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The SAT Problem in Theory and Practice

Complexity theory

Satisfiability of formulas in
propositional logic
foundational problem

SAT proven NP-complete in
[Coo71, Lev73]

Hence most likely totally
intractable

Just remains to prove this
— one of the million-dollar
“Millennium Problems”

Applied SAT solving

Dramatic performance increase
last 15–20 years

State-of-the-art SAT solvers
can deal with millions of
variables

But we also know tiny formulas
that are totally beyond reach

Why do SAT solvers work so
well? And why do they
sometimes miserably fail?
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SAT solving and Proof Complexity

State-of-the-art SAT solvers use methods such as
I conflict-driven clause learning (CDCL) — resolution
I Gröbner bases — polynomial calculus
I pseudo-Boolean reasoning — cutting planes

Absolutely key to minimize
I running time — proof size
I memory usage — proof space

Only known rigorous analysis approach: use proof complexity [CR79]
to study underlying methods of reasoning

Requires lower-bounding optimal, nondeterministic algorithms — yet
possible to prove strong (and sometimes tight!) size-space trade-offs
for resolution and polynomial calculus

This work: First such strong trade-offs capturing also cutting planes
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I Gröbner bases — polynomial calculus
I pseudo-Boolean reasoning — cutting planes

Absolutely key to minimize
I running time — proof size
I memory usage — proof space

Only known rigorous analysis approach: use proof complexity [CR79]
to study underlying methods of reasoning

Requires lower-bounding optimal, nondeterministic algorithms — yet
possible to prove strong (and sometimes tight!) size-space trade-offs
for resolution and polynomial calculus

This work: First such strong trade-offs capturing also cutting planes

Jakob Nordström (KTH) How Limited Interaction Hinders Real Communication Kyoto, June 2, 2016 3/21



SAT solving and Proof Complexity

State-of-the-art SAT solvers use methods such as
I conflict-driven clause learning (CDCL) — resolution
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Informal Statement of Results

Theorem (Main)

First time-space trade-offs holding uniformly for resolution, polynomial
calculus, and cutting planes for formulas such that:

∃ proofs in small size

∃ proofs in small total space

∀ proofs few formulas in memory ⇒ length exponential

Theorem (By-product)

Exponential separation in monotone-ACi hierarchy (improving on [RM99])
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Proof Complexity Preliminaries

Conjunctive Normal Form

(x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z)

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

Task: Refute given CNF formula (i.e., prove it is unsatisfiable)
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Proof Complexity Preliminaries

The Theoretical Model

Proof system operates with formulas of some syntactic form

Proof/refutation is “presented on blackboard”

Derivation steps:
I Write down axiom clauses of CNF formula being refuted

(as encoded by proof system)
I Infer new lines by deductive rules of proof system
I Erase lines not currently needed (to save space on blackboard)

Refutation ends when (explicit) contradiction is derived
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Proof Complexity Preliminaries

Cutting Planes (CP)

Clauses interpreted as linear inequalities
E.g., x ∨ y ∨ z  x+ y + (1− z) ≥ 1  x+ y − z ≥ 0

Variable axioms
0 ≤ x ≤ 1

Addition ∑
aixi ≥ A

∑
bixi ≥ B∑

(ai+bi)xi ≥ A+B

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

Division

∑
caixi ≥ A∑

aixi ≥ dA/ce

Goal: Derive 0 ≥ 1 ⇔ formula unsatisfiable

Exact derivation rules not too important for our work — just need to know
that we operate with linear inequalities

Jakob Nordström (KTH) How Limited Interaction Hinders Real Communication Kyoto, June 2, 2016 7/21
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Proof Complexity Preliminaries

Complexity Measures for Cutting Planes

Length = total # lines/inequalities in refutation

Size = sum also sizes of coefficients

Line space = max # lines in memory during refutation

Total space = sum of sizes of coefficients of lines in memory

Worst-case bounds size ≤ 2O(n) and total space ≤ O
(
n2
)

for CNF formula
over n variables, so mindset should be

large size ≈ exp
(
nδ
)

large space ≈ nδ
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Proof Complexity Previous Work

Size and Space in Cutting Planes

Short refutations of so-called (lifted) Tseitin formulas on expanders
need large space [GP14] (but such refutations probably don’t exist)

Short refutations of some so-called pebbling formulas need
large space [HN12, GP14] (and such refutations do exist)

Recent surprise: CP can refute any CNF in line space 5 (!) [GPT15]
(But coefficients will be exponentially large)

Plug into [HN12, GP14] ⇒ trade-off of sorts

But “constant-space” proofs with exponential-size coefficients
somehow doesn’t feel quite right. . .

What about “true” trade-offs?

