Short Proofs May Be Spacious: An Optimal Separation of Space and Length in Resolution

Jakob Nordström

jakobn@mit.edu

Massachusetts Institute of Technology Cambridge, Massachusetts, USA

49th IEEE Symposium on Foundations of Computer Science October 25–28, 2008 Philadelphia, Pennsylvania, USA

Joint work with Eli Ben-Sasson

Executive Summary of Talk

- Resolution: proof system for refuting CNF formulas
- Perhaps the most studied system in proof complexity
- Basis of current state-of-the-art SAT-solvers (winners in SAT 2008 competition: resolution + clause learning)
- Key resources: time and space
- What are the connections between these resources?
 Are time and space correlated?
 Are there time/space trade-offs?

Some Notation and Terminology

- Literal a: variable x or its negation \overline{x}
- Clause $C = a_1 \lor ... \lor a_k$: disjunction of literals At most k literals: k-clause
- CNF formula $F = C_1 \land ... \land C_m$: conjunction of clauses k-CNF formula: CNF formula consisting of k-clauses (assume k fixed)
- Refer to clauses of CNF formula as axioms (as opposed to derived clauses)

Resolution Rule

Resolution rule:

$$\frac{B \vee x \qquad C \vee \overline{x}}{B \vee C}$$

Prove *F* unsatisfiable by deriving the unsatisfiable empty clause 0 (the clause with no literals) from *F* by resolution

Resolution Rule

Resolution rule:

$$\frac{B \vee x \qquad C \vee \overline{x}}{B \vee C}$$

Prove *F* unsatisfiable by deriving the unsatisfiable empty clause 0 (the clause with no literals) from *F* by resolution

- Ι. ι
- 2. ı
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

- source vertices true
- truth propagates upwards
- but sink vertex is false

- 1. *L*
- 2. 1
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

- source vertices true
- truth propagates upwards
- but sink vertex is false

- 1. ι
- 2. 1
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

- source vertices true
- truth propagates upwards
- but sink vertex is false

- Ι. ι
- 2. ı
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>Z</u>

- source vertices true
- truth propagates upwards
- but sink vertex is false

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	0
# literals in largest clause	0
# lines on blackboard used	0

Can write down axioms, erase used clauses or infer new clauses (but only from clauses currently on the board!)

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	1
# literals in largest clause	1
# lines on blackboard used	1

и

Write down axiom 1: u

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \lor \overline{v} \lor x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	2
# literals in largest clause	1
# lines on blackboard used	2

u v

Write down axiom 1: *u* Write down axiom 2: *v*

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	3
# literals in largest clause	3
# lines on blackboard used	3

IJ

ν

 $\overline{u} \vee \overline{v} \vee x$

Write down axiom 1: *u* Write down axiom 2: *v*

Write down axiom 4: $\overline{u} \vee \overline{v} \vee x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	3
# literals in largest clause	3
# lines on blackboard used	3

 $\begin{array}{c}
u \\
v \\
\overline{u} \lor \overline{v} \lor x
\end{array}$

Write down axiom 1: u Write down axiom 2: v Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	4
# literals in largest clause	3
# lines on blackboard used	4

 $\begin{array}{c}
u \\
v \\
\overline{u} \lor \overline{v} \lor x \\
\overline{v} \lor x
\end{array}$

Write down axiom 1: u Write down axiom 2: v Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	4
# literals in largest clause	3
# lines on blackboard used	4

 $\begin{array}{c}
u \\
v \\
\overline{u} \lor \overline{v} \lor x \\
\overline{v} \lor x
\end{array}$

Write down axiom 2: vWrite down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	4
# literals in largest clause	3
# lines on blackboard used	4

 $\frac{u}{v}$ $\overline{v} \lor x$

Write down axiom 2: vWrite down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	4
# literals in largest clause	3
# lines on blackboard used	4

 $\frac{u}{v}$ $\overline{v} \lor x$

Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause u

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	4
# literals in largest clause	3
# lines on blackboard used	4

Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause u

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	4
# literals in largest clause	3
# lines on blackboard used	4

clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	5
# literals in largest clause	3
# lines on blackboard used	4

clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	5
# literals in largest clause	3
# lines on blackboard used	4

Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	5
# literals in largest clause	3
# lines on blackboard used	4

V X

Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	5
# literals in largest clause	3
# lines on blackboard used	4

v X Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	5
# literals in largest clause	3
# lines on blackboard used	4

X

Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	6
# literals in largest clause	3
# lines on blackboard used	4

 $X \over X \lor \overline{Y} \lor Z$

Infer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$ Erase clause v Write down axiom $6: \overline{x} \lor \overline{y} \lor z$

- 1. u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	6
# literals in largest clause	3
# lines on blackboard used	4

```
\frac{x}{\overline{x}} \vee \overline{y} \vee z
```

Erase clause $\overline{v} \lor x$ Erase clause vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	7
# literals in largest clause	3
# lines on blackboard used	4

```
\begin{array}{c}
x \\
\overline{x} \lor \overline{y} \lor z \\
\overline{y} \lor z
\end{array}
```

Erase clause $\overline{v} \lor x$ Erase clause vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	7
# literals in largest clause	3
# lines on blackboard used	4

```
\frac{x}{\overline{x} \vee \overline{y} \vee z}
\overline{y} \vee z
```

Erase clause vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \lor \overline{v} \lor x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	7
# literals in largest clause	3
# lines on blackboard used	4

Erase clause vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	7
# literals in largest clause	3
# lines on blackboard used	4

Write down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause x

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	7
# literals in largest clause	3
# lines on blackboard used	4

Write down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause x

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	8
# literals in largest clause	3
# lines on blackboard used	4

Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause x Write down axiom $5: \overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	8
# literals in largest clause	3
# lines on blackboard used	4

$$\frac{\overline{y} \vee z}{\overline{v} \vee \overline{w} \vee y}$$

Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	9
# literals in largest clause	3
# lines on blackboard used	4

Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	9
# literals in largest clause	3
# lines on blackboard used	4

Erase clause x Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	9
# literals in largest clause	3
# lines on blackboard used	4

Erase clause xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	9
# literals in largest clause	3
# lines on blackboard used	4

Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeepin	g
total # clauses on board	9
# literals in largest clause	3
# lines on blackboard used	4

Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. ı
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	10
# literals in largest clause	3
# lines on blackboard used	4

Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{y} \lor z$ Write down axiom 2: v

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	11
# literals in largest clause	3
# lines on blackboard used	4

clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{y} \lor z$ Write down axiom 2: vWrite down axiom 3: w

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	12
# literals in largest clause	3
# lines on blackboard used	4

$\overline{\it v} \lor \overline{\it w} \lor \it z$	
V	
W	
\overline{Z}	

Erase clause $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{y} \lor z$ Write down axiom 2: vWrite down axiom 3: wWrite down axiom 7: \overline{z}

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	12
# literals in largest clause	3
# lines on blackboard used	4

$\overline{\it v} \lor \overline{\it w} \lor \it z$	
V	
W	
\overline{Z}	

Write down axiom 2: vWrite down axiom 3: wWrite down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	13
# literals in largest clause	3
# lines on blackboard used	5

Write down axiom 2: v Write down axiom 3: w Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	13
# literals in largest clause	3
# lines on blackboard used	5

Write down axiom 3: w Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause v

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	13
# literals in largest clause	3
# lines on blackboard used	5

Write down axiom 3: w Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause v

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	13
# literals in largest clause	
# lines on blackboard used	5

Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	13
# literals in largest clause	
# lines on blackboard used	5

 $\frac{W}{\overline{Z}}$ $\overline{W} \lor Z$

Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$

- 1. u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	13
# literals in largest clause	
# lines on blackboard used	5

 $\frac{W}{\overline{z}}$ $\overline{W} \lor z$

clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	14
# literals in largest clause	
# lines on blackboard used	5

 $egin{array}{c} oldsymbol{w} \ oldsymbol{\overline{Z}} \ oldsymbol{\overline{W}} ee oldsymbol{z} \end{array}$

clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	14
# literals in largest clause	
# lines on blackboard used	5

 $\frac{W}{Z}$ $\overline{W} \lor Z$ Z

Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$ Erase clause w

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	14
# literals in largest clause	
# lines on blackboard used	5

