Very limited time, can't dwell much on motivation or survey of results. Assume weighted NS&PC relevant and IF field $\mathbf{x} = (x_1, \ldots, x_n)$ focus on techniques

Polynomial equations

$$p_j(t) = 0 \quad j \in [m]$$

$$x_i^2 - x_i = 0 \quad i \in [n]$$

Nullstellensatz reputation

[Beame, Impagliazzo, Krajíček, Pitassi, Pudlák 1997]

Polynomials $A_j, B_i \in \mathbb{F}[x]$ s.t.

$$\sum_j A_j p_j + \sum_i B_i (x_i^2 - x_i) = 1$$

Hilbert's Nullstellensatz: Reputation exists if no solution to (*)

Measures

Degree $= \max \{ \deg(A_j p_j), \deg(B_i (x_i^2 - x_i)) \}$

Size $= \#$ monomials when all polynomials expanded out

Other representations? Next talk on ideal proof systems.
Representations of CNF formulas

\[F = \bigwedge_j C_j \quad C = a_1 \lor \ldots \lor a_n \]

Might be over any field, so additive translation \(a_1 + \ldots + a_n > 1 \)
doesn’t work

Multiplicative translation

\[x_1 \lor \overline{x}_2 \lor x_3 \land (1-x_1) x_2 (1-x_3) = 0 \]

Actually, in algebraic setting more natural:

evaluate to true \(\Leftrightarrow \) vanish \(\iff \) equal to 0
So in this talk we will prefer

\[x_1 \lor \overline{x}_2 \lor x_3 \land x_1 (1-x_2) x_3 = 0 \]

No big deal... [and drop “=0” from now on...]

How to prove lower bounds on degree?

A \(d \)-DESIGN for \((*) \) is a map \(D \) from polynomials of degree \(\leq d \) to \(\mathbb{F} \) such that

1. \(D \) is linear
2. \(D(1) = 1 \)
3. \(D(A \cdot P_f) = 0 \)
4. \(D(x^2 A) = D(xA) \) [deg \((A^2) \leq d-2 \)]

Clearly spelled out in [Buss '96] but known before then.
THEOREM

(*) has d-design \iff (**) has no NS-refutation of degree \leq d.

Note: Characterization!

Example: HOUSESITTING PRINCIPLE

Persons: \(I = \{0, 1, \ldots, n\} \)

Houses: \(J = \{1, 2, \ldots, n\} \)

Each person \(i \in I \) either

(a) stays at home or

(b) housesits for house \(j > i \) where

owner is not at home.

\[P_i = x_{ii} + x_{ii+1} + \ldots + x_{in} - 1 \]

\[a_{ij} = x_{ij} x_{ji} \]

(and as always \(x_{ij} + x_{ji} \))

THEOREM [Buss '96, CEI '96 for GF(2)]

Housesitting principle requires NS degree \(n + 1 \) in any field (or ring).

But note that in natural CNF encoding easily solved by resolution (unit propagation)

Person \(n \) has to be in house \(n \), which reduces to housesitting principle over \(n-1 \) houses.

[Will soon define PC - not hard to see housesitting can be done in constant degree.]
Can also prove NS degree LBs by interpolation [Pudlak Szegedy '96]

Constant-degree NS vs polynomial-size monotone spanning programs

Interestingly recent work in other directions: Lift NS lower bounds to monotone spanning program lower bounds (using composition with gadgets)

POLYNOMIAL CALCULUS

Polynomial calculus [Clegg, Edmonds, Impagliazzo '90]

Build up derivations of $1 = 0$ dynamically

Annoying issue when working with CNFs: Wide clauses with "wrong sign" blow up exponentially

[Alekhnovich, Ben-Sasson, Razborov, Wigderson '02]

Formal variables x, \overline{x} for positive and negative friends

Derivative rules

\[
\begin{align*}
\frac{P_j}{x_i} & \quad \frac{x_i^2 - x_i}{x_i^2} & \quad \frac{x + \overline{x}}{-1} \\
\frac{A + B}{xA + \beta B} & \quad \frac{A}{xA}
\end{align*}
\]
Polynomial calculus resolution (PCR) is similar to other (semi)algebraic proof systems when size is measured, e.g., SOS.

Need better notation than tagging on "R"!?

Degree (no difference between PC & PCR)
Size (potentially big difference)
Length = # derivation steps

Often applications of $x_i^2 - x_i$ folded into implicit multilinearization of multiplications.

Work in

$$F[x_1, \ldots, x_3]/\langle x_1^2 - x_1, \ldots, x_3^2 - x_3 \rangle$$

We will also do so. From now on all polynomials are considered as elements of \mathbb{Z}.

In this setting, any unsatisfiable k-CNF formula is refutable in PC in linear length.

So size is a better measure to focus on...

