How Limited Interaction Hinders Real Communication
(and What It Means for Proof and Circuit Complexity)

Jakob Nordström

KTH Royal Institute of Technology
Stockholm, Sweden

Workshop on Algorithms in Communication Complexity,
Property Testing and Combinatorics
Skolkovo Institute of Science and Technology
April 11, 2016

Joint work with Susanna F. de Rezende and Marc Vinyals
SAT in Theory

The Satisfiability Problem (SAT)

Given a formula F in conjunctive normal form (CNF), can the variables be assigned so as to satisfy all constraints?

- Has played leading role in TCS ever since discovery of NP-completeness in [Coo71, Lev73]
- Conventional wisdom: this is a very hard problem indeed (Exponential Time Hypothesis [IP01] standard assumption)
- Yet essentially no nontrivial time complexity lower bounds
- More limited goal of time-space trade-offs also not very successful: E.g. SAT cannot be decided in time $n^{1.8}$ and space $n^{o(1)}$ [Wil08]
- Not only a sign of our weakness — there is a formidable adversary...
Enormous progress on applied SAT algorithms last 15-20 years

Current state-of-the-art SAT solvers can deal with real-world instances containing millions of variables

Use methods such as
 - conflict-driven clause learning (CDCL)
 - Gaussian elimination
 - pseudo-Boolean reasoning

Only known rigorous analysis approach: use proof complexity [CR79] to study underlying methods of reasoning

Requires lower-bounding optimal, nondeterministic algorithms — yet here we can prove strong (and sometimes tight!) trade-offs between size/time and space for resolution and polynomial calculus

This work: First such strong trade-offs capturing also cutting planes
... and in Practice

- Enormous progress on applied SAT algorithms last 15-20 years
- Current state-of-the-art SAT solvers can deal with real-world instances containing millions of variables
- Use methods such as
 - conflict-driven clause learning (CDCL) — resolution
 - Gaussian elimination — polynomial calculus
 - pseudo-Boolean reasoning — cutting planes
- Only known rigorous analysis approach: use proof complexity [CR79] to study underlying methods of reasoning
Enormous progress on applied SAT algorithms last 15-20 years

Current state-of-the-art SAT solvers can deal with real-world instances containing millions of variables

Use methods such as

- conflict-driven clause learning (CDCL) — resolution
- Gaussian elimination — polynomial calculus
- pseudo-Boolean reasoning — cutting planes

Only known rigorous analysis approach: use proof complexity [CR79] to study underlying methods of reasoning

Requires lower-bounding optimal, nondeterministic algorithms — yet here we can prove strong (and sometimes tight!) trade-offs between size/time and space
Enormous progress on applied SAT algorithms last 15-20 years

Current state-of-the-art SAT solvers can deal with real-world instances containing millions of variables

Use methods such as
 - conflict-driven clause learning (CDCL) — resolution
 - Gaussian elimination — polynomial calculus
 - pseudo-Boolean reasoning — cutting planes

Only known rigorous analysis approach: use proof complexity \cite{CR79} to study underlying methods of reasoning

Requires lower-bounding optimal, nondeterministic algorithms — yet here we can prove strong (and sometimes tight!) trade-offs between size/time and space for resolution and polynomial calculus
Enormous progress on applied SAT algorithms last 15-20 years

Current state-of-the-art SAT solvers can deal with real-world instances containing millions of variables

Use methods such as
- conflict-driven clause learning (CDCL) — resolution
- Gaussian elimination — polynomial calculus
- pseudo-Boolean reasoning — cutting planes

Only known rigorous analysis approach: use proof complexity [CR79] to study underlying methods of reasoning

Requires lower-bounding optimal, nondeterministic algorithms — yet here we can prove strong (and sometimes tight!) trade-offs between size/time and space for resolution and polynomial calculus

This work: First such strong trade-offs capturing also cutting planes
Informal Statement of Results

Theorem (Main)

First time-space trade-offs holding uniformly for resolution, polynomial calculus, and cutting planes for formulas such that:
- ∃ proofs in small size
- ∃ proofs in small total space
- ∀ proofs few formulas in memory ⇒ length exponential

Theorem (By-product)

Exponential separation in monotone-ACi hierarchy

However, this is not a workshop on proof or circuit complexity. . .

But we need communication complexity to attack cutting planes.
Informal Statement of Results

Theorem (Main)

First time-space trade-offs holding uniformly for resolution, polynomial calculus, and cutting planes for formulas such that:

- ∃ proofs in small size
- ∃ proofs in small total space
- ∀ proofs few formulas in memory ⇒ length exponential

Theorem (By-product)

Exponential separation in monotone-AC^i hierarchy
Informal Statement of Results

Theorem (Main)

First time-space trade-offs holding uniformly for resolution, polynomial calculus, and cutting planes for formulas such that:
- ∃ proofs in small size
- ∃ proofs in small total space
- ∀ proofs few formulas in memory ⇒ length exponential

Theorem (By-product)

Exponential separation in monotone-AC

However, this is not a workshop on proof or circuit complexity...
Informal Statement of Results

Theorem (Main)

First time-space trade-offs holding uniformly for resolution, polynomial calculus, and cutting planes for formulas such that:

- ∃ proofs in *small size*
- ∃ proofs in *small total space*
- ∀ proofs *few formulas in memory ⇒ length exponential*

Theorem (By-product)

Exponential separation in monotone-AC^i hierarchy

However, this is **not** a workshop on proof or circuit complexity…

But we need **communication complexity** to attack cutting planes
Outline

1 Proof Complexity
 - Preliminaries
 - Previous Work
 - Our Results

2 Tools and Techniques
 - Communication Complexity
 - Pebbling Formulas
 - Lifting/Composition of Search Problems
 - Dymond–Tompa Game

3 Open Problems
Some Terminology and Notation

- **Literal** a: variable x or its negation \overline{x}

- **Clause** $C = a_1 \lor \cdots \lor a_k$: disjunction of literals
 (Consider as sets, so no repetitions and order irrelevant)