 \overline{Z} $\overline{W} \lor Z$ Z

Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$ Erase clause w

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	14
# literals in largest clause	
# lines on blackboard used	5

 \overline{Z} $\overline{W} \lor Z$ Z

Erase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$ Erase clause wErase clause $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	14
# literals in largest clause	3
# lines on blackboard used	5

Z

7

Erase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$ Erase clause wErase clause $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>z</u>

Blackboard bookkeeping	
total # clauses on board	14
# literals in largest clause	
# lines on blackboard used	5

Z

7

clauses w and $\overline{w} \lor z$ Erase clause wErase clause $\overline{w} \lor z$ Infer clause 0 from clauses \overline{z} and z

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Blackboard bookkeeping	
total # clauses on board	15
# literals in largest clause	
# lines on blackboard used	5

Z Z O clauses w and $\overline{w} \lor z$ Erase clause wErase clause $\overline{w} \lor z$ Infer clause 0 from clauses \overline{z} and z

Length, Width and Space

- Length $L(\pi)$ of refutation $\pi : F \vdash 0$ total # clauses in all of π (in our example 15)
- Width W(π) of refutation π : F ⊢ 0
 # literals in largest clause in π
 (in our example 3)
- Space Sp(π) of refutation π : F ⊢ 0
 max # clauses on blackboard simultaneously
 (in our example 5)

Length, Width and Space of Refuting F

Length of refuting F is

$$L(F \vdash 0) = \min_{\pi: F \vdash 0} \{L(\pi)\}$$

Width of refuting F is

$$W(F \vdash 0) = \min_{\pi: F \vdash 0} \{W(\pi)\}$$

Space of refuting F is

$$Sp(F \vdash 0) = \min_{\pi: F \vdash 0} \{Sp(\pi)\}$$

Why Should We Care About These Measures?

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm
- Width: Intimately connected to length and space ©

Results for Length and Width

Length

- Easy exponential upper bound
- [Haken 1985] and [Urquhart 1987]: exponential lower bounds on refutation length

Width

- Always $W(F \vdash 0) \le \#$ variables in F
- [Ben-Sasson & Wigderson 1999]: strong correlation between length and width of refuting formula

Results for Width and Space

Always $Sp(F \vdash 0) \le \text{size of } F$ [Esteban & Torán 1999]

All space and width bounds for "the usual suspects" coincide!?

Theorem (Atserias & Dalmau 2003)

For any unsatisfiable k-CNF formula F it holds that space $Sp(F \vdash 0) \ge width \ W(F \vdash 0) - \mathcal{O}(1)$.

Theorem (Nordström 2006)

There are k-CNF formula families $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with

- refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and
- refutation space $Sp(F_n \vdash 0) = \Theta(\log n)$.

Results for Width and Space

Always $Sp(F \vdash 0) \le \text{size of } F$ [Esteban & Torán 1999]

All space and width bounds for "the usual suspects" coincide!?

Theorem (Atserias & Dalmau 2003)

For any unsatisfiable k-CNF formula F it holds that space $Sp(F \vdash 0) \ge width \ W(F \vdash 0) - \mathcal{O}(1)$.

Theorem (Nordström 2006

There are k-CNF formula families $\left\{F_n
ight\}_{n=1}^\infty$ of size $\mathcal{O}(n)$ with

- refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and
- refutation space $Sp(F_n \vdash 0) = \Theta(\log n)$.

Results for Width and Space

Always $Sp(F \vdash 0) \le \text{size of } F$ [Esteban & Torán 1999]

All space and width bounds for "the usual suspects" coincide!?

Theorem (Atserias & Dalmau 2003)

For any unsatisfiable k-CNF formula F it holds that space $Sp(F \vdash 0) \ge width \ W(F \vdash 0) - \mathcal{O}(1)$.

Theorem (Nordström 2006)

There are k-CNF formula families $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with

- refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and
- refutation space $Sp(F_n \vdash 0) = \Theta(\log n)$.

Connection Between Length and Space?

Current state of knowledge		
Length vs. width	strongly correlated	
Width vs. space	separated	
Length vs. space	???	

