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Abstract. This talk is intended as a selective survey of proof complexity,
focusing on some comparatively weak proof systems that are of partic-
ular interest in connection with SAT solving. We will review resolution,
polynomial calculus, and cutting planes (related to conflict-driven clause
learning, Gröbner basis computations, and pseudo-Boolean solvers, re-
spectively) and some proof complexity measures that have been studied
for these proof systems. We will also briefly discuss if and how these proof
complexity measures could provide insights into SAT solver performance.

Proof complexity studies how hard it is to find succinct certificates for the
unsatisfiability of formulas in conjunctive normal form (CNF), i.e., proofs that
formulas always evaluate to false under any truth value assignment, where these
proofs should be efficiently verifiable. It is generally believed that there cannot
exist a proof system where such proofs can always be chosen of size at most
polynomial in the formula size. If this belief could be proven correct, it would
follow that NP 6= coNP, and hence P 6= NP, and this was the original reason
research in proof complexity was initiated by Cook and Reckhow [18]. However,
the goal of separating P and NP in this way remains very distant.

Another, perhaps more recent, motivation for proof complexity is the con-
nection to applied SAT solving. Any algorithm for deciding SAT defines a proof
system in the sense that the execution trace on an unsatisfiable instance is itself
a polynomial-time verifiable witness (often referred to as a refutation rather than
a proof ). In the other direction, most SAT solvers in effect search for proofs in
systems studied in proof complexity, and upper and lower bounds for these proof
systems hence give information about the potential and limitations of such SAT
solvers.

In addition to running time, an important concern in SAT solving is memory
consumption. In proof complexity, time and memory are modelled by proof size
and proof space. It therefore seems interesting to understand these two complex-
ity measures and how they are related to each other, and such a study reveals
intriguing connections that are also of intrinsic interest to proof complexity. In
this context, it is natural to concentrate on comparatively weak proof systems
that are, or could plausibly be, used as a basis for SAT solvers. This talk will
focus on such proof systems, and the purpose of these notes is to summarize the
main points. Readers interested in more details can refer to, e.g, the survey [31].



1 Resolution

The proof system resolution [13] lies at the foundation of state-of-the-art SAT
solvers based on conflict-driven clause learning (CDCL) [5, 28, 30]. In resolution,
one derives new clauses from the clauses of the original CNF formula until an
explicit contradiction is reached. Haken [24] proved the first (sub)exponential
lower bound on proof size (measured as the number of clauses in a proof), and
truly exponential lower bounds—i.e., bounds exp(Ω(n)) in the size n of the
formula—were later established in [16, 33].

The study of space in resolution was initiated by Esteban and Torán [20],
measuring the space of a proof (informally) as the maximum number of clauses
needing to be kept in memory during proof verification. Alekhnovich et al. [1]
later extended the concept of space to a more general setting, including other
proof systems. The (clause) space measure can be shown to be at most linear in
the formula size, and matching lower bounds were proven in [1, 8, 20].

Ben-Sasson and Wigderson [11] instead focused on width, measured as the
size of largest clause in a proof. It is easy to show that upper bounds on width
imply upper bounds on size. More interestingly, [11] established the converse
that strong enough lower bounds on width imply strong lower bounds on size,
and used this to rederive essentially all known size lower bounds in terms of
width. The relation between size and width was elucidated further in [4, 15].

Atserias and Dalmau [3] proved that width also yields lower bounds on space1

and that all previous space lower bounds could be obtained in this way. This
demonstrates that width plays a key role in understanding both size and space.
It should be noted, however, that in contrast to the relation between width and
size the connection between width and space does not go in both directions, and
an essentially optimal separation of the two measures was obtained in [9].

Regarding the connections between size and space, it follows from [3] that for-
mulas of low space complexity also have short proofs. For the subsystem of tree-
like resolution, where each line in the proof can only be used once, [20] showed
that size upper bounds also imply space upper bounds, but for general resolution
[9] established that this is false in the strongest possible sense. There have also
been strong size-space trade-offs proven in [6, 7, 10].

The most comprehensive study to date of the question if and how hardness
with respect to these complexity measures for resolution is correlated with actual
hardness as measured by CDCL running time would seem to be [27], but it seems
fair to say that the results so far are somewhat inconclusive.

2 Polynomial Calculus

Resolution can be extended with algebraic reasoning to form the stronger proof
system polynomial calculus (PC) as defined in [1, 17],2 which corresponds to

1 Note that this relation is nontrivial since space is measured as the number of clauses.
2 We will be slightly sloppy in these notes and will not distinguish between polynomial

calculus (PC) [17] and the slightly more general proof system polynomial calculus



Gröbner basis computations. In a PC proof, clauses are interpreted as multilinear
polynomials (expanded out to sums of monomials), and one derives contradiction
by showing that these polynomials have no common root. Intriguingly, while
proof complexity-theoretic results seem to hold out the promise that SAT solvers
based on polynomial calculus could be orders of magnitude faster than CDCL,
such algebraic solvers have so far failed to be truly competitive (except for limited
“hybrid versions” that incorporate reasoning in terms of linear equations into
CDCL solvers).