- **CNF formula** $F = C_1 \land \cdots \land C_m$: conjunction of clauses

- **k-CNF formula**: all clauses of size $\leq k = \mathcal{O}(1)$

- **Goal**: **Refute** given CNF formula (i.e., prove it is unsatisfiable)
Proof Complexity

Preliminaries

The Theoretical Model

- Proof system operates with formulas of some syntactic form
- Proof/refutation is “presented on blackboard”
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when (explicit) contradiction is derived
Cutting Planes (CP)

Clauses interpreted as linear inequalities

E.g., \(x \lor y \lor \overline{z} \leadsto x + y + (1 - z) \geq 1 \leadsto x + y - z \geq 0 \)
Cutting Planes (CP)

Clauses interpreted as linear inequalities
E.g., \(x \lor y \lor \overline{z} \Leftrightarrow x + y + (1 - z) \geq 1 \Leftrightarrow x + y - z \geq 0 \)

Works for any system of linear inequalities with integer coefficients
Cutting Planes (CP)

Clauses interpreted as linear inequalities
E.g., $x \lor y \lor \overline{z} \leadsto x + y + (1 - z) \geq 1 \leadsto x + y - z \geq 0$

Works for any system of linear inequalities with integer coefficients

Variable axioms

\[
0 \leq x \leq 1
\]

Addition

\[
\sum a_i x_i \geq A \quad \sum b_i x_i \geq B \\
\sum (a_i + b_i) x_i \geq A + B
\]

Multiplication

\[
\sum a_i x_i \geq A \\
\sum c a_i x_i \geq cA
\]

Division

\[
\sum c a_i x_i \geq A \\
\sum a_i x_i \geq \lceil A/c \rceil
\]

Goal: Derive $0 \geq 1 \iff$ formula/system of inequalities unsatisfiable
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} \lor x_{1,2}$
2. $x_{2,1} \lor x_{2,2}$
3. $x_{3,1} \lor x_{3,2}$
4. $\overline{x}_{1,1} \lor \overline{x}_{2,1}$
5. $\overline{x}_{1,1} \lor \overline{x}_{3,1}$
6. $\overline{x}_{2,1} \lor \overline{x}_{3,1}$
7. $\overline{x}_{1,2} \lor \overline{x}_{2,2}$
8. $\overline{x}_{1,2} \lor \overline{x}_{3,2}$
9. $\overline{x}_{2,2} \lor \overline{x}_{3,2}$

Pigeonhole principle (PHP)

“$n + 1$ pigeons don’t fit into n holes”

Variables $x_{i,j} =$ “pigeon i goes into hole j”

$x_{i,1} \lor x_{i,2} \lor \cdots \lor x_{i,n}$

every pigeon i gets a hole

$\overline{x}_{i,j} \lor \overline{x}_{i',j}$

no hole j gets two pigeons $i \neq i'$
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1 \)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)

\[
\begin{align*}
-x_{1,1} - x_{2,1} & \geq -1 \\
-x_{1,1} - x_{3,1} & \geq -1 \\
-2x_{1,1} - x_{2,1} - x_{3,1} & \geq -2
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Write down axiom 4: $-x_{1,1} - x_{2,1} \geq -1$
Write down axiom 5: $-x_{1,1} - x_{3,1} \geq -1$
Add to get $-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2$
Erase the line $-x_{1,1} - x_{3,1} \geq -1$
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Write down axiom 4: $-x_{1,1} - x_{2,1} \geq -1$
Write down axiom 5: $-x_{1,1} - x_{3,1} \geq -1$
Add to get $-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2$
Erase the line $-x_{1,1} - x_{3,1} \geq -1$
Erase the line $-x_{1,1} - x_{2,1} \geq -1$

\[
-x_{1,1} - x_{2,1} \geq -1 \\
-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)

\[-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1 \)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1 \)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Write down axiom 4: $-x_{1,1} - x_{2,1} \geq -1$
Write down axiom 5: $-x_{1,1} - x_{3,1} \geq -1$
Add to get $-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2$
Erase the line $-x_{1,1} - x_{3,1} \geq -1$
Erase the line $-x_{1,1} - x_{2,1} \geq -1$
Write down axiom 6: $-x_{2,1} - x_{3,1} \geq -1$
Add to get $-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3$

\[
\begin{align*}
-2x_{1,1} - x_{2,1} - x_{3,1} &\geq -2 \\
-x_{2,1} - x_{3,1} &\geq -1 \\
-2x_{1,1} - 2x_{2,1} - 2x_{3,1} &\geq -3
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1 \)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3 \)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1 \)

\[
\begin{align*}
-2x_{1,1} - x_{2,1} - x_{3,1} & \geq -2 \\
-x_{2,1} - x_{3,1} & \geq -1 \\
-2x_{1,1} - 2x_{2,1} - 2x_{3,1} & \geq -3
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1 \)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3 \)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1 \)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)

\[
\begin{align*}
-2x_{1,1} - x_{2,1} - x_{3,1} & \geq -2 \\
-2x_{1,1} - 2x_{2,1} - 2x_{3,1} & \geq -3
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)

\[-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)

\[-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 4: \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - 2x_{2,1} - x_{3,1} \geq -2 \)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1 \)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3 \)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1 \)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)

Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1 \)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)

Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 5: \(-x_{1,1} - x_{3,1} \geq -1 \)

Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)

Erase the line \(-x_{1,1} - x_{3,1} \geq -1 \)

Erase the line \(-x_{1,1} - x_{2,1} \geq -1 \)

Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1 \)

Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3 \)

Erase the line \(-x_{2,1} - x_{3,1} \geq -1 \)

Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)

Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1 \)

Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3 \)

\[-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Add to get \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-x_{1,1} - x_{3,1} \geq -1\)
- Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)
- Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
- Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
- Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
- Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
- Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
- Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
- Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
- Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Erase the line \(-x_{1,1} - x_{2,1} \geq -1 \)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1 \)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3 \)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1 \)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1 \)
Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3 \)
Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1 \)
Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1 \)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)

\[\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} & \geq -1 \\
-x_{1,2} - x_{2,2} & \geq -1 \\
-x_{1,2} - x_{3,2} & \geq -1
\end{align*}\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Erase the line \(-x_{1,1} - x_{2,1} \geq -1\)
Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Write down axiom 6: \(-x_{2,1} - x_{3,1} \geq -1\)
Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)

Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Add to get $-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3$
Erase the line $-x_{2,1} - x_{3,1} \geq -1$
Erase the line $-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2$
Divide to get $-x_{1,1} - x_{2,1} - x_{3,1} \geq -1$
Erase the line $-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3$
Write down axiom 7: $-x_{1,2} - x_{2,2} \geq -1$
Write down axiom 8: $-x_{1,2} - x_{3,2} \geq -1$
Add to get $-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2$
Erase the line $-x_{1,2} - x_{3,2} \geq -1$
Erase the line $-x_{1,2} - x_{2,2} \geq -1$

$-x_{1,1} - x_{2,1} - x_{3,1} \geq -1$
$-x_{1,2} - x_{2,2} \geq -1$
$-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2$
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Add to get \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Erase the line \(-x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} & \geq -1 \\
-2x_{1,2} - x_{2,2} - x_{3,2} & \geq -2
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-x_{2,1} - x_{3,1} \geq -1 \)
- Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2 \)
- Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1 \)
- Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3 \)
- Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1 \)
- Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1 \)
- Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
- Erase the line \(-x_{1,2} - x_{3,2} \geq -1 \)
- Erase the line \(-x_{1,2} - x_{2,2} \geq -1 \)

Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1 \)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
- Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
- Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
- Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
- Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
- Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
- Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
- Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
- Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Erase the line \(-2x_{1,1} - x_{2,1} - x_{3,1} \geq -2\)
Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Divide to get $-x_{1,1} - x_{2,1} - x_{3,1} \geq -1$
Erase the line $-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3$
Write down axiom 7: $-x_{1,2} - x_{2,2} \geq -1$
Write down axiom 8: $-x_{1,2} - x_{3,2} \geq -1$
Add to get $-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2$
Erase the line $-x_{1,2} - x_{3,2} \geq -1$
Erase the line $-x_{1,2} - x_{2,2} \geq -1$
Write down axiom 9: $-x_{2,2} - x_{3,2} \geq -1$
Add to get $-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3$

Erase the line $-x_{2,2} - x_{3,2} \geq -1$

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} & \geq -1 \\
-2x_{1,2} - x_{2,2} - x_{3,2} & \geq -2 \\
-x_{2,2} - x_{3,2} & \geq -1 \\
-2x_{1,2} - 2x_{2,2} - 2x_{3,2} & \geq -3
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Divide to get \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
- Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
- Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
- Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
- Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
- Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
- Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
- Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)

\[
-x_{1,1} - x_{2,1} - x_{3,1} \geq -1 \\
-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \\
-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-2x_{1,1} - 2x_{2,1} - 2x_{3,1} \geq -3\)
- Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1\)
- Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
- Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
- Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
- Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
- Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
- Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)

\[-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\]
\[-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 7: \(-x_{1,2} - x_{2,2} \geq -1 \)
Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1 \)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
Erase the line \(-x_{1,2} - x_{3,2} \geq -1 \)
Erase the line \(-x_{1,2} - x_{2,2} \geq -1 \)
Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1 \)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3 \)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1 \)
Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1 \)
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Write down axiom 7: $-x_{1,2} - x_{2,2} \geq -1$
Write down axiom 8: $-x_{1,2} - x_{3,2} \geq -1$
Add to get $-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2$
Erase the line $-x_{1,2} - x_{3,2} \geq -1$
Erase the line $-x_{1,2} - x_{2,2} \geq -1$
Write down axiom 9: $-x_{2,2} - x_{3,2} \geq -1$
Add to get $-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3$
Erase the line $-x_{2,2} - x_{3,2} \geq -1$
Erase the line $-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2$
Divide to get $-x_{1,2} - x_{2,2} - x_{3,2} \geq -1$

$-x_{1,1} - x_{2,1} - x_{3,1} \geq -1$
$-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3$
$-x_{1,2} - x_{2,2} - x_{3,2} \geq -1$
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Write down axiom 8: $-x_{1,2} - x_{3,2} \geq -1$
Add to get $-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2$
Erase the line $-x_{1,2} - x_{3,2} \geq -1$
Erase the line $-x_{1,2} - x_{2,2} \geq -1$
Write down axiom 9: $-x_{2,2} - x_{3,2} \geq -1$
Add to get $-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3$
Erase the line $-x_{2,2} - x_{3,2} \geq -1$
Erase the line $-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2$
Divide to get $-x_{1,2} - x_{2,2} - x_{3,2} \geq -1$

Erase the line $-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3$
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 8: \(-x_{1,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)

Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
Erase the line \(-x_{1,2} - x_{3,2} \geq -1 \)
Erase the line \(-x_{1,2} - x_{2,2} \geq -1 \)
Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1 \)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3 \)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1 \)
Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1 \)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3 \)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Add to get \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
- Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
- Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
- Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
- Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
- Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Erase the line \(-x_{1,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,2} - x_{2,2} \geq -1\)
Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)

Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Erase the line \(-x_{1,2} - x_{2,2} \geq -1 \)
Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1 \)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3 \)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1 \)
Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1 \)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3 \)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1 \)
Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1 \)

\[
-x_{1,1} - x_{2,1} - x_{3,1} \geq -1 \\
-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2
\]
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Erase the line $-x_{1,2} - x_{2,2} \geq -1$

Write down axiom 9: $-x_{2,2} - x_{3,2} \geq -1$

Add to get $-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3$

Erase the line $-x_{2,2} - x_{3,2} \geq -1$

Erase the line $-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2$

Divide to get $-x_{1,2} - x_{2,2} - x_{3,2} \geq -1$

Erase the line $-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3$

Add to get $-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2$

Erase the line $-x_{1,2} - x_{2,2} - x_{3,2} \geq -1$

Erase the line $-x_{1,1} - x_{2,1} - x_{3,1} \geq -1$

$$-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2$$
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Write down axiom 9: \(-x_{2,2} - x_{3,2} \geq -1\)
Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1\)

\[-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\]

\[x_{1,1} + x_{1,2} \geq 1\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Add to get \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1 \)
Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1 \)

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} & \geq -2 \\
x_{1,1} + x_{1,2} & \geq 1 \\
x_{2,1} + x_{2,2} & \geq 1
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
- Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
- Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1 \)
- Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1 \)
- Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

