn}∞n=1

of growing width such that W(Fn � 0) − W(Fn) = O(1) but Sp(Fn � 0) = Ω(n).
The main contribution of this paper is that we settle the open question of the

relationship between space and width by proving a separation of the two measures.
More precisely, we show that there is a family of k-CNF formulas {Fn}∞n=1 such that
W(Fn � 0) = O(1) but Sp(Fn � 0) = Θ(log |Fn|) = ω(1).

4. Pebble games and pebbling contradictions. Pebble games were devised
for studying programming languages and compiler construction but have found a vari-
ety of applications in computational complexity theory. In connection with resolution,
pebble games have been employed both to analyze resolution derivations with respect
to how much memory they consume (using the original definition of space in [29])
and to construct CNF formulas which are hard for different variants of resolution in
various respects (see, for example, [4, 15, 18, 20]). An excellent survey of pebbling up
to 1980 is [43].

4.1. Pebble games. The black pebbling price of a DAG G captures the memory
space, i.e., the number of registers, required to perform the deterministic computation
described by G. The space of a nondeterministic computation is measured by the
black-white pebbling price of G. We say that vertices of G with indegree 0 are sources
and that vertices with outdegree 0 are sinks or targets. The next definition is adapted
from [25], though we use the established pebbling terminology introduced by [34].

Definition 4.1 (pebble game). Suppose that G is a DAG with sources S and
a unique target z. The black-white pebble game on G is the following one-player
game. At any point in the game, there are black and white pebbles placed on some
vertices of G, at most one pebble per vertex. A pebble configuration is a pair of
subsets P = (B, W ) of V (G), comprising the black-pebbled vertices B and white-
pebbled vertices W . The rules of the game are as follows:

1. If all immediate predecessors of an empty vertex v have pebbles on them, a
black pebble may be placed on v. In particular, a black pebble can always be
placed on any vertex in S.

4The statement of the theorem in [7] is Sp (F � 0) ≥ W(F � 0)−W(F ), but this can be sharpened
by a constant if one does the calculations carefully.
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2. A black pebble may be removed from any vertex at any time.
3. A white pebble may be placed on any empty vertex at any time.
4. If all immediate predecessors of a white-pebbled vertex v have pebbles on them,

the white pebble on v may be removed. In particular, a white pebble can always
be removed from a source vertex.

A complete black-white pebbling of G is a sequence of pebble configurations P =
{P0, . . . , Pτ} such that P0 = (∅, ∅), Pτ = ({z}, ∅), and for all t ∈ [τ ], Pt follows from
Pt−1 by one of the rules above. The cost of a pebbling P, denoted cost(P), is the
maximal number of pebbles |Bt ∪ Wt| used in any configuration Pt = (Bt, Wt) of P.
The black-white pebbling price BW-Peb(G) of G is the minimum cost of any complete
pebbling of G.

A complete black pebbling of G is a complete pebbling using black pebbles only,
i.e., Wt = ∅ for all t, and the (black) pebbling price of G, denoted Peb(G), is the
minimum cost of any complete black pebbling of G.

We think of the moves in a pebbling as occurring at integral time intervals t =
1, 2, . . . and talk about the pebbling move “at time t” (which is the move resulting in
configuration Pt) or the moves “during the time interval [t1, t2].”

We make an observation that the black-white pebble game has the following
“antisymmetry” property, which will be helpful for our intuition in what comes later.

Proposition 4.2 (see [25]). Suppose that P is a black-white pebbling of a DAG
G starting with no pebbles and ending with a black pebble on the target z. Then by
reversing the sequence of moves and switching the colors of the pebbles, one gets a
dual pebbling P of G starting with a white pebble on z and ending with no pebbles in
the DAG.

The proof immediately follows from Definition 4.1, observing that the rules for
placing and removing a black pebble are the duals of the rules for removing and
placing a white pebble, respectively.

In this paper we will consider pebblings of complete binary trees. We let T denote
a complete binary tree considered as a DAG with edges directed toward the root. We
write Th when we want to specify that the height of the tree is h. We use z to denote
the unique target vertex of T , i.e., the root.

The black pebbling price of Th can be established by an easy induction over the
tree height. For black-white pebbling, general bounds for the pebbling price of trees of
any arity were presented in [40], and for the case of binary trees, we can simplify this
result to an exact equality. We collect the results on black and black-white pebbling
prices of complete binary trees in a theorem for reference.

Theorem 4.3. Peb(Th) = h + 2 and BW-Peb(Th) =
⌊

h
2

⌋
+ 3.

A proof of the black-white pebbling price bound can be found in section 4 of [41].

4.2. Pebbling contradictions. A pebbling contradiction defined on a DAG G
encodes the pebble game on G by defining the sources to be true and the target to
be false and specifying that truth propagates through the graph according to the
pebbling rules. The definition below is a generalization of formulas previously studied
in [18, 45].

Definition 4.4 (pebbling contradiction [16]). Let G be a DAG with sources S
and a unique target z and with all vertices having indegree 0 or 2, and let d ∈ N+.
Associate d distinct variables x(v)1, . . . , x(v)d with every vertex v ∈ V (G). The dth
degree pebbling contradiction on G, denoted Pebd

G, is the conjunction of the following
clauses:

• ∨d
i=1 x(s)i for all s ∈ S ( source axioms),
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• x(z)i for all i ∈ [d] ( target axioms),
• x(u)i ∨ x(v)j ∨

∨d
l=1 x(w)l for all i, j ∈ [d] and all w ∈ V (G) \ S, where u, v

are the two predecessors of w (pebbling axioms).
The formula Pebd

G is a (2+d)-CNF formula with O
(
d2 · |V (G)|) clauses over

d · |V (G)| variables. A small example of a pebbling contradiction is presented in
Figure 2 on page 63.

We first observe that pebbling contradictions are indeed unsatisfiable. As shown
in [15], Pebd

G can be refuted in resolution by deriving
∨d

i=1 x(v)i for all v ∈ V (G)
inductively in topological order and then resolving with the target axioms x(z)i,
i ∈ [d]. Writing this resolution proof, one gets the following theorem (which is proven
together with Theorem 4.8 below).

Theorem 4.5 (see [15]). For any DAG G with all vertices having indegree 0
or 2, there is a resolution refutation π : Pebd

G � 0 in length L(π) = O
(
d2 · |V (G)|)

and width W(π) = O(d).
Tree-like resolution is good at refuting pebbling contradictions Peb1

G but is bad
at refuting Pebd

G for d ≥ 2.
Theorem 4.6 (see [13]). For any DAG G with all vertices having indegree 0

or 2, there is a tree-like resolution refutation π of Peb1
G such that L(π) = O(|V (G)|)

and Sp(π) = O(1).
Theorem 4.7 (see [15]). For any DAG G with all vertices having indegree 0

or 2, LT

(
Peb2

G � 0
)

= 2Ω(Peb(G)).
As to refutation space, it is not too difficult to see that the space of refuting Pebd

G

is upper-bounded by the black pebbling price of G, using an optimal black pebbling
of G together with the resolution refutation from [15] sketched above.

Theorem 4.8. For any DAG G with vertex indegrees 0 or 2, Sp
(
Pebd

G � 0
) ≤

Peb(G) + O(1).
Since we need the upper bounds on width and space in Theorems 4.5 and 4.8 in

our main theorem, we present the proofs for completeness.
Proof of Theorems 4.5 and 4.8. Consider first the bound on space.
Given a black pebbling of G, we construct a resolution refutation of Pebd

G such
that if at some point in time there are black pebbles on a set of vertices V , then
we have the clauses

{∨d
i=1 x(v)i | v ∈ V

}
in memory. When some new vertex v is

pebbled, we derive
∨d

i=1 x(v)i from the clauses already in memory. We claim that
with a little care, this can be done in constant extra space independent of d. When
a black pebble is removed from v, we erase the clause

∨d
i=1 x(v)i. We conclude the

resolution proof by resolving
∨d

i=1 x(z)i for the target z with all target axioms x(z)i,
i ∈ [d], in space 3.

It is clear that given our claim about the constant extra space needed when
a vertex is black-pebbled, this yields a resolution refutation in space equal to the
pebbling cost plus some constant. In particular, given an optimal black pebbling of
G, we get a refutation in space Peb(G) + O(1).

To prove the claim, note first that it trivially holds for source vertices v, since∨d
i=1 x(v)i is an axiom of the formula. Suppose for a nonsource vertex r with pre-

decessors p and q that at some point in time a black pebble is placed on r. Then
p and q must be black-pebbled, so by induction we have the clauses

∨d
i=1 x(p)i and∨d

j=1 x(q)j in memory. It is not hard to verify that x(p)i ∨
∨d

l=1 x(r)l can be derived
in additional space 3 by resolving

∨d
j=1 x(q)j with x(p)i∨x(q)j∨

∨d
l=1 x(r)l for j ∈ [d].

Resolve
∨d

i=1 x(p)i with x(p)1 ∨ ∨d
l=1 x(r)l to get

∨d
i=2 x(p)i ∨

∨d
l=1 x(r)l, and then
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resolve this clause with x(p)i ∨
∨d

l=1 x(r)l for i = 2, . . . , d to get
∨d

l=1 x(r)l in total
extra space 4.

It is easy to see that this proof has width O(d), which proves the claim about width
in Theorem 4.5. To get the claim about length, we observe that the subderivation
needed when a vertex is black-pebbled has length O

(
d2
)
. If we use a pebbling that

black-pebbles all vertices once in topological order without ever removing a pebble,
we thus get a refutation in length L(π) = O

(
d2 · |V (G)|).

Theorem 4.8 is not quite an optimal strategy with respect to clause space, though.
For binary trees, [30] demonstrated that we can do at least a little bit better.

Theorem 4.9 (see [30]). Sp
(
Peb2

Th
� 0
) ≤ ⌈ 2h+1

3

⌉
+ 3 = 2

3Peb(G) + O(1).
It is not known if the bounds in Theorems 4.8 and 4.9 are tight, since no corre-

sponding lower bound on Sp
(
Pebd

G � 0
)

has been shown for pebbling degree d ≥ 2
in general resolution (in terms of pebbling price or otherwise). The only previously
known lower bound on the refutation clause space of pebbling contradictions is a
bound SpT

(
Pebd

Th
� 0
)

= h+O(1) for the special case of tree-like resolution [30]. Un-
fortunately, this does not tell us anything about general resolution. For tree-like reso-
lution, if the only way of deriving D is from clauses C1, C2 such that SpT

(
F � Ci

) ≥ s,
then SpT

(
F � D

) ≥ s + 1 since one of the clauses Ci must be kept in memory while
deriving the other clause. This seems to be very different from how general resolution
works with respect to space.

However, the resolution refutation of Peb2
Th

in [30] used to prove Theorem 4.9 is
structurally quite similar to the optimal black-white pebbling of Th presented in [40],
and it is hard to see how any resolution refutation could do better. This raises the
suspicion that the black-white pebbling price BW-Peb(Th) = h/2 + O(1) might be a
lower bound for Sp

(
Pebd

Th
� 0
)
, and in general that Sp

(
Pebd

G � 0
) ≥ BW-Peb(G) for

any DAG G and d ≥ 2.
This suspicion is somewhat strengthened by the fact that for variable space, we

do have a lower bound for general resolution.5

Theorem 4.10 (see [13]). For any d ∈ N+, VarSp
(
Pebd

G � 0
) ≥ BW-Peb(G).

If the refutation clause space of pebbling contradictions would be constant, The-
orem 4.10 would imply that as BW-Peb(G) grows larger, the clauses in memory get
wider, and thus weaker. Still it would somehow be possible to derive a contradic-
tion from a constant number of these clauses of unbounded width. This appears
counterintuitive.

On the other hand, for one variable per vertex, i.e., d = 1, refutations of Peb1
G

in constant space have exactly these “counterintuitive” properties. The resolution
refutation of Peb1

G in [13] is constructed by first downloading the pebbling axiom for
the target z and then moving the false literals downward by resolving with pebbling
axioms for vertices v ∈ V (G) \ S in reverse topological order. This finally yields a
clause

∨
v∈S x(v)1 ∨x(z)1 of width |S|+ 1, which can be eliminated by resolving with

the source axioms x(v)1 one by one for all v ∈ S and then with the target axiom x(z)1
to yield the empty clause 0.

If we want to establish a nonconstant lower bound on Sp
(
Pebd

G � 0
)

for d ≥ 2,
we have to pin down why this case is different. Intuitively, the difference is that with
only one variable per vertex, a single clause x(v1)1 ∨ · · · ∨ x(vm)1 can express the
disjunction of the falsity of an arbitrary number of vertices v1, . . . , vm, but for d = 2,
the straightforward way of expressing that both variables x(vi)1 and x(vi)2 are false
for at least one out of m vertices requires Ω(m) clauses.

5To be precise, the result in [13] is for d = 1, but the proof generalizes easily to any d ∈ N+.
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As was argued in section 2, to prove a lower bound on the refutation clause space
of pebbling contradictions, it seems natural to try to interpret resolution refutations
of Pebd

G in terms of pebblings of the underlying graph G. Let us say that a vertex
v is “true” if

∨d
i=1 x(v)i has been derived and “false” if x(v)i has been derived for

all i ∈ [d]. Any resolution proof refutes a pebbling contradiction by deriving that
some vertex v is both true and false, and then resolves to get 0. If we let w be any
vertex with predecessors u, v, we see that if we have derived that u and v are true,
by downloading x(u)i ∨ x(v)j ∨

∨d
l=1 x(w)l for all i, j ∈ [d] we can derive

∨d
l=1 x(w)l.

This appears analogous to the rule that if u and v are black-pebbled we can place a
black pebble on w. In the opposite direction, if we know x(w)l for all l ∈ [d], using
the axioms x(u)i ∨ x(v)j ∨

∨d
l=1 x(w)l we can derive that either u or v is false. This

looks similar to eliminating a white pebble on w by placing white pebbles on the
predecessors u and v, and then removing the pebble from w. Generalizing this loose,
intuitive reasoning, we argue that a set of black-pebbled vertices V should correspond
to the derived conjunction of truth of all v ∈ V , and that a set of white-pebbled
vertices W should correspond to the derived disjunction of falsity of some w ∈ W .

Suppose that we could show that as the resolution derivation proceeds, the black
and white pebbles corresponding to different clause configurations as outlined above
move about on the vertices of G in accordance with the rules of the pebble game. If
so, we would get that there is some clause configuration C corresponding to a lot of
pebbles. This could in turn hopefully yield a nonconstant lower bound for the refu-
tation clause space. For if C induces N black pebbles, i.e., implies N disjoint clauses,
it seems likely that |C| should be linear in N . And if C induces N white pebbles, |C|
should grow with N if d ≥ 2, since C has to force d literals false simultaneously for
one out of N vertices. This is the guiding intuition behind the result proven in this
paper.

5. Modifying the black-white pebble game. To prove a lower bound on the
refutation space of pebbling contradictions, we want to interpret resolution derivation
steps in terms of pebble placements and removals in the corresponding graph. At the
end of the previous section, we outlined an intuitive correspondence between clauses
and pebbles. The formal translation from sets of clauses to sets of black and white
pebbles, which is presented in section 6, reflects this intuition (and the example in
Figure 3 on page 64) quite faithfully. However, the pebble configurations that result
when we apply this translation on a resolution derivation do not obey the rules of the
black-white pebble game. Therefore, we are forced to change the pebbling rules.

In this section, we present the modified pebble game used for analyzing resolution
derivations. We then argue that for binary trees, we get essentially the same bound
on pebbling price in this new pebble game as in the black-white pebble game of
Definition 4.1.

Our first modification of the pebble game is to change the rule for white pebble
removal so that a white pebble can be removed from a vertex when a black pebble is
placed on that same vertex. This will make the correspondence between pebblings and
resolution derivations much more natural. Clearly, this is only a minor adjustment,
and it is easy to prove formally that it does not really change anything.

Our second, and far more substantial, modification of the pebble game is moti-
vated by the fact that in general, a resolution refutation has no obvious reason to
follow our pebble game intuition sketched at the end of section 4.2. Since pebbles
are induced by clauses, if at some derivation step the refutation chooses to erase “the
wrong clause” from the point of view of the induced pebble configuration, this can
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lead to pebbles just disappearing. This is all in order for black pebbles, but if we
allow uncontrolled removal of white pebbles, we cannot hope for any nontrivial lower
bounds on pebbling price (just white-pebble the two predecessors of the target, then
black-pebble the target itself, and finally remove the white pebbles).

Our solution to this problem is to keep track of exactly which white pebbles have
been used to get a black pebble on a vertex. Loosely put, removing a white pebble
from a vertex v without placing a black pebble on the same vertex should be in order,
provided that all black pebbles placed on vertices above v in the DAG with the help
of the white pebble on v are removed as well. We define a pebble subconfiguration
to consist of a black pebble together with all the white pebbles this black pebble
depends on, and require that if a white pebble in a subconfiguration is removed, then
all pebbles in this subconfiguration must be removed.

Another problem is that some resolution derivation steps can lead to what looks
like “backward” pebbling moves, with white pebbles moving upward and black peb-
bles downward in the DAG. This problem turns out to be even more serious. We
try to get around it by introducing an order relation on pebble subconfigurations,
where the intuition is that “stronger” pebble subconfigurations are “closer” to the
final goal of getting the target black-pebbled. Using this order relation, the back-
ward pebbling moves can be characterized as moves from stronger to weaker pebble
subconfigurations, so we add a pebbling rule allowing such moves.

To define this modified pebble game formally, we need some notation and termi-
nology. We use z to denote the unique target vertex of the DAG G, p, q, r, s, u, v, w, x, y
to denote arbitrary vertices, and U, V, W to denote arbitrary subsets of vertices. We
let succ(v) denote the immediate successor of v and pred(v) the immediate predeces-
sors. For a leaf v we have pred(v) = ∅, and for the target z we have succ(z) = ∅. We
say that w is below v if there is a path from w to v and above v if there is a path from
v to w. If in addition v �= w, the vertex w is said to be strictly below/above v. We
say that v and w are unrelated if v is neither above nor below w. The vertex set W
is (strictly) below v if all w ∈ W are (strictly) below v.

We now present the concept used to “label” each black pebble with the set of
white pebbles (if any) that this black pebble is dependent on. The intuition behind
the next definition is that v〈W 〉 should denote a black pebble on v together with the
white pebbles W below v with the help of which we have been able to place the black
pebble on v.

Definition 5.1 (pebble subconfiguration). For a vertex v and a set of vertices
W strictly below v, we say that v〈W 〉 is a pebble subconfiguration with a black pebble
on v supported by white pebbles on w ∈ W . The black pebble on v in v〈W 〉 is said to
be dependent on the white pebbles in W . We refer to v〈∅〉 as an independent black
pebble.

The cover of v〈W 〉, denoted cover (v〈W 〉), consists of all vertices U such that there
is a path P : u � v from u ∈ U to v that does not intersect W , i.e., P ∩ W = ∅. If
cover (v1〈W1〉) ⊆ cover(v2〈W2〉), we say that v1〈W1〉 is covered by v2〈W2〉 and write
v1〈W1〉 � v2〈W2〉. If cover (v1〈W1〉) � cover(v2〈W2〉), we write v1〈W1〉 ≺ v2〈W2〉.

We use L to denote a set of pebble subconfigurations and refer to such a set as a
labeled pebble configuration or an L-configuration. The cover of an L-configuration L
is defined as cover(L) =

⋃
v〈W 〉∈L

cover (v〈W 〉), and we write L1 � L2 if cover (L1) ⊆
cover (L2).

In the following, when we specify the set W of white-pebbled vertices in v〈W 〉 by
enumerating the members of W , we will abuse notation somewhat by omitting the
curly brackets inside 〈 and 〉 around this set.
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(a) The pebble subconfigurations z〈x, v〉, r〈p, q〉, and w〈∅〉.

(b) The covered vertices cover(z〈x, v〉), cover(r〈p, q〉), and cover(w〈∅〉) (dashed).

Fig. 4. Three pebble subconfigurations and their covered vertices.

For an illustration of Definition 5.1, see Figure 4. Note that w〈∅〉 ≺ z〈x, v〉 since
cover (w〈∅〉) � cover(z〈x, v〉) (see Figure 4(b)). We remark that � is an order relation
on pebble subconfigurations, as the notation suggests, and that the minimal elements
are subconfigurations v〈pred(v)〉.

Our modified pebble game is defined in terms of moves not of individual pebbles,
but of entire pebble subconfigurations. In this pebble game, a black pebble on v is
always placed together with white pebbles on pred(v) below (except for at the leaves
where pred(v) = ∅). Removals of white pebbles are always allowed, but since we can
remove only a whole subconfiguration, the removal rule ensures that any black pebble
dependent on the removed white pebbles is removed as well. A “traditional” removal
of a white pebble from w corresponds to merging two subconfigurations v〈V 〉 and
w〈W 〉 into v〈(V ∪ W ) \ {w}〉 and then erasing v〈V 〉 and w〈W 〉 (see Figure 5 for an
example). Finally, we allow reversal moves to weaker subconfigurations. The formal
definition is as follows.

Definition 5.2 (labeled pebble game). For G any DAG with unique target z,
a labeled pebbling, or L-pebbling, on G is a sequence L = {L0, . . . , Lτ} of labeled
pebble configurations such that for all t it holds that Lt �= Lt+1 and Lt+1 is obtained
from Lt by one of the following rules:
Introduction. Lt+1 = Lt ∪ {v〈pred(v)〉}.
Erasure. Lt+1 = Lt \ {v〈V 〉} for v〈V 〉 ∈ Lt.
Merger. Lt+1 = Lt∪

{
v〈(V ∪W )\{w}〉} for v〈V 〉, w〈W 〉 ∈ Lt with w ∈ V . We denote

this subconfiguration merge(v〈V 〉, w〈W 〉), where the pair of subconfigurations
v〈V 〉, w〈W 〉 is always ordered so that w ∈ V , and refer to it as a merger
on w.

Reversal. Lt+1 = Lt ∪ {v〈V 〉} if v〈V 〉 � u〈U〉 for some u〈U〉 ∈ Lt.
Let Bl(Lt) =

⋃{v | v〈W 〉 ∈ Lt} denote the set of all black pebbles in Lt and
Wh(Lt) =

⋃{W | v〈W 〉 ∈ Lt} the set of all white pebbles. Then the cost of an
L-configuration L is cost(L) = |Bl (L) ∪ Wh(L)|, and the cost of an L-pebbling L =
{L0, . . . , Lτ} is maxt∈[τ ]{cost(Lt)}.
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(a) z〈x, v〉 and cover(z〈x, v〉). (b) x〈p, q, u〉 and cover(x〈p, q, u〉).

