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Abstract

Modern subgraph isomorphism solvers carry out
sophisticated reasoning using graph invariants such
as degree sequences and path counts. We show that
all of this reasoning can be justified compactly us-
ing the cutting planes proofs studied in complex-
ity theory. This allows us to extend a state of the
art subgraph isomorphism enumeration solver with
proof logging support, so that the solutions it out-
puts may be audited and verified for correctness and
completeness by a simple third party tool which
knows nothing about graph theory.

1 Introduction

The subgraph isomorphism decision problem is to find a copy
of a small “pattern” graph inside a larger “target” graph, or to
show that no such copy exists; the enumeration problem is to
find all copies. These problems occur in many applications—
we refer to Archibald er al. [2019] for a partial list. Al-
though the problems are NP- and #P-complete respectively,
a series of algorithms based upon constraint programming
[Zampelli et al., 2010; Solnon, 2010; Audemard et al., 2014,
McCreesh and Prosser, 2015; Archibald et al., 2019] have
culminated in a practical way of tacking all but the hardest
instances [McCreesh et al., 2018; Solnon, 2019]. These al-
gorithms exploit various combinatorial and graph invariants,
such as matchings, degree sequences, and number of paths
between vertices, in a bid to reduce the number of combina-
tions which must be considered. As a result, the solvers im-
plementing these algorithms are rather complex, and even af-
ter extensive testing it is hard to be convinced that the solvers
are definitely free from bugs.

This paper discusses proof logging as a way of verifying
the solutions produced by of one of these solvers: the idea
is that the solver is modified to produce a “certificate” or
proof file as part of its output, which can then be verified
by a (much simpler) external tool. For satisfiable decision in-
stances for NP problems, such certificates are always small,
and (usually) easy to check. For demonstrating unsatisfiabil-
ity, or for showing that a solver has not missed any solutions
when enumerating, no way of guaranteeing short certificates
is known. However, theoretical worst cases are overly pes-
simistic, and modern subgraph isomorpism solvers often per-
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form much better than exponential worst-case performance
bounds would suggest. In the same way, we will show that
with the right proof format, certificates can be simple to ver-
ify, yet still only be proportional in size to the amount of work
carried out by a solver.

We stress that proof logging does not prove that a solver
is correct: unless a solver actually exhibits buggy behaviour
when producing a proof, a proof verifier will not complain.
On the other hand, proof verifiers will detect if a correct
solver is run on faulty hardware or is compiled with a buggy
compiler, if that leads to the solver performing incorrect rea-
soning. In other words, proof logging gives us a way of trust-
ing solver outputs, not solvers.

Proof logging in the Boolean satisfiability community is
usually done using a format known as DRAT [Heule et al.,
2013b; Heule et al., 2013a; Wetzler et al., 2014]. Recently,
Elffers et al. [2020] proposed a different proof-logging format
based upon cutting planes proofs for pseudo-Boolean mod-
els, and showed that (unlike DRAT) it could easily handle
the all-different reasoning used in constraint programming
solvers. Because subgraph isomorphism solvers also make
use of strong all-different reasoning and similar counting ar-
guments, we will be using this format. Our first contribu-
tion is to show that cutting planes proofs are also powerful
enough to compactly express reasoning about graph degrees,
neighbourhood degree sequences, and counts of short paths
in graphs. This is sufficient to represent all of the reasoning
carried out by the Glasgow Subgraph Solver [Archibald et al.,
2019], which is the current strongest subgraph isomorphism
solver on hard instances [Solnon, 2019]. This is a surpris-
ing result: cutting planes proofs know nothing about graphs,
and the solver’s inference algorithms were not designed with
proof logging in mind. Our second contribution is to demon-
strate that this approach is actually practical: we extend the
Glasgow solver with proof logging support, and produce and
verify solution certificates for over a thousand standard enu-
meration benchmark instances.

2 Background

We begin by introducing notation, and providing the neces-
sary background on graphs and on pseudo-Boolean formulae.