- Erase the line \(-x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
- Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
- Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1\)
- Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1\)
- Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1 \)
Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1 \)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \)
Erase the line \(x_{2,1} + x_{2,2} \geq 1 \)

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} & \geq -2 \\
x_{1,1} + x_{1,2} & \geq 1 \\
x_{2,1} + x_{2,2} & \geq 1 \\
x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} & \geq 2
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Erase the line \(-2x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1 \)
Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1 \)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2\)

Erase the line \(x_{2,1} + x_{2,2} \geq 1\)

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} & \geq -2 \\
x_{1,1} + x_{1,2} & \geq 1 \\
x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} & \geq 2
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Divide to get \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1 \)
Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3 \)
Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \)
Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1 \)
Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1 \)
Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1 \)
Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1 \)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \)
Erase the line \(x_{2,1} + x_{2,2} \geq 1 \)

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} & \geq -2 \\
x_{1,1} + x_{1,2} & \geq 1 \\
x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} & \geq 2
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

History of derivation steps

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

Divide to get $-x_{1,2} - x_{2,2} - x_{3,2} \geq -1$

Erase the line $-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3$

Add to get $-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2$

Erase the line $-x_{1,2} - x_{2,2} - x_{3,2} \geq -1$

Erase the line $-x_{1,1} - x_{2,1} - x_{3,1} \geq -1$

Write down axiom 1: $x_{1,1} + x_{1,2} \geq 1$

Write down axiom 2: $x_{2,1} + x_{2,2} \geq 1$

Add to get $x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2$

Erase the line $x_{2,1} + x_{2,2} \geq 1$

$-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2$

$x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2$
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-2x_{1,2} - 2x_{2,2} - 2x_{3,2} \geq -3\)
- Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
- Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
- Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1 \)
- Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1 \)
- Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2\)
- Erase the line \(x_{2,1} + x_{2,2} \geq 1\)
- Erase the line \(x_{1,1} + x_{1,2} \geq 1\)
- **Write down** axiom 3: \(x_{3,1} + x_{3,2} \geq 1\)

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} & \geq -2 \\
x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} & \geq 2 \\
x_{3,1} + x_{3,2} & \geq 1
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)
Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1\)
Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1\)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2\)
Erase the line \(x_{2,1} + x_{2,2} \geq 1\)
Erase the line \(x_{1,1} + x_{1,2} \geq 1\)
Write down axiom 3: \(x_{3,1} + x_{3,2} \geq 1\)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Add to get \(-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\)

Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)

Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)

Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1\)

Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1\)

Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2\)

Erase the line \(x_{2,1} + x_{2,2} \geq 1\)

Erase the line \(x_{1,1} + x_{1,2} \geq 1\)

Write down axiom 3: \(x_{3,1} + x_{3,2} \geq 1\)

Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3\)
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

- Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
- Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
- Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1\)
- Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1\)
- Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2\)
- Erase the line \(x_{2,1} + x_{2,2} \geq 1\)
- Erase the line \(x_{1,1} + x_{1,2} \geq 1\)
- Write down axiom 3: \(x_{3,1} + x_{3,2} \geq 1\)
- Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3\)
- Erase the line \(x_{3,1} + x_{3,2} \geq 1\)

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} &\geq -2 \\
x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} &\geq 2 \\
x_{3,1} + x_{3,2} &\geq 1 \\
x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} &\geq 3
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1\)
2. \(x_{2,1} + x_{2,2} \geq 1\)
3. \(x_{3,1} + x_{3,2} \geq 1\)
4. \(-x_{1,1} - x_{2,1} \geq -1\)
5. \(-x_{1,1} - x_{3,1} \geq -1\)
6. \(-x_{2,1} - x_{3,1} \geq -1\)
7. \(-x_{1,2} - x_{2,2} \geq -1\)
8. \(-x_{1,2} - x_{3,2} \geq -1\)
9. \(-x_{2,2} - x_{3,2} \geq -1\)

History of derivation steps

Erase the line \(-x_{1,2} - x_{2,2} - x_{3,2} \geq -1\)
Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1\)
Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1\)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2\)
Erase the line \(x_{2,1} + x_{2,2} \geq 1\)
Erase the line \(x_{1,1} + x_{1,2} \geq 1\)
Write down axiom 3: \(x_{3,1} + x_{3,2} \geq 1\)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3\)
Erase the line \(x_{3,1} + x_{3,2} \geq 1\)

\[-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\]
\[x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2\]
\[x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3\]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1 \)
Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1 \)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \)
Erase the line \(x_{2,1} + x_{2,2} \geq 1 \)
Erase the line \(x_{1,1} + x_{1,2} \geq 1 \)
Write down axiom 3: \(x_{3,1} + x_{3,2} \geq 1 \)
Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3 \)
Erase the line \(x_{3,1} + x_{3,2} \geq 1 \)

\(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \)

\[-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2 \]
\[x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \]
\[x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3 \]
Example: CP Refutation of Pigeonhole Principle

1. \(x_{1,1} + x_{1,2} \geq 1 \)
2. \(x_{2,1} + x_{2,2} \geq 1 \)
3. \(x_{3,1} + x_{3,2} \geq 1 \)
4. \(-x_{1,1} - x_{2,1} \geq -1 \)
5. \(-x_{1,1} - x_{3,1} \geq -1 \)
6. \(-x_{2,1} - x_{3,1} \geq -1 \)
7. \(-x_{1,2} - x_{2,2} \geq -1 \)
8. \(-x_{1,2} - x_{3,2} \geq -1 \)
9. \(-x_{2,2} - x_{3,2} \geq -1 \)

History of derivation steps

- Erase the line \(-x_{1,1} - x_{2,1} - x_{3,1} \geq -1\)
- Write down axiom 1: \(x_{1,1} + x_{1,2} \geq 1 \)
- Write down axiom 2: \(x_{2,1} + x_{2,2} \geq 1 \)
- Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \)
- Erase the line \(x_{2,1} + x_{2,2} \geq 1 \)
- Erase the line \(x_{1,1} + x_{1,2} \geq 1 \)
- Erase the line \(x_{2,1} + x_{2,2} \geq 1 \)
- Write down axiom 3: \(x_{3,1} + x_{3,2} \geq 1 \)
- Add to get \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3 \)
- Erase the line \(x_{3,1} + x_{3,2} \geq 1 \)
- **Erase** the line \(x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \)

\[
\begin{align*}
-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} & \geq -2 \\
x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} & \geq 3
\end{align*}
\]
Example: CP Refutation of Pigeonhole Principle