(c) The merger z〈p, q, u, v〉 with cover.

Fig. 5. Two pebble subconfigurations and their merger with covered vertices.

Fig. 6. Example pyramid Π4 of height 4 in proof of Lemma 5.3.

A complete labeled pebbling of G is an L-pebbling L such that L0 = ∅ and
Lτ = {z〈∅〉}. The labeled pebbling price of G, denoted L-Peb(G), is the minimum
cost of any complete L-pebbling of G.

The “backward” pebbling moves mentioned at the beginning of this section are
moves according to the reversal rule. It can be shown that the L-pebble game with-
out reversal moves is essentially just a disguised version of the ordinary black-white
pebble game. Arguing very informally, it seems plausible that making reversals in an
L-pebbling should only “weaken” the pebble configurations (for example, reversing
from z〈x, v〉 to w〈∅〉 in Figure 4), and that it should therefore be possible to eliminate
all reversal moves from a pebbling without affecting the pebbling cost.

Unfortunately, this intuition does not hold in general.
Lemma 5.3. There are families of DAGs {Gn}∞n=1 such that BW-Peb(Gn) goes

to infinity with n but L-Peb(Gn) is constant.
Proof. Consider the pyramid graphs Πh (with Π4 shown in Figure 6). Klawe [35]

showed that BW-Peb(Πh) = h/2 + O(1). We prove by induction that Πh can be
L-pebbled with 4 pebbles if we allow reversal moves of black pebbles downward.

The base case for a pyramid of height 1 is clear.
For the induction step, suppose that we have been able to get to the pebble

subconfiguration y2〈∅〉 in Figure 6 in L-pebbling cost at most 4. We show how to
get a black pebble on the target z by an introduction move and then move the white
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pebbles downward one level at a time until we reach the sources.
Introducing z〈y1, y2〉 and merging z〈y1, y2〉 with y2〈∅〉 on y2, we get z〈y1〉. Next,

reverse y2〈∅〉 to x2〈∅〉 (this is a legal reversal move, since cover(x2〈∅〉) ⊆ cover (y2〈∅〉)).
Conclude this first subsequence of L-pebbling moves by erasing z〈y1, y2〉 and y2〈∅〉.

Now we have the L-configuration
{
z〈y1〉, x2〈∅〉

}
. Introduce y1〈x1, x2〉, merge

z〈y1〉 and y1〈x1, x2〉 on y1 resulting in z〈x1, x2〉, and erase z〈y1〉 and y1〈x1, x2〉. Then
merge z〈x1, x2〉 and x2〈∅〉 on x2 to get z〈x1〉. As above, conclude the subsequence of
moves by reversing x2〈∅〉 to u2〈∅〉 and then erasing z〈x1, x2〉 and x2〈∅〉.

The next round of moves is entirely analogous: Introduce x1〈u1, u2〉, merge with
z〈x1〉 to get z〈u1, u2〉, and then erase the merged subconfigurations. Then merge
z〈u1, u2〉 with u2〈∅〉 resulting in z〈u1〉, reverse u2〈∅〉 to s2〈∅〉, and erase z〈u1, u2〉 and
u2〈∅〉.

At the start of the final subsequence of moves, we have the L-configuration{
z〈u1〉, s2〈∅〉

}
. Introducing u1〈s1, s2〉 and merging this subconfiguration with z〈u1〉

on u1 result in z〈s1, s2〉. Introducing s1〈∅〉 and merging z〈s1, s2〉 with s1〈∅〉 and then
s2〈∅〉, we get z〈∅〉.

The cost of this pebbling is 4, and it is easy to see that it generalizes to pyramids
of arbitrary height.

For binary trees, however, we can prove that the L-pebbling price and the black-
white pebbling price coincide asymptotically.

Theorem 5.4. For a complete binary tree T , L-Peb(T ) = Θ
(
BW-Peb(T )

)
.

The technically quite complicated proof of this fact, which is a cornerstone of our
result, is presented in the appendix.

Given Theorem 5.4, the lower bound on the L-pebbling price in Theorem 2.3 on
page 65 follows.

Theorem 2.3 (restated). L-Peb(Th) = Ω(h).
Proof. Theorem 5.4 says that L-Peb(Th) = Θ

(
BW-Peb(Th)

)
, and Theorem 4.3 on

page 70 says that BW-Peb(Th) = Θ(h).

6. Resolution derivations induce labeled pebblings. The next step in our
proof is to show that sets of clauses can be interpreted in terms of pebble configurations
in such a way that resolution derivations induce legal labeled pebblings.

For simplicity, from now on let us write v1, . . . , vd instead of x(v)1, . . . , x(v)d for
the d variables associated with the vertex v in a dth degree pebbling contradiction.

Definition 6.1. Assume that G is a DAG with a unique target z and all vertices
having indegree 0 or 2. Then we define *Pebd

G = Pebd
G \ {z1, . . . , zd

}
to be the

pebbling contradiction with target axioms removed. If pred(r) = {p, q}, the axioms
for r are the set Axd(r) =

{
pi ∨ qj ∨∨d

l=1 rl | i, j ∈ [d]
}
, and for r a source we let

Axd(r) =
{∨d

i=1 ri

}
. For a set of vertices V , we define Axd(V ) =

{
Axd(v) | v ∈ V

}
.

Let us first observe that instead of refutations of Pebd
G, we can just as well study

derivations of
∨d

i=1 zi from *Pebd
G. This will help us to avoid some artificial technicali-

ties when defining the correspondence between resolution derivations and L-pebblings.
Lemma 6.2. For any DAG G with a unique target z and all vertices having

indegree 0 or 2, it holds that Sp
(
Pebd

G � 0
)

= Sp
(
*Pebd

G � ∨d
l=1 zl

)
. In particular,

for every resolution refutation π : Pebd
G � 0 we can find a resolution derivation

π∗ : *Pebd
G � ∨d

l=1 zl in the same space.
Proof. For any resolution derivation π∗ : *Pebd

G � ∨d
l=1 zl, we can get a resolution

refutation of Pebd
G from π∗ in the same space by resolving

∨d
l=1 zl with all zl, l =

1, . . . , d, in space 3.
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Fig. 7. Referencing sets of vertices of a tree T relative to a vertex v ∈ V (T ).

In the other direction, for π : Pebd
G � 0 we can extract a derivation of

∨d
l=1 zl in

at most the same space by simply omitting all downloads of and resolution steps on
zl in π, leaving the literals zl in the clauses. Instead of the final empty clause 0 we
get some clause D ⊆ ∨d

l=1 zl, and since *Pebd
T � D �

∨d
l=1 zl and resolution is sound,

we have D =
∨d

l=1 zl.
Now we try to develop some intuition for how clause configurations in a resolution

derivation of
∨d

i=1 zi from *Pebd
G should be translated into pebble configurations in

the L-pebble game. Since we know from Lemma 5.3 that we cannot hope to get lower
bounds for refutation space of pebbling contradictions over general DAGs by using
the L-pebble game, from now on we concentrate exclusively on binary trees. To do
this, we need some more notation and terminology

Definition 6.3. For a vertex v in a binary tree T , we let T v denote the vertices
in the complete binary subtree of T rooted at v, and T v

∗ = T v \ {v} the vertices in T v

without its root v. We let P v denote the vertices in the unique path from v to the root
z of T and P v

∗ = P v \ {v} the path without v.
Definition 6.3 is illustrated in Figure 7. We blur the distinction somewhat between

a tree T and the vertices in V (T ) and write, for instance, T \ (T v ∪ P v
)

instead of
V (T ) \ (T v ∪ P v

)
to denote all vertices in the tree unrelated to v.

In the standard black-white pebble game, if at some time t there is an independent
black pebble on v, a pebbling need not place any pebbles on T v after time t. As an
analogy, if Ct �

∨d
i=1 vi, it is not difficult to see that no axioms from Axd(T v) need

be used in the resolution derivation after time t to derive
∨d

i=1 zi. Therefore, it seems
natural to think of a black pebble on v as derived truth

∨d
i=1 vi of v, and we want Ct

to induce a subconfiguration v〈∅〉 if Ct �
∨d

i=1 vi.
What kind of clause configuration should correspond to a dependent black pebble

on v supported by white pebbles on W , i.e., a subconfiguration v〈W 〉? Well, one way
of looking at v〈W 〉 is that this is the subconfiguration such that we would obtain
an independent black pebble on v from it if the white pebbles on W were removed.
But getting white pebbles off vertices is exactly as hard as getting black pebbles on
vertices (compare with Proposition 4.2 on page 70). In view of this, we can describe
v〈W 〉 as the subconfiguration from which we can immediately derive v〈∅〉 by assuming
black pebbles on W . And as to black pebbles, we just argued that they should
correspond to clauses

∨d
i=1 vi. Our conclusion is that Ct should induce v〈W 〉 if this

clause configuration together with assumed independent black pebbles on all w ∈ W
implies an independent black pebble on v, i.e., if Ct ∪

{∨d
i=1 wi | w ∈ W

}
�
∨d

i=1 vi.
Continuing our example from Figure 4, in Figure 8 we present a clause configuration
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⎡
⎢⎢⎣

xi ∨ vj ∨
∨d

l=1 zl

pi ∨ qj ∨
∨d

l=1 rl∨d
l=1 wl

∣∣∣∣∣∣∣ i, j ∈ [d]

⎤
⎥⎥⎦

(a) Clause configuration C. (b) L(C) = {z〈x, v〉, r〈p, q〉, w〈∅〉}.

Fig. 8. An example clause configuration C and its induced L-configuration L(C).

corresponding to the given set of pebbles according to this intuitive understanding of
induced pebble configurations.

Our formal definitions follow this intuition fairly closely, but since resolution
derivations have no reason to be as well behaved as to fit the description above, we
need to add a number of technical details.

For white pebbles, it will simplify matters if we can ensure that they have the
following property.

Definition 6.4. For a vertex v and a vertex set W strictly below v, if for every
w ∈ W there is a path P : w � v not intersecting W \{w}, we say that W is a simple
set below v and that v〈W 〉 is a simple subconfiguration. L is a simple L-configuration
if all subconfigurations v〈W 〉 ∈ L are simple.

In the following, B(V ) can be thought of as “truth of all vertices in V ” and AV

as “truth of some vertex in V .” We will be particularly interested in clauses AP v , i.e.,
clauses stating that some variable on the path from v to the root z is true.

Definition 6.5. Let B(V ) =
{∨d

i=1 vi | v ∈ V
}

and AV =
∨

v∈V

∨d
i=1 vi.

Given a set of clauses C and a vertex v, if a vertex set V ⊆ T \ P v is such that
C ∪ B(V ) � AP v , we say that V is a support for v with respect to C. If there is no
V ′ � V such that C ∪ B(V ′) � AP v , the support is minimal. If V is a support for v

with respect to C such that C∪B(V ) � AP v∗ = AP v \∨d
i=1 vi, we say that v is maximal

with respect to C and V .
We define the supporting white pebbles in the set V of the vertex v as swp(v, V ) ={

w ∈ V ∩ T v∗ | Pw∗ ∩ V = ∅}.
When it is clear from context, we sometimes omit which support or vertex is

minimal or maximal with respect to what. Note that swp(v, V ) is a simple set below
v in the sense of Definition 6.4.

Definition 6.6 (induced L-configuration). For a set of clauses C derived from
*Pebd

T , the induced L-configuration L(C) consists of all subconfigurations v〈V 〉 such
that

1. there is a minimal support V ′ ⊆ T \ P v for vwith respect to C,
2. v is maximal with respect to C and V ′, and
3. V = swp(v, V ′).

That is, it holds that C∪B(V ′) � AP v but C∪B(V ′) � AP v∗ , the set V ′ is minimal
with this property, and if V ′ is not simple below v, we remove vertices in a bottom-up
fashion until we get such a set V ⊆ V ′. The reader can verify that this definition
matches the example in Figure 8.

Remark 6.7. Note that a black pebble on v is defined in terms of AP v =∨
u∈P v

∨d
i=1 ui instead of just

∨d
i=1 vi. Otherwise, we will not be able to prove the

correspondence between L-pebblings and resolution derivation that we need. This
means that if we let, say,
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(6.1) C′ =

⎡
⎢⎢⎣

xi ∨ vj ∨
∨d

n=1 zn

pi ∨ qj ∨
∨d

n=1 rn ∨∨d
n=1 xn∨d

n=1 wn ∨∨d
n=1 zn

∣∣∣∣∣∣∣ i, j ∈ [d]

⎤
⎥⎥⎦

in Figure 8, then C′ induces the same pebble subconfigurations as does C, so L(C′) =
L(C) = {z〈x, v〉, r〈p, q〉, w〈∅〉}.

The reason we use V = swp(v, V ′) instead of V ′ ∩ T v
∗ (or even V ′ \ P v) to define

the white pebbles is that for technical purposes, we would like to have simple sets V
below v in our induced subconfigurations v〈V 〉, but the minimal supporting sets V ′

do not necessarily have this property. For instance, in the clause configuration

(6.2) C′′ =

⎡
⎢⎢⎣

ri ∨ xj ∨ vl ∨
∨d

n=1 zn

pi ∨ qj ∨
∨d

n=1 rn ∨∨d
n=1 xn

vl ∨
∨d

n=1 wn ∨∨d
n=1 zn

∣∣∣∣∣∣∣ i, j, l ∈ [d]

⎤
⎥⎥⎦

the vertices z and w have minimal supports {r, x, v} and {v}, respectively, which are
not simple sets below z and w, but since Definition 6.6 ignores all but the topmost
vertices below the supported vertex, we get L(C′′) = L(C) = {z〈x, v〉, r〈p, q〉, w〈∅〉}.

Thanks to this we get cleaner pebblings to work with (this will be used in the
appendix), and it seems very plausible anyway that optimal resolution derivations
should never result in clause configurations like C′′. Indeed, since the bound we will
prove is asymptotically tight, we see that we do not really lose anything by restricting
the white pebbles to V = swp(v, V ′) instead of V ′ ∩ T v

∗ or V ′ \ P v.
Recall that the goal of this section is to demonstrate that resolution derivations

induce L-pebblings. Suppose that π =
{
C0, . . . , Cτ

}
is a resolution derivation of∨d

i=1 zi from *Pebd
T . For C0 = ∅ we have L(C0) = ∅, and Cτ =

{∨d
i=1 zi

}
induces

a single independent black pebble L(Cτ ) =
{
z〈∅〉} on the root of T . Hence, we are

done if we can show that
{
L(C0), . . . L(Cτ )

}
is a legal L-pebbling.

The rest of this section is devoted to proving that this is (almost) the case. We
start by stating three technical lemmas. The first lemma relates subset containment
of supporting sets and the order relation between corresponding subconfigurations.

Lemma 6.8. For a vertex v ∈ V (T ), if u ∈ P v is a vertex and U ′, V ′ ⊆ T \ P v

are vertex sets such that U ′ ∩ T v
∗ ⊆ V ′ ∩ T v

∗ , then u〈swp(u, U ′)〉 � v〈swp(v, V ′)〉.
Proof. Let U = swp(u, U ′) and V = swp(v, V ′). According to Definition 5.1, we

need to show that cover(v〈V 〉) ⊆ cover (u〈U〉).
Suppose w ∈ cover(v〈V 〉). This means that there is a path P1 : w � v from w to

v such that P1 ∩V = ∅. Also, since u ∈ P v there is a path P2 : v � u. Concatenating
these paths, we get a path P = P1 ∪ P2 from w to u. We claim that P ∩ U = ∅. If
this is true, we have w ∈ cover (u〈U〉) and thus cover (v〈V 〉) ⊆ cover (u〈U〉), and the
lemma follows.

To prove the claim, note first that since U ⊆ U ′ ⊆ T \P v, it holds that P2∩U = ∅.
Suppose P1 intersects U , and let x ∈ P1 ∩U . By assumption, x /∈ V since P1∩V = ∅.
But x ∈ U ⊆ U ′ ∩T v

∗ ⊆ V ′ ∩T v
∗ , so Definition 6.5 tells us that the reason x /∈ V must

be that P x∗ ∩ V ′ ∩ T v �= ∅. Let y ∈ P x∗ ∩ V ′ ∩ T v be the vertex closest to v. Looking
at Definition 6.5 again, since P y

∗ ∩ V ′ = ∅ by construction, we have y ∈ V . But if so,
P1 ∩ V �= ∅, which is a contradiction.

A second handy lemma is that if V ′ is not minimal or v is not maximal with respect
to C, this just means that C induces something stronger than the subconfiguration
v〈swp(v, V ′)〉.
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Lemma 6.9. If C ∪ B(V ′) � AP v for V ′ ⊆ T \ P v, then there is an induced
subconfiguration u〈U〉 ∈ L(C) such that v〈swp(v, V ′)〉 � u〈U〉.

Proof. Minimize U ′ ⊆ V ′ and then pick u ∈ P v as close to the root as possible so
that C ∪ B(U ′) � AP u . Set U = swp(u, U ′) and use Lemma 6.8.

The following easy lemma will be used repeatedly.
Lemma 6.10. Suppose that C, D are clauses and C is a set of clauses. Then

C ∪ {C} � D if and only if C � a ∨ D for all a ∈ Lit(C).
Proof. Assume that C ∪ {C} � D and consider an assignment α such that

α(C) = 1 and α(D) = 0 (if there is no such α, then C � D ⊆ a ∨ D). Such an α
must set all a to true. Conversely, if C � a ∨ D for all a ∈ Lit(C) and α is such that
α(C) = α(C) = 1, it must hold that α(D) = 1, since otherwise α(a∨D) = 0 for some
literal a ∈ Lit(C) satisfied by α.

Using these lemmas, we can prove that resolution derivations induce L-pebblings.
By the L-pebbling rules in Definition 5.2, any subconfiguration v〈V 〉 may be erased
freely at any time. Consequently, we need not worry about subconfigurations disap-
pearing during the transition from Ct to Ct+1. What we do need to check, though,
is that no v〈V 〉 appears inexplicably in L(Ct+1) as a result of a derivation step Ct �
Ct+1, but that we can always derive any subconfiguration v〈V 〉 ∈ L(Ct+1) \ L(Ct)
from L(Ct) by the L-pebbling rules.

Let us consider the resolution derivation rules one by one.
Observation 6.11 (inference). If Ct+1 is derived from Ct by inference, then

L(Ct+1) = L(Ct).
Proof. This is immediate, since Ct and Ct+1 imply exactly the same clauses.
We remark that, as was stated in section 2.1, this means that the exact definition

of the resolution derivation rule is not important. The lower bound on space will hold
for any sound derivation rule as long as the lines in the proof are disjunctive clauses.

Lemma 6.12 (erasure). Suppose that Ct+1 is derived from Ct by erasure. Then
for each v〈V 〉 ∈ L(Ct+1) there is a u〈U〉 ∈ L(Ct) such that v〈V 〉 � u〈U〉.

Proof. By assumption there is a V ′ ⊆ T \ P v such that V = swp(v, V ′) and
Ct+1 ∪ B(V ′) � AP v . Certainly, the same implication holds for Ct ⊇ Ct+1. The
lemma follows from Lemma 6.9.

In particular, all new subconfigurations resulting from an erasure Ct � Ct+1 can
be obtained from L(Ct) by reversal moves.

Lemma 6.13 (axiom download). If Ct+1 = Ct ∪ {C} for an axiom clause
C ∈ Axd(r), then all subconfigurations v〈V 〉 ∈ L(Ct+1) \ L(Ct) can be obtained from
L(Ct) ∪ r〈pred(r)〉 by reversals from subconfigurations in L(Ct) followed by mergers
on the vertices {r} ∪ pred(r).

Proof. Let us fix a vertex v ∈ V (T ) and an axiom C ∈ Axd(r). If v〈V 〉 is a pebble
subconfiguration induced at time t+1, by assumption there is a minimal V ′ ⊆ T \P v

with V = swp(v, V ′) ⊆ V ′ such that Ct ∪ {C} ∪ B(V ′) � AP v .
Our intuition is that downloading C ∈ Axd(r) should not yield any interesting

new subconfigurations v〈V 〉 if r ∈ T \ T v, and for r ∈ T v we should be able to
explain new subconfigurations with the help of an introduction of r〈pred(r)〉 in our
L-pebbling. We prove this by a case analysis over r.
r ∈ T \ (T v ∪ P v

)
: Observing that B(r) � C (this will be used repeatedly), we get

that Ct∪B(V ′∪{r}) � AP v for V ′∪{r} ⊆ T \P v. Lemma 6.9 tells us that there
is a u〈U〉 ∈ L(Ct) such that u〈U〉 � v〈swp(v, V ′ ∪ {r})〉 = v〈swp(v, V ′)〉 =
v〈V 〉, where the first equality follows since r /∈ T v

∗ . Hence, we can get v〈V 〉
from L(Ct) by a reversal move.
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r ∈ P v
∗ : Write C = pi ∨ qj ∨

∨d
l=1 rl for {p, q} = pred(r) �= ∅ and assume without loss

of generality that p is the vertex in P v ∩ pred(r). Using Lemma 6.10 to move
pi to the right of the implication sign yields Ct ∪ B(V ′) � AP v ∨ pi = AP v ,
and since V ′ is minimal it follows that v〈V 〉 ∈ L(Ct).

r = v: Note first that the introduction of r〈pred(r)〉 is a legal pebbling move, so if
Ct ∪ {C} ∪ B(V ′) � AP r for pred(r) ⊆ V ′, no further analysis is needed
for r〈swp(r, V ′)〉 = r〈pred(r)〉. In particular, this is always the case if
pred(r) = ∅, i.e., if r is a source.
Suppose that v〈V 〉 = r〈swp(r, V ′)〉 ∈ L(Ct+1) for V �= pred(r) = {p, q}, and
write C = pi ∨ qj ∨

∨d
l=1 rl. We want to derive r〈V 〉 by the pebbling rules

from L(Ct) ∪
{
r〈pred(r)〉}. By symmetry, we get two subcases.