Proof size in polynomial calculus is measured as the total number of mono-
mials in a proof and the analogue of resolution space is the number of monomials
needed simultaneously in memory during proof verification. Clause width in res-
olution translates into polynomial degree in PC. While size, space and width
in resolution are fairly well understood, our understanding of the corresponding
complexity measures in PC is more limited.

Impagliazzo et al. [26] showed that strong degree lower bounds imply strong
size lower bounds. This is a parallel to the size-width relation for resolution
in [11] discussed above, and in fact [11] can be seen as a translation of the
bound in [26] from PC to resolution. This size-degree relation has been used to
prove exponential lower bounds on size in a number of papers, with [2] perhaps
providing the most general setting.

The first lower bounds on space were reported in [1], but only sublinear
bounds and only for formulas of unbounded width. The first space lower bounds
for k-CNF formulas were presented in [22], and asymptotically optimal (linear)
lower bounds were finally proven by Bonacina and Galesi [14]. However, there
are several formula families with high resolution space complexity for which the
PC space complexity still remains unknown.

Regarding the relation between space and degree, it is open whether de-
gree is a lower bound for space (which would be the analogue of what holds in
resolution), but some limited results in this direction were proven in [21]. The
same paper also established that the two measures can be separated in the sense
that there are formulas of minimal (i.e., constant) degree complexity requiring
maximal (i.e., linear) space.

As to size versus space in PC, it is open whether small space complexity
implies small size complexity, but [21] showed that small size does not imply
small space, just as for resolution. Strong size-space trade-offs have been shown
in [7], essentially extending the results for resolution in [6, 10] but with slightly
weaker parameters.

3 Cutting Planes

In the proof system cutting planes (CP) [19] clauses of a CNF formula are
translated to linear inequalities and the formula is refuted by showing that the

resolution (PCR) [1], using the term “polynomial calculus” to refer to both. PC is
the proof system that is actually used in practice, but PCR is often more natural to
work with in the context of proof complexity.



polytope defined by these inequalities does not have any zero-one integer points
(corresponding to satisfying assignments). As is the case for polynomial calculus,
cutting planes is exponentially stronger than resolution viewed as a proof system,
but we are not aware of any efficient implementations of cutting planes-based
SAT solvers that are truly competitive with CDCL solvers on CNF inputs in
general (although as shown in [12, 29] there are fairly natural formulas for which
one can observe exponential gains in performance also in practice).

Cutting planes is much less well understood than both resolution and poly-
nomial calculus. For proof size there is only one superpolynomial lower bound
proven by Pudlák [32], but this result relies on a very specific technique that
works only for formulas with a very particular structure. It remains a major
challenge in proof complexity to prove lower bounds for other formulas such as
random k-CNF formulas or so-called Tseitin formulas.

It is natural to define the line space of a CP proof to be the maximal number
of linear inequalities that need to be kept in memory simultaneously during the
proof. Just as for monomial space in polynomial calculus, line space in cutting
planes is easily seen to be a generalization of clause space in resolution and is
hence upper bounded by the clause space complexity. As far as we are aware,
however, no lower bounds are known for CP space. Also, it should perhaps be
noted that there does not seem to exist any generalization of width/degree for
cutting planes with interesting connections to size or space.

Given the state of knowledge regarding proof size and space, maybe it is
not too surprising that we also do not know much about size-space trade-offs.
The recent papers [23, 25] developed new techniques for this problem by making
a connection between size-space trade-offs and communication complexity, and
used this connection to show results that could be interpreted as circumstantial
evidence that similar trade-off results as for resolution could be expected to
hold also for cutting planes. However, so far all that has been proven using the
approach in [23, 25] are conditional space lower bounds, i.e., space lower bounds
that seem likely to hold unconditionally, but which can so far be established only
for cutting planes proofs of polynomial size.
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23. Göös, M., Pitassi, T.: Communication lower bounds via critical block sensitivity.
In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing
(STOC ’14) (May 2014), to appear

24. Haken, A.: The intractability of resolution. Theoretical Computer Science 39(2-3),
297–308 (Aug 1985)

25. Huynh, T., Nordström, J.: On the virtue of succinct proofs: Amplifying communi-
cation complexity hardness to time-space trade-offs in proof complexity (extended
abstract). In: Proceedings of the 44th Annual ACM Symposium on Theory of
Computing (STOC ’12). pp. 233–248 (May 2012)

26. Impagliazzo, R., Pudlák, P., Sgall, J.: Lower bounds for the polynomial calculus
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