Graphs. Let G be a graph with vertex set V(G), and let
v € V(G). We write N(v) for the neighbourhood of (set of
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vertices adjacent to) v, and deg(v) for the cardinality of the
neighbourhood; we write deg(G) for the mean of the degrees
of all vertices of GG. For simplicity, every graph appearing in
this paper is undirected, unlabelled, and does not have loops
(vertices adjacent to themselves), although every result we
describe can be extended to these more general cases.

Subgraph isomorphism. Given a pattern graph P and a
target graph T, the non-induced subgraph isomorphism prob-
lem is to find an injective mapping from V(P) to V(T') such
that adjacent vertices in P are mapped to adjacent vertices
in T. The induced problem additionally requires that non-
adjacent vertices be mapped to non-adjacent vertices—again,
we do not discuss this further in this paper, although our re-
sults are also easily applicable to this problem. The enumer-
ation problem is to find every such mapping. (Some works
instead consider the unlabelled enumeration variant, defined
as finding every image of such a mapping.)

Pseudo-Boolean formulae. A pseudo-Boolean (PB) for-
mula consists of a set of {0, 1}-valued variables {z1,...,2,}
together with a set of linear constraints Z?:l al; > A,
where each a; and A is an integer, and each /¢; is either a
literal z; or a negated literal =;, where x; + T; = 1. We
can convert a Boolean satisfiability (SAT) problem instance in
conjunctive normal form (CNF) into a PB formula because,
e.g. x1 V xo V T3 is satisfied iff 1 + 22 + 73 > 1, but in
general the PB format is exponentially more expressive.

Cutting planes proofs. The cutting planes (CP) proof sys-
tem [Cook et al., 1987] allows us to reason about the satis-
fiability or unsatisfiability of a PB formula, in a similar way
to the resolution system for SAT. Briefly, starting with the in-
put constraints, we may generate new constraints by adding
existing constraints, multiplying them by an integer constant,
dividing by a positive integer constant (with rounding up),
and introducing literal constraints ¢; > 0. The VeriPB tool
[Elffers et al., 2020] provides a way of encoding CP proofs in
such a way that they can be verified by machine: we refer to
the tool’s documentation' for details.

Simplification and reverse unit propagation. As well as
accepting manual derivations of new constraints from exist-
ing ones, VeriPB has two ways of introducing a constraint
which is specified explicitly during a proof log. The first is
if the new constraint is semantically implied by an existing
constraint (that is, if it may be obtained by weakening co-
efficients and cancelling literals). The second is through re-
verse unit propagation (RUP) [Goldberg and Novikov, 2003;
Elffers er al., 2020]: if the negation of the new constraint
combined with every existing constraint is “obviously” un-
satisfiable through unit propagation, then the new constraint
may be added. Note that RUP constraints add no new expres-
sive power and can be relatively expensive for the verifier,
but using them appropriately can make solver implementa-
tion vastly more straightforward.

Logging of solutions. To support enumeration problems,
VeriPB allows solutions to be logged. These are checked as
they are encountered, and then their negations are added as

"https://github.com/StephanGocht/VeriPB/

new constraints. Thus, a proof log for an enumeration prob-
lem is effectively a list of solutions, plus an unsatisfiability
proof showing there are no further solutions that were missed.

3 Reasoning about Subgraphs

We will now demonstrate that all of the preprocessing and
reasoning carried out by the Glasgow subgraph solver can be
justified compactly using CP proofs. We will discuss all of
the kinds of reasoning carried out by the Glasgow solver, but
we will not describe precisely how these different steps fit
together to make an algorithm—we refer to McCreesh and
Prosser [2015] and Archibald et al. [2019] for those details.
We will also touch upon kinds of reasoning carried out by
other subgraph solvers, showing the generality and limita-
tions of these results. However, because the VeriPB tool only
understands PB formulae, we must first explain how we en-
code a subgraph isomorphism problem as a PB formula.

3.1 A Pseudo-Boolean Encoding

In the common constraint programming encoding for sub-
graph isomorphism used by the Glasgow solver, we have a
variable for each vertex in the pattern graph, and each domain
ranges over the vertices of the target graph. In other words,
we are building a mapping from the pattern graph to the tar-
get graph. In a pseudo-Boolean model, we replace each con-
straint programming variable with a set of Boolean variables,
one for each value in its domain—each of these variables x,, ;
represents a pair consisting of a pattern vertex p and a tar-
get vertex ¢, and is set to true precisely if p is to be mapped
to ¢. Conveniently for the enumeration problem, solutions to
this PB formula will be in one-to-one correspondence with
solutions to the actual problem.