1. $x_{1,1} + x_{1,2} \geq 1$
2. $x_{2,1} + x_{2,2} \geq 1$
3. $x_{3,1} + x_{3,2} \geq 1$
4. $-x_{1,1} - x_{2,1} \geq -1$
5. $-x_{1,1} - x_{3,1} \geq -1$
6. $-x_{2,1} - x_{3,1} \geq -1$
7. $-x_{1,2} - x_{2,2} \geq -1$
8. $-x_{1,2} - x_{3,2} \geq -1$
9. $-x_{2,2} - x_{3,2} \geq -1$

History of derivation steps

Write down axiom 1: $x_{1,1} + x_{1,2} \geq 1$
Write down axiom 2: $x_{2,1} + x_{2,2} \geq 1$
Add to get $x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2$
Erase the line $x_{2,1} + x_{2,2} \geq 1$
Erase the line $x_{2,1} + x_{2,2} \geq 1$
Write down axiom 3: $x_{3,1} + x_{3,2} \geq 1$
Add to get $x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3$
Erase the line $x_{3,1} + x_{3,2} \geq 1$
Erase the line $x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2$
Add to get $0 \geq 1$

\[-x_{1,1} - x_{2,1} - x_{3,1} - x_{1,2} - x_{2,2} - x_{3,2} \geq -2\]

\[x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3\]
Example: CP Refutation of Pigeonhole Principle

1. \[x_{1,1} + x_{1,2} \geq 1 \]
2. \[x_{2,1} + x_{2,2} \geq 1 \]
3. \[x_{3,1} + x_{3,2} \geq 1 \]
4. \[-x_{1,1} - x_{2,1} \geq -1 \]
5. \[-x_{1,1} - x_{3,1} \geq -1 \]
6. \[-x_{2,1} - x_{3,1} \geq -1 \]
7. \[-x_{1,2} - x_{2,2} \geq -1 \]
8. \[-x_{1,2} - x_{3,2} \geq -1 \]
9. \[-x_{2,2} - x_{3,2} \geq -1 \]

History of derivation steps

Write down axiom 1: \[x_{1,1} + x_{1,2} \geq 1 \]
Write down axiom 2: \[x_{2,1} + x_{2,2} \geq 1 \]
Add to get \[x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \]
Erase the line \[x_{2,1} + x_{2,2} \geq 1 \]
Erase the line \[x_{2,1} + x_{2,2} \geq 1 \]
Write down axiom 3: \[x_{3,1} + x_{3,2} \geq 1 \]
Add to get \[x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{3,1} + x_{3,2} \geq 3 \]
Erase the line \[x_{3,1} + x_{3,2} \geq 1 \]
Erase the line \[x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} \geq 2 \]
Add to get \[0 \geq 1 \]
Complexity Measures for Cutting Planes

Length = total # lines/inequalities in refutation

Size = sum also size of coefficients

Line space = max # lines in memory during refutation

Total space = max # bits in memory (sum also size of coefficients)
Clique-coclique formulas
“A graph with an m-clique is not $(m-1)$-colourable”

Exponential lower bound via interpolation and circuit complexity [Pud97]

Technique very specifically tied to structure of formula
Hardness Results for Cutting Planes

Clique-coclique formulas

“A graph with an m-clique is not $(m-1)$-colourable”

Exponential lower bound via interpolation and circuit complexity [Pud97]

Technique very specifically tied to structure of formula

Tseitin formulas

“Sum of degrees of vertices in graph is even”

Short refutations of (lifted) Tseitin formulas on expanders must have large space [GP14]

Long-standing open problems to show such refutations don’t exist
Size-Space Trade-offs for Cutting Planes?

- Short refutations of some so-called pebbling formulas must have large space [HN12, GP14] (and such refutations do exist)

Jakob Nordström (KTH)

How Limited Interaction Hinders Real Communication

Skoltech Apr ’16 12/25
Size-Space Trade-offs for Cutting Planes?

- Short refutations of some so-called pebbling formulas must have large space [HN12, GP14] (and such refutations do exist)

- Recent surprise: CP can refute any CNF in line space 5 (!) [GPT15] (But coefficients will be exponentially large)
Size-Space Trade-offs for Cutting Planes?

- **Short refutations** of some so-called *pebbling formulas* must have large space [HN12, GP14] (and such refutations do exist)

- Recent surprise: CP can refute any CNF in **line space 5 (!)** [GPT15] (But coefficients will be exponentially large)

- Plug into [HN12, GP14] ⇒ trade-off of sorts
Size-Space Trade-offs for Cutting Planes?

- Short refutations of some so-called pebbling formulas must have large space \([HN12, GP14]\) (and such refutations do exist).

- Recent surprise: CP can refute any CNF in line space 5 (!) \([GPT15]\) (But coefficients will be exponentially large).

- Plug into \([HN12, GP14]\) \(\Rightarrow\) trade-off of sorts.

- But “constant-space” proofs with exponential-size coefficients somehow doesn’t feel quite right...
Size-Space Trade-offs for Cutting Planes?

- Short refutations of some so-called pebbling formulas must have large space [HN12, GP14] (and such refutations do exist)

- Recent surprise: CP can refute any CNF in line space 5 (!) [GPT15] (But coefficients will be exponentially large)

- Plug into [HN12, GP14] ⇒ trade-off of sorts

- But “constant-space” proofs with exponential-size coefficients somehow doesn’t feel quite right...

What about “true” trade-offs?