Are there trade-offs where the space-efficient CP refutations have
small coefficients? (Say, of polynomial or even constant size)
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Proof Complexity Our Results

Our Main Result

Theorem (Informal sample)

There are families of 6-CNF formulas {FN}∞N=1 of size Θ(N) such that:

1 FN can be refuted by cutting planes with constant-size coefficients in
size O(N) and total space O

(
N2/5

)
2 FN can be refuted by cutting planes with constant-size coefficients in

total space O
(
N1/40

)
and size 2O(N1/40)

3 Any cutting planes refutation even with coefficients of unbounded size
in line space o

(
N1/20

)
requires length 2Ω(N1/40)

Remarks:

Upper bounds for # bits; lower bounds for # formulas/lines

Analogous bounds also for resolution & polynomial calculus

Even for semantic versions of proof systems where anything implied
by blackboard can be inferred in just one step
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Tools and Techniques

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)

1 Short, space-efficient proof ⇒ efficient communication protocol for
falsified clause search problem [HN12]. Crucial twists:

I Study real communication model [Kra98, BEGJ00]
I Consider round efficiency of protocols

2 Protocol for composed search problem ⇒ parallel decision tree
via simulation theorem à la [RM99, GPW15]

3 Parallel decision tree for pebbling formulas PebG
⇒ pebbling strategy for Dymond–Tompa game on G [DT85]

4 Construct graphs G with strong round-cost trade-offs for
Dymond–Tompa pebbling
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Tools and Techniques Communication Complexity

Real Communication

Main players:
I Alice with private input x
I Bob with private input y
I Both deterministic but have unbounded computational powers

Task: compute f(x, y) by sending messages to referee

Method: In each round v
I Alice sends av,1(x), . . . , av,cv (x) ∈ Rcv

I Bob sends bv,1(y), . . . , bv,cv (y) ∈ Rcv

I Referee announces results of comparisons av,i(x) ≤ bv,i(y) for i ∈ [cv]

Function f solved by r-round real communication in cost c
if ∃ protocol such that

I # rounds ≤ r
I total # comparisons made by referee ≤ c

Strictly stronger than standard deterministic communication
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Tools and Techniques Communication Complexity

Falsified Clause Search Problem

Fix:

unsatisfiable CNF formula F

(devious) partition of Vars(F ) between Alice and Bob

Falsified clause search problem Search(F )

Input: Assignment α to Vars(F ) split between Alice and Bob

Output: Clause C ∈ F such that α falsifies C

Actually, computing not function but relation — will mostly ignore this
for simplicity
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Tools and Techniques Communication Complexity

Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

∅ ⊥

Use binary search to find transition from true to false blackboard

Must happen when C ∈ F written down — answer to Search(F )

Length L ⇒ evaluate logL blackboards

Line space s ⇒ max s bits of communication per blackboard

Only one round per blackboard evaluation

(Alice and Bob simply evaluate their parts of each inequality and ask referee to compare)
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Tools and Techniques Lifting/Composition of Search Problems

Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition

Start with function f : {0, 1}m → {0, 1}

Construct new function on inputs
x ∈ {0, 1}`m and y ∈ [`]m

Bob’s y-variables determine. . .

. . . which of Alice’s x-bits to feed to f

Length-` lifting of f defined as
Lift`(f)(x, y) := f(x1,y1 , . . . , xm,ym)

Building on ideas from e.g. [She08, BHP10]

x1,1 x1,2 x2,1 x2,2 x3,1 x3,2

y1 y2 y3

( )
f

Can encode lifted search problem for F as new CNF formula Lift
(
F
)
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Tools and Techniques Lifting/Composition of Search Problems

Parallel Decision Trees

Relate lifted problem to parallel decision tree [Val75] for original problem

r

us, t

s, vt, wuwwu

1 1 1 1 1 10 0 0 0 0 0 0 0 0 0

0 1

00
01 10

11 0 1

0 1 0 1 0 1 0 1 00
01 10

11 00
01 10

11

Each node t labelled by variables Vt; exactly 2|Vt| outgoing edges

# queries = max
∑
|Vt| along any path (4 in this example)

depth = length of longest path (3 in this example)

solves search problem S ⊆ {0, 1}m ×Q if ∀ α ∈ {0, 1}m path defined
by α ends in leaf with q s.t. (α, q) ∈ S
Easy for Alice & Bob to simulate decision tree to solve lifted problem
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Tools and Techniques Lifting/Composition of Search Problems

Simulation of Decision Trees by Protocols (and Vice Versa)

r

us, t

s, vt, wuwwu
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0 1
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11 0 1

0 1 0 1 0 1 0 1 00
01 10
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xr,1 xr,2 xs,1 xs,2 xt,1 xt,2 xu,1 xu,2 xv,1 xv,2 xw,1xw,2 yr ys yt yu yv yw