Our first set of constraints says that each pattern vertex
must be mapped to exactly one target vertex:

> api>1 peV(P)
tev(T)
>y > -1 peV(P)
teV(T)

We then express injectivity, by saying that each target vertex
may be used at most once:

Z —Tp,t Z -1

peEV(P)

teV(T)

Finally, we must express the adjacency constraints. The most
obvious way to do this is by saying that edges cannot be
mapped to non-edges:

p € V(P), ¢ € N(p),
teV(T), ue V(T)\N(®)
However, it is more convenient and compact (particularly if
the target graph is sparse) to reformulate this by saying that
if a vertex p is mapped to a vertex ¢, then every vertex in

the neighbourhood of p must be mapped to a vertex in the
neighbourhood of ¢:

Tpi+ Y, Tgu>1 peV(P), geN(p), t € V(T)
uw€eN(t)

—Tptt+ —Tgu = —1
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All of these constraints must then be expressed in the OPB
file format>. For readability, VeriPB allows us to name z,, ;
variables with strings like xp_t, whereas many PB solvers
accept only numerical variable names like x123. Because
the encoding process is not verifiable and the verifier cannot
detect bugs in the encoding process, we keep the encoding as
simple as possible and do not perform any reasoning here.

Note that this encoding has O(| V(P)|deg(P)| V(T)|)
constraints, and that each adjacency constraint is potentially
O(| V(T)]) long (although for sparse target graphs the length
will be considerably shorter). The Glasgow solver instead
represents the constraints using two bitset matrices, requiring
only O(| V(P)|? + | V(T)|?) size, whilst some other solvers
use even smaller adjacency list representations. This does
provide us with a fairly moderate limit on the size of graphs
with which we may use this verification process, compared
to what subgraph solvers can handle. This is also one of the
reasons that feeding such an input to a pseudo-Boolean (or
Boolean satisfiability) solver is not a particularly good way
of solving the problem in practice: dedicated subgraph iso-
morphism solvers give much better performance. However,
the proof logs we will produce will correspond to a sequence
of steps which could, in theory, have been carried out by a
pseudo-Boolean solver working on these models.

3.2 Adjacency and Backtracking Search

Elffers et al. [2020] described how the recursive calls car-
ried out by a standard backtracking constraint programming
search algorithm could be logged using reverse unit propaga-
tion constraints, requiring one RUP constraint for every back-
track. They point out that with this approach, there is no need
to log any inference steps carried out by a logging solver if
they are no stronger than unit propagation on the associated
OPB model. The Glasgow solver only performs inference on
adjacency constraints when it is decided that a specific pat-
tern vertex must be mapped to a specific target vertex, and so
the following proposition is immediate.

Proposition 1. PB unit propagation on adjacency constraints
carries out the same reasoning as the Glasgow solver, and so
requires no explicit logging when using RUP.

This result, combined with a limited application of all-
different justification [Elffers er al., 20201, is already enough
to deal with simple-but-fast subgraph isomorphism solvers
like RI [Bonnici et al., 2013] and VF2 [Cordella et al., 2004]
which do not use constraint programming techniques and
which do not perform any further strong inference during
search. To log the behaviour of “cleverer” constraint pro-
gramming style algorithms like the Glasgow solver, how-
ever, we need to be able to justify several other kinds of
preprocessing and reasoning. In the same way that Elffers
et al. [2020] produced proofs by combining RUP with addi-
tional explicitly-derived constraints for verifying all-different
reasoning in a constraint programming solver, we next show
how to provide the verifier with enough additional informa-
tion that every variable-value deletion in the subgraph solver
will be reflected in the PB representation following RUP.