Are there trade-offs where the space-efficient CP refutations have small coefficients? (Say, of polynomial or even constant size)
Our Main Result

Theorem (Informal sample)

There are families of 6-CNF formulas \(\{F_N\}_{N=1}^{\infty} \) of size \(\Theta(N) \) such that:

1. \(F_N \) can be refuted by cutting planes with constant-size coefficients in size \(O(N) \) and total space \(O(N^{2/5}) \).
2. \(F_N \) can be refuted by cutting planes with constant-size coefficients in total space \(O(N^{1/40}) \) and size \(2^{O(N^{1/40})} \).
3. Any cutting planes refutation even with coefficients of unbounded size in line space less than \(N^{1/20 - \epsilon} \) requires length \(2^{\Omega(N^{1/40})} \).

Remarks:

Upper bounds for # bits; lower bounds for # formulas/lines
Hold uniformly for resolution, polynomial calculus, and cutting planes
Even for semantic versions where anything implied by blackboard can be inferred in just one step.

Jakob Nordström (KTH) How Limited Interaction Hinders Real Communication Skoltech Apr ‘16 13/25
Our Main Result

Theorem (Informal sample)

There are families of 6-CNF formulas \(\{F_N\}_{N=1}^{\infty} \) of size \(\Theta(N) \) such that:

1. \(F_N \) can be refuted by cutting planes with constant-size coefficients in size \(\mathcal{O}(N) \) and total space \(\mathcal{O}(N^{2/5}) \).
Our Main Result

Theorem (Informal sample)

There are families of 6-CNF formulas \(\{F_N\}_{N=1}^\infty \) of size \(\Theta(N) \) such that:

1. \(F_N \) can be refuted by cutting planes with constant-size coefficients in size \(\mathcal{O}(N) \) and total space \(\mathcal{O}(N^{2/5}) \).
2. \(F_N \) can be refuted by cutting planes with constant-size coefficients in total space \(\mathcal{O}(N^{1/40}) \) and size \(2^{\mathcal{O}(N^{1/40})} \).
Our Main Result

Theorem (Informal sample)

There are families of 6-CNF formulas \(\{F_N\}_{N=1}^{\infty} \) of size \(\Theta(N) \) such that:

1. \(F_N \) can be refuted by cutting planes with constant-size coefficients in size \(\mathcal{O}(N) \) and total space \(\mathcal{O}(N^{2/5}) \).
2. \(F_N \) can be refuted by cutting planes with constant-size coefficients in total space \(\mathcal{O}(N^{1/40}) \) and size \(2^{\mathcal{O}(N^{1/40})} \).
3. Any cutting planes refutation even with coefficients of unbounded size in line space less than \(N^{1/20-\epsilon} \) requires length \(2^{\Omega(N^{1/40})} \).
Our Main Result

Theorem (Informal sample)

There are families of 6-CNF formulas \(\{F_N\}_{N=1}^{\infty} \) of size \(\Theta(N) \) such that:

1. \(F_N \) can be refuted by cutting planes with constant-size coefficients in size \(O(N) \) and total space \(O\left(N^{2/5}\right) \).

2. \(F_N \) can be refuted by cutting planes with constant-size coefficients in total space \(O\left(N^{1/40}\right) \) and size \(2^{O\left(N^{1/40}\right)} \).

3. Any cutting planes refutation even with coefficients of unbounded size in line space less than \(N^{1/20-\epsilon} \) requires length \(2^{\Omega\left(N^{1/40}\right)} \).

Remarks:

- Upper bounds for \# bits; lower bounds for \# formulas/lines
Our Main Result

Theorem (Informal sample)

There are families of 6-CNF formulas $\{F_N\}_{N=1}^{\infty}$ of size $\Theta(N)$ such that:

1. F_N can be refuted by cutting planes with constant-size coefficients in size $O(N)$ and total space $O(N^{2/5})$.

2. F_N can be refuted by cutting planes with constant-size coefficients in total space $O(N^{1/40})$ and size $2^{O(N^{1/40})}$.

3. Any cutting planes refutation even with coefficients of unbounded size in line space less than $N^{1/20-\epsilon}$ requires length $2^{\Omega(N^{1/40})}$.

Remarks:

- Upper bounds for \# bits; lower bounds for \# formulas/lines
- Hold uniformly for resolution, polynomial calculus, and cutting planes
Our Main Result

Theorem (Informal sample)

There are families of 6-CNF formulas \(\{F_N\}_{N=1}^{\infty} \) of size \(\Theta(N) \) such that:

1. \(F_N \) can be refuted by cutting planes with constant-size coefficients in size \(\mathcal{O}(N) \) and total space \(\mathcal{O}(N^{2/5}) \).

2. \(F_N \) can be refuted by cutting planes with constant-size coefficients in total space \(\mathcal{O}(N^{1/40}) \) and size \(2^{\mathcal{O}(N^{1/40})} \).

3. Any cutting planes refutation even with coefficients of unbounded size in line space less than \(N^{1/20-\epsilon} \) requires length \(2^{\Omega(N^{1/40})} \).

Remarks:

- Upper bounds for \# bits; lower bounds for \# formulas/lines
- Hold uniformly for resolution, polynomial calculus, and cutting planes
- Even for semantic versions where anything implied by blackboard can be inferred in just one step
Outline of Proof

Proof is by carefully constructed chain of delicate reductions
Outline of Proof

Proof is by carefully constructed chain of delicate reductions (a.k.a. the kitchen sink)
Outline of Proof

Proof is by carefully constructed chain of delicate reductions (a.k.a. the kitchen sink)

1. Short, space-efficient proof \implies efficient communication protocol for falsified clause search problem [HN12]
Outline of Proof

Proof is by carefully constructed chain of delicate reductions (a.k.a. the kitchen sink)

1. **Short, space-efficient proof** \implies **efficient communication protocol** for falsified clause search problem [HN12]

2. **Crucial twists:**
 - Study real communication model [Kra98, BEGJ00]
 - Consider round efficiency of protocols
Outline of Proof

Proof is by carefully constructed chain of delicate reductions (a.k.a. the kitchen sink)

1. Short, space-efficient proof \Rightarrow efficient communication protocol for falsified clause search problem [HN12]

2. Crucial twists:
 - Study real communication model [Kra98, BEGJ00]
 - Consider round efficiency of protocols

Outline of Proof

Proof is by carefully constructed chain of delicate reductions (a.k.a. the kitchen sink)