1. p ∈ V , q /∈ V : By Definition 6.5, we have p ∈ V ′ ⊇ V . Also, it must hold
that q /∈ V ′, since otherwise P q

∗ ∩V ′ ⊆ P q
∗ ∩(T \P r) = P q

∗ ∩(T \P q
∗ ) = ∅

would imply that q ∈ V = swp(v, V ′), contrary to assumption. It follows
that V ′ ⊆ T \P q. Also, we can use Lemma 6.10 to move qj to the right-
hand side of the implication sign and get Ct ∪ B(V ′) � AP r ∨ qj ⊆
AP r ∨∨d

l=1 ql = AP q . Plugging this into Lemma 6.9 shows that there is
a w〈W 〉 ∈ L(Ct) such that q

〈
V \{p}〉 = q

〈
swp(q, V ′)

〉 � w〈W 〉. Thus we
can derive q

〈
V \{p}〉 from L(Ct) by reversal and then merge r〈pred(r)〉 =

r〈p, q〉 with q
〈
V \ {p}〉 to obtain r

〈({p, q} ∪ (V \ {p})) \ {q}〉 = r〈V 〉.
2. p, q /∈ V : Again, by Definition 6.5 we have p, q /∈ V ′. If we use

Lemma 6.10 twice, we get Ct ∪ B(V ′) � AP p ∧ AP q , and noting that
V ′ ⊆ T \ (P p ∪ P q

)
we can apply Lemma 6.9 to derive p

〈
V ∩ T p

∗
〉

and
q
〈
V ∩ T q

∗
〉

from L(Ct) by reversal moves. Merging these pebble sub-
configurations with r〈p, q〉, we get the desired pebble subconfiguration
r
〈(

V ∩ T p
∗
) ∪ (V ∩ T q

∗
)〉

= r〈V 〉.
We note in passing that this is the place in the proof where we critically need
black pebbles to be defined in terms of AP v =

∨
u∈P v

∨d
i=1 ui instead of just∨d

i=1 vi. (Although it also simplifies the proof of the case r ∈ P v
∗ , there it is

not strictly necessary.)
r ∈ T v∗ : By assumption, Ct ∪ {C} ∪ B(V ′) � AP v , and since r ∈ T v∗ and B(r) � C we

have Ct ∪ B(V ′ ∪ {r}) � AP v for V ′ ∪ {r} ⊆ T \ P v. If P r ∩ V ′ �= ∅, it holds
that swp(v, V ′ ∪ {r}) = swp(v, V ′), and we can obtain v〈V 〉 from L(Ct) by
reversal according to Lemma 6.9. Suppose therefore that P r ∩ V ′ = ∅. Also,
we assume that Ct ∪ B(V ′) � AP v since otherwise v〈V 〉 ∈ L(Ct) and there is
nothing to prove.
Pick U ′ ⊆ V ′ ∪ {r} minimal and then u ∈ P v maximal with respect to U ′

such that Ct ∪ B(U ′) � AP u . Since Ct ∪ B(V ′) � AP v we must have r ∈ U ′.
Set U = swp(u, U ′). Using that P r∗ ∩ U ′ ⊆ P r∗ ∩ V ′ = ∅, we see that r ∈ U .
Consequently, we cannot use u〈U〉 ∈ L(Ct) to derive v〈V 〉 � u〈U〉 by reversal.
However, since U ′ ⊆ V ′ ∪ {r}, Lemma 6.8 says that v

〈
(V ∪ {r}) \ T r

∗
〉

=
v
〈
swp(v, V ′ ∪ {r})〉 � u〈U〉 can be derived by reversal from L(Ct). If we

could also derive r
〈
V ∩T r∗

〉
from L(Ct)∪

{
r〈pred(r)〉}, we could do a merger

to get v
〈(

((V ∪ {r}) \ T r∗ ) ∪ (V ∩ T r∗ )
) \ {r}〉 = v〈V 〉.

Hence, we are done if we can derive the pebble subconfiguration r
〈
V ∩T r∗

〉
=

r
〈
swp(v, V ′) ∩ T r∗

〉
= r
〈
swp(r, V ′)

〉
from L(Ct) ∪

{
r〈pred(r)〉}. But AP r ⊇

AP v , so by assumption we have Ct∪{C}∪B(V ′) � AP r for V ′ ⊆ T \P r. This
is almost exactly the case r = v above, where we proved that r

〈
swp(r, V ′)

〉
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is derivable from L(Ct) ∪
{
r〈pred (r)〉}. The only difference is that now it

is not necessarily true that V ′ is a minimal support and that r is maximal
with respect to V ′. But these assumptions were not used in the derivation of
r
〈
swp(r, V ′)

〉
from L(Ct)∪

{
r〈pred(r)〉} anyway, so we can reuse exactly the

same proof to get r
〈
swp(r, V ′)

〉
. This concludes the analysis for r ∈ T v∗ .

Studying the pebbling moves performed in the case analysis above, we see that
all subconfigurations v〈V 〉 ∈ L(Ct+1) \ L(Ct) resulting from an axiom download can
be obtained from L(Ct)∪ r〈pred (r)〉 by a (possibly empty) sequence of reversals from
L(Ct), followed by a (possibly empty) sequence of mergers on {r} ∪ pred(r).

Combining the results proven for axiom download, inference, and erasure, we can
show that a resolution derivation induces a legal L-pebbling. We need a pair of easy
technical observations about L-pebbling cost, which we state as a separate proposition
for clarity.

Proposition 6.14. For L1 and L2 arbitrary L-configurations, it holds that
1. if L1 ⊆ L2 then cost(L1) ≤ cost(L2), and
2. cost(L1 ∪ L2) ≤ cost(L1) + cost(L2).

Proof. This is fairly obvious, but we give a short formal proof for completeness.
According to Definition 5.2, if Bl(L1)∪Wh(L1) ⊆ Bl (L2)∪Wh(L2), then cost(L1) =∣∣Bl(L1)∪Wh(L1)

∣∣ ≤ ∣∣Bl(L2)∪Wh(L2)
∣∣ = cost(L2). Part 1 follows immediately from

this observation. Part 2 also follows easily, since each pebbled vertex on the left-hand
side is counted at least once on the right-hand side.

Theorem 6.15. Let π = {C0, . . . , Cτ} be a resolution derivation of
∨d

l=1 zl from
*Pebd

T . Then the L-configurations L(C0), . . . , L(Cτ ) are contained in a legal, complete
L-pebbling L of T such that maxt∈[τ ]

{
cost(L(Ct))

}
= Ω

(
cost(L)

)
.

Proof. The fact that
{
L(C0), . . . , L(Cτ )

}
is the “backbone” of a legal L-pebbling

was proven in Observation 6.11, Lemma 6.12, and Lemma 6.13, where it was explicitly
indicated how the “holes” in L(Ct)� L(Ct+1) could be filled in by L-pebbling moves
to get a legal pebbling L. It was also noted above that L(C0) = ∅ and L(Cτ ) =

{
z〈∅〉},

so filling in the holes results in a complete pebbling of T .
The bound maxt∈[τ ]

{
cost(L(Ct))

}
= Ω

(
cost(L)

)
does not follow immediately

from this, however. The problem is that a single resolution derivation step Ct � Ct+1

may induce several L-pebbling moves to get from L(Ct) to L(Ct+1) in L. Therefore,
we have to consider the possibility6 that the maximal pebbling cost in L is reached
in some intermediate L-configuration L′ between L(Ct) and L(Ct+1).

Since inference steps in π do not change the set of induced L-configurations, we
get two cases.

1. Ct � Ct+1 is an erasure. The moves to get from L(Ct) to L(Ct+1) are a
series of reversals from L(Ct) followed by a series of erasures from L(Ct).
In view of part 1 of Proposition 6.14, the maximal cost is incurred in the
intermediate L-configuration L′ after all reversals but before all erasures. We
have L′ = L(Ct) ∪ L(Ct+1), and by part 2 of Proposition 6.14 it follows that
cost(L′) ≤ cost(L(Ct)) + cost(L(Ct+1)) ≤ 2 · maxi∈[t,t+1]

{
cost(L(Ci))

}
.

2. Ct � Ct+1 is a download of C ∈ Axd(v). In this case the sequence of moves
to get from L(Ct) to L(Ct+1) is a possible introduction of v〈pred(v)〉 followed
by a series of reversals from L(Ct), then a series of mergers on {v} ∪ pred(v),
and finally a series of erasures of subconfigurations not derived in the merger

6In fact, this does not happen, but instead of proving this we happily sacrifice a constant 2 here
in order to get a simpler (or at least slightly less involved) proof.



84 JAKOB NORDSTRÖM

(a) L(C1) = {z〈p〉}. (b) L(C′
1) = {x〈p, q〉}.

(c) L(C2) = {z〈y〉}. (d) L(C′
2) = {z〈y〉, x〈∅〉}.

Fig. 9. Illustration of reversal moves in Remark 6.16.

moves. Again by part 1 of Proposition 6.14, we may concentrate on the
L-configuration L′ after all reversals and mergers but before the erasures.
All pebbles in Bl(L′)∪Wh(L′) are present in either L(Ct) or L(Ct+1), except
possibly for the pebbles on {v}∪pred(v) which may have been introduced and
then merged away. Since by construction all subconfigurations resulting from
these mergers must be contained in L(Ct+1), the pebbles on {v}∪pred(v) are
the only ones that can appear and then disappear during the intermediate
pebbling steps. If we remove {v}∪pred(v) from Bl (L′)∪Wh(L′), the pebbling
cost cannot decrease by more than 3.
Since all pebbles Bl(L′) \ ({v} ∪ pred(v)

)
and Wh(L′) \ ({v} ∪ pred(v)

)
are

contained in Bl (L(Ct)) ∪ Bl(L(Ct+1)) and Wh(L(Ct)) ∪ Wh(L(Ct+1)), re-
spectively, appealing to part 2 of Proposition 6.14 again we get the inequality
maxi∈[t,t+1]

{
cost(L(Ci))

} ≥ 1
2

(
cost(L′) − 3

)
.

This establishes that even if the maximal cost in the L-pebbling L induced by
derivation π = {C0, . . . , Cτ} is attained in some intermediate L-configuration L′ /∈{
L(Ct) | t ∈ [τ ]

}
, it still holds that maxt∈[τ ]

{
cost(L(Ct))

} ≥ 1
2cost(L) + O(1). The

theorem follows.
Remark 6.16. At this point, the reader might ask whether we really need the

reversal rule in the L-pebble game in order to get Theorem 6.15 or whether it is just
a convenience to simplify the proofs. The answer is that unfortunately, the reversal
rule is really needed. We provide two examples of this below, using the binary tree of
height 3 with vertex labels as in Figure 9.

Suppose that we have

(6.3) C1 =

[
pi ∨ qj ∨

∨d
l=1 xl

pi ∨
∨d

l=1 zl

∣∣∣∣∣ i, j ∈ [d]

]
with L(C1) =

{
z〈p〉}

(see Figure 9(a)). Note that only the subset of clauses on the second line in C1

contributes to L(C1). It is true that, because of the clauses on the first line, we have

(6.4) C1 ∪ B(p, q) � AP x =
∨d

l=1 xl ∨
∨d

l=1 zl,

but the support {p, q} is not minimal and x is not maximal with respect to C1 and
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{p, q} (Definition 6.5) since it also holds that

(6.5) C1 ∪ B(p) � AP x∗ =
∨d

l=1 zl.

However, if we erase the second line of clauses from (6.3), the implication in (6.4)
comes into play, and we get

(6.6) C′
1 =

[
pi ∨ qj ∨

∨d
l=1 xl | i ∈ [d]

]
with L(C′

1) =
{
x〈p, q〉}

as in Figure 9(b). It is necessary to have the reversal rule to go from Figure 9(a) to
Figure 9(b), which shows why reversals are needed in Lemma 6.12.

This might perhaps look like a somewhat silly example, but it nevertheless pin-
points the problem: although the erasures going from C1 in (6.3) to C′

1 in (6.6) might
seem clearly nonoptimal, we cannot exclude the possibility that such derivation steps
are made, and so we have to be able to match such steps by pebbling moves.

As a second example, consider

(6.7) C2 =

⎡
⎢⎢⎢⎣

x1 ∨ v1 ∨
∨d

j=1 zj

x1 ∨ w1 ∨
∨d

j=1 zj

yi ∨
∨d

j=1 zj

∣∣∣∣∣∣∣∣∣
i ∈ [d]

⎤
⎥⎥⎥⎦ with L(C2) =

{
z〈y〉}

(see Figure 9(c)). Here the first two clauses do not contribute to L(C2), but if we
download the axiom v1 ∨ w1 ∨

∨d
j=1 yj , we get

(6.8) C′
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 ∨ v1 ∨
∨d

j=1 zj

x1 ∨ w1 ∨
∨d

j=1 zj

yi ∨
∨d

j=1 zj

v1 ∨ w1 ∨
∨d

j=1 yj

∣∣∣∣∣∣∣∣∣∣∣∣
i ∈ [d]

⎤
⎥⎥⎥⎥⎥⎥⎦

with L(C′
2) =

{
z〈y〉, x〈∅〉}

as in Figure 9(d), since it is easy to check that C′
2 � AP x =

∨d
j=1 xj ∨ ∨d

j=1 zj but

C′
2 � AP x∗ =

∨d
j=1 zj . We cannot get x〈∅〉 from L(C2) unless we have reversal moves,

so the reversal rule is needed also in Lemma 6.13.
We leave it to the reader to verify that C1 and C2 can indeed be derived from

*Pebd
T3

. We note, though, that it appears that in order to derive C2 one needs to pass
stronger clause configurations along the way, and it seems very unclear why anyone
would like to go from these clause configurations to the weaker configuration C2.

We conclude this section by proving Theorem 2.1 on page 65. Since we wanted
to avoid unnecessary technicalities in section 2, Theorem 2.1 talks about refutations
π : Pebd

Th
� 0 rather than derivations π∗ : *Pebd

Th
� ∨d

i=1 zi, but this is easily taken
care of.

Theorem 2.1 (restated). There is a translation function from clause configura-
tions derived from Pebd

Th
into L-configurations in Th such that any resolution refu-

tation π of Pebd
Th

corresponds to a complete labeled pebbling Lπ of Th under this
translation.

Proof. Given a resolution refutation π : Pebd
Th

� 0, use (the proof of) Lemma 6.2
to transform the refutation π clause configuration by clause configuration into a
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derivation π∗ : *Pebd
Th

� ∨d
i=1 zi in the same space. Then use Definition 6.6 as

the translation function, and let Lπ be the labeled pebbling constructed from π∗ in
Theorem 6.15.

We comment that as another attempt to simplify the exposition in section 2,
Theorem 2.1 leaves out the crucial information in Theorem 6.15 that the cost of Lπ is
upper-bounded by the maximal cost of the induced L-configurations L(Ct). We will
return to Theorem 6.15 and use this information in the proof of Theorem 2.2 at the
end of the next section.

7. Induced L-pebble configurations measure clause set size. In the last
section, we proved that Sp

(
Pebd

Th
� 0
)

= Sp
(
*Pebd

Th
� ∨d

i=1 zi

)
and that each resolu-

tion derivation π : *Pebd
Th

� ∨d
i=1 zi induces a complete L-pebbling L of Th such that

maxC∈π

{
cost(L(C))

}
= Ω

(
cost(L)

)
. In section 5 we stated (promising a proof in the

appendix) that cost(L) = Ω
(
BW-Peb(T )

)
. The final component needed to piece to-

gether the proof of our lower bound on the refutation space of pebbling contradictions
is that the number of pebbles in an induced L-configuration L(C) and the number of
clauses in C are somehow connected.

Note that we cannot expect a proof of this fact to work regardless of the pebbling
degree d. The induced L-pebbling in section 6 makes no assumptions about d, but
we know that Sp

(
*Peb1

G � z1

)
= Sp

(
Peb1

G � 0
)

= O(1). If we look at the resolution
refutation π of Peb1

G in constant space sketched at the end of section 4.2, we see
that the induced L-pebbling starts by placing white pebbles on pred(z) and a black
pebble on z, i.e., introducing z〈pred(z)〉, and then pushes the white pebbles downward
by introducing v〈pred(v)〉 for all v in reverse topological order and merging until it
reaches z〈S〉 for S the source vertices of G. Finally, the white pebbles s ∈ S are
eliminated one by one by introducing s〈∅〉 and merging. The reason that Peb1

G can
be refuted in constant space is that one single clause z1 ∨ ∨v∈V v1 can induce an
arbitrary number |V | of white pebbles, or, phrasing it differently, that white pebbles
are free for d = 1.

In Theorem 7.6 below we show that provided d > 1 one has to pay at least |C| ≥ N
clauses to get N induced pebbles. This completes the proof of our main theorem which
was outlined in section 2.3. We first show some technical results about CNF formulas
that will be needed in the proof.

Lemma 7.1. Suppose that it holds for a set of clauses C and clauses D1 and D2

with Vars(D1) ∩Vars(D2) = ∅ that C � D1 ∨ D2 but C � D2. Then there is a literal
a ∈ Lit(C) ∩ Lit(D1).

Proof. Pick a truth value assignment α such that α(C) = 1 but α(D2) = 0. By
assumption α(D1) = 1. Let α′ be the same assignment except that all satisfied literals
in D1 are flipped to false so that α′(D1) = 0 (which is possible since all literals are
pairwise strictly distinct). Then α′(D1 ∨ D2) = 0 forces α′(C) = 0, so the flip must
have falsified some previously satisfied clause in C.

Definition 7.2. A set of clauses C implies a clause D minimally if C � D but
for all C′ � C it holds that C′ � D. If C � 0 minimally, C is said to be minimally
unsatisfiable.

Lemma 7.3. Let C be a set of clauses and D a clause such that C � D minimally
and a ∈ Lit(C) but a /∈ Lit(C). Then a ∈ Lit(D).

Proof. Suppose not. Let C1 = {C ∈ C | a ∈ Lit(C)} and C2 = C \ C1. Since
C2 � D there is an α such that α(C2) = 1 and α(D) = 0. Note that α(a) = 0, since
otherwise α(C1) = 1. It follows that a /∈ Lit(D). Flip a to true. By construction
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αa=1(C1) = 1, and C2 and D are not affected since {a, a} ∩ (Lit(C2) ∪ Lit(D)
)

= ∅,
so αa=1(C) = 1 and αa=1(D) = 0, which is a contradiction.

The fact that a minimally unsatisfiable CNF formula must have more clauses
than variables seems to have been proven independently a number of times (see,
for instance, [1, 8, 23, 38]). We will need the following formulation of this result,
relating subsets of variables in a minimally implicating CNF formula and the clauses
containing variables from these subsets.

Theorem 7.4. Suppose that F is a CNF formula that implies a clause D min-
imally. For any subset of variables V , let FV = {C ∈ F | Vars(C) ∩ V �= ∅}. Then
if V ⊆ Vars(F ) \ Vars(D), it holds that |FV | > |V |. In particular, if F is minimally
unsatisfiable, we have |FV | > |V | for all V ⊆ Vars(F ).

Proof. The proof is by induction over V ⊆ Vars(F ) \ Vars(D).
If |V | = 1, then |FV | ≥ 2, since any x ∈ V must occur both positively and

negatively in F by Lemma 7.3.
The inductive step just generalizes the proof of Lemma 7.3. Suppose that |FV ′ | >

|V ′| for all strict subsets V ′ � V ⊆ Vars(F )\Vars(D) and consider V . Since FV ′ ⊆ FV

if V ′ ⊆ V , choosing any V ′ of size |V | − 1 we see that |FV | ≥ |FV ′ | ≥ |V ′| + 1 = |V |.
If |FV | > |V | there is nothing to prove, so assume that |FV | = |V |. Consider

the bipartite graph with the variables V and the clauses in FV as vertices, and edges
between variables and clauses for all variable occurrences. Since for all V ′ ⊆ V the set
of neighbors N(V ′) = FV ′ ⊆ FV satisfies |N(V ′)| ≥ |V ′|, by Hall’s marriage theorem
there is a perfect matching between V and FV . Use this matching to satisfy FV

assigning values to variables in V only.
The clauses in F ′ = F \FV are not affected by this partial truth value assignment,

since they do not contain any occurrences of variables in V . Furthermore, by the
minimality of F it must hold that F ′ can be satisfied and D falsified simultaneously
by assigning values to variables in Vars(F ′) \ V .

The two partial truth value assignments above can be combined to an assignment
that satisfies all of F but falsifies D, which is a contradiction. Thus |FV | > |V |. The
theorem follows by induction.

We need one final definition relating vertices of T and literal occurrences in clauses
for the variables associated with these vertices.

Definition 7.5. We say that a vertex v is represented positively in a clause C
if
{
v1, . . . , vd

}∩Lit(C) �= ∅ and negatively if
{
v1, . . . , vd

}∩ Lit(C) �= ∅, and that C
mentions v positively or negatively, respectively. This definition is extended to sets
of vertices and clauses by taking unions.

For a set of vertices U , we let Varsd(U) =
{
u1, . . . , ud | u ∈ U

}
denote the set

of all variables representing vertices in U . For a set of clauses C, we use V (C) ={
u ∈ U | Varsd(u) ∩ Vars(C) �= ∅} to denote all vertices represented (positively or

negatively) in C, and we write C[U ] =
{
C ∈ C | V (C) ∩ U �= ∅} to denote the subset

of all clauses in C mentioning vertices in U .
We now prove by induction over the (sub)sets of induced pebbles that a clause

configuration is at least as large as the number of pebbles it induces.
Theorem 7.6. Suppose that C is a set of clauses derived from *Pebd

T for d ≥ 2
that induces the labeled pebble configuration L(C). Then cost(L(C)) ≤ |C|.

Proof. Suppose that C induces a subconfiguration v〈W 〉. By Definition 6.6, there
is a minimal support Vv ⊆ T \P v with W = swp(v, Vv) ⊆ Vv such that C∪B(Vv) � AP v

but C ∪ B(Vv) � AP v∗ and C ∪ B(V ′
v) � AP v for all V ′

v � Vv.
Fix for each induced subconfiguration v〈W 〉 with W = swp(v, Vv) a subset Cv ⊆ C

such that Cv ∪ B(Vv) � AP v minimally. Since Vars(B(Vv)) ∩ Vars(AP v ) = ∅ by
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definition, using Lemma 7.1 with D1 =
∨d

i=1 vi and D2 = AP v∗ , we see that the vertex
v must be represented in Cv by some positive literal vi. For the white pebbles in
W ⊆ Vv, it follows for the same reason from Lemma 7.3 that all literals wj , j ∈ [d],
must be present in Cv.

We prove by induction over U ⊆ Bl(L(C)) ∪ Wh(L(C)) that |C[U ]| ≥ |U |, from
which the theorem clearly follows. The base case |U | = 1 is immediate, since we just
observed that all pebbled vertices v ∈ V are represented in C.

For the induction step, suppose that
∣∣C[U ′]

∣∣ ≥ ∣∣U ′∣∣ for all U ′ � U . Pick a
“topmost” vertex u ∈ U , i.e., such that Pu

∗ ∩U = ∅, and look at the subconfiguration
v〈W 〉 containing u (with u = v if u is black and u strictly below v otherwise) and
the associated subset Cv ⊆ C fixed above. Note that Varsd(U) ∩ Vars(AP v ) ⊆
{u1, . . . , ud}. Let S = U ∩V (Cv) be the set of all vertices in U mentioned by Cv. We
claim that |Cv[S]| ≥ |S|.