“http://www.cril.univ-artois.fr/PB12/format.pdf
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3.3 Reasoning About Degrees

A pattern vertex p of degree deg(p) can never be mapped
to a target vertex ¢ of degree deg(p) — 1 or lower in any
subgraph isomorphism. Expressing this fact using resolu-
tion proofs would require exponential length [Haken, 1985],
but in cutting planes a proof may easily be derived. We
demonstrate this by example. Suppose N(p) = {q,r, s} and
N(t) = {u,v} for some pattern vertex p and target vertex ¢:
we wish to derive T, ; > 1. We start with the three adjacency
constraints,

Tpt + Tgu + Tgp 21
T@t*’mnu‘erm Z 1
fp,t + Tsu + Tsv Z 17
whose sum is
3Tpt + Tgu + Tgv + Tru + Trw + Tsu + Tsp 2 3.

Observe that due to injectivity, at most one of the column
Tq,u» Tru, and xs,, can be true, and similarly for the column
of x_ , variables. Adding the injectivity constraints for target
vertices u and v to the sum of the adjacency constraints gives

BTpit . —Tput Y

peV(P)\{g;r,s} peV(P)\{g,r,s}

which is almost what we want except that we have acquired
some additional variables from the injectivity constraints.
This is not a problem: we can remove these stray x,, _ vari-
ables by adding literal axioms (since x; > 0 for any vari-
able x;) and then finally divide the resulting expression by
3, to obtain T, ; > 1 as desired. In proof logging terms,
this whole process can be expressed in a single “p” (‘“reverse
Polish expression”) rule in the VeriPB format, optionally fol-
lowed by an “e” (“‘equals”) rule for sanity-checking purposes.
With added line breaks and comments, this could look like:

p 18 19 + 20 +
12 + 13 +
Xp_u + Xp_Vv +

—Zpp = 1,

* sum adj constraints
* sum inj constraints
* cancel stray xp_*
XO0_U + XO_V + * cancel stray xo_*
3d0 * divide, and we’re done

e 74 1 "xp_t >=1 ; * check what we just did

Alternatively, because the desired constraint only using weak-
ening of coefficients and cancellation of literals, we may use
a ‘]’ (“implies and add”) rule to avoid listing the steps explic-
itly:
p 18 19 + 20 + “* sum adj constraints

12 + 13 + 0 * sum inj constraints
j 74 1 "xp_t >=1 ; * and simplify the above

In general, following the above process can justify any de-
gree reasoning step:

Proposition 2. If a pattern vertex p cannot be mapped to a
target vertex ¢ due to degree, then we can justify this using a
single “p” rule containing deg(p)+ deg(t) additions of model
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axioms, and a single “j” rule.

The Glasgow solver does not just reason about degrees,
though: it also reasons about global and neighbourhood de-
gree sequences, using a result due to Zampelli et al. [2010].
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Let S(v) be the sequence consisting of the degrees of the
neighbours of vertex v, from largest to smallest. Then a pat-
tern vertex p can only be mapped to a target vertex ¢ if S(p)
is pointwise less than or equal to S(¢). Similarly, if the sorted
global degree sequence of the pattern graph as a whole is not
pointwise less than or equal to the sorted global degree se-
quence of the target graph, then the problem is unsatisfiable.

Proposition 3. We may justify unsatisfiability due to global
degree sequence reasoning using no more than O(] V(P)| +
| V(T')|) extra steps, following degree reasoning.

To do this, let ¢ be the position of the first mismatch of the
sequence. We first perform degree reasoning to eliminate the
ith and all subsequent lower degree target vertices from the
first ¢ pattern vertices in the sequence. Then the first ¢ pattern
vertices and the first ¢ — 1 target vertices in the sequence form
a Hall violator, which may be used to demonstrate unsatisfia-
bility following the process described by Elffers ef al. [2020].

Neighbourhood degree sequence reasoning is also express-
ible as a CP proof—we will demonstrate by example. Sup-
pose a pattern vertex p has neighbourhood degree sequence
(5,4, 3,1) from neighbours (g, r, s,0), and a target vertex ¢
has neighbourhood degree sequence (5,4, 2,2) from vertices
(u,v,w, ). In this case, the third item in the degree sequence
is the first mismatch, so we will sum up the adjacency con-
straints for the first three pattern vertices to get

3Tp,t TTqu t Tgo + Tgw + Tga

FTru + Trp + Trw+ Tow
FTTsu + T+ Tsw + Tz > 3.