1. Short, space-efficient proof \implies efficient communication protocol for falsified clause search problem [HN12]

2. Crucial twists:
 - Study real communication model [Kra98, BEGJ00]
 - Consider round efficiency of protocols

3. Protocol for composed search problem \implies parallel decision tree via simulation theorem à la [RM99, GPW15]

4. Parallel decision tree for pebbling formulas Peb_G \implies pebbling strategy for Dymond–Tompa game on G [DT85]
Outline of Proof

Proof is by carefully constructed chain of delicate reductions (a.k.a. the kitchen sink)

1. Short, space-efficient proof \Rightarrow efficient communication protocol for falsified clause search problem [HN12]

2. Crucial twists:
 - Study real communication model [Kra98, BEGJ00]
 - Consider round efficiency of protocols

4. Parallel decision tree for pebbling formulas Peb_G \Rightarrow pebbling strategy for Dymond–Tompa game on G [DT85]

5. Construct graphs G with strong round-cost trade-offs for Dymond–Tompa pebbling
Real Communication [Kra98]

- **Main players:**
 - Alice with private input x
 - Bob with private input y
 - Both deterministic but have unbounded computational powers

Function f solved by r-round real communication in cost c if:
- # rounds $\leq r$
- total # comparisons made by referee $\leq c$

Strictly stronger than standard deterministic communication
Real Communication [Kra98]

- Main players:
 - Alice with private input x
 - Bob with private input y
 - Both deterministic but have unbounded computational powers

- Task: compute $f(x, y)$ by sending messages to referee
Main players:

- **Alice** with private input x
- **Bob** with private input y
- Both deterministic but have unbounded computational powers

Task: **compute** $f(x, y)$ by sending messages to referee

Method: In each round v

- Alice sends $a_{v,1}(x), \ldots, a_{v,c_v}(x) \in \mathbb{R}^{c_v}$
- Bob sends $b_{v,1}(y), \ldots, b_{v,c_v}(y) \in \mathbb{R}^{c_v}$
- Referee announces results of comparisons $a_{v,i}(x) \leq b_{v,i}(y)$ for $i \in [c_v]$
Real Communication [Kra98]

- **Main players:**
 - Alice with private input x
 - Bob with private input y
 - Both deterministic but have unbounded computational powers

- **Task:** compute $f(x, y)$ by sending messages to referee

- **Method:** In each round v
 - Alice sends $a_{v,1}(x), \ldots, a_{v,c_v}(x) \in \mathbb{R}^{c_v}$
 - Bob sends $b_{v,1}(y), \ldots, b_{v,c_v}(y) \in \mathbb{R}^{c_v}$
 - Referee announces results of comparisons $a_{v,i}(x) \leq b_{v,i}(y)$ for $i \in [c_v]$

- **Function f solved by r-round real communication in cost c if** ∃ protocol such that
 - $\# \text{ rounds } \leq r$
 - total $\# \text{ comparisons made by referee } \leq c$
Real Communication [Kra98]

- **Main players:**
 - Alice with private input x
 - Bob with private input y
 - Both deterministic but have unbounded computational powers

- **Task:** compute $f(x, y)$ by sending messages to referee

- **Method:** In each round v
 - Alice sends $a_{v,1}(x), \ldots, a_{v,c_v}(x) \in \mathbb{R}^{c_v}$
 - Bob sends $b_{v,1}(y), \ldots, b_{v,c_v}(y) \in \mathbb{R}^{c_v}$
 - Referee announces results of comparisons $a_{v,i}(x) \leq b_{v,i}(y)$ for $i \in [c_v]$

- **Function f solved by r-round real communication in cost c** if \exists protocol such that
 - $\# \text{ rounds} \leq r$
 - total $\# \text{ comparisons made by referee} \leq c$

- Strictly stronger than standard deterministic communication
Falsified Clause Search Problem

Fix:
- unsatisfiable CNF formula F
- (devious) partition of $\text{Vars}(F)$ between Alice and Bob

Falsified clause search problem $\text{Search}(F')$

Input: Assignment α to $\text{Vars}(F)$ split between Alice and Bob

Output: Clause $C \in F$ such that α falsifies C

Actually, computing not function but relation — will mostly ignore this for simplicity
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard

Must happen when $C \in F$ written down — answer to $\text{Search}(F)$
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard

Must happen when $C \in F$ written down — answer to $\text{Search}(F)$

Length $L \Rightarrow$ evaluate $\log L$ blackboards
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard

Must happen when $C \in F$ written down — answer to $Search(F)$

Length $L \Rightarrow$ evaluate $\log L$ blackboards

Line space $s \Rightarrow \max s$ bits of communication per blackboard
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard

Must happen when $C \in F$ written down — answer to $\text{Search}(F)$

Length $L \Rightarrow$ evaluate $\log L$ blackboards

Line space $s \Rightarrow \max s$ bits of communication per blackboard

Only one round per blackboard evaluation
Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

Use binary search to find transition from true to false blackboard

Must happen when $C \in F$ written down — answer to $\text{Search}(F)$

Length $L \Rightarrow$ evaluate $\log L$ blackboards

Line space $s \Rightarrow \text{max } s$ bits of communication per blackboard

Only one round per blackboard evaluation

(Alice and Bob simply evaluate their parts of each inequality and ask referee to compare)
Where to Get Formulas with Trade-off Properties?