To show this, note first that u ∈ S as was argued above, and if S = {u} we
trivially have |Cv[S]| ≥ 1 = |S|. Suppose therefore that S � {u}. We want to apply
Theorem 7.4 on the formula F = Cv∪B(Vv), which as we recall implies AP v minimally.
To this end, let S′ = S \ {u}, write S′ = S1

.∪ S2 for S1 = S′ ∩ Vv and S2 = S′ \ S1,
and consider

FS′ =
{
C ∈ (Cv ∪ B(Vv)

) | V (C) ∩ S′ �= ∅}
= Cv[S′] ∪ B(S1).

(7.1)

For each w ∈ S1, the clauses in B(S1) contain d literals w1, . . . , wd, and these literals
must all occur negated in Cv by Lemma 7.3. For each w ∈ S2, the clauses in Cv[S′]
contain at least one variable wi. Appealing to Theorem 7.4 with the subset of variables
Varsd(S′) ∩ Vars(Cv) ⊆ Vars(Cv ∪ B(Vv)) \ Vars(AP v ), we get∣∣FS′

∣∣ = ∣∣Cv[S′] ∪ B(S1)
∣∣

≥ ∣∣Varsd(S′) ∩ Vars(Cv)
∣∣+ 1

≥ d
∣∣S1

∣∣+ ∣∣S2

∣∣+ 1,

(7.2)

and rewriting this as ∣∣Cv[S]
∣∣ ≥ ∣∣Cv[S′]

∣∣
=
∣∣FS′

∣∣− ∣∣B(S1)
∣∣

≥ (d − 1)
∣∣S1

∣∣+ ∣∣S2

∣∣+ 1

≥ ∣∣S∣∣
(7.3)

proves the claim (this is where we use that d ≥ 2).
Note that Cv[S] ⊆ C[U ], since Cv ⊆ C and S ⊆ U . Also, by construction

Cv[S] does not mention any vertices in U \ S since S = U ∩ V (Cv). In other words,
C[U ] ⊇ Cv[S]∪C[U \S] for Cv[S]∩C[U \ S] = ∅, and using the induction hypothesis
for U \ S � U we get

(7.4)
∣∣C[U ]

∣∣ ≥ ∣∣Cv[S]
∣∣+ ∣∣C[U \ S]

∣∣ ≥ |S| + |U \ S| = |U |.
The theorem follows by induction.

We can now prove Theorem 2.2 on page 65.
Theorem 2.2 (restated). If π is a resolution refutation of a pebbling contradic-

tion Pebd
Th

of degree d > 1 and Lπ is the associated labeled pebbling from Theorem 2.1,
then cost(Lπ) = O(Sp(π)).
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Proof. As in the proof of Theorem 2.1, given a refutation π : Pebd
Th

� 0, we use
Lemma 6.2 to get a derivation π∗ = {C0, . . . , Cτ} of

∨d
i=1 zi from *Pebd

Th
in the same

space and consider the L-pebbling Lπ constructed in Theorem 6.15. Then

(7.5) cost(Lπ) = O
(
maxt∈[τ ]{cost(L(Ct))}

)
by Theorem 6.15, and for all t ∈ [τ ] it holds that

(7.6) cost(L(Ct)) ≤ |Ct|

by Theorem 7.6. Thus

(7.7) cost(Lπ) = O
(
maxt∈[τ ]{|Ct|}

)
= O

(
Sp(π∗)

)
= O

(
Sp(π)

)
and the theorem follows.

The proof of the tight bound for the refutation clause space of pebbling con-
tradictions over binary trees in Theorem 1.1 as presented in section 2.3 is thereby
complete.

8. Conclusion and open problems. We have proven an asymptotically tight
bound on the refutation clause space in resolution of pebbling contradictions over
binary trees. Our result is the first lower bound on resolution refutation space, which is
not the consequence of a lower bound on the refutation width of the same formulas, but
instead separates the two measures. This answers an open question in [13, 28, 30, 52].
However, we believe that it should be possible to strengthen our answer in several
interesting ways.

First, we would like to determine the refutation space complexity of pebbling
contradictions over binary trees in the stronger k-DNF resolution proof systems R(k)
introduced by Kraj́ıček [37], where the lines in the proofs are k-DNF formulas instead
of clauses and one can “resolve” over up to k variables simultaneously.

It is easy to prove the generalization of Theorem 4.6 that pebbling contradictions
of degree d can be refuted in space SpR(k)

(
Pebd

G � 0
)

= O(1) in k-DNF resolution
if d ≤ k. For d > k, one could argue that it seems plausible that k-DNF resolution
should be hard pressed to do anything better with Pebd

Th
than ordinary resolution

(i.e., 1-DNF resolution) can do with Peb2
Th

. But although the difference between
resolution and k-DNF resolution might appear small, going from disjunctive clauses
to 2-DNF formulas, or more generally from k-DNFs to (k+1)-DNFs, increases the
proof power exponentially [50]. And while many lower bounds have been proven on
k-DNF resolution proof length, for instance, in [2, 5, 6, 46, 50], it seems that the tools
developed in these papers cannot be used to obtain lower bounds on space.

A careful reading of our proofs reveals that the only place where we actually
use that the configurations in the derivations contain disjunctive clauses is in sec-
tion 7. The proof in section 6 that resolution derivations induce labeled pebblings
works just as well for derivations that use any sound derivation rules and operate
with configurations containing arbitrary logical formulas (compare the remark after
Observation 6.11). The main difficulty if one tries to prove a lower bound on k-DNF
resolution refutation space along the lines of the current paper appears to be that
one needs an analogue of Theorem 7.4 for minimally unsatisfiable sets of k-DNF for-
mulas, with a strong lower bound on the number of k-DNF formulas in terms of the
number of variables. This result should then be plugged into Theorem 7.6 to yield a
lower bound for k-DNF resolution refutation space. Unfortunately, to the best of our
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knowledge no such bounds for minimally unsatisfiable sets of k-DNF formulas have
been shown, and it is not even intuitively clear to us exactly what such an analogous
result should look like.

Nevertheless, we believe that pebbling contradictions Pebk
Th

+ 1 separate k-DNF
resolution and (k+1)-DNF resolution with respect to space.

Conjecture 1. For k-DNF resolution refutations of pebbling contradictions on
complete binary trees, fixing k it holds that SpR(k+1)

(
Pebk

Th
+ 1 � 0

)
= O(1) but

SpR(k)

(
Pebk

Th
+ 1 � 0

)
= Ω(h).

Proving this conjecture, or any nonconstant lower bound on the k-DNF resolution
space SpR(k)

(
Pebk

Th
+1 � 0

)
, would establish that the k-DNF resolution proof systems

form a strict hierarchy with respect to space, which would be an improvement of the
separation result in [28] for the restricted case of tree-like k-DNF resolution. Also,
in our opinion, understanding the structure of minimally unsatisfiable sets of k-DNF
formulas seems like an interesting (and challenging) combinatorial problem in its own
right.

A second question, which was mentioned already in the introduction, is whether
formulas refutable in short length can be arbitrarily complex with respect to refutation
space. Let us discuss this question a bit more carefully to make clear what we mean
by this.

For width, we know that if a k-CNF formula F is refutable in short length it
must also be refutable in small width. More precisely, Theorem 3.1 tells us (rewriting
the bound in terms of the number of clauses instead of variables using Theorem 7.4)7

that if the width of refuting F is ω
(√|F | log |F |), then the length of refuting F must

be superpolynomial in |F |. This is known to be almost tight, since [19] exhibits
a k-CNF formulafamily {Fn}∞n=1 with W(Fn � 0) = Ω

(
3
√|Fn|

)
but L(Fn � 0) =

poly(|Fn|). Hence, formula families refutable in polynomial length can have somewhat
wide minimum-width refutations, but not arbitrarily wide ones.

What does the corresponding relation between space and length look like? Since
Sp(F � 0) ≥ W(F � 0) + O(1) by Theorem 3.7, it follows immediately from the
preceding paragraph that k-CNF formulas refutable in polynomial length may have
somewhat spacious minimum-space refutations. This gives a lower bound for any
trade-off that we could hope to prove. At the other end of the spectrum, given any
resolution refutation π : F � 0, we can write down the DAG Gπ corresponding to π
(with L(π) vertices) and then construct a space-efficient refutation by deriving and
erasing clauses in the order of an optimal black pebbling of Gπ (this is the original
definition of the space of a derivation in [29]). Since it is known from [34] that
any graph on n vertices can be black-pebbled in cost O(n/ logn), this shows that
Sp(F � 0) = O

(
L(F � 0)/ logL(F � 0)

)
.

Now we can rephrase the question above about space and length in the follow-
ing way: Is there a Ben-Sasson–Wigderson kind of lower bound, say, L(F � 0) =
exp
(
Ω
(
Sp(F � 0)2/|F |)) or so, on length in terms of space? Or do there exist

k-CNF formulas F with short refutations but maximum possible refutation space
Sp(F � 0) = Ω

(
L(F � 0)/ log L(F � 0)

)
in terms of length? (Note that the refutation

length L(F � 0) must indeed be short in this case—essentially linear, since any for-
mula F can be refuted in space O(|F |) by Theorem 3.5.) Or is the relation between
refutation space and refutation length somewhere in between these extremes?

7Or, if one wants to be precise, actually using Theorem 3.8 in [41], since in general the formulas
will not be minimally unsatisfiable.
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We think that the true answer should be at the latter extreme, i.e., that space
and length can be separated in the strongest sense possible.

Conjecture 2. There is a family of unsatisfiable k-CNF formulas {Fn}∞n=1 of
size O(n) such that L(Fn � 0) = O(n) but Sp(Fn � 0) = Ω(n/ logn).

The reason for our belief brings us over to our third and final open question: What
is the refutation space complexity of pebbling contradictions over arbitrary graphs?
We have determined the space complexity of pebbling contradictions over trees, but
it would be nice to generalize this bound to pebbling contradictions over other DAGs
that have better size-pebbling price trade-off. We believe that the lower bound on
space in terms of black-white pebbling price should hold not just for trees, but for
any DAG.

Conjecture 3. For d > 1 and for an arbitrary DAG G with a unique target and
with all vertices having indegree 0 or 2, Sp(Pebd

G � 0) = Ω(BW-Peb(G)).
If we could prove Conjecture 3, we would immediately get a positive answer to

Conjecture 2 as well. For it was shown in [32]8 that there are DAGs Gn of fan-
in 2 and size O(n) that have black-white pebbling price BW-Peb(Gn) = Θ(n/ logn).
Thus, assuming Conjecture 3 and plugging in the pebbling contradictions defined
over these DAGs Gn, we would get a k-CNF formulafamily {Fn}∞n=1 of size O(n) with
L(Fn � 0) = O(n), W(Fn � 0) = O(1), and Sp(Fn � 0) = Ω(n/ logn). Note that
this would also yield an almost optimal separation of space and width. (The best
conceivable result would be a linear separation.)

However, it is not possible to prove Conjecture 3 by a simple generalization of the
L-pebble game with reversal moves in section 5 to general DAGs G. As was observed
in Lemma 5.3, because we allow moving black pebbles downward it is not true that
L-Peb(G) = Ω(BW-Peb(G)).

The problem with reversal moves arises because we do not a priori have any
restrictions on what kind of clauses a resolution derivation from a pebbling contra-
diction might derive. For all candidate definitions of induced pebbles that we have
been able to come up with (more or less radical variations of Definition 6.6), the ex-
ample resolution derivations resulting in reversal moves that we have found all seem
clearly nonoptimal (see, for instance, Remark 6.16), while all intuitively “reasonable”
resolution derivations appear to yield well-behaved pebblings without reversals.

One way of circumventing this problem would be if one could define formally what
constitutes a “reasonable” refutation of a pebbling contradiction and then show that
each “unreasonable” refutation can be replaced by a “reasonable” one in asymptoti-
cally the same space. Alternatively, one could try to find new ideas for the connection
between pebble games and resolution refutations of pebbling contradictions, perhaps
experimenting with even more general games than the labeled pebble game in this
paper.

Appendix. The labeled pebbling price of binary trees. In this appendix we
present a proof of Theorem 5.4 on page 77, i.e., that for binary trees, the L-pebbling
price coincides with the black-white pebbling price up to (small) constant factors.
Since the argument is quite lengthy, we begin by giving an outline of its structure.

A.1. High-level overview of proof. The proof of the theorem consists of two
main components. The first component is pretty straightforward and is taken care
of in section A.2. The second component is much more involved and takes up the

8Note that in several papers, this result is incorrectly attributed to [39], but [39] itself gives the
correct reference.
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rest of the appendix. In this first subsection we discuss these two parts of the proof
informally, state the two corresponding formal lemmas that we will need, and show
how they together yield Theorem 5.4.

For the first part, studying Definition 5.2 on page 75 carefully, one can argue
that if we remove the reversal rule from the labeled pebble game, what remains looks
essentially just like a disguised version of the standard black-white pebble game in
Definition 4.1 on page 69. True, the rule for white pebble removal has been somewhat
changed, and we are grouping pebbles together in pebble subconfigurations, but if
we take any “sensible” L-pebbling L =

{
L0, . . . , Lτ

}
, ignore this pebble grouping,

and just look at how the set of all black and white pebbles
(
Bl(Lt),Wh(Lt)

)
changes

over time with t, it seems plausible that we should obtain something pretty close to
a standard black-white pebbling.

This is indeed the case, and we formalize the intuition above in section A.2, where
we prove the following lemma.

Lemma A.1. Suppose that G is an arbitrary DAG with unique sink, and let L be
any complete L-pebbling of G without reversal moves. Then from L we can construct
a complete black-white pebbling P of G such that cost(P) ≤ cost(L).

Thus, if we could somehow do away with the reversal moves without increasing
pebbling price, we would be done. Recall that we know from Lemma 5.3 on page 76
that for general DAGs, this cannot be done. The counterexample in Lemma 5.3
does not apply to binary trees, though. Rather, on the contrary, toying around with
L-pebblings of small binary trees, one cannot help getting the feeling that the removal
of reversals should not affect the L-pebbling price in any way whatsoever. To show
this formally, we need to make a detailed analysis of L-pebblings of trees and find out
what structural properties can help us get rid of reversal moves in this special case.
This is the second, much harder, component in the proof of Theorem 5.4.

In section A.3, we present some further definitions and notation that we will use
when studying this problem, and we make some useful technical observations. The
rest of the appendix is then spent proving that for binary trees, the rule for reversal
can in fact be omitted from the L-pebble game. We do not quite get the result that
the pebbling price is not affected at all by this, but we show that it cannot increase
by more than a constant factor 2. Such a bound is wholly sufficient for our purposes.

Unfortunately, the proof of this fact is very technical, but the structure of the
underlying argument is not that complicated. Below, we try to sketch what it looks
like to give the reader an idea of where we are going.

1. We first take care of a minor technical issue. In the pebble configurations of
the standard black-white pebble game, we have black pebbles and, below each
black pebble, the white pebbles it depends on, with nothing in between. In
contrast, in the L-pebble game there can be other black pebbles in between a
black pebble and its white pebbles, or two black pebbles, one above the other,
without any white pebbles below them (see, for example, v1〈v2, v6〉 and v7〈∅〉
in Figure 10 on page 100, or v〈v1, v2, v3〉 and w〈w4, w5〉 in Figure 11(a) on
page 103).
The first step in our elimination of reversal moves is to show that this differ-
ence is inconsequential. Namely, we establish that without loss of generality
we can assume that any L-pebbling L is nonoverlapping in the sense that,
roughly speaking, different pebble subconfigurations in the same labeled peb-
ble configuration do not intersect (Definition A.21 and Lemma A.26 in sec-
tion A.4).

2. Next, we study the connection between reversal moves and the set of vertices
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covered by the pebble subconfigurations in the sense of Definition 5.1 on
page 74. In a standard black-white pebbling of a binary tree T , the set
of vertices covered (generalizing Definition 5.1 in the natural way) expands
monotonically as the pebbling proceeds, but in an L-pebbling it might also
shrink as a result of reversal moves.
As was discussed above, our intuition is that for trees this “shrinking” should
not help to produce cheaper pebblings. As a part of our attempt to under-
stand what happens during reversal moves, we observe that if we restrict an
L-pebbling L to a subset of the vertices in T and let L act on these vertices in
the natural way, we get a legal L-pebbling on this subset of vertices. We refer
to this restriction operation as projection (Definition A.22 and Lemma A.28
in section A.5).

3. This leads to the idea of trying to get rid of reversal moves altogether in the
following way: When the cover of a labeled pebble configuration shrinks as
the result of a reversal move, we eliminate this reversal by projecting the
L-pebbling moves made so far on what remains after the reversal move. We
know that every such projection results in a legal L-pebbling, and if we do
this by forward induction for all reversal moves in L, we get a reversal-free
complete L-pebbling L′ of T (section A.6).

4. The problem is that these projection operations do not preserve pebbling
cost—the pebbling L may contain reversal moves such that the projected
pebbling L′ becomes more expensive than L. We identify which kind of
reversals in L spoil our construction of a reversal-free and cheap pebbling L′

by projection and note that, from a global perspective, such wasteful reversal
moves seem clearly nonoptimal (Example A.29).
Encouraged by this, and allowing some temporary wishful thinking, we then
demonstrate that, for all L-pebblings that contain reversal moves but avoid
this special class of wasteful reversals, the projection construction sketched
above works (Definition A.30 and Lemma A.32 in section A.7).

5. In this way, the whole problem finally boils down to whether wasteful reversals
can be eliminated. In general, we cannot assume that an L-pebbling L does
not make wasteful reversal moves, but we show that if L contains such moves,
we can construct another L-pebbling L′ in which these wasteful reversals are
replaced by stronger, nonwasteful moves without increasing the total pebbling
cost by more than a constant factor (Lemma A.37 in section A.8).

Summing this up, we get the next lemma.
Lemma A.2. Suppose that L is a complete L-pebbling of a complete binary tree

T . Then from L we can construct a complete L-pebbling L′ of T without reversals
such that cost(L′) = O(cost(L)).

Assuming Lemmas A.1 and A.2, it is easy to prove that the L-pebbling price
and the black-white pebbling price of a complete binary tree Th of height h coincide
asymptotically.

Theorem 5.4 (restated). L-Peb(Th) = Θ
(
BW-Peb(Th)

)
.

Proof. The black pebbling price of Th is Peb(Th) = O(h) = O(BW-Peb(Th))
according to Theorem 4.3 on page 70. It is not hard to see that an L-pebbling L can
imitate a black pebbling P in the same cost. For suppose that at some point in time
t a black pebble is placed on the vertex r in P . If r is a source, L can match this
move by introducing r〈∅〉. Otherwise, if pred(r) = {p, q}, both these vertices must be
black-pebbled at time t in P , so by induction we have p〈∅〉 and q〈∅〉 in L. Introducing
r〈p, q〉, merging with p〈∅〉 and q〈∅〉 on p and q, respectively, and then erasing r〈p, q〉,
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we get r〈∅〉. Thus L-Peb(Th) ≤ Peb(Th) = O(BW-Peb(Th)).
In the other direction, let L be a complete L-pebbling of Th in minimal cost.

By Lemma A.2, there exists a complete L-pebbling L′ of Th without reversal moves
such that cost(L′) = O(cost(L)). By Lemma A.1 we can construct a plain old black-
white pebbling P of Th from L′ for which cost(P) ≤ cost(L′). Hence BW-Peb(Th) =
O(L-Peb(Th)), and the theorem follows.

So all that needs to be done is to prove Lemmas A.1 and A.2, which we do starting
in the next subsection.

We make one final remark before plunging into the proofs. We are aware that the
technical machinery in this appendix can appear cumbersome. However, this might
mainly be due to the fact that sometimes, one picture says more than the thousand
words used to formalize it mathematically. We feel that at times in this appendix,
we are forced to go to great lengths to prove statements that seem intuitively very
plausible once one visualizes what they actually say. Therefore, we believe that the
arguments should be possible to follow more easily if the reader tries to digest what
the definitions mean and what is proven about them simply by drawing a binary tree
of suitable height and working out small examples in this binary tree while reading.

A.2. Reversal-free L-pebblings are (almost) standard pebblings. We
present the proof of Lemma A.1 in two steps, one easy and one harder.

The first modification of the pebble game when going from Definition 4.1 to
Definition 5.2 was that in the context of resolution, it appears that a more natural
rule for white pebble removal is that a white pebble can be removed from a vertex
when a black pebble is placed on that same vertex. It is thanks to this that we get
the close correspondence between clauses and pebbles in section 6.

It seems intuitively fairly obvious that this rule change should not really affect
the pebble game, but for completeness we state and prove this fact formally.

Definition A.3 (S-pebble game). Suppose that G is a DAG with unique sink
z. The superpositioned black-white pebble game, or S-pebble game, is as in Defi-
nition 4.1, except that a vertex may have both a black and a white pebble on itself,
and the pebbling rules are 1–3 in Definition 4.1 and 4’ below instead of rule 4 in
Definition 4.1.

4’. A white pebble on v can be removed only if there is a black pebble on v.
We write S-Peb(G) to denote the minimum cost of any complete S-pebbling of G.

Lemma A.4. For any DAG G it holds that S-Peb(G) = BW-Peb(G).
Proof. It is easy to see that for any standard black-white pebbling P of G we

can make an S-pebbling S of G in exactly the same cost. Every white pebble removal
from a vertex v in P according to rule 4 corresponds to first placing a black pebble on
v in S in no extra cost and then removing first the white pebble according to rule 4’
and then the black pebble according to rule 2.

In the other direction, suppose that we are given a superpositioned pebbling S =
{S0, . . . , Sτ} of G. We construct a standard black-white pebbling P = {P0, . . . , Pτ}
such that for Pt = (Bt, Wt) and St = (B′

t, W
′
t ) it holds that Bt = B′

t, Bt ∪ Wt =
B′

t ∪ W ′
t , and (as required by Definition 4.1) Bt ∩ Wt = ∅. In particular, this means

that cost(P) = cost(S) and that if S is a complete pebbling, then so is P .
The construction is by forward induction over S. We set P0 = S0 = (∅, ∅) and

then make the inductive step by a case analysis over the pebbling moves.
1. If S places a black pebble on v at time t + 1, the vertices in pred(v) must be

pebbled in St and thus in Pt. If v ∈ Wt, we remove the white pebble from v
in P . Then we place a black pebble on v.
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2. If S removes a black pebble from v at time t + 1, by induction v is black-
pebbled and the vertices in pred(v) are pebbled in P . Thus we can remove
the black pebble from v in P , and in case v ∈ W ′

t we then place a white
pebble on v.