- Small space ⇒ short length (easy)
- But does short length imply small space?
 (For tree-like resolution: yes! [Esteban & Torán 1999])
- Or are there formulas with short, easy refutations that must require large space?

No consensus on what the "right answer" should be

Connection Between Length and Space?

Current state of knowledge	
Length vs. width	strongly correlated
Width vs. space	separated
Length vs. space	???

- Small space ⇒ short length (easy)
- But does short length imply small space?
 (For tree-like resolution: yes! [Esteban & Torán 1999])
- Or are there formulas with short, easy refutations that must require large space?

No consensus on what the "right answer" should be

Connection Between Length and Space?

Current state of knowledge		
Length vs. width	strongly correlated	
Width vs. space	separated	
Length vs. space	???	

- Small space ⇒ short length (easy)
- But does short length imply small space?
 (For tree-like resolution: yes! [Esteban & Torán 1999])
- Or are there formulas with short, easy refutations that must require large space?

No consensus on what the "right answer" should be

Getting Closer...

Theorem (Nordström & Håstad 2008)

There are k-CNF formula families $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with

- refutation length $L(F_n \vdash 0) = \mathcal{O}(n)$,
- refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and
- refutation space $Sp(F_n \vdash 0) = \Theta(\sqrt{n})$.

Exponential improvement of previous space-width separation

But does not answer space-length question—space \sqrt{n} is just where it gets interesting!

Above result still consistent with strong space-length correlation à la Ben-Sasson & Wigderson

Getting Closer...

Theorem (Nordström & Håstad 2008)

There are k-CNF formula families $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with

- refutation length $L(F_n \vdash 0) = \mathcal{O}(n)$,
- refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and
- refutation space $Sp(F_n \vdash 0) = \Theta(\sqrt{n})$.

Exponential improvement of previous space-width separation

But does not answer space-length question—space \sqrt{n} is just where it gets interesting!

Above result still consistent with strong space-length correlation à la Ben-Sasson & Wigderson

Our result: An Optimal Space-Length Separation

Length and space are "completely uncorrelated"

Theorem

There are k-CNF formula families $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with

- refutation length $L(F_n \vdash 0) = \mathcal{O}(n)$,
- refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and
- refutation space $Sp(F_n \vdash 0) = \Theta(n/\log n)$.

Optimal separation of space and length—given length n, always possible to achieve space $\mathcal{O}(n/\log n)$

Also optimal space-width separation up to logarithmic factor

In a Decade Far, Far Away...

Want to find formulas that

- can be quickly refuted
- but require large space

Such time-space trade-off questions well-studied for pebble games modelling calculations described by DAGs

- Time needed for calculation: # pebbling moves
- Space needed for calculation: max # pebbles required

Known result: ∃ DAGs requiring many pebbles in terms of size

Look at CNF formulas encoding pebble games on DAGs!

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

Number of pebbles	
Current	0
Max so far	0

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

Number of pebbles		
Current	1	
Max so far	1	

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	2
Max so far	2

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	3
Max so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	2
Max so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	1
Max so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	2
Max so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	3
Max so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	2
Max so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	2
Max so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	3
Max so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	4
Max so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	3
Max so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	2
Max so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Number of pebbles	
Current	1
Max so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Black-White Pebbling Price

- Cost of pebbling: max # pebbles simultaneously in G (in our example 4)
- Black-white pebbling price BW-Peb(G) of DAG G: minimal cost of any pebbling

Many bounds on pebbling price known. We will use:

- Always at most \$\mathcal{O}(n/\log n)\$ pebbles needed [Hopcroft, Paul & Valiant 1977]
- There are (explicit) DAGs requiring Ω(n/log n) pebbles [Gilbert & Tarjan 1978]

Black-White Pebbling Price

- Cost of pebbling: max # pebbles simultaneously in G (in our example 4)
- Black-white pebbling price BW-Peb(G) of DAG G: minimal cost of any pebbling

Many bounds on pebbling price known. We will use:

- Always at most O(n/log n) pebbles needed [Hopcroft, Paul & Valiant 1977]
- There are (explicit) DAGs requiring Ω(n/log n) pebbles [Gilbert & Tarjan 1978]