Now observe that, because the mismatch starts at the third
item in the sequence, the third and subsequent columns of
Z_ . and x_ , variables all correspond to assignments which
are impossible due to degree. We may therefore remove these
variables by adding in the 7_ ,, > 1 clauses created using the
steps in the previous subsection. This leaves us with

3fp,t + LTq,u + Lq,v + Trou + Trv + Tsu + Ts v > 3.

At this point, we are in a very similar situation to with de-
gree reasoning, above: the x_ , and x_ , sets of variables
can both contribute at most one to the sum, due to injectivity.
So, we add the injectivity constraints as before, and then ei-
ther explicitly eliminate stray variables and divide, or simply
ask the proof verifier to derive the exact constraint by impli-
cation from this sum. By generalising this example, we can
conclude the following proposition.

Proposition 4. If a pattern vertex p cannot be mapped to a
target vertex ¢ due to neighbourhood degree sequence, then
we can justify this using a single “p” rule containing no more
than deg(p) +deg(t) additions of model axioms, and no more
than deg(t)| V(P)| additions of previously derived rules, fol-

lowed by a single “j” rule for simplification.

Zampelli et al. [2010] also make use of dynamic degree se-
quences in their solver: if a target vertex no longer appears
in the domain of any pattern vertex (either initially, or dy-
namically inside search), then it is considered deleted and de-
grees and degree sequences are recalculated. The Glasgow
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solver does not use this inference, but if it did it would not
be a problem for proof logging, as we would simply add in
the derived constraints showing that no pattern vertex can be
mapped to the target vertex in question. In the same way as
for the all-different constraint, reverse unit propagation will
automatically handle the current set of guessed assignments.

3.4 Reasoning About Paths

Audemard et al. [2014] implemented a solver named SND
which propagated based upon distances as well as adjacency:
if the distance between two pattern vertices p and q is d, and
they are mapped to target vertices ¢ and u respectively, then
the distance between ¢ and « must be no more than d. This fil-
tering was refined in an early iteration of the Glasgow solver
[McCreesh and Prosser, 2015] and in the PathLAD solver
[Kotthoff et al., 2016] as follows: call two vertices v and w
[k,d]-adjacent if they have at least k simple paths of exactly
length d between them. Then if p and ¢ are [k,d]-adjacent
for any k and d, then ¢ and u must also be [k,d]-adjacent.
This form of filtering is extremely expensive computationally
if d and k are arbitrary, so the current version of the Glasgow
subgraph solver uses only d = 2 and k < 4.

Instead of using path counts directly for filtering, the Glas-
gow solver generates additional sets of graph pairs P*% and
TI*dl which have the same vertex sets but with vertices v
and w adjacent in G if they are [k,d]-adjacent in G. The
solver then uses adjacency, degree, and degree sequence rea-
soning over all of these graph pairs, in a way which requires
the full strength of the following proposition.

Proposition 5. For fixed k, for every pair of vertices p and ¢
that are [k,2]-adjacent in P, and for every target vertex ¢, PB
reasoning can derive in polynomial length a new constraint in
exactly the form T, ; + > wZqu = 1, where the v sum ranges
over vertices that are [k,2]-adjacent to ¢.

This process is somewhat intricate, so we give only a
sketch of how it works. First we establish that if p maps
to t, then ¢ maps to a vertex which is a walk of length two
away from ¢, by summing each (p, r, t) adjacency constraint
for r in N(p) N N(g). We then resolve this with each (r, g,
u) adjacency constraint in turn for each u € N(t), and sim-
plify. We then use injectivity and a second simplification step
to strengthen the generated constraint to paths of length two.
This requires two expressions with O(| V(P)|| V(T')|) terms,
and two semantic implication steps.

Finally, for k > 1, we must cancel out any x4 ,, which has
insufficiently many paths of length exactly two between it and
t. For each such item in turn, we use a simple counting and
injectivity argument over the set of potential target vertices
for each r to generate a binary clause 7, ¢ + T4, > 1. These
are all then added to the original constraint. This requires a
further O(] V(T')|) expressions of size O(| V(P)| + | V(T)|),
and O(| V(T')|) simplifications.