3. If S places a white pebble on v at time t + 1, we place a white pebble there
in P if v /∈ Bt and otherwise do nothing.

4. When a white pebble is removed from v in S it holds that v ∈ B′
t. Then by

induction v ∈ Bt, so the white pebble has already been removed from v in P
or was never placed there.

Note that to avoid being overly formalistic, we ignore the fact there there might be
“idle moves” Pt = Pt+1 and moves simultaneously removing and placing a pebble on
the same vertex in P and S. It should be clear that this is not a problem.

The second step in the proof of Lemma A.1 is to show that if we take a com-
plete L-pebbling L = {L0, . . . , Lτ} of a DAG G without reversal moves and look at(
Bl(Lt),Wh(Lt)

)
for t ∈ [τ ], we can extract a legal complete S-pebbling of G in at

most the same cost. We prove this in the next two lemmas.
The first lemma says that without loss of generality we can assume that all

L-pebblings are nonredundant in the sense that if a subconfiguration v〈V 〉 is derived
at time t, then this subconfiguration is not just thrown away but is used at some time
t′ > t further on in the pebbling before being erased.

From now on, in order not to clutter the notation we allow a mild abuse of notation
by omitting curly brackets around singleton L-configurations, quite often writing, for
instance, v〈V 〉 � L, u〈U〉 = L, and L∪w〈W 〉 instead of {v〈V 〉} � L, {u〈U〉} = L, and
L∪{w〈W 〉}. Also, we sometimes drop the curly brackets around singleton sets within
subconfigurations, writing, for instance, v〈(V ∪ W ) \ w〉 instead of v〈(V ∪ W ) \ {w}〉
for the merger of v〈V 〉 and w〈W 〉.

Lemma A.5. Let L = {L0, . . . , Lτ} be an arbitrary complete L-pebbling of a
DAG G. Then we can construct a complete L-pebbling L′ = {L′

0, . . . , L
′
τ ′} of G with

cost(L′) ≤ cost(L) that has the following property: If v〈V 〉 is erased at time t in L′,
i.e., v〈V 〉 ∈ L′

t \L′
t+1, then this subconfiguration has been used in a merger or reversal

move immediately before being erased, and the subconfiguration resulting from this
move is present in L′

t+1. Also, if L makes no reversal moves, then neither does L′.
Proof. Let us first try to visualize the proof. For any L-pebbling L, we can

construct a DAG GL encoding the pebbling as follows. For every subconfiguration
v〈V 〉 appearing at time t1 and staying in the graph until time t2 when it is erased,
we create a vertex (v〈V 〉, [t1, t2]). For each reversal u〈U〉 � v〈V 〉, we draw an edge
from the vertex representing this occurrence of u〈U〉 to the vertex representing this
occurrence of v〈V 〉. For each merger u〈U〉 = merge(v〈V 〉, w〈W 〉), we draw edges from
v〈V 〉 and w〈W 〉 to u〈U〉. The sources in GL are vertices (v〈pred(v)〉, [t1, t2]), and by
assumption there is a sink (z〈∅〉, [t1, τ ]). Note that by the definition of the L-pebble
game we never derive a subconfiguration that is already present in the graph, so all
vertices in GL have indegree 0, 1, or 2 corresponding to introductions, reversals, and
mergers.

Consider the subgraph of GL consisting of all vertices from which the sink ver-
tex (z〈∅〉, [t1, τ ]) is reachable. We construct L′ to be the subpebbling corresponding
exactly to the moves in this subgraph, except that erasures are always performed as
soon as possible. Since the moves in L′ are a subset of the moves in L, clearly L′ is
reversal-free if L is.

Formally, this amounts to the following. We construct the modified pebbling L′

by backward induction over L = {L0, . . . , Lτ}. Let L′
τ = Lτ = {z〈∅〉}. Our induction
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hypothesis is that L′
t∗ ⊆ Lt∗ for t∗ > t. The backward induction step from t + 1 to

t is a case analysis over the moves Lt � Lt+1 in L. For simplicity, we allow using
fractional time steps in the interval [t, t + 1] in the inductive constructions below.
Introduction. Lt+1 = Lt∪v〈pred(v)〉: Set L′

t = L′
t+1 \v〈pred(v)〉. Note that we might

have L′
t = L′

t+1 if v〈pred(v)〉 /∈ L′
t+1. In any case, the induction hypothesis

holds for L′
t.

Merger. Lt+1 = Lt ∪ v〈(V ∪ W ) \ w〉: If v〈(V ∪ W ) \ w〉 /∈ L′
t+1, set L′

t = L′
t+1. The

induction hypothesis trivially remains true. Otherwise, if the merged subcon-
figuration is present in L′

t+1, set L′
t =
(
L′

t+1 ∪ {v〈V 〉, w〈W 〉}) \ v〈(V ∪ W ) \
w〉. We can go from L′

t to L′
t+1 in at most three steps via intermediate

L-configurations L′
t+1/3 = L′

t ∪ v〈(V ∪W ) \w〉 and L′
t+2/3 = L′

t+1 ∪w〈W 〉 by
first merging v〈V 〉 and w〈W 〉, then possibly erasing v〈V 〉, and finally possibly
erasing w〈W 〉.

Reversal. Lt+1 = Lt ∪ v〈V 〉 for v〈V 〉 ≺ u〈U〉 ∈ Lt: If v〈V 〉 /∈ L′
t+1, set L′

t = L′
t+1.

Otherwise, set L′
t =

(
L′

t+1 ∪ u〈U〉)\v〈V 〉. We can go from L′
t to L′

t+1 in at
most two steps via the intermediate L-configuration L′

t+1/2 = L′
t+1 ∪ u〈U〉,

i.e., by first reversing u〈U〉 to v〈V 〉 and then possibly erasing u〈U〉.
Erasure. Lt+1 = Lt \ v〈V 〉: All erasure moves in L′ are taken care of in connection

with mergers or reversals, so set L′
t = L′

t+1.
We claim that all moves in L′ constructed in this way are legal (if we eliminate

repeated L-configurations L′
t = L′

t+1). For if u〈U〉 ∈ L′
t, then u〈U〉 ∈ Lt, and we

know that this subconfiguration must have been derived at some point in time t∗ ≤ t
in L by introduction, merger, or reversal. Thus the backward construction of L′ will
yield a correct derivation of u〈U〉. Also note that by the construction for the merger
and reversal moves, when a subconfiguration in L′ is erased it has just been used in
some merger or reversal move.

Finally, by construction L′
t ⊆ Lt, and for the intermediate fractional time step

L-configurations L′
t+a/b in the merger and reversal moves in L′ we have L′

t+a/b ⊆ Lt+1.
This shows that for all L′ ∈ L′ there is a corresponding L ∈ L such that cost(L′) ≤
cost(L) (part 1 of Proposition 6.14). It follows that cost(L′) ≤ cost(L).

For L-pebblings as in Lemma A.5, if we ignore all relations between black and
white pebbles in the subconfigurations and consider

(
Bl(Lt),Wh(Lt)

)
for t ∈ [τ ], this

is a legal S-pebbling.
Lemma A.6. Suppose that L is a complete L-pebbling of a DAG G without

reversal moves. Then there is a complete S-pebbling S of G such that cost(S) ≤
cost(L).

Proof. By Lemma A.5, without loss of generality we can assume that each
v〈V 〉 is erased from L precisely after it has been used in a merger, and that v〈V 〉
is erased before w〈W 〉 when both subconfigurations are eliminated after a move
v〈(V ∪ W ) \ w〉 = merge(v〈V 〉, w〈W 〉), so that the white pebble on w is removed
before the black pebble on w.

It is clear that we are done if we can construct an S-pebbling S with moves
matching the moves in L exactly. Let S0 = (∅, ∅) and construct St+1 inductively by
looking at the moves in Lt � Lt+1.
Introduction. Lt+1 = Lt ∪ v〈pred(v)〉: Place white pebbles on pred(v) and then a

black pebble on v in S.
Merger. Lt+1 = Lt ∪ v〈(V ∪ W ) \ w〉 for v〈V 〉, w〈W 〉 ∈ Lt: No pebbling moves in S,

but note that if v〈V 〉 is now removed, the change in pebbles on G in L is
exactly the same as after an application of rule 4’ on w.
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Erasure. Lt+1 = Lt \ v〈V 〉: This is the only nontrivial case. In general, an erasure
move in an L-pebbling can remove an arbitrary number of white pebbles
without any black pebbles being even close to these white pebbles, and there
is no way we can match such a move in an S-pebbling. But since we can
assume that L is an L-pebbling as described in Lemma A.5, we know that
v〈V 〉 has just been used in a merger. Consequently, the only pebble that
disappears when going from

(
Bl(Lt),Wh(Lt)

)
to
(
Bl(Lt+1),Wh(Lt+1)

)
is

either the black pebble on v, which is always a legal pebble removal, or some
white pebble on w ∈ V which has just been eliminated in the merger move
by a black pebble, and this is a legal pebble removal according to rule 4’.

We see that S generated in this way is a legal S-pebbling if we modify each introduction
step into three pebble placement moves. Clearly, cost(S) ≤ cost(L). The lemma
follows.

Combining Lemmas A.4 and A.6 immediately yields Lemma A.1.
Lemma A.1 (restated). Suppose that G is an arbitrary DAG with unique sink,

and let L be any complete L-pebbling of G without reversals. Then from L we can
construct a complete black-white pebbling P of G such that cost(P) ≤ cost(L).

Proof. Given any L-pebbling L of G without reversal moves, we use Lemma A.6
to find an S-pebbling S in at most the same cost as L. Then Lemma A.4 helps us to
transform S to a standard black-white pebbling P in at most the same cost as S.

A.3. Some technical preliminaries. In the rest of this appendix, we restrict
our attention to binary trees and show that for such graphs the reversal rule can be
omitted in the labeled pebble game. Before beginning to construct the proof of this
statement, in this subsection we collect a number of technical observations that will
simplify matters later on. In the process, we also introduce some more definitions and
notation.

Recall the terminology and notation from the beginning of section 5 and from
Definitions 6.3 and 6.4. We add that, in this appendix, P and Q will denote paths
in T . Also, if succ(u) = succ(v) for u �= v, we will say that u and v are siblings and
write v = sibl(u). Note that siblings are unrelated vertices in the sense of section 5;
i.e., there is no (directed) path between u and v.

We observe that for binary trees, the cover of a subconfiguration can be defined
more explicitly than in Definition 5.1 and also has the following convexity property.

Definition A.7. We say that a vertex set V ⊆ V (G) in a DAG G is convex
if for all u1, u2 ∈ V there is a u∗ ∈ V above both u1 and u2 such that for all paths
Pi : ui � u∗, i = 1, 2, it holds that Pi ⊆ V .

Proposition A.8. For any pebble subconfiguration v〈W 〉 in a binary tree T it
holds that cover (v〈W 〉) = T v \⋃w∈W T w. In particular, cover(v〈W 〉) is a convex set.

This is not true for general DAGs. Consider, for instance, the pyramid graph of
height 4 with vertex labels as in Figure 6 on page 76. Then for z〈u2, u3〉 it holds that
s2, s4 ∈ cover(z〈u2, u3〉), but for any vertex above both s2 and s4 we can always pick
paths going through u2, u3 /∈ cover(z〈u2, u3〉) so cover(z〈u2, u3〉) is not convex.

Proof of Proposition A.8. The set inclusion T v \ ⋃w∈W T w ⊆ cover (v〈W 〉) is
straightforward. Since all vertices u ∈ T v \⋃w∈W T w are below v, they have paths
P : u � v to v. But no u is below any w ∈ W , so the paths P cannot possibly
intersect W . Thus u ∈ cover (v〈W 〉) according to Definition 5.1.

To show that this is an equality, we have to make use of the fact that T is a tree.
Namely, this implies that the path P : u � v, if it exists, must be unique. Suppose
to get a contradiction that u ∈ cover (v〈W 〉) but u /∈ T v \⋃w∈W T w. By definition
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there is a path P : u � v, so u ∈ T v. It follows that there must exist some w ∈ W
such that u ∈ T w. But then the unique path P : u � v must pass through w, so
P ∩ W �= ∅, contradicting the assumption that u ∈ cover (v〈W 〉).

To prove convexity, just set u∗ = v in Definition A.7 and use that the path
between any two vertices in T is uniquely determined.

A nice property of mergers in binary trees is that if we merge two simple subcon-
figurations (Definition 6.4), then the resulting subconfiguration is also simple. We re-
mark that this is not true in more general DAGs. If we look at Figure 6 again, the sub-
configurations z〈x2, u2, u3〉 and x2〈s3〉 are both simple, but their merger z〈u2, u3, s3〉
is not.

Observation A.9. If v〈V 〉 and w〈W 〉 with w ∈ V are simple subconfigurations
in a binary tree, then merge(v〈V 〉, w〈W 〉) is also simple.

Proof. By definition, merge(v〈V 〉, w〈W 〉) = v〈(V ∪ W ) \ {w}〉. Since V is simple
and we are in a binary tree, it holds that T w ∩⋃x∈V \{w} T x = ∅. To get the required
paths from u ∈ W to v in Definition 6.4, just concatenate the paths from u ∈ W to
w with the path from w to v.

Another nice property of mergers of simple subconfigurations is that the cover
of a merger is the disjoint union

.∪ of the covers of the merged subconfigurations.
Figure 5 on page 76 provides an illustration of this. Again, this holds only in the binary
tree case. Reusing the example subconfigurations z〈x2, u2, u3〉 and x2〈s3〉 above,
it is readily verified that cover (merge(z〈x2, u2, u3〉, x2〈s3〉)) = cover (z〈u2, u3, s3〉) �=
cover (z〈x2, u2, u3〉) ∪ cover (x2〈s3〉).

Proposition A.10. Suppose that u〈U〉, v〈V 〉, and w〈W 〉 are simple pebble sub-
configurations in a binary tree. Then it holds that u〈U〉 = merge(v〈V 〉, w〈W 〉) if and
only if cover (u〈U〉) = cover(v〈V 〉) .∪ cover (w〈W 〉).

Proof. (⇒) If u〈U〉 = merge(v〈V 〉, w〈W 〉), it holds that w ∈ V , and since we
are in a tree and V is a simple set, we have T w ∩ ⋃x∈V \w T x = ∅. Combining
this with the fact that W is below w by definition, we get

⋃
y∈W T y ⊆ T w and⋃

x∈V \w T x ∩⋃y∈W T y = ∅. The equality in the proposition follows by using Propo-
sition A.8 and checking that

cover (u〈U〉) = cover
(
v
〈
(V ∪ W ) \ w

〉)
= T v \

⋃
x∈(V ∪W )\w

T x

= T v \
⎛
⎝ ⋃

x∈V \w

T x .∪
⋃

y∈W

T y

⎞
⎠

=

(
T v \

⋃
x∈V

T x

)
.∪
⎛
⎝T w \

⋃
y∈W

T y

⎞
⎠

= cover (v〈V 〉) .∪ cover (w〈W 〉).

(A.1)

(⇐) Suppose that cover (u〈U〉) = cover (v〈V 〉) .∪cover (w〈W 〉). Since by definition
all vertices in cover(v〈V 〉) and cover (w〈W 〉) are below v and w, respectively, but
cover (v〈V 〉) ∪ cover(w〈W 〉) = cover (u〈U〉) is convex by Proposition A.8, setting
u1 = v and u2 = w in Definition A.7 shows that either v is below w or w is below v.
Suppose without loss of generality that the latter case holds. Then using the same
reasoning again we see that v = u.
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Since w ∈ cover (u〈U〉) there is a path P : w � u with P ⊆ cover (u〈U〉). Clearly,
(P \ w) ∩ cover(w〈W 〉) = ∅. Because cover (v〈V 〉) ∩ cover(w〈W 〉) = ∅ by assumption
and w ∈ cover (w〈W 〉) by definition, we must have (P \ w) ⊆ cover (v〈V 〉) but w /∈
cover (v〈V 〉). Applying Proposition A.8 we see that w ∈ V , so v〈V 〉 and w〈W 〉 are
mergeable. By assumption, u〈U〉, v〈V 〉, and w〈W 〉 are all simple subconfigurations,
and using Proposition A.8 again as well as the ⇒-direction of this proposition it can
be verified that the equality

(A.2) cover (u〈U〉) = T u \
⋃

x∈U

T x = cover (v〈V 〉) .∪ cover(w〈W 〉)

= cover (merge(v〈V 〉, w〈W 〉)) = T v \
⋃

x∈(V ∪W )\w

T x

can hold only if U = (V ∪ W ) \ w, i.e., only if u〈U〉 = merge(v〈V 〉, w〈W 〉).
Observe that we need the simplicity of the subconfigurations in order for Propo-

sition A.10 to hold. If v〈V 〉 were not simple, white pebbles in
⋃

x∈V T x∗ would create
problems. In a sense, requiring that subconfigurations be simple is a way of ensuring
that mergers behave in the way one would expect them to.

Now the subconfigurations v〈pred(v)〉 in introduction moves are obviously simple,
and Observation A.9 says that mergers preserve simplicity. It is not hard to show that
we can also assume that reversal moves result in simple subconfigurations, so that in
any L-pebbling of a binary tree T it is always the case that all subconfigurations are
simple. We next sketch a proof of this statement,9 which will simplify matters in
what follows.

Lemma A.11. Suppose that L is a complete L-pebbling of a binary tree T . Then
from L we can construct a complete L-pebbling L′ such that cost(L′) ≤ cost(L) and
L′ contains only simple L-configurations.

Proof sketch. Recalling Definition 6.5, let L′
t =

{
v〈swp(v, W )〉 | v〈W 〉 ∈ Lt

}
for

L =
{
L0, . . . , Lτ

}
. This implies that cover (L′

t) = cover (Lt) (perhaps most easily seen
by using Proposition A.8) for L′

t consisting of simple subconfigurations. We claim that
L′ =

{
L′

0, . . . , L
′
τ

}
is a legal L-pebbling if repeated L-configurations L′

t = L′
t+1 are

eliminated. Let us outline the proof.
Introduction moves in L are always performed also in L′, since v〈pred(v)〉 =

v〈swp(v, pred(v))〉.
Suppose that v1〈W1〉 and v2〈W2〉 are merged in L, and let W ′

i = swp(vi, Wi) for
i = 1, 2. If v2 /∈ W ′

1 we have swp(v1, (W1 ∪W2) \ v2) = W ′
1, so nothing happens in L′.

Otherwise we can merge v1〈W ′
1〉 and v2〈W ′

2〉, and it is straightforward to verify that
swp(v1, (W1 ∪ W2) \ v2) = swp(v1, (W ′

1 ∪ W ′
2) \ v2).

Likewise, if v1〈W1〉 is reversed to v2〈W2〉 in L, going from v1〈W ′
1〉 to v2〈W ′

2〉 in
L′ is a legal reversal move.

Finally, note that erasures are taken care of automatically by the definition
of L′

t.
In the outline of the proof in section A.1, we said that we wanted to construct

L-pebblings with “nonintersecting” subconfigurations. We next formally define two

9However, we note that the reader who so wishes can instead make Lemma A.11 an assumption
and restrict Theorem 5.4 to the case of L-pebblings with simple subconfigurations. This is so since
a careful reading of section 6 reveals that the L-pebblings that we get from resolution derivations
satisfy this property. To see this, note that by Definition 6.6 all subconfigurations in L(Ct) are
simple, and by Observation A.9 and the construction in Lemma 6.13 all subconfigurations in the
intermediate L-configurations are simple as well.



100 JAKOB NORDSTRÖM

Fig. 10. Three pebble subconfigurations v1〈v2, v6〉, v4〈v8, v9〉, and v7〈∅〉.

slightly different flavors of “nonintersecting” that we will use extensively below. It
might be easier to parse this rather technical definition by first studying Examples
A.13 and A.14.

Definition A.12. For a simple pebble subconfiguration v〈W 〉, we define the
boundary of v〈W 〉 to be ∂v〈W 〉 = {v} ∪ W . The interior of v〈W 〉 is int(v〈W 〉) =
cover (v〈W 〉) \ ∂v〈W 〉 and the closure is cl(v〈W 〉) = cover (v〈W 〉) ∪ ∂v〈W 〉.

If cover (v〈V 〉) ∩ cover(u〈U〉) = ∅, the subconfigurations v〈V 〉 and u〈U〉 are said
to be nonoverlapping. If cl(v〈V 〉) ∩ cl(u〈U〉) = ∅, v〈V 〉 and u〈U〉 are nontouching.

Example A.13. Consider the subconfigurations in Figure 10 (which is Figure 4
but with all vertices labeled). For v1〈v2, v6〉 we have

cover(v1〈v2, v6〉) = {v1, v3, v7, v14, v15},
∂v1〈v2, v6〉 = {v1, v2, v6},

int(v1〈v2, v6〉) = {v3, v7, v14, v15},
cl(v1〈v2, v6〉) = {v1, v2, v3, v6, v7, v14, v15}.

Since cl(v4〈v8, v9〉) = {v4, v8, v9}, the subconfigurations v1〈v2, v6〉 and v4〈v8, v9〉 are
nontouching. For v7〈∅〉 we have cover (v7〈∅〉) = {v7, v14, v15}, so v7〈∅〉 and v1〈v2, v6〉
are overlapping, or, more precisely, it holds that v7〈∅〉 ≺ v1〈v2, v6〉.

Example A.14. More generally, if v〈V 〉 and w〈W 〉 are simple, mergeable sub-
configurations with w ∈ V , then v〈V 〉 and w〈W 〉 are nonoverlapping (because of
Proposition A.10) but touching in w. This is illustrated in Figure 5.

For the case of binary trees, it turns out that Lemma A.5 can be formulated more
sharply. Remember that the cover of an L-configuration L is defined by taking the
union of the covers of the subconfigurations in L.

Lemma A.15. Suppose that L =
{
L0, . . . , Lτ

}
is a reversal-free L-pebbling on

T such that all L-configurations Lt are simple and Lτ consists of pairwise nonover-
lapping subconfigurations. Then there is a reversal-free complete L-pebbling L′ ={
L′

0, . . . , L
′
τ ′
}

with L′
0 ⊆ L0, L′

τ ′ = Lτ , and cost(L′) ≤ cost(L) such that every v〈V 〉
in L′ occurs during one contiguous time interval, and every v〈V 〉 in L′ except those
in Lτ is used in exactly one merger, after which it is erased. Also, all L′

t are simple,
and cover (L′

t) grows monotonically with t.
Proof. Apply the construction in the proof of Lemma A.5, but use the stronger

induction hypothesis that L′
t ⊆ Lt for L′

t consisting of nonoverlapping subconfigura-
tions.