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

- sources are true
- truth propagates upwards
- but sink is false

Studied by [Bonet et al. 1998, Raz & McKenzie 1999, Ben-Sasson & Wigderson 1999] and others

Hope that pebbling properties of DAG somehow carry over to resolution refutations of pebbling contradictions

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \lor \overline{v} \lor x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. <u>Z</u>

- sources are true
- truth propagates upwards
- but sink is false

Studied by [Bonet et al. 1998, Raz & McKenzie 1999, Ben-Sasson & Wigderson 1999] and others

Hope that pebbling properties of DAG somehow carry over to resolution refutations of pebbling contradictions

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least <i>N</i> clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black-white pebbling price

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least N clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black- white pebbling price

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least <i>N</i> clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black-white pebbling price

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least <i>N</i> clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black-white pebbling price

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least N clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black-white pebbling price

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least N clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black- white pebbling price

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least N clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black-white pebbling price

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least N clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black-white pebbling price

Resolution	Pebbling
Translate sets of clauses	into black and white pebbles
then the clause set must contain at least N clauses	Prove that if the translation results in <i>N</i> pebbles
Show that consecutive sets of clauses on blackboard in a resolution refutation	translates into a black-white pebbling of corresponding DAG
yielding same lower bound on space in resolution	Plug in lower bound on black-white pebbling price

Interpreting Clauses in Terms of Pebbles

Black-white pebbling models non-deterministic computation

- black pebbles ⇔ computed results
- white pebbles ⇔ guesses needing to be verified

"We know z assuming v, w"

Corresponds to
$$(v \wedge w) \rightarrow z$$

I.e., clause $\overline{v} \vee \overline{w} \vee \overline{z}$ on blackboard

Interpreting Clauses in Terms of Pebbles

Black-white pebbling models non-deterministic computation

- black pebbles ⇔ computed results
- white pebbles ⇔ guesses needing to be verified

"We know z assuming v, w"

Corresponds to $(v \land w) \rightarrow z$ I.e., clause $\overline{v} \lor \overline{w} \lor z$ on blackboard

Interpreting Clauses in Terms of Pebbles

Black-white pebbling models non-deterministic computation

- black pebbles ⇔ computed results
- white pebbles
 ⇔ guesses needing to be verified

"We know z assuming v, w"

Corresponds to $(v \wedge w) \rightarrow z$

I.e., clause $\overline{v} \vee \overline{w} \vee z$ on blackboard

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

и

Write down axiom 1: u

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Write down axiom 1: *u* Write down axiom 2: *v*

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

Write down axiom 1: *u* Write down axiom 2: *v*

Write down axiom 2. V

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Write down axiom 1: uWrite down axiom 2: vWrite down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Write down axiom 1: uWrite down axiom 2: vWrite down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Write down axiom 2: vWrite down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{y} \vee z$
- 7. \overline{z}

Write down axiom 2: vWrite down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause u

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer clause $\overline{v} \lor x$ from clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{y} \vee z$
- 7. \overline{z}

clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

clauses u and $\overline{u} \lor \overline{v} \lor x$ Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause $\overline{u} \lor \overline{v} \lor x$ Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

Erase clause uInfer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$

- u
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\overline{x} \lor \overline{y} \lor z$$

Infer clause x from clauses v and $\overline{v} \lor x$ Erase clause $\overline{v} \lor x$ Erase clause v Write down axiom $6: \overline{x} \lor \overline{y} \lor z$

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

Erase clause $\overline{v} \lor x$ Erase clause vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

Erase clause $\overline{v} \lor x$ Erase clause vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

Write down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause x

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

Write down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause x

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Infer clause $\overline{y} \lor z$ from clauses x and $\overline{x} \lor \overline{y} \lor z$ Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause x Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause $\overline{x} \lor \overline{y} \lor z$ Erase clause xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{y} \vee z$
- 7. \overline{z}

Erase clause xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{y} \vee z$
- 7. \overline{z}

Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{y} \vee z$
- 7. \overline{z}

Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{y} \vee z$
- 7. \overline{z}

Infer clause $\overline{v} \lor \overline{w} \lor z$ from clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{y} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

clauses $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{y} \lor z$ Write down axiom 2: vWrite down axiom 3: w