We suspect it is also possible to use PB reasoning to justify
arbitrary-length distance filtering in polynomial length. How-
ever, the short exact path count filtering used in the Glasgow
solver appears to be both more efficient and more powerful in
practice, and no solver since SND has used arbitrary distance
filtering.
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3.5 Other Algorithmic Features

There are four other core algorithmic features of the Glasgow
solver. The first is all-different propagation, which is used as
a powerful way of reasoning about injectivity. The Glasgow
solver uses a bit-parallel all-different propagator, rather than
the usual generalised arc consistency propagator—however,
it still performs deletions and backtracking based upon Hall
sets, and so the approach described by Elffers et al. [2020]
for justifying the all-different constraint may be used with no
additional work required.

The second feature is restarts with nogood recording.
Archibald et al. [2019] showed that rather than performing a
simple backtracking search, it is better to repeatedly perform
a small amount of search and then restart the solver with a
new branching strategy. At every restart, a set of nogoods
[Lecoutre et al., 2007; Lee et al., 2016] is recorded, so that
the solver does not duplicate work it has already carried out.
These nogoods are expressed as CNF clauses and are prop-
agated internally using unit propagation, which means they
can simply be logged as-is in the proof file.

The third is that if the input graph is a clique, the solver
switches to an entirely different algorithm to solve the prob-
lem. Implementing proof logging for this second algorithm is
a work in progress. The fourth is parallel search. Our experi-
ments will show that proof logging is heavily I/O bound, and
parallelism would make this worse.

Other constraint programming inspired subgraph isomor-
phism solvers make use of features like arc consistency, and
all different filtering on edges. Although not discussed here,
these features are also justifiable in polynomial length.

4 Implementation and Evaluation

We implemented® the proof logging techniques described
above in the Glasgow Subgraph Solver; we also used
VeriPB’s support for deletion of intermediate and temporary
constraints, which cut down on verifier memory usage. Criti-
cally, we were able to do all this without making any changes
to the core functions or data structures of the solver, beyond
adding in extra optional calls to the proof logging routines: all
of the information needed was already either present or easily
accessible from within the solver. (This would not have been
the case if we could not use RUP constraints.)

Evaluation. There are currently no other proof logging
subgraph isomorphism solvers, so we cannot compare our
technique to another solver. However, we can demon-
strate that the techniques we have described can be imple-
mented, and that producing and verifying subgraph isomor-
phism proofs works in practice, at least on smaller graphs.

Hardware setup. Our experiments are performed on a
cluster of machines with dual Intel Xeon E5-2697A v4 CPUs
and 512GBytes RAM, running Ubuntu 18.04. The perfor-
mance measurements for writing the proof logs are largely
governed by hard disk speed, not CPU overheads, and our
machines are all equipped with a single conventional hard
disk which limits write speeds to around 100MBytes/s. We
therefore do not expect our logging times to be reproducible.

*https://github.com/ciaranm/glasgow-subgraph-solver
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Instances. We use the instances collected by Kotthoff et
al. [2016] for evaluation. This is a mix of real-world and ran-
domly generated instances, of a varying range of difficulties.
Some of the instances are very large, and so even generating
OPB files for them would be infeasible. We therefore select
every instance where the target graph has no more than 260
vertices, and where the unmodified Glasgow solver without
proof logging can enumerate every solution in no more than
ten seconds. (We focus on the enumeration problem because
it is more of a stress test than proof logging for decision in-
stances would be.) This gives us a total of 1,227 instances,
789 of which are unsatisfiable, with the remainder having
somewhere between one and 50,635,140 solutions; 498 of
the instances were solved without any guessing, whilst the
hardest solved satisfiable and unsatisfiable instances required
53,605,482 and 2,074,386 recursive calls respectively.

Successful results. Our main result is that the technique
works. For all but five of these 1,227 instances, we were
able to produce proofs and verify their correctness. For the
remaining five instances, the verifier took over three days to
run (without yet having found any mistakes). Each of these
instances were small satisfiable instances with very many (be-
tween fourteen and fifty million) solutions, requiring more
than twenty million recursive calls to solve, and with proof
log files of between twenty and fifty GBytes.