For introduction moves, if the L-configuration L′
t+1 is nonoverlapping, then so is

L′
t = L′

t+1 \ v〈pred(v)〉.
For merger moves u〈U〉 = merge(v〈V 〉, w〈W 〉), by the induction hypothesis we

have v〈V 〉, w〈W 〉 /∈ L′
t+1, since L′

t+1 is nonoverlapping and v〈V 〉 and w〈W 〉 are cov-
ered by u〈U〉 by Proposition A.10. For the same reason L′

t must be nonoverlapping,
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since we just swap u〈U〉 for v〈V 〉 and w〈W 〉 with cover(v〈V 〉) .∪ cover (w〈W 〉) =
cover (u〈U〉). (Naturally enough, though, the intermediate L-configurations L′

t+1/3

and L′
t+2/3, where we merge and erase, will be overlapping.)

Also, any subconfiguration v〈V 〉 occurs only in one merger, after which it is
immediately erased. For at all times t∗ > t after which v〈V 〉 was erased from L′

directly after the first merger move involving v〈V 〉, there is a u〈U〉 � v〈V 〉 in L′
t∗ .

Since all L′
t∗ are nonoverlapping, the subconfiguration v〈V 〉 never appears again (this

can easily be formalized by a forward induction argument).
Finally, note that in the reversal-free L-pebbling L′, the cover increases at intro-

duction moves, stays the same at mergers, and (by the construction for mergers) also
stays the same for erasures. Hence, cover (L′

t) grows monotonically with t.
For any L-configuration, we can find an L-configuration with the same cover but

consisting only of nontouching subconfigurations. We will refer to this as a canonical
representation.

Lemma A.16. Let V be any nonempty vertex set in T . Then there exists a unique
simple L-configuration L′ such that cover (L′) = V and all subconfigurations in L′ are
simple and nontouching.

We introduce the formal definition of canonical representation before proceeding
to give a proof of Lemma A.16.

Definition A.17 (canonical representation). For an arbitrary nonempty set of
vertices V ⊆ V (T ), we define the canonical representation canon(V ) of V to be the
unique L′ in Lemma A.16.

For L an arbitrary L-configuration, we define canon(L) to be the canonical rep-
resentation L′ = canon(cover (L)) of the vertices covered by L.

Once more, we note that this definition is specific for binary trees. Consider,
for instance, the set V = {u1, u2, s1, s2, s3} in Figure 6. Both u1 and u2 must be
black-pebbled in any L with cover(L) = V , but there is no way two subconfigurations
u1〈U1〉 and u2〈U2〉 can be nontouching.

Proof of Lemma A.16. We first show existence and then uniqueness.
We construct L′ with cover (L′) = V as follows: for each v ∈ V such that succ(v) /∈

V or v = z, add the subconfiguration v〈W 〉, where W ⊆ T v
∗ is the maximal set such

that for all w ∈ W it holds that Pw∗ \ P v∗ ⊆ V but w /∈ V . By construction, v〈W 〉 is
simple, and applying Proposition A.8 shows that cover (L′) = V .

Clearly, every u ∈ V is covered by exactly one subconfiguration in L′, so all
subconfigurations in L′ must be at least nonoverlapping. Also, for all Wh(L′) it holds
that w /∈ V by construction, so the subconfigurations are nontouching.

To get uniqueness, suppose that L is any simple L-configuration with the property
that cover(L) = V . If v ∈ V but succ(v) /∈ V , there must be a black pebble on v in
L by Proposition A.8. Also, if w /∈ V but succ(w) ∈ V , w must be white-pebbled.
Thus Bl (L′) ⊆ Bl (L) and Wh(L′) ⊆ Wh(L).

The L-configuration L cannot have pebbles outside cover (L′) ∪ Wh(L′), for if
so we would have cover(L) � V (by the convexity property in Definition A.7 of
subconfigurations and since all subconfigurations are simple). And if L has pebbles
inside cover(L′)\(Bl(L′)∪Wh(L′)

)
, there must exist touching subconfigurations in L.

Hence, if L′ does not contain touching subconfigurations it holds that L′ = L.
Note, in particular, that if V is a convex set in T in the sense of Definition A.7,

then canon(V ) is a single subconfiguration.
We use the canonical representation to extend Definition A.12 to L-configurations.
Definition A.18. Suppose that L, L1, L2 are simple L-configurations.
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If cover(L1) = cover (L2), we say that L1 and L2 coincide and write L1 ∼ L2.
L is nonoverlapping if all distinct v〈V 〉, u〈U〉 ∈ L are pairwise nonoverlapping and
nontouching if all distinct v〈V 〉, u〈U〉 ∈ L are pairwise nontouching. L1 and L2 are
mutually nonoverlapping or mutually nontouching if all v〈V 〉 ∈ L1 and u〈U〉 ∈ L2

are pairwise nonoverlapping or nontouching, respectively.
Let L′ = canon(L) be the canonical representation of L. Then the boundary

of L is defined to be ∂L =
⋃

v〈V 〉∈L′ ∂v〈V 〉, the interior is defined to be int(L) =⋃
v〈V 〉∈L′ int(v〈V 〉), and the closure is cl(L) =

⋃
v〈V 〉∈L′ cl(v〈V 〉).

Observe that L1 = L2 implies L1 ∼ L2, but not the other way round. For
nontouching L-configurations, however, the two notions are identical. Also, L ∼
canon(L) by definition.

Example A.19. Returning to Figure 10, if we look at the L-configuration L ={
v1〈v2, v6〉, v4〈v8, v9〉, v7〈∅〉

}
we have cover(L) = {v1, v3, v4, v7, v14, v15}. Since v7〈∅〉

is covered by v1〈v2, v6〉 and the subconfigurations v1〈v2, v6〉 and v4〈v8, v9〉 are non-
touching, we get the canonical representation simply by leaving out v7〈∅〉, i.e., canon(L)
=
{
v1〈v2, v6〉, v4〈v8, v9〉

}
. Using this canonical representation of L, we see that

∂L = {v1, v2, v4, v6, v8, v9},
int(L) = {v3, v7, v14, v15},
cl(L) = {v1, v2, v3, v4, v6, v7, v8, v9, v14, v15}.

The L-configuration L is overlapping because of v7〈∅〉 and v1〈v2, v6〉, but, for instance,
L1 =

{
v1〈v2, v6〉, v7〈∅〉

}
and L2 =

{
v4〈v8, v9〉

}
are mutually nontouching.

As a final preliminary before moving on to part 1 in the proof outline in sec-
tion A.1, we collect some properties of the L-pebbling cost function of Definition 5.2.

Proposition A.20. Suppose that L, L1, . . . , Lm are arbitrary simple L-configu-
rations.

1. If L1 ⊆ L2 then cost(L1) ≤ cost(L2).
2. cost(L1 ∪ L2) ≤ cost(L1) + cost(L2).
3. If L is nontouching, cost(L) =

∣∣Bl(L)
∣∣+ ∣∣Wh(L)

∣∣ = ∣∣∂L
∣∣.

4. If Li and Lj are mutually nontouching for 1 ≤ i < j ≤ m, it holds that
cost

(⋃m
i=1 Li

)
=
∑m

i=1 cost(Li).
5. If L′

i = canon(Li) for i = 1, . . . , m, then cost
(⋃m

i=1 L′
i

) ≤ cost
(⋃m

i=1 Li

)
.

6. If L′ = canon(L), then cost(L ∪ L′) = cost(L), and there is an L-pebbling
from L to L′ which does not cost more than L.

Proof. Parts 1 and 2 are from Proposition 6.14 on page 83 and were proven there.
For part 3, using Definition A.18 we see that if L is nontouching, it holds that

Bl(L)∩Wh(L) = ∅. And if the L-configurations Li and Lj are mutually nontouching,
we have

(
Bl(Li)∪Wh(Li)

)∩ (Bl(Lj)∪Wh(Lj)
)

= ∅, which shows that each pebbled
vertex on the left-hand side in part 4 is counted exactly once on the right-hand side.

Part 5 is again immediate since Bl(L′
i) ⊆ Bl(Li) and Wh(L′

i) ⊆ Wh(Li) for
L′

i = canon(Li) by Proposition A.8 and the proof of Lemma A.16.
For part 6, Bl(L ∪ L′) = Bl(L) and Wh(L ∪ L′) = Wh(L), which shows that the

cost is the same. We also claim that we can do an L-pebbling from L to L′ = canon(L)
at no extra cost.

To show this claim, we first note that if v〈V 〉 and w〈W 〉 are touching but
nonoverlapping, we can derive a subconfiguration u〈U〉 such that cover(u〈U〉) =
cover (v〈V 〉)∪cover (w〈W 〉) simply by merging v〈V 〉 and w〈W 〉, because either w ∈ V
or v ∈ W . Suppose therefore that v〈V 〉 and w〈W 〉 are overlapping and that w ∈ T v
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(a) v〈v1, v2, v3〉 and w〈w4, w5〉 (dashed). (b)
{
vi

〈{w4, w5} ∩ T
vi∗
〉 |

vi ∈ int(w〈w4, w5〉)
}
.

(c) merge
(
v
〈
v1, v2, v3

〉
, v3

〈{w4, w5} ∩ T v3∗
〉)

. (d) canon
({v〈v1, v2, v3〉, w〈w4, w5〉}

)
.

Fig. 11. Illustration of pebbling in Proposition A.20, part 6, with covered vertices indicated.

but w〈W 〉 � v〈V 〉. Then we can derive a subconfiguration u〈U〉 with cover (u〈U〉) =
cover (v〈V 〉) ∪ cover (w〈W 〉) and substitute it for v〈V 〉 and w〈W 〉 at no extra cost
by first deriving vi〈W ∩ T vi∗ 〉 for all vi ∈ V ∩ int(w〈W 〉) from w〈W 〉 by reversals,
and then merging all vi〈W ∩ T vi∗ 〉 in turn with v〈V 〉. The resulting L-configuration
L ∪ {vi〈W ∩ T vi∗ 〉 | vi ∈ V ∩ int(w〈W 〉)} ∪ u〈U〉 costs no more than L, since the
only change is that already white-pebbled vertices are also black-pebbled. Finally,
erase v〈V 〉, w〈W 〉 and all vi〈W ∩ T vi∗ 〉. Repeating this for all mutually touching
subconfigurations, the claim follows by induction.

A “proof-by-example” pebbling move sequence for part 6 as described above is
given in Figure 11, with the overlapping subconfigurations v〈V 〉 and w〈W 〉 in Fig-
ure 11(a), the two subconfigurations in

{
vi〈W ∩ T vi∗ 〉 | vi ∈ V ∩ int(w〈W 〉)} derived

by reversals from w〈W 〉 in Figure 11(b), and the two mergers of v〈V 〉 with these
subconfigurations in Figures 11(c) and 11(d) leading to the canonical representation
canon

({v〈V 〉, w〈W 〉}).
A.4. Nonoverlapping labeled pebblings and projections. In this subsec-

tion we turn to part 1 in the outline of the proof of Lemma A.2 in section A.1. From
now on we will assume without loss of generality (in view of Lemma A.11) that all
L-pebblings operate with simple subconfigurations only (Definition 6.4) and that they
are nonredundant in the sense of Lemma A.5.

Parts 5 and 6 of Proposition A.20 tell us that for any given set of vertices, the
cheapest way of covering these vertices is to use canonical L-configurations, and that
if L is not canonical, it does not cost anything extra to make L canonical by applying
reversals and mergers followed by erasures. We define nonoverlapping pebblings as
L-pebblings which always keep the L-configurations canonical in this way. In a non-
overlapping pebbling, each introduction is immediately followed by a merger when
possible, each merger is immediately followed by erasures of the merged subconfigu-
rations, and all reversals from a subconfiguration u〈U〉 are performed in sequence after
which u〈U〉 is erased. We refer to these merger-and-erasures and reversals-and-erasure
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(a) The L-configuration L and cover(L). (b) The L-configuration M and cover(M).

(c) The projection projM(L) with cover.

Fig. 12. Example L-configurations L and M and projected L-configuration projM(L).

moves as expansions and implosions, respectively.
Definition A.21 (nonoverlapping pebbling). A nonoverlapping L-pebbling L is

a sequence of the following types of moves.
Introduction. Lt+1 = Lt ∪ v〈pred(v)〉 for v〈pred(v)〉 � Lt and Lt nontouching.
Expansion. Lt+3 =

(
Lt ∪ merge(u〈U〉, v〈V 〉)) \ {u〈U〉, v〈V 〉} for u〈U〉, v〈V 〉 ∈ Lt and

Lt nonoverlapping.
Implosion. Lt+m+1 =

(
Lt\u〈U〉)∪M for Lt and M =

{
vi〈Vi〉 | i ∈ [m]

}
nontouching,

and M � u〈U〉 ∈ Lt.
For technical reasons, it will be convenient to allow trivial implosion moves where

M = u〈U〉. We say that u〈U〉 � M is a nontrivial implosion if M ≺ u〈U〉. Observe
that after introduction and expansion the resulting L-configuration is nonoverlapping,
and after implosion the L-configuration is nontouching.

We want to prove that without loss of generality we can assume L-pebblings to
be nonoverlapping. The notation in the proof of this fact is simplified by introducing
projections.

Definition A.22 (projection). Let u〈U〉, v〈V 〉 be arbitrary subconfigurations, L
an arbitrary L-configuration, and M an arbitrary nontouching L-configuration.

If u〈U〉 and v〈V 〉 are overlapping, the projection of u〈U〉 on v〈V 〉 is defined as
projv〈V 〉(u〈U〉) = canon(cover (u〈U〉) ∩ cover (v〈V 〉)), i.e., the unique subconfiguration
w〈W 〉 such that cover (w〈W 〉) = cover(u〈U〉) ∩ cover(v〈V 〉). If u〈U〉 and v〈V 〉 are
nonoverlapping, we define projv〈V 〉(u〈U〉) = ∅.

The projection of u〈U〉 on M is projM(u〈U〉) =
⋃

v〈V 〉∈M
projv〈V 〉(u〈U〉), and

projM(L) =
⋃

u〈U〉∈L
projM(u〈U〉).

In order to grasp this definition, it might be helpful to study the example in
Figure 12. Note, in particular, that if u〈U〉 � v〈V 〉, then projv〈V 〉(u〈U〉) = u〈U〉.
Here and in the following, we adopt the convention that projections resulting in the
undefined subconfiguration ∅ are implicitly eliminated from all L-configurations.

We will need a technical lemma relating the pebbles in an L-configuration with
those in its projection. Once deciphered, the statements in the lemma are fairly
obvious, and the proof is just an exercise in applying the definitions so far in this
appendix. We recommend that the reader look at the projections in (the right subtree



NARROW PROOFS MAY BE SPACIOUS 105

of) the tree in Figure 12 and verify what the lemma says for this example.
Lemma A.23. Let L be any L-configuration and M any nontouching L-configu-

ration, and let Lp = projM(L) be the projection of L on M. Suppose that v is a vertex
that is pebbled in Lp but not in L, i.e., v ∈ (Bl(Lp) ∪ Wh(Lp)

) \ (Bl(L) ∪ Wh(L)
)
.

Then the following hold:
1. The vertex v is on the boundary of M, i.e., v ∈ ∂M.
2. The pebble on the vertex v has the same color in Lp and M, i.e., either

v ∈ Bl(Lp) ∩ Bl (M) or v ∈ Wh(Lp) ∩Wh(M).
3. There is a subconfiguration wL

〈
WL

〉 ∈ L such that v ∈ int
(
wL

〈
WL

〉)
.

Proof. If v ∈ Bl (Lp) ∪ Wh(Lp), by Definition A.22 there are wL〈WL〉 ∈ L and
wM 〈WM 〉 ∈ M with projwM 〈WM 〉(wL〈WL〉) = u〈U〉 such that v ∈ {u}∪U . We remark
that since M is nontouching, canon(M) = M and, in particular, ∂M = Bl(M)∪Wh(M).
We make a case analysis depending on the color of the pebble on v.

1. Suppose v = u, i.e., that v is black-pebbled in Lp. Then

(A.3) v ∈ cover(u〈U〉) = cover(wL〈WL〉) ∩ cover (wM 〈WM 〉)

and

(A.4) succ(v) /∈ cover (u〈U〉) = cover (wL〈WL〉) ∩ cover(wM 〈WM 〉)

by the proof of Lemma A.16. But succ(v) ∈ cover(wL〈WL〉), since otherwise
v = wL ∈ Bl(L) by Proposition A.8, which is contrary to assumption. Thus
for (A.4) to hold we must have succ(v) /∈ cover (wM 〈WM 〉), so v = wM ∈
Bl(M) ⊆ ∂M. Since v is not pebbled in Lp, in particular we have v /∈
{wL} ∪ WL = ∂wL〈WL〉, and combining this with (A.3) we see that v ∈
cover (wL〈WL〉) \ ∂wL〈WL〉 = int(wL〈WL〉).

2. Suppose that v ∈ U , i.e., that v is white-pebbled in Lp. Then

(A.5) v /∈ cover(wL〈WL〉) ∩ cover (wM 〈WM 〉)

and

(A.6) succ(v) ∈ cover(wL〈WL〉) ∩ cover (wM 〈WM 〉)

by wholly analogous reasoning. We have that v ∈ cover(wL〈WL〉) since
otherwise v ∈ Wh(L) contrary to assumption, so it must hold that v /∈
cover (wM 〈WM 〉). Hence, v ∈ Wh(M) ⊆ ∂M and v ∈ cover (wL〈WL〉) \
∂wL〈WL〉 = int(wL〈WL〉).

This proves the lemma.
The next proposition says that any L-configuration L can be written as a dis-

joint union of the sets of subconfigurations of L covered by each subconfiguration in
canon(L), and that the cost of L is the sum of the costs of the sub-L-configurations in
this disjoint union. This statement, too, is obvious once deciphered, and the proof is
immediate from Definition A.22, (the proof of) Lemma A.16, and Proposition A.20,
parts 4 and 5.

Proposition A.24. Let L′ = canon(L). Then it holds that L is a disjoint
union of the sets projv〈V 〉(L) =

{
u〈U〉 | v〈V 〉 � u〈U〉 ∈ L

}
for all v〈V 〉 ∈ L′. Also,

cost(L) =
∑

v〈V 〉∈L′ cost(projv〈V 〉(L)), and for all v〈V 〉 ∈ L′ it holds that cost(v〈V 〉) ≤
cost(projv〈V 〉(L)).
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Example A.25. As was noted in Example A.19, for the L-configuration L ={
v1〈v2, v6〉, v4〈v8, v9〉, v7〈∅〉

}
in Figure 10 we have canon(L) =

{
v1〈v2, v6〉, v4〈v8, v9〉

}
.

Trivially, L can be written as the disjoint union of

L1 = projv1〈v2,v6〉(L) =
{
v1〈v2, v6〉, v7〈∅〉

}
(A.7)

and

L2 = projv4〈v8,v9〉(L) =
{
v4〈v8, v9〉

}
,(A.8)

and it holds that cost(L) = cost(L1) + cost(L2).
Using Definition A.22 and Propositions A.20 and A.24, we can prove that for

every overlapping L-pebbling we can find a nonoverlapping pebbling which is at least
as good and at least as cheap.

Lemma A.26. Suppose that L is an arbitrary complete L-pebbling of T . Then
from L we can construct a nonoverlapping complete L-pebbling L′ of T such that
cost

(L′) ≤ cost
(L).

Proof. Given L = {L0, . . . , Lτ}, we create the “backbone” L′ = {L′
0, . . . , L

′
τ} of a

nonoverlapping pebbling by setting L′
t = canon(Lt). Then we have L′

0 = L0 = ∅ and
L′

τ = canon(Lτ ) = canon(z〈∅〉) = z〈∅〉.
By Proposition A.20, part 5, cost(L′

t) ≤ cost(Lt), so we are done if we can fill
in the holes in the transitions L′

t � L′
t+1 using the nonoverlapping moves of Defi-

nition A.21 without paying more than max
{
cost(Lt), cost(Lt+1)

}
. This is basically

just an exercise in applying Proposition A.20. Consider the moves Lt � Lt+1 in L.
Introduction. Lt+1 = Lt ∪ v〈pred(v)〉: If v〈pred(v)〉 � L′

t, set L′
t+1 = L′

t. Otherwise,
introduce v〈pred(v)〉 and canonize by expanding (at most three times) to get
L′

t+1 = canon(Lt+1). This can be done at cost at most cost(Lt+1), since
cost(L′

t ∪ v〈pred(v)〉) ≤ cost(Lt+1) by part 5 of Proposition A.20 (note that
canon(v〈pred(v)〉) = v〈pred(v)〉), and since the canonization does not increase
this cost by part 6 of Proposition A.20.

Merger. Lt+1 = Lt ∪ merge(u〈U〉, v〈V 〉) for u〈U〉, v〈V 〉 ∈ Lt: For merger moves it
holds that Lt+1 ∼ Lt, so set L′

t+1 = L′
t = canon(Lt+1).

Reversal. Lt+1 = Lt ∪ {v〈V 〉} for v〈V 〉 ≺ u〈U〉 ∈ Lt: For reversal moves it holds that
Lt+1 ∼ Lt, so set L′

t+1 = L′
t = canon(Lt+1).

Erasure. Lt+1 = Lt \ v〈V 〉 for v〈V 〉 ∈ Lt: If v〈V 〉 � Lt+1, we have Lt+1 ∼ Lt and can
set L′

t+1 = L′
t, so assume that v〈V 〉 � Lt+1.

Since L′
t ∼ Lt is nontouching, there is a u〈U〉 ∈ L′

t such that v〈V 〉 � u〈U〉.
It follows from Proposition A.24 that for w〈W 〉 ∈ L′

t, w〈W 〉 �= u〈U〉, we
have projw〈W 〉(Lt+1) = projw〈W 〉(Lt). Thus, letting Lu

i = proju〈U〉(Li) for
i = t, t+1, by Proposition A.20, part 4, it is sufficient to show locally that we
can implode u〈U〉 = canon(Lu

t ) = canon(Lu
t+1 ∪ v〈V 〉) into M = canon(Lu

t+1)
at cost at most max

{
cost(Lu

t+1 ∪ v〈V 〉), cost(Lu
t+1)

}
= cost(Lu

t+1 ∪ v〈V 〉).
By part 1 of Proposition A.20, it is enough to check that the inequality
cost(M∪u〈U〉) ≤ cost(Lu

t+1∪v〈V 〉) holds. But this follows from part 5 of the
same proposition by setting L1 = Lu

t+1 ∪ v〈V 〉 with L′
1 = canon(L1) = u〈U〉

and L2 = Lu
t+1 with L′

2 = canon(L2) = M.
Eliminating “idle moves” L′

t+1 = L′
t, we see that we get a nonoverlapping pebbling in

accordance with Definition A.21.
Lemma A.26 tells us that as far as pebbling cost is concerned, without loss of

generality we may assume that an L-pebbling L that reaches the subconfiguration
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Fig. 13. Illustration of cases for w with respect to u〈U〉 in Proposition A.27.

z〈∅〉 is nonoverlapping. This completes part 1 in the proof of Lemma A.2 sketched in
section A.1.