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7 7

$$\overline{V} \lor \overline{W} \lor Z$$
 V
 W
 \overline{Z}

Erase clause $\overline{v} \lor \overline{w} \lor y$ Erase clause $\overline{y} \lor z$ Write down axiom 2: vWrite down axiom 3: wWrite down axiom 7: \overline{z}

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Write down axiom 2: v Write down axiom 3: w Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

 $\overline{V} \vee \overline{W} \vee Z$ V W \overline{Z} $\overline{W} \vee Z$

Write down axiom 2: v Write down axiom 3: w Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Write down axiom 3: w Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause v

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Write down axiom 3: w Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause v

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

 \overline{z}

$$\overline{W} \lor Z$$

Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause $\overline{v} \lor \overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Write down axiom 7: \overline{z} Infer clause $\overline{w} \lor z$ from clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause $\overline{v} \lor \overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

 $\frac{W}{Z}$ $\overline{W} \lor Z$ Z

clauses v and $\overline{v} \lor \overline{w} \lor z$ Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$ Erase clause w

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause vErase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$ Erase clause w

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Erase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$ Erase clause wErase clause $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Erase clause $\overline{v} \lor \overline{w} \lor z$ Infer clause z from clauses w and $\overline{w} \lor z$ Erase clause wErase clause $\overline{w} \lor z$

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Z

7

clauses w and $\overline{w} \lor z$ Erase clause wErase clause $\overline{w} \lor z$ Infer clause 0 from clauses \overline{z} and z

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Z

0

clauses w and $\overline{w} \lor z$ Erase clause wErase clause $\overline{w} \lor z$ Infer clause 0 from clauses \overline{z} and z

Sweeping the details under the rug...

Guiding intuition for [Nordström 2006] and [Nordström & Håstad 2008] as well as our work

Looks very nice, but doesn't work—in reality things get (much) messier

Refutations have no reason to derive nicely structured clauses ⇒ different ideas needed to translate refutations to pebblings

Our key new idea: substitute $x_1 \oplus x_2$ for x in pebbling formulas

- cleaner proofs
- improvement to optimal bounds

Sweeping the details under the rug...

Guiding intuition for [Nordström 2006] and [Nordström & Håstad 2008] as well as our work

Looks very nice, but doesn't work—in reality things get (much) messier

Refutations have no reason to derive nicely structured clauses ⇒ different ideas needed to translate refutations to pebblings

Our key new idea: substitute $x_1 \oplus x_2$ for x in pebbling formulas

- cleaner proofs
- improvement to optimal bounds

Length-Space Trade-offs

Question

Are there formulas refutable in short length and small space, but for which any small-space refutation must be long?

Answer is yes, and in a very strong sense

Superpolynomial and even exponential trade-offs for wide range of different parameters

But several interesting questions remain open

Length-Space Trade-offs

Question

Are there formulas refutable in short length and small space, but for which any small-space refutation must be long?

Answer is yes, and in a very strong sense

Superpolynomial and even exponential trade-offs for wide range of different parameters

But several interesting questions remain open

Length-Width Trade-offs?

[Ben-Sasson & Wigderson 1999] showed that given short refutation, can find (reasonably) narrow refutation

But not the same refutation!

Exponential blow-up in length—is this necessary?

Open Questior

Suppose that a k-CNF formula F has a short refutation. Does it then have a refutation that is both short and narrow?

Or are there formula families exhibiting length-width trade-offs?

Length-Width Trade-offs?

[Ben-Sasson & Wigderson 1999] showed that given short refutation, can find (reasonably) narrow refutation

But not the same refutation!

Exponential blow-up in length—is this necessary?

Open Question

Suppose that a k-CNF formula F has a short refutation. Does it then have a refutation that is both short and narrow?

Or are there formula families exhibiting length-width trade-offs?

Conclusions

- This work: Optimal space-length separation with formulas refutable in length $\mathcal{O}(n)$ and space $\Omega(n/\log n)$
- More recently: Strong trade-offs between space and length
- Open questions: Trade-offs between width and length?
 Trade-offs for superlinear space? Extensions to stronger proof systems?

Thank you for your attention!