Time costs of proof logging and verification. In the top
row of Figure 1 we show the time costs of performing proof
logging and verification on these instances. The first plot
shows the cumulative number of instances solved over time
without proof logging, with proof logging enabled, and for
proof verification. The plot suggests a four orders of magni-
tude slowdown in aggregate for easy instances, dropping to
two orders of magnitude for harder instances. Meanwhile,
verifying proofs is approximately one order of magnitude
slower than producing them. The second plot shows how
much slower producing proofs is on an instance by instance
basis—we discuss this further below. The third plot shows
how many times harder it is to verify a proof than it is to pro-
duce it, and shows a close linear correlation.

OPB and prooflog sizes. The second row of Figure 1 looks
at the size of the generated OPB and proof log files. The
largest OPB file (bearing in mind our pre-selection of small
instances) is 425MBytes, for a pattern graph with 121 vertices
and a target graph with 128 vertices. Meanwhile, some of
our proof logs reached many tens of GBytes—although this
sounds large, recall that the subgraph solver can carry out
over fifty million backtracks within ten seconds.

Where the costs come from. Although not ideal, the slow-
downs to the solver from proof logging are to be expected for
two reasons. Firstly, the Glasgow solver employs bit paral-
lelism and other algorithmic techniques and data structures
designed to allow it to carry out inference extremely quickly.
When working with relatively small target graphs, it is able
to carry out a full round of inference, variable selection, and
recursion in under 0.2 microseconds. If each such round re-
quires 1KByte of logging, we would need to be able to write
to disk at around 5GBytes per second to keep up—this is al-
ready a factor of fifty higher than what our hardware is capa-
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Figure 1: The performance of proof logging and verification on the 1,227 benchmark instances. The top left plot shows the cumulative
number of instances solved, solved with proof logging, and verified, for increasing time limits. The bottom left plot shows the cumulative
number of instances for which the OPB and proof log files are no more than a given size. The top centre scatter plot shows the increase in time
required to enable proof logging, whilst the top right scatter plot shows the verification time, in comparison to the time needed to generate
proof files; in both cases, lighter point colours indicate larger disk space requirements. The bottom centre scatter plot shows the size of the
proof log file, compared to the number of recursive calls made by the solver (and lighter point colours indicate longer verification times).
Finally, the bottom right scatter plot shows output sizes as proof logging times increase.

ble of. The bottom right plot of Figure 1 confirms that I/O is
our main problem: performance is very closely correlated to
the amount of data that is written out.

Secondly, producing the additional constraints for the
additional graph pairs can be expensive: although it
is a polynomial operation, moving from the solver’s
O(|V(P)?| + | V(T)|?) size requirements to the potential
O(| V(P)?|| V(T)|?) size needed for a PB model can be pro-
hibitive. The additional graph pairs make this worse: they
can be either sparser or denser than the inputs, and there are
instances where the OPB file is relatively small, but where the
additional graph pair constraints are close to the worst possi-
ble size. We can see this in the middle column of Figure 1:
there are instances where no search is performed, where pro-
ducing the additional graph pairs takes many hundreds of sec-
onds and several GBytes of proof log space.

5 Conclusion

We have shown, for the first time, that it is possible to carry
out proof logging and verification for a sophisticated graph
algorithm—and that we can do so without the proof veri-
fier needing to be aware of any graph theory. Although there
were limits on input we could consider, this method gave us
a practical way of verifying the solutions to over a thousand
instances. This is especially helpful because some of these in-
stances were too hard for any other solver, meaning we were
not previously completely confident that the Glasgow solver
was obtaining correct results through legitimate means.

We hope that solvers for other NP-complete problems will
start adopting this technology, particularly since increasingly
sophisticated reasoning is now being implemented and used
in practice. Although the overheads mean it may not be as
practical to use proof logging for all instances as it is in the
SAT community, we would still prefer to see solvers which
could output proofs at least some of the time. For this reason,
we consider it particularly relevant that introducing proof log-
ging into the Glasgow subgraph solver was straightforward
and non-intrusive. The combination of RUP and simple justi-
fications for counting arguments meant that our main imple-
mentation difficulties came from remembering to handle all
the special cases like loops and directed and labelled edges,
rather than from proof logging itself. We would be especially
interested to see whether cutting planes proofs are similarly
effective in other domains.
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