In what follows, it will sometimes be convenient to consider the L-pebblings as
consisting of the “aggregated” expansion and implosion moves in Definition A.21,
and sometimes more convenient to consider each individual merger or reversal in
these moves individually as in Definition 5.2. In view of Lemma A.26, we know that
we can switch freely back and forth between these two perspectives.

A.5. Projections preserve labeled pebblings. If L = {L0, . . . , Lτ} is a non-
overlapping pebbling ending in an implosion u〈U〉 � M, it seems natural to try to
replace the moves in L leading to u〈U〉 by a reversal-free pebbling reaching M � u〈U〉.
Since u〈U〉 and Lτ−1 \u〈U〉 are mutually nontouching by definition, this substitution
should not affect the cost of the pebbling outside cl(u〈U〉) by Proposition A.24.

We argue that intuitively, one natural candidate for such a substitution peb-
bling is what we get if we take all L-configurations in L and project them on Lτ =
(Lτ−(m+1) ∪ M) \ u〈U〉. To show that this idea makes sense, we establish as a first
step that projections preserve merger moves.

Proposition A.27. Suppose that M is a nontouching L-configuration and that
v〈V 〉 and w〈W 〉 are mergeable with w ∈ V . Then if projM(merge(v〈V 〉, w〈W 〉)) �=
projM({v〈V 〉, w〈W 〉}), it holds that projM(merge(v〈V 〉, w〈W 〉)) can be derived from
projM({v〈V 〉, w〈W 〉}) by a single merger on w.

Proof. Consider the merger vertex w. For each u〈U〉 ∈ M there are four possibil-
ities for w:

1. w ∈ ⋃x∈U T x,
2. w ∈ Pu,
3. w ∈ T \ (T u ∪ Pu

)
, and

4. w ∈ int(u〈U〉).
See Figure 13 for a schematic illustration.

For all u〈U〉 ∈ M such that w /∈ int(u〈U〉), i.e., the first three cases, it is straight-
forward, if tedious, to verify that merge(v〈V 〉, w〈W 〉) projects the same subconfigu-
rations on u〈U〉 as do v〈V 〉 and w〈W 〉 together. In the fourth case, the change in
projection corresponds to exactly one merger move, and since M is nontouching, there
is at most one u〈U〉 ∈ M for which this case applies.

We prove these statements by analyzing the cases above one by one, using in
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the analysis that cover(merge(v〈V 〉, w〈W 〉)) = cover(v〈V 〉) .∪ cover (w〈W 〉) (Proposi-
tion A.10).

1. w ∈ ⋃x∈U T x: By Proposition A.8, cover (w〈W 〉) ⊆ T w, and since by as-
sumption it holds that T w ⊆ ⋃x∈U T x, it follows that

(A.9) cover (w〈W 〉) ∩ cover(u〈U〉) ⊆ T w ∩ (T u \⋃x∈U T x
)

= ∅

and hence

(A.10) cover (merge(v〈V 〉, w〈W 〉)) ∩ cover (u〈U〉)
=
(
cover (v〈V 〉) .∪ cover (w〈W 〉)) ∩ cover(u〈U〉)

= cover(v〈V 〉) ∩ cover (u〈U〉).

Consequently, proju〈U〉(merge(v〈V 〉, w〈W 〉)) = proju〈U〉(v〈V 〉) according to
Definition A.22, so the merger does not change the projection.

2. w ∈ Pu: Then cover (u〈U〉) ⊆ T u ⊆ T w, so

(A.11) cover (v〈V 〉) ∩ cover (u〈U〉) =
(
T v \⋃x∈V T x

) ∩ cover (u〈U〉)
⊆ (T v \ T w) ∩ T u = ∅

and proju〈U〉(merge(v〈V 〉, w〈W 〉)) = proju〈U〉(w〈W 〉).
3. w ∈ T \ (T u ∪ Pu

)
: Since cover(w〈W 〉) ⊆ T w and cover (u〈U〉) ⊆ T u, in this

case we have cover (w〈W 〉) ∩ cover (u〈U〉) ⊆ T w ∩ T u = ∅, and again it holds
that proju〈U〉(merge(v〈V 〉, w〈W 〉)) = proju〈U〉(v〈V 〉).

4. w ∈ int(u〈U〉): Note that this implies that cover (v〈V 〉) ∩ cover (u〈U〉) �= ∅
and cover (w〈W 〉) ∩ cover (u〈U〉) �= ∅, which means that the projected sub-
configurations proju〈U〉(v〈V 〉) and proju〈U〉(w〈W 〉) both exist. Using simple
set arithmetic we get that

cover
(
proju〈U〉(merge(v〈V 〉, w〈W 〉)))
= cover

(
merge(v〈V 〉, w〈W 〉)) ∩ cover (u〈U〉)

=
(
cover (v〈V 〉) .∪ cover (w〈W 〉)) ∩ cover (u〈U〉)

=
(
cover (v〈V 〉) ∩ cover (u〈U〉))

.∪ (cover(w〈W 〉) ∩ cover (u〈U〉))
= cover (proju〈V 〉(v〈V 〉)) .∪ cover (proju〈V 〉(w〈W 〉))

(A.12)

and applying Proposition A.10 we see that indeed

(A.13) proju〈U〉(merge(v〈V 〉, w〈W 〉))
= merge(proju〈V 〉(v〈V 〉), proju〈V 〉(w〈W 〉)),

i.e., the projection of merge(v〈V 〉, w〈W 〉) is derivable in one merger step from
the projections of v〈V 〉 and w〈W 〉 as claimed.

It follows that either projM(merge(v〈V 〉, w〈W 〉)) = projM({v〈V 〉, w〈W 〉}), if there are
no u〈U〉 ∈ M such that w ∈ int(u〈U〉), or projM(merge(v〈V 〉, w〈W 〉)) can be derived
from projM({v〈V 〉, w〈W 〉}) by a single merger move for the unique u〈U〉 ∈ M such
that w ∈ int(u〈U〉).
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The other L-pebbling moves can also be taken care of easily, and we show next
that, projecting any L-pebbling on any nontouching L-configuration M, we get a legal
L-pebbling inside the closure cl(M) (modulo some technical details). In particular,
this holds for the nonoverlapping pebblings of Definition A.21. This is part 2 in our
proof outline.

Lemma A.28. For an arbitrary L-pebbling L = {L0, . . . , Lτ} and a nontouching
L-configuration M, let projM(L) = {L′

0, . . . , L
′
τ} for L′

t = projM(Lt). Then projM(L) is
a legal L-pebbling if we eliminate idle moves L′

t+1 = L′
t and take care that one reversal

or erasure Lt � Lt+1 in L may correspond to a sequence of reversals or erasures,
respectively, in projM(L). Legalizing projM(L) by performing these moves one by one
does not affect the pebbling cost, i.e., cost(projM(L)) = maxt∈τ

{
cost(projM(Lt))

}
.

Also, if L does not contain any reversals, then neither does projM(L).
Proof. The proof is by induction over the pebbling moves Lt � Lt+1 in L. Case

analysis:
Introduction. If v〈pred(v)〉 � M the projection does not change, and otherwise adding

v〈pred(v)〉 = projM(v〈pred(v)〉) is a legal introduction move.
Merger. Suppose u〈U〉 = merge(v〈V 〉, w〈W 〉). Clearly, Lt \

{
u〈U〉, v〈V 〉, w〈W 〉} =

Lt+1 \
{
u〈U〉, v〈V 〉, w〈W 〉}, so the only subconfigurations for which the pro-

jections can change are u〈U〉, v〈V 〉, and w〈W 〉. This is Proposition A.27.
Reversal. If v〈V 〉 is derived from u〈U〉 by reversal, we have v〈V 〉 � u〈U〉 or, equiva-

lently, cover(v〈V 〉) ⊆ cover (u〈U〉). Then

(A.14) cover (projM(v〈V 〉)) = cover (v〈V 〉) ∩ cover (M)
⊆ cover (u〈U〉) ∩ cover (M) = cover(projM(u〈U〉)),

so adding projM(v〈V 〉) � projM(u〈U〉) is a sequence of legal reversals. As this
sequence of reversals is performed, the pebbling cost increases monotonically
by part 1 of Proposition A.20.

Erasure. If Lt+1 = Lt \ {v〈V 〉} for v〈V 〉 ∈ Lt, removing projM(v〈V 〉) from L′
t is a

sequence of legal erasures. As this sequence of erasures is performed, the
pebbling cost decreases monotonically by part 1 of Proposition A.20.

We see that the cost of this pebbling is maxt∈[τ ]

{
projM(Lt)

}
, and if L is reversal-

free, then so is projM(L), since every move in L is matched by the same kind of moves
in projM(L).

A.6. A first (failed) attempt to eliminate reversal moves. In the light
of Lemma A.28, the following transformation from a nonoverlapping pebbling L to a
reversal-free pebbling L′ seems very tempting: by forward induction over the moves
in L, replace each implosion u〈U〉�M at time t by a local projection of {L0, . . . , Lt}
on M. Since by induction there are no reversals before time t, the projection must be
a reversal-free pebbling inside cl(M). Doing this for all implosions, we get a globally
reversal-free pebbling L′ ending in z〈∅〉. This is the transformation described in part 3
of our roadmap for the proof of Lemma A.2.

There is only one problem. Although we will indeed get a complete L-pebbling of
T , it is not true in general that cost(projM(L)) ≤ cost(L). For instance, if v〈V 〉 � u〈∅〉
for V �= ∅, then projv〈V 〉(u〈∅〉) = v〈V 〉, and hence cost(projv〈V 〉(u〈∅〉)) = 1 + |V | >
cost(u〈∅〉) = 1. Looking at this counterexample, however, one might argue that having
gotten as far as u〈∅〉, reversing to the weaker and more expensive configuration v〈V 〉
should be nonoptimal.
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(a) The subconfiguration u〈U〉. (b) Wastefully lowered black pebble.

(c) Superfluous white pebble. (d) Wasteful “split” of u〈U〉.

Fig. 14. A subconfiguration u〈U〉 and three wasteful implosions of u〈U〉.

What we want to do next is to define formally which reversals are wasteful in this
sense, and to prove that for pebblings avoiding such wasteful reversals, projection
does not increase the pebbling cost.

A.7. Pinpointing the problem: Wasteful reversal moves. Since the defi-
nition of wastefulness turns out to be quite technical, we first try to give some more
intuition for which kind of reversals we disapprove of.

Example A.29. Consider the subconfiguration u〈U〉 in Figure 14(a).
1. If v ∈ T u

∗ , the reversal move from u〈U〉 to v〈T v
∗ ∩U〉 seems reasonable only if

T v∗ ∩ U � U , i.e., if we get rid of white pebbles by lowering the black pebble
from u to v. The reversal in Figure 14(b) does not satisfy this, so it appears
we should be better off keeping the original, stronger subconfiguration u〈U〉
in Figure 14(a) instead.

2. Suppose that V is a simple set below u and above U in the sense that
Pu ∩ V �= ∅ for all u ∈ U . Then we approve of the reversal u〈U〉 � u〈V 〉
only if for all w ∈ V it holds that T w ∩U �= ∅. Otherwise, unnecessary white
pebbles have been introduced, as in Figure 14(c).

3. If u〈U〉 is imploded into a nontouching L-configuration {v1〈V1〉, v2〈V2〉} such
that, say, v2 ∈ T v1∗ , it should not be the case that v1

〈(
V1 \P v2

)∪V2

〉 � u〈U〉,
for if so we could have reversed to this stronger subconfiguration instead of
{v1〈V1〉, v2〈V2〉} at no extra cost. The implosion in Figure 14(d) violates this
condition.

The reversals from u〈U〉 in Figures 14(b), 14(c), and 14(d) are all examples of
wasteful implosions for which our reversal-free pebbling L′ constructed by projection
may become more expensive than L. Looking at these examples, it is easy to believe
that such moves are nonoptimal and that it ought to be possible to eliminate them.
The formal definition of wastefulness is as follows.

Definition A.30 (wasteful implosion). For a nontouching L-configuration M �
u〈U〉, the implosion u〈U〉� M is nonwasteful if the following hold:

1. For every v ∈ Bl(M) \ {u} there is a w ∈ U ∩ T sibl(v) such that for the path
Qv = Pw\P

succ(v)
∗ from w to succ(v) it holds that Qv∩

(
Bl(M)∪Wh(M)

)
= ∅.

2. For every v ∈ Wh(M) there is a w ∈ U ∩ T v (possibly equal to v) such that
for the path Qv = Pw \ P v

∗ from w to v it holds that Qv ∩ Bl(M) = ∅.
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3. The paths between the vertices
(
Bl(M) ∪Wh(M)

)\{u} and (some subset of)
Wh(u〈U〉) = U as described above can all be chosen pairwise disjoint, i.e.,
such that Qv ∩ Qv′ = ∅ if v �= v′.

If u〈U〉�M is not a nonwasteful implosion, it is said to be wasteful.
Definition A.30 identifies the offending reversal moves for which our projective

construction of a reversal-free but cheap pebbling fails (by not being cheap enough).
Loosely put, an implosion move u〈U〉� M is nonwasteful if for every black and

white pebble in M we can identify a distinct pebble in u〈U〉 “explaining” why the
implosion move could potentially be cost-saving. If there is no such correspondence (as
in the implosions from Figure 14(a) to Figures 14(b), 14(c), and 14(d), which are all
wasteful according to Definition A.30), the implosion intuitively seems nonoptimal,
and it should be possible to do better by replacing this wasteful implosion by a
stronger, nonwasteful one. And if we can assume that all wasteful implosions are
changed into nonwasteful ones, it turns out that our projection idea from section A.6
does the trick!

Continuing according to part 4 in our proof plan, we show that for pebblings
without wasteful moves the projective construction works. This is the next lemma.
The thornier task of eliminating wasteful implosions is deferred to section A.8.

Lemma A.31. Suppose that L =
{
L0 = ∅, . . . , Lτ−2, Lτ−1 = u〈U〉 � M

}
is an

L-pebbling ending with the nontouching L-configuration M and containing no reversal
moves except for a final nonwasteful implosion u〈U〉 � M. Then cost(projM(L)) ≤
cost(L).

Proof. By Lemma A.15, without loss of generality we can assume that cover (Lt)
grows monotonically with t until we reach Lτ−1 = u〈U〉. This means that, in partic-
ular, there will never be any subconfigurations covering vertices outside cover (u〈U〉)
during the pebbling (since such subconfigurations would have to be erased in a re-
dundant way), so it holds that Lt � u〈U〉 for all t.

Let L′
t = projM(Lt) for all t < τ . By Lemma A.28, it suffices to show cost(L′

t) ≤
cost(Lt) to get cost(projM(L)) ≤ cost(L). This is so since we can go from L′

t to
L′

t+1 paying at most max
{
cost(L′

t), cost(L′
t+1)

}
, and for τ −1 we have projM(Lτ−1) =

projM(u〈U〉) = M since M � u〈U〉.
By definition cost(Lt) =

∣∣Bl(Lt) ∪ Wh(Lt)
∣∣, so to prove cost(L′

t) ≤ cost(Lt) it
is enough to find for each vertex v ∈ Bl(L′

t) ∪ Wh(L′
t) an associated vertex vL ∈

Bl(Lt) ∪ Wh(Lt) such that vL �= v∗L if v �= v∗. These associated vertices are exactly
what Definition A.30 will help us find.

If v∗ ∈ (Bl(L′
t)∪Wh(L′

t)
)∩(Bl(Lt)∪Wh(Lt)

)
, an obvious choice is v∗L = v∗. Sup-

pose therefore that v ∈ (Bl (L′
t)∪Wh(L′

t)
)\(Bl(Lt)∪Wh(Lt)

)
. Then Lemma A.23 tells

us that v ∈ ∂M, that v has the same color in L′
t and M, i.e., either v ∈ Bl(L′

t)∩Bl (M)
or v ∈ Wh(L′

t)∩Wh(M), and that there is a wv

〈
Wv

〉 ∈ Lt such that v ∈ int
(
wv

〈
Wv

〉)
,

namely, the wv

〈
Wv

〉
projecting the pebble on v. We choose vL ∈ Bl(Lt) ∪ Wh(Lt)

for such vertices v by first associating a unique vu ∈ U = Wh(u〈U〉) to v as follows.
1. If v ∈ Bl(L′

t) ∩ Bl(M), pick a vertex vu ∈ U ∩ T sibl(v) and a path Qv =
P vu \ P

succ(v)
∗ from vu to succ(v) such that Qv ∩ (Bl(M) ∪ Wh(M)

)
= ∅

as guaranteed by Definition A.30. For the subconfiguration wv〈Wv〉 ∈ Lt

projecting the black pebble on v, we must have succ(v) ∈ cover
(
wv

〈
Wv

〉)
since v ∈ int

(
wv

〈
Wv

〉)
, and thus succ(v) ∈ Qv ∩ cover

(
wv

〈
Wv

〉) �= ∅.
2. If v ∈ Wh(L′

t) ∩ Wh(M), pick vu ∈ U ∩ T v and Qv = P vu \ P v∗ such that
Qv ∩Bl(M) = ∅ as provided by Definition A.30. For wv〈Wv〉 ∈ Lt projecting
the white pebble on v, we have v ∈ int

(
wv

〈
Wv

〉) ⊆ cover
(
wv

〈
Wv

〉)
, so
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v ∈ Qv ∩ cover
(
wv

〈
Wv

〉) �= ∅.
According to Definition A.30, all the paths Qv above can be chosen disjoint.

We claim that Wv ∩ Qv �= ∅ for all v ∈ (Bl(L′
t) ∪ Wh(L′

t)
) \ (Bl(Lt) ∪ Wh(Lt)

)
.

Given this claim, we can choose as our associated vertex vL ∈ Bl(Lt) ∪ Wh(Lt) for
v the (unique) vertex vL ∈ Wv ∩ Qv. Since all paths Qv are disjoint, it follows
that all such vertices vL are distinct. They must also be distinct from the vertices
v∗ ∈ (Bl(L′

t) ∪ Wh(L′
t)
) ∩ (Bl(Lt) ∪ Wh(Lt)

)
. This is so since the path Qv does not

intersect M except possibly in v, or in formal notation
(
Qv \ {v}) ∩ cl(M) = ∅, and

by construction the associated vertex vL ∈ Wv ∩ Qv is always distinct from v (since
v ∈ int(wv〈Wv〉) but by definition int(wv〈Wv〉) ∩ Wv = ∅). Hence, for all chosen
representatives vL ∈ Qv it holds that vL /∈ cl(M) ⊇ Bl(L′

t) ∪ Wh(L′
t). Summing

this up, for each v ∈ Bl(L′
t) ∪ Wh(L′

t) we have found a distinct associated vertex
vL ∈ Bl (Lt) ∪ Wh(Lt), and it follows that cost(L′

t) ≤ cost(Lt).
It remains to prove the claim that Wv ∩Qv �= ∅ for the path Qv and subconfigura-

tion wv〈Wv〉 ∈ Lt such that v ∈ int(wv〈Wv〉) found for each v ∈ (Bl(L′
t)∪Wh(L′

t)
) \(

Bl(Lt) ∪ Wh(Lt)
)

above. Fix such a triple
(
v, Qv, wv〈Wv〉

)
. By construction,

L′
t � Lt � u〈U〉, so, in particular, wv〈Wv〉 � u〈U〉. Recall that we showed above that

Qv ∩ cover
(
wv

〈
Wv

〉) �= ∅. Furthermore, we have Qv � cover (u〈U〉) since the lowest
vertex in Qv is a white pebble of u〈U〉. Now if Wv ∩ Qv = ∅ would hold, this would
imply by Proposition A.8 that all of Qv lies inside wv〈Wv〉, i.e., Qv ⊆ cover (wv〈Wv〉).
But this yields the contradiction wv〈Wv〉 � u〈U〉. Thus Wv ∩ Qv �= ∅, which proves
the claim. The lemma follows.

We can use Lemma A.31 to eliminate nonwasteful implosions one by one without
increasing the cost, resulting in a reversal-free L-pebbling.

Lemma A.32. Let L =
{
L0, . . . , Lτ

}
be a nonoverlapping complete L-pebbling of

T without wasteful implosions. Then from L we can construct a complete L-pebbling
L′ of T without reversal moves such that cost(L′) ≤ cost(L).

Proof. The proof is by induction over the number of implosions. Plainly, if we can
go from an L-pebbling L with n nonwasteful implosions to an L-pebbling L′ with n−1
nonwasteful implosions and cost(L′) ≤ cost(L), the lemma follows by the induction
principle.

Consider the subpebbling L∗ of L consisting of the moves up to and including the
first implosion. That is, L∗ = {L0, . . . , Lτ∗ � (Lτ∗ \ u〈U〉) ∪ M} is nonoverlapping
and reversal-free except for a final nonwasteful implosion u〈U〉�M.

By Definition A.22, the L-configuration Lτ∗ is nontouching, and using Propo-
sition A.24, each Lt, t < τ∗, can be written as a union of mutually nontouching
L-configurations Lt =

⋃
v〈V 〉∈Lτ∗ Lv

t for Lv
t = projv〈V 〉(Lt) such that cost(Lt) =∑

v〈V 〉∈Lτ∗ cost(Lv
t ). Appealing to Lemma A.28, we see that for all v〈V 〉 ∈ Lτ∗ ,

it holds that Lv =
{
Lv

0 , . . . , L
v
τ∗−1, L

v
τ∗ = v〈V 〉} are pairwise nontouching pebblings

without reversals.
Lemma A.31 now says that locally, the pebbling Lu corresponding to the imploded

subconfiguration u〈U〉 can be replaced by a reversal-free pebbling projM(Lu) without
increasing the local pebbling cost. Then Proposition A.24 says that we can substitute
projM(Lu) for Lu in L∗ without increasing the global pebbling cost.

Doing this local substition, instead of L∗ we get a reversal-free pebbling ending in
the same L-configuration (Lτ∗ \u〈U〉)∪M, and it is easy to check using Lemma A.15
and (the proof of) Lemma A.16 that this reversal-free pebbling can be made nonover-
lapping. If we concatenate this pebbling with the rest of the pebbling moves in L\L∗,
we have a nonoverlapping complete L-pebbling with one less implosion move.
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This concludes part 4 in the proof outline in section A.1.