Bob sends yr = 2, Alice sends xr,2 = 0, go left;

Bob sends (ys, yt) = (1, 1), Alice sends (xs,1, xt1) = (1, 0), go 2nd right;

Bob sends yw = 2, Alice sends xw,2 = 0, go left

Simulation theorem of protocol by decision tree (hard direction)

Let S search problem with domain {0, 1}m and let ` = m3+ε, ε > 0. Then:
∃ r-round real communication protocol in cost c solving Lift`(S)
⇒ ∃ depth-r parallel decision tree solving S width O(c/ log `) queries
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⇒ ∃ depth-r parallel decision tree solving S width O(c/ log `) queries
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Tools and Techniques Dymond–Tompa Game

From Parallel Decision Trees to Dymond–Tompa Games

From [DT85]; recently studied in [Cha13, CLNV15]

Two players Pebbler and Challenger

In each round
I Pebbler places pebbles on subset of vertices

(including sink in 1st round)
I Challenger either jumps to newly pebbled

vertex (always in 1st round) or stays

Pebbler wins at end of round when Challenger on vertex with all
predecessors pebbled (or on source vertex)

Lemma

∃ depth-r parallel decision tree for pebbling formula PebG with ≤ c queries
⇒ Pebbler wins r-round Dymond–Tompa game on G in cost ≤ c+ 1
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Tools and Techniques Dymond–Tompa Game

Putting the Pieces Together (Including the Ones Skipped)

Prove round-cost trade-offs for Dymond–Tompa games on graphs G
(hacking graph constructions from [CS82, LT82, Nor12])

⇓

Depth-query trade-offs for decision trees for pebbling formulas PebG

⇓

Communication round-cost trade-offs for lifted search problem for PebG

⇓

Cutting planes length-space trade-offs for lifted CNF formulas Lift
(
PebG

)

Jakob Nordström (KTH) How Limited Interaction Hinders Real Communication Kyoto, June 2, 2016 19/21



Tools and Techniques Dymond–Tompa Game

Putting the Pieces Together (Including the Ones Skipped)

Prove round-cost trade-offs for Dymond–Tompa games on graphs G
(hacking graph constructions from [CS82, LT82, Nor12])

⇓

Depth-query trade-offs for decision trees for pebbling formulas PebG

⇓

Communication round-cost trade-offs for lifted search problem for PebG

⇓

Cutting planes length-space trade-offs for lifted CNF formulas Lift
(
PebG

)

Jakob Nordström (KTH) How Limited Interaction Hinders Real Communication Kyoto, June 2, 2016 19/21



Tools and Techniques Dymond–Tompa Game

Putting the Pieces Together (Including the Ones Skipped)

Prove round-cost trade-offs for Dymond–Tompa games on graphs G
(hacking graph constructions from [CS82, LT82, Nor12])

⇓

Depth-query trade-offs for decision trees for pebbling formulas PebG

⇓

Communication round-cost trade-offs for lifted search problem for PebG

⇓

Cutting planes length-space trade-offs for lifted CNF formulas Lift
(
PebG

)

Jakob Nordström (KTH) How Limited Interaction Hinders Real Communication Kyoto, June 2, 2016 19/21



Tools and Techniques Dymond–Tompa Game

Putting the Pieces Together (Including the Ones Skipped)

Prove round-cost trade-offs for Dymond–Tompa games on graphs G
(hacking graph constructions from [CS82, LT82, Nor12])

⇓

Depth-query trade-offs for decision trees for pebbling formulas PebG

⇓

Communication round-cost trade-offs for lifted search problem for PebG

⇓

Cutting planes length-space trade-offs for lifted CNF formulas Lift
(
PebG

)

Jakob Nordström (KTH) How Limited Interaction Hinders Real Communication Kyoto, June 2, 2016 19/21



Open Problems

Some Remaining Open Questions

Communication complexity

Smaller lifting gadget? (⇒ stronger trade-offs)

Simulation theorems for stronger communication models
(randomized, multi-party)?

Proof complexity

Better Dymond–Tompa trade-offs?

Size-space trade-offs for Tseitin formulas à la [BBI12, BNT13]?

Line space lower bounds for CP with bounded coefficients
(strengthening [GPT15])
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Take-Home Message

Summary of results

Modern SAT solvers enormously successful in practice — key issue
is to minimize time and memory consumption

Modelled by proof size and space in proof complexity

We show uniform trade-offs indicating that simultaneous optimization
impossible for (essentially all) state-of-the-art techniques

Future directions

Proof complexity: Understand size and space in cutting planes better

Communication complexity: Tighter reductions and/or lower bounds
in stronger models

Thank you for your attention!
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