Connections between degree & size

\exists PC(R) refutation in degree $d \Rightarrow$

\exists PC(O(1)) refutation in size $n^{O(d)}$ [CE1996]

This bound is asymptotically tight (in the exponent) in the worst case [Arsi, Lauria, Nordström 96]
THEOREM [Impagliazzo, Rudlak, Yalal'99]

Let refutation size \(S \) (in PC ref) for \(\text{FO}(R) \)
\[S = \exp \left(\Omega \left(\frac{(D-K)^2}{n} \right) \right) \]

then

so linear degree \(LB \geq \exp \text{size } LB \)

Some bound as in [Ben-Sasson, Wigderson'01]
Can run exactly same proof

But:
- For resolution have well-developed
 machinery to prove width \(LB \)'s [BWS02]
- For PC quite challenging to prove
 degree lower bounds
 (and not much else)

For fields of char \(\neq 2 \), can make
affine transformation to \(+1 \) "Fourier basis"

Convenient for proving degree \(LB \) if
input is (CNF encoding, possibly) of XORs

[Buss, Grigoriev, Impagliazzo, Pirovani'02]
[Ben-Sasson, Impagliazzo'99/00]

Not so great if \(+1 = -1 \)

Tseitin \(\rightarrow \) Random 3-CNF (from 3-XOR)
Focus of rest of this talk:

- [Heckman, Razborov '03] (at least flexible)
- Characteristic-independent degree LB technique
- Constraint-variable incidence graph
- Random 3-cut

Constraint variable incidence graph

Used in [Galesi, Lauria '10a, '06]
[Miša, Nordstrom '14, 15]

This presentation based on [MN15] ECC TR15-078

Care only about degree - no variables after all

MONOMIAL \(m = \Pi_{i \in \mathcal{I}} x_i \)

TERM \(x^m \) \(m \) monomial \(x \in \mathbb{F} \)

(We will be a bit sloppy in distinguishing)

Ideal \(I = \langle P_1, \ldots, P_k \rangle \) smaller set of polynomials closed under addition and under multiplication by any polynomial

REZK: Always multilinear polynomials
Always mod out \(x_i^2 - x_i \)

Define \textit{ADMISSIBLE ORDERING} of monomials/terms

For simplicity concretely

- \(x_1 < x_2 < \ldots < x_m \)
- \(\deg(m_1) < \deg(m_2) \Rightarrow m_1 < m_2 \)
- For some degree, sort lexicographically
Leading term \(\text{LT}(P) = \text{largest term w.r.t.} \neq 0 \)

Term is REDUCIBLE modulo ideal \(I \) if \(\exists Q \in I \) s.t. \(\text{LT}(Q) = t \); otherwise \(\text{IRREDUCIBLE} \)

FACT: Any \(P \) can be written uniquely as

\[
P = Q + R, \quad Q \in I
\]

"\(P \) is reduced to \(R \) mod \(I \)" \(R(I)(P) = R \) [NOTATION]

PC: Computation in degree-bounded version of ideal = PSEUDO-REAL

Inspired by this, can define PSEUDO-REDUCTION operator \(R^* \) mapping multilinear polynomials to multilinear polynomials. Requirements:

1. \(R^* \) is linear
2. \(R^*(1) \neq 0 \)
3. \(R^*(p_i) = 0 \) for all input polynomials \(p_i \) \[(*) \]
4. \(R^*(xt) = R^*(x) R^*(t) \) for terms \(t \) w/ \(\deg(t) < d \)

Lemma [Razborov '98]

If \((*) \) has \(d \)-pseudo-reduction operator, then degree-\(d \) PC cannot refute \((*) \).

Proof sketch: For any \(Q \) derived, show inductively that \(R^*(Q) = 0 \). But \(R^*(1) \neq 0 \).

Not a characterization [as far as I know]
Observations:
(i) If set of polynomials did have satisfying P/I assignment, we could take \(R \) to be the real reduction operator mod this ideal.
(ii) For \(F \) over \(R \), pseudo-expectations as in SOS yield pseudo-reductions. (But "cheat" by mapping everything to \(R \), not \(\mathbb{R}[X] \)).

How to build pseudo-reduction?
Use true reductions modulo ideals, one ideal \(I_t \) per term \(t \).

Define \(R^*(t) = R_{I_t}(t) \).

Extend by linearity: \(R^*(p) = \sum_{t \in p} R^*(t) \).

Show that if chosen so that \(R^*(I_t - R^*I_t) \) work out:

\[
\sum_{t \in p} R_{I_t}(t)
\]

How to choose ideals for terms?

This is where the magic is...

And where technical developments are needed.

[Or maybe we need other new tools?]

Will try to hardwire example setup from [MN/15] (following and developing [AR/05]).
Given polynomials P_1, \ldots, P_m over x_1, \ldots, x_n.

Divide variables into groups V_j (doesn't have to be partition, but should have bounded overlap every variable x_i only in few V_j. For now, think partition).

Take some polynomials and put in a filter which truth value assignments we are interested in (e.g. for PHP axioms making sure that we get partial matchings).