A.8. Wasteful reversal moves can be replaced. All that remains now is to
show that in an arbitrary nonoverlapping L-pebbling we can always replace wasteful
implosions by nonwasteful ones without increasing the pebbling cost by more than a
constant factor. It will take a couple of technical lemmas before we get there, but
the intuition from Example A.29 is clear: if Lt � Lt+m+1 is a wasteful implosion,
we should be able to match this move with a nonwasteful implosion L′

t � L′
t+m+1

instead, where L′
i � Li and cost(L′

i) ≤ cost(Li) for i = t, t + m + 1. The only thing
that complicates the matter is that we may have to pay extra for the transitional
L-configurations during the implosion L′

t � L′
t+m+1 because of overlapping subcon-

figurations.
The cornerstone of our proof is the fact that for every wasteful implosion move

u〈U〉� L, there is a nonwasteful implosion move to M � L with cost(M) ≤ cost(L).
Lemma A.33. If u〈U〉� L is a wasteful implosion, then there is a nontouching

M such that u〈U〉 � M � L, cost(M) ≤ min {cost(u〈U〉), cost(L)}, and u〈U〉�M is
a nonwasteful implosion.

Proof. If u〈U〉�M is a nonwasteful implosion, it holds that cost(M) =
∣∣Bl(M)

∣∣+∣∣Wh(M)
∣∣ ≤ cost(u〈U〉) = 1 + |U |, since by Definition A.30 every v ∈ (Bl(M) ∪

Wh(M)
) \ {u} can be associated with a distinct w ∈ U .

We demonstrate that if u〈U〉� L is a wasteful implosion, we can find an M such
that u〈U〉 � M � L and cost(M) ≤ cost(L). If u〈U〉�M is also a wasteful implosion,
we repeat this construction to obtain L-configurations M′ with u〈U〉 � M′ � M and
cost(M′) ≤ cost(M), M′′ with u〈U〉 � M′′ � M′ cost(M′′) ≤ cost(M′), etc. Sooner
or later the process must terminate for some M(k) � u〈U〉 such that u〈U〉 � Mk

is nonwasteful, since the set of covered vertices cover
(
M(i)

)
grows in every step. If

nothing else, we will end up with M(k) = u〈U〉, and by definition the trivial implosion
u〈U〉� u〈U〉 is nonwasteful.

According to Definition A.30, the configuration L can be wasteful with respect to
u〈U〉 in three ways. For the purpose of the case analysis, it appears more natural in
this lemma (but only in this lemma) to traverse the paths in T in the reverse direction,
so that we move downward from above.

1. Some black pebble v ∈ Bl(L)\{u} lacks a path. That is, all paths from succ(v)
downward in the sibling subtree T sibl(v) to white pebbles in U intersect with
other pebbled vertices in L.
If succ(v) ∈ Wh(L) we must have succ(v) ∈ cover(u〈U〉) by convexity (Def-
inition A.7 and Proposition A.8), so we can enlarge the cover by adding the
subconfiguration canon({succ(v)}) = succ(v)〈v, sibl (v)〉 to L and canonize
to get M = canon(L ∪ succ(v)〈v, sibl (v)〉) � L with cost(M) ≤ cost(L) +
|{sibl(v)}| − |{v, succ(v)}| < cost(L). We note that this is so since a black
and a white pebble on the same vertex “cancel” and can be eliminated by a
merger on this vertex. Figure 14(d) is an illustration of this case.
Otherwise, since L is nontouching all paths from succ(v) downward in T sibl(v)

are either blocked by r1, . . . , rm ∈ Bl(L)∩ T sibl(v) or reach sources in T sibl(v)

without passing pebbled vertices (if there are no black pebbles in T sibl(v),
we let m = 0). By the convexity of cover (u〈U〉), we conclude that V =
T succ(v) \ (T v ∪ ⋃i∈[m] T

ri
) ⊆ cover (u〈U〉), so we can add canon(V ) =

succ(v)〈v, r1, . . . , rm〉 � u〈U〉 to L. This move increases the cost only by 1 for
the unpebbled vertex succ(v), since the vertices v, r1, . . . , rm are all pebbled.
Setting M = canon(L ∪ succ(v)〈v, r1, . . . , rm〉) � L removes the pebbles from
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(a) The subconfiguration. (b) Wasteful implosion L. (c) Nonwasteful M 	 L.

Fig. 15. Illustration of case 1 in the proof of Lemma A.33.

(a) The subconfiguration. (b) Wasteful implosion L. (c) Nonwasteful M 	 L.

Fig. 16. Illustration of case 2 in the proof of Lemma A.33.

the black- and white-pebbled vertices v, r1, . . . , rm and decreases the cost by
at least 1, so cost(M) ≤ cost(L). See Figure 15 for a simple example.

2. There is a white pebble w ∈ Wh(L) such that all paths downward in T w

either are blocked by r1, . . . , rm ∈ Bl (L)∩T w
∗ or reach sources in T w without

passing pebbled vertices. If so, we have V = T w \⋃i∈[m] T
ri ⊆ cover (u〈U〉),

and we can add canon(V ) = w〈r1, . . . , rm〉 � u〈U〉 to L at no extra cost
and set M = canon(L ∪ w〈r1, . . . , rm〉) � L. Here we get a strict inequality
cost(M) < cost(L) since the canonization eliminates at least the pebble on
w. This case is illustrated in Figure 16.

3. There are paths for all v ∈ (Bl (L)∪Wh(L)
)\{u} to vertices in U in the sense

of Definition A.30, but they cannot be chosen disjoint. Start picking disjoint
paths bottom-up from the leaves toward the root so that when we choose a
path for a white pebble v ∈ Wh(L) we have already determined paths for all
w ∈ (Bl(L)∪Wh(L)

)∩T v
∗ , and when we choose a path for a black pebble v ∈

Bl(L) we have already determined paths for all w ∈ (Bl(L)∪Wh(L)
)∩T sibl(v),

or in fact for all of T succ(v) \ {v}. This can be done since for black pebbles,
the vertex sibl(v) itself cannot be black-pebbled in L, for if so there would
be no path for v and we would be in case 1. For the same reason, succ(v) is
not white-pebbled in L, and then sibl(v) cannot be white-pebbled, nor can
succ(v) be black-pebbled, since L is nontouching.
At some point we reach a v such that no matter how we choose the paths
below, we cannot choose a disjoint path for v. Consider the color of v.
(a) v is black. Then there are white pebbles in U ∩T

sibl(v)
∗ reachable from v,

but they are all blocked by paths already chosen from black-pebbled ver-
tices r1, . . . , rm ∈ Bl (L)∩T

sibl(v)
∗ . (Note that all white pebbles in T

sibl(v)
∗

are located below black pebbles since L is nontouching, so no paths
from white-pebbled vertices in T

sibl(v)
∗ are among the “blocking paths”

for our vertex v.) This means that {succ(ri) | i ∈ [m]} ⊆ cover (u〈U〉)
by the convexity of cover(u〈U〉), so we can add all of the subconfig-
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(a) The subconfiguration u〈U〉. (b) Wasteful implosion L of u〈U〉.

(c) Nonwasteful implosion u〈U〉�M 	 L.

Fig. 17. Illustration of case 3 in the proof of Lemma A.33.

urations canon({succ(ri) | i ∈ [m]}) =
{
succ(ri)〈ri, sibl(ri)〉 | i ∈ [m]

}
to L at an additional cost 2m. By similar reasoning we can also add
succ(v)〈v, succ(r1), . . . , succ(rm)〉 at a further cost of 1 for the unpeb-
bled vertex succ(v). When we canonize this L-configuration, the black
and white pebbles on the vertices v, r1, . . . , rm, succ(r1), . . . , succ(rm)
all cancel and disappear and the cost decreases by 2m + 1, resulting in
M � L with cost(M) ≤ cost(L).

(b) v is white. The construction is analogous. Let the blocking black peb-
bles in T v

∗ be r1, . . . , rm ∈ Bl(L) ∩ T v
∗ . Again succ(ri)〈ri, sibl(ri)〉,

i ∈ [m], can be added at an extra cost 2m. Since succ(ri), i ∈ [m],
block all paths from v we have T v \⋃i∈[m] T

succ(ri) ⊆ cover(u〈U〉), so
v〈succ(r1), . . . , succ(rm)〉 can be added as well at no additional cost.
Canonizing decreases the cost by 2m + 1, which yields M � L with
cost(M) < cost(L). The transition from Figure 17(b) to Figure 17(c) is
accomplished by applying this procedure twice.

In all cases we can find a nontouching L-configuration M such that u〈U〉 � M � L
and cost(M) ≤ cost(L). The lemma follows by induction.

The following transitivity property of nonwasteful implosions is an immediate
consequence of Definition A.30.

Observation A.34. If u〈U〉� {vi〈Vi〉 | i ∈ [m]} and vi〈Vi〉� Mi for i ∈ [m] are
all nonwasteful implosions, then u〈U〉� {Mi | i ∈ [m]} is a nonwasteful implosion.

Proof. For each i ∈ [m], concatenate the paths from Mi to vi〈Vi〉 provided by Defi-
nition A.30 with those from vi〈Vi〉 to u〈U〉 provided by the same definition. The result
is a set of disjoint paths from

⋃
i∈[m] Mi to u〈U〉 as required by Definition A.30.

It follows from Observation A.34 that if u〈U〉 � L is a wasteful implosion and
u〈U〉 � M � L is a corresponding nonwasteful implosion for M minimal, then all
nontrivial “local implosions” from subconfigurations in M to sets of subconfigurations
in L are wasteful. We formalize this as a lemma.

Lemma A.35. Suppose that u〈U〉 � L is a wasteful implosion and let M � L
be minimal such that u〈U〉 � M is nonwasteful. Then for each v〈V 〉 ∈ M and
each nontouching L′ such that M � L′ � L, either projv〈V 〉(L

′) = v〈V 〉 or v〈V 〉 �
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projv〈V 〉(L′) is a wasteful implosion. In particular, for each v〈V 〉 ∈ M it holds that
cost(v〈V 〉) ≤ cost(projv〈V 〉(L′)).

Proof. Given u〈U〉 and L as in the statement of the lemma, we know from
Lemma A.33 that we can find some M such that u〈U〉�M is a nonwasteful implosion
and u〈U〉 � M � L. Pick such an M which is minimal with respect to �. Note that
by the definition of implosion moves, L and M are nontouching.

Suppose that there is a subconfiguration v〈V 〉 ∈ M and an L-configuration L′

with M � L′ � L such that projv〈V 〉(L
′) ≺ v〈V 〉 and v〈V 〉 � projv〈V 〉(L

′) is a
nonwasteful implosion. Then by the transitivity in Observation A.34 it holds that
M′ =

(
M ∪ projv〈V 〉(L′)

) \ v〈V 〉 ≺ M is a nonwasteful implosion of u〈U〉. This
contradicts the minimality of M.

If v〈V 〉 � projv〈V 〉(L′) is a wasteful implosion, Lemma A.33 says that there ex-
ists a nonwasteful implosion locally to an L-configuration Mv with v〈V 〉 � Mv �
projv〈V 〉(L

′) such that cost(Mv) ≤ min
{
cost(v〈V 〉), cost(projv〈V 〉(L

′))
}
, and, in par-

ticular, cost(Mv) ≤ cost(projv〈V 〉(L′)). But we have just proven that this nonwasteful
Mv must be identical with v〈V 〉, so cost(v〈V 〉) ≤ cost(projv〈V 〉(L′)).

Very roughly, the next lemma says that wasteful implosions are preserved under
mergers.

Lemma A.36. Suppose for i = 1, 2 that ui〈Ui〉 � Li and cost(ui〈Ui〉) ≤ cost(Li)
for Li nonoverlapping, and that u1〈U1〉 and u2〈U2〉 are mutually nonoverlapping with
u2 ∈ U1. Then it holds that cost(merge(u1〈U1〉, u2〈U2〉)) ≤ cost(L1 ∪ L2).

Proof. The L-configurations L1 and L2 must be mutually nonoverlapping since
they are covered by u1〈U1〉 and u2〈U2〉, respectively. The only way that cost(L1∪L2)
could be less than cost(merge(u1〈U1〉, u2〈U2〉)) = cost(u1〈U1〉) + cost(u2〈U2〉) − 1 ≤
cost(L1)+cost(L2)−1 is if there were at least two vertices in

⋂
i=1,2

(
Bl(Li)∪Wh(Li)

)
.

But Bl(Li) ∪ Wh(Li) ⊆ cl(Li) ⊆ cl(ui〈Ui〉) since Li � ui〈Ui〉 by the assumptions of
the lemma, and also by assumption cl(u1〈U1〉) ∩ cl(u1〈U1〉) = {u2} since u1〈U1〉 and
u2〈U2〉 are mergeable (recall Example A.14), so this is impossible.

Combining Lemmas A.35 and A.36, we can provide the fifth and final component
in the proof of Lemma A.2, namely, that any nonoverlapping L-pebbling L can be
transformed into a pebbling L′ without wasteful implosions such that L′ has asymp-
totically the same cost as L.

Lemma A.37. Suppose that L is a nonoverlapping complete L-pebbling of T .
Then we can find a nonoverlapping complete L-pebbling L′ of T without wasteful
implosions such that cost(L′) ≤ 2 · cost(L).

Proof. In this proof, let us assume for simplicity (and without loss of general-
ity concerning pebbling cost, by the proof of Lemma A.26) that each introduction,
expansion, or implosion move in Definition A.21 takes exactly one time step.

Given a nonoverlapping L-pebbling L, we build a nonoverlapping L-pebbling L′

without wasteful implosions such that if we let Li ∈ L denote the starting configura-
tion of the ith move in L, there is a corresponding L′

i ∈ L′ such that the following
invariants hold:

1. L′
i is nontouching.

2. L′
i � Li.

3. For all u〈U〉 ∈ L′
i, it holds that cost(u〈U〉) ≤ cost(proju〈U〉(Li)).

4. The cost of the L-pebbling transition from L′
i−1 to L′

i in L′ does not exceed
2 · max

{
cost(Li−1), cost(Li)

}
.

To see that the lemma follows from this, note that invariants 1 and 2 imply that
for every v〈V 〉 ∈ Li there is a u〈U〉 ∈ L′

i such that v〈V 〉 � u〈U〉. In particular,
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for Lτ = z〈∅〉 we have z〈∅〉 ∈ L′
τ , since z〈∅〉 is the maximal element with respect

to �. Then plugging invariant 3 into Proposition A.20, part 4, we get cost(L′
i) =∑

u〈U〉∈L′
i
cost(u〈U〉) ≤ ∑

u〈U〉∈L′
i
cost(proju〈U〉(Li)) =

∑
u〈U〉∈L′

i
cost({v〈V 〉 ∈ Li |

v〈V 〉 � u〈U〉}) = cost(Li). Using invariant 4 to bound the cost of the pebbling
transitions L′

i−1 � L′
i, we get the desired result cost(L′) ≤ 2 · cost(L).

The construction is by forward induction over the moves in L. Assume that the
invariants hold for Lt and L′

t.
Introduction. Lt+1 = Lt ∪ v〈pred(v)〉: If v〈pred(v)〉 � L′

t, we set L′
t+1 = L′

t. For
the pebble subconfiguration u〈U〉 ∈ L′

t such that v〈pred(v)〉 � u〈U〉, we have
cost(u〈U〉) ≤ cost(proju〈U〉(Lt)) ≤ cost(proju〈U〉(Lt ∪ v〈pred(v)〉)), and for
u′〈U ′〉 ∈ L′

t distinct from u〈U〉 nothing changes. All invariants stay true.
If v〈pred(v)〉 � L′

t, we introduce v〈pred(v)〉 in L′ and expand (at most three
times) to get L′

t+1 = canon(L′
t ∪ v〈pred(v)〉). Invariants 1 and 2 obviously

hold. We claim that invariant 3 holds with respect to Lt+1 instead of Lt for
all subconfigurations in the intermediate L-configurations L′ in the transition
L′

t � L′
t+1 up to and including L′

t+1 = canon(L′
t ∪ v〈pred(v)〉). This claim

yields invariants 3 and 4 for L′
t+1.

To prove the claim, observe that invariant 3 holds for L′
t ∪ v〈pred(v)〉 with

respect to Lt+1 = Lt ∪ v〈pred(v)〉 by the induction hypothesis and the fact
that projv〈pred(v)〉(Lt ∪ v〈pred(v)〉) = v〈pred(v)〉. Since L′

t+1 is obtained by
repeated merging of nonoverlapping subconfigurations from L′

t ∪ v〈pred(v)〉,
and since by induction over each such merger these subconfigurations meet
the conditions in Lemma A.36, the claim follows.

Expansion. Lt+1 =
(
Lt ∪ merge(v1〈V1〉, v2〈V2〉)

)\{v1〈V1〉, v2〈V2〉}: By induction it
holds that L′

t � Lt ∼ Lt+1, so there is a u〈U〉 ∈ L′
t such that vi〈Vi〉 � u〈U〉

for i = 1, 2. For u′〈U ′〉 ∈ L′
t distinct from u〈U〉 there are no changes in

the invariants, and if cost(proju〈U〉(Lt+1)) ≥ cost(u〈U〉), nothing needs to be
done for u〈U〉 either, and we can set L′

t+1 = L′
t.

It can be the case, however, that the expansion within proju〈U〉(Lt+1) de-
creased the cost so that u〈U〉 is now too expensive and invariant 3 no longer
holds. If so, we implode u〈U〉 to a minimal nonwasteful L-configuration
Mu � proju〈U〉(Lt+1) and set L′

t+1 =
(
L′

t \ u〈U〉) ∪ Mu.
Invariants 1 and 2 are immediate. Invariant 3 follows from Lemma A.35 since
Mu is chosen minimal. Thus, cost(Mu) ≤ cost(proju〈U〉(Lt+1)), and by the
induction hypothesis we know that cost(u〈U〉) ≤ cost(proju〈U〉(Lt)). Using
part 1 of Proposition A.20, we see that the maximal cost in the implosion
sequence L′

t � L′
t+1 locally inside the closure cl(u〈U〉) is reached in the

L-configuration u〈U〉 ∪ Mu, and using part 2 of Proposition A.20, this extra
cost in the transition from L′

t to L′
t+1 in L′ is at most

cost(u〈U〉 ∪ Mu) ≤ cost(u〈U〉) + cost(Mu)
≤ cost(proju〈U〉(Lt)) + cost(proju〈U〉(Lt+1))

≤ 2 · max
i∈{t,t+1}

{
cost(proju〈U〉(Li))

}
.

(A.15)

The cost outside cl(u〈U〉) does not change since nothing happens there, so
invariant 4 follows.

Implosion. Lt+1 =
(
Lt \ v〈V 〉)∪M for M =

{
vi〈Vi〉 | i ∈ [m]

}
: This case is analogous

to the expansion case. By invariants 1 and 2, we know that v〈V 〉 is covered
by some u〈U〉 ∈ L′

t. Nothing happens for u′〈U ′〉 ∈ L′
t distinct from u〈U〉, so
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we can again concentrate on what is going on inside cl(u〈U〉).
If u〈U〉 is too expensive with respect to proju〈U〉(Lt+1) so that invariant 3
fails, we make a nonwasteful implosion of u〈U〉 to an L-configuration Mu with
u〈U〉 � Mu � proju〈U〉(Lt+1) and set L′

t+1 =
(
L′

t \ u〈U〉) ∪ Mu. By part 1 of
Proposition A.20, a lower bound for the cost locally of the pebbling sequence
proju〈U〉(Lt) � proju〈U〉(Lt+1) in L is maxi∈{t,t+1}

{
cost(proju〈U〉(Li+1))

}
.

Using Lemma A.35 and parts 1 and 2 of Proposition A.20, we can upper-
bound the pebbling cost locally inside cl(u〈U〉) in L′ in terms of this local
cost in L by

cost(u〈U〉 ∪ Mu) ≤ cost(u〈U〉) + cost(Mu)

≤ 2 · max
i∈{t,t+1}

{
cost(proju〈U〉(Li))

}
,(A.16)

which yields invariants 1–4.
Going through the moves in L = {L0, . . . , Lτ}, this construction yields an L-pebbling
L′ without wasteful implosions such that L′

τ ′ � Lτ and cost(L′) ≤ 2 · cost(L).
Thereby, the proof of Lemma A.2 as outlined in section A.1 is complete, and

Theorem 5.4 follows. We conclude the appendix by restating the lemma and writing
out the proof in full for completeness.

Lemma A.2 (restated). Suppose that L is a complete L-pebbling of a complete
binary tree T . Then from L we can construct a complete L-pebbling L∗ of T without
reversals such that cost(L∗) = O(cost(L)).

Proof. Let L be an arbitrary complete L-pebbling of T . Without loss of generality,
we can assume that L is nonredundant in the sense of Lemma A.5. By Lemma A.11,
we can also assume that L contains only simple L-configurations. This sets the stage
for applying the technical machinery developed in sections A.4–A.8.

First, using Lemma A.26, we transform L into a nonoverlapping L-pebbling L′

with cost(L′) ≤ cost(L). If L′ contains wasteful implosions, we then let Lemma A.37
provide us with a nonwasteful complete L-pebbling L′′ such that cost(L′′) ≤ 2 ·
cost(L′). But for such an L-pebbling, Lemma A.32 allows us to project away all
implosion moves without increasing the pebbling cost, so we finally get a reversal-free
complete L-pebbling L∗ of T with cost(L∗) ≤ cost(L′′) ≤ 2 · cost(L′) ≤ 2 · cost(L).
This proves the lemma.

Note added in proof. Very recently, we have been able to obtain an exponential
improvement of the results in the current paper. This has been achieved by studying
pyramid graphs and proving that the black-white pebbling price is a lower bound for
the clause space of refuting pebbling contradictions over such graphs. The general
structure of the proof as outlined in section 2 of the current paper is the same, although
the technical details are quite different (as they have to be, given Lemma 5.3).

The formal results, to appear in [42], can be stated as follows.
Improved Theorem 1.1. The clause space of refuting pebbling contradictions

over pyramid graphs of height h in resolution grows as Θ(h), provided that the number
of variables per vertex in the pebbling contradictions is at least 2.

Improved Corollary 1.2. For all k ≥ 4, there is a family {Fn}∞n=1 of k-CNF
formulas of size Θ(n) that can be refuted in resolution in length L(Fn � 0) = O(n)
and width W(Fn � 0) = O(1), but require clause space Sp(Fn � 0) = Θ(

√
n).
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