Build bipartite graph G with

- P_1, \ldots, P_m on left
- V_1, \ldots, V_n on right
- Edge if variable occurs in polynomial P_j in V_i.

Assume $|\text{Vars}(P_j)|$ bounded (true, e.g. for k-CNF).

Assume that G is an (ε, δ)-bounded expander: All sets $U \subseteq \Omega, |U| \leq \varepsilon$ have $|\Theta(U)| \geq \delta |U|$ unique neighbors on right-hand side.

(We will also need other conditions on graph, but let us ignore this for now and start doing the proof.)
For term \(t \), look at its neighbourhood \(N(t) \) in \(V \) (all neighbours \(V_i \) if \(t \) would have been left vertex).

Lying flatly, let the support of \(t \) (kept) be largest \(U' \subseteq U \) of size \(\leq s \) such that \(tU' \subseteq N(t) \) plus all \(G \).

Intuition (vague and potentially not true):

- Polynomials in \(U' \) could have been involved in defining polynomials \(t \) in low-degree, because variables in \(N(U') \setminus \delta U' \) could have cancelled.

- But using \(P \in U \setminus U' \) would have left unique-neighbour variables that could not have cancelled.

And we want for free anyway.

How to prove properties of pseudo-reduction?

\(R(1) \) linearity by definition.

\(R(2) \) \(\text{Supp}(1) = \emptyset \) by expansion. \(N(1) = \emptyset \). \(R(2) \) (1) = 1 since \(\emptyset \) is satisfied.

\(R(3) \) \(\mathbf{R^*}(P; j) = 0 \) already interesting case.

What we would like:

Reduce modulo \(\langle N(N(P; j)) \rangle \cdot p_j \rightarrow 0 \).

Want "\(p_j \) reduced modulo ideal containing \(p_j \)."
But \(R^*(P) = \sum_{t \in P} R^{<\text{supp}(t)>}(t) \)

with reduction modulo different ideals.

Idea: Take \(S = \cup \text{supp}(t) \cup \text{supp}(\text{vars}(P)) \)

Show that \(\forall t \in P \) in fact

\[
R^*(t) = R^{<\text{supp}(t)>}(t) = R^{<S>}(t)
\]

Then

\[
R^*(P) = \sum_{t \in P} R^{<S>}(t) = R^{<S>}(P) = 0
\]

Since \(P \subseteq \text{supp}(\text{vars}(P)) \) clearly holds.

But why would this be true?! Let us tackle special case

If \(t \) is irreducible mod \(<\text{supp}(t)> \), then \(t \) irreducible mod \(<\text{supp}(t), P_j> \)

Suppose not. Then

\[
t = S' + Q' + A_j P_j
\]

\[
S' \in <\text{supp}(t)> \quad Q' = <A_i>
\]

But \(\exists v_i \) s.t. \(\forall i; \text{vars}(P_j) \neq \emptyset, \forall i; \text{vars}(t) = \emptyset \) otherwise \(P_j \) would have been in the support. For some reason \(\text{vars}(S') \cap V_i = \emptyset \)
Suppose we could find assignment f to V_1 s.t.

- $f(P_1) = 0$
- For all $P_{i+1}, \ldots, P_m \in \mathcal{A}_1$, either $f(P_{i+1}) = 0$ or P_{i+1} left untouched.

Then $t = s_1 + q''$, $q'' \in \langle \mathcal{A} \rangle$
so t was reducible mod $\langle \text{Supp}(s) \rangle$
after all.

Generalizing this, get $R_3 \& R_4$
provided that all edges $P_j - V_i$ in G
satisfy condition (f)

Other variants [CAR03]

Graph still expands
No condition on edges
But no P_i has low-degree implications
(i.e. P_i have high immunity)

Different but related R^* operator works
Similar argument.

This is [MN15]
Works for any field
(when it works)

Takes characteristic into account
Open problems

1. PC degree LB for 3-colouring
 known worst-case [Laurent-Nederpalm '17]
 Want average-case like for resolution in
 [Beame, Callahan, Mitchell, Moore '05]

2. PC size lower bound for k-clique
 [not even known for general resolution]

3. PC size lower bounds for PHP\(^m\),
 \(m \gg n\) (degree + 1PS99 fails for \(m \geq n^2\))

4. \(\text{Oto-} \text{FPHP}^m\) is easy for \(m = n + 1\)
 in any field. What about \(\mathbb{F}_p\) when
 \((m - n) \equiv 0 \pmod{p}\)? Is this known?

5. For resolution we know for k-CNFs
 clause space \(\geq\) width [Arsentic, Dalmau '08]
 Can we prove monomial space \(\geq\) degree? At least when [AR03] framework establishes
 degree LB?

6. Feasible interpolation for PC? [4 Pillars]

7. Feit-Wiener/k-XOR lower bounds break if we allow
 affine transformation of input + PC
 Prove lower bounds robust against such
 preprocessing step?