Questions about time-space trade-offs fundamental in theoretical computer science

Well-studied (and well-understood) for pebble games modelling calculations described by DAGs

In particular, for black-white pebble game investigated by [CS76] and many others
Pebbling Contradiction

CNF formulas encoding black-white pebble game played on DAG G

1. u
2. v
3. w
4. $\overline{u} \lor \overline{v} \lor x$
5. $\overline{v} \lor \overline{w} \lor y$
6. $\overline{x} \lor \overline{y} \lor z$
7. \overline{z}

- sources are true
- truth propagates upwards
- but sink is false
Pebbling Contradiction

CNF formulas encoding black-white pebble game played on DAG G

1. u
2. v
3. w
4. $\overline{u} \lor \overline{v} \lor x$
5. $\overline{v} \lor \overline{w} \lor y$
6. $\overline{x} \lor \overline{y} \lor z$
7. \overline{z}

- sources are true
- truth propagates upwards
- but sink is false
Pebbling Contradiction

CNF formulas encoding black-white pebble game played on DAG G

1. u
2. v
3. w
4. $\overline{u} \lor \overline{v} \lor x$
5. $\overline{v} \lor \overline{w} \lor y$
6. $\overline{x} \lor \overline{y} \lor z$
7. \overline{z}

- sources are true
- truth propagates upwards
- but sink is false
Pebbling Contradiction

CNF formulas encoding black-white pebble game played on DAG G

1. u
2. v
3. w
4. $\overline{u} \lor \overline{v} \lor x$
5. $\overline{v} \lor \overline{w} \lor y$
6. $\overline{x} \lor \overline{y} \lor z$
7. \overline{z}

- sources are true
- truth propagates upwards
- but sink is false
Pebbling Contradiction

CNF formulas encoding black-white pebble game played on DAG G

1. u
2. v
3. w
4. $\overline{u} \lor \overline{v} \lor x$
5. $\overline{v} \lor \overline{w} \lor y$
6. $\overline{x} \lor \overline{y} \lor z$
7. \overline{z}

- sources are true
- truth propagates upwards
- but sink is false
Pebbling Contradiction

CNF formulas encoding black-white pebble game played on DAG G

1. u
2. v
3. w
4. $\overline{u} \lor \overline{v} \lor x$
5. $\overline{v} \lor \overline{w} \lor y$
6. $\overline{x} \lor \overline{y} \lor z$
7. \overline{z}

- sources are true
- truth propagates upwards
- but sink is false
Pebbling Contradiction

CNF formulas encoding black-white pebble game played on DAG G

1. u
2. v
3. w
4. $\overline{u} \lor \overline{v} \lor x$
5. $\overline{v} \lor \overline{w} \lor y$
6. $\overline{x} \lor \overline{y} \lor z$
7. \overline{z}

sources are true
truth propagates upwards
but sink is false

Appeared in various contexts in e.g. [RM99, BEGJ00, BW01]

Used in [Nor06, NH08, BN08, BN11, BNT13] to study space and size-space trade-offs in resolution and polynomial calculus

Inherit some DAG properties, but not enough — make formulas harder!
Lifting of Functions

Construct hard communication problems by “hardness amplification” using lifting or composition
Lifting of Functions

Construct hard communication problems by “hardness amplification” using lifting or composition

Start with function $f : \{0, 1\}^m \rightarrow \{0, 1\}$
Lifting of Functions

Construct hard communication problems by “hardness amplification” using lifting or composition

Start with function $f : \{0, 1\}^m \rightarrow \{0, 1\}$

Construct new function on inputs $x \in \{0, 1\}^{\ell m}$ and $y \in [\ell]^m$
Lifting of Functions

Construct hard communication problems by “hardness amplification” using lifting or composition

Start with function $f: \{0, 1\}^m \to \{0, 1\}$

Construct new function on inputs $x \in \{0, 1\}^{\ell m}$ and $y \in [\ell]^m$

Bob’s y-variables determine…

$\begin{bmatrix} x_{1,1} & x_{1,2} & x_{2,1} & x_{2,2} & x_{3,1} & x_{3,2} \\ y_1 & y_2 & y_3 \end{bmatrix}$

$Lift_{\ell}(f)(x,y) := f(x_1, y_1, ..., x_m, y_m)$
Lifting of Functions

Construct hard communication problems by “hardness amplification” using lifting or composition

Start with function $f : \{0, 1\}^m \rightarrow \{0, 1\}$

Construct new function on inputs $x \in \{0, 1\}^{\ell m}$ and $y \in [\ell]^m$

Bob’s y-variables determine...

...which of Alice’s x-bits to feed to f
Construct hard communication problems by “hardness amplification” using lifting or composition

Start with function \(f : \{0, 1\}^m \rightarrow \{0, 1\} \)

Construct new function on inputs \(x \in \{0, 1\}^{\ell m} \) and \(y \in [\ell]^m \)

Bob’s \(y \)-variables determine . . .

. . . which of Alice’s \(x \)-bits to feed to \(f \)

Length-\(\ell \) lifting of \(f \) defined as \(\text{Lift}_\ell(f)(x, y) := f(x_1,y_1, \ldots, x_m,y_m) \)
Lifting of Functions

Construct hard communication problems by “hardness amplification” using lifting or composition.

Start with function \(f : \{0, 1\}^m \rightarrow \{0, 1\} \)

Construct new function on inputs \(x \in \{0, 1\}^{\ell m} \) and \(y \in [\ell]^m \)

Bob’s \(y \)-variables determine . . .

. . . which of Alice’s \(x \)-bits to feed to \(f \)

Length-\(\ell \) lifting of \(f \) defined as

\[
\text{Lift}_\ell(f)(x, y) := f(x_1 y_1, \ldots, x_m y_m)
\]

Building on ideas from e.g. [She08, BHP10]
Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V_t; has $2^{|V_t|}$ outgoing edges

$$
\begin{array}{c}
\text{node } x \\
\text{child at } y, z \\
\text{children at } \{u, w, w, u, w, z, v, y\}
\end{array}
$$

$$
\begin{array}{c}
\text{leaf values at } \{0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0\}
\end{array}
$$
Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V_t; has $2^{|V_t|}$ outgoing edges

Parallel decision tree:
- uses $\#$ queries $= \max \sum |V_t|$ along any path
Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V_t; has $2^{|V_t|}$ outgoing edges

Parallel decision tree:
- uses \# queries = \[
\max \sum |V_t| \text{ along any path}
\]
- has depth = length of longest path
Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V_t; has $2^{|V_t|}$ outgoing edges

Parallel decision tree:
- uses $\#$ queries = $\max \sum |V_t|$ along any path
- has depth = length of longest path
- solves search problem $S \subseteq \{0, 1\}^m \times Q$ if $\forall \alpha \in \{0, 1\}^m$ path defined by α ends in leaf with q s.t. $(\alpha, q) \in S$
Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V_t; has $2^{|V_t|}$ outgoing edges

Parallel decision tree:
- uses \# queries $= \max \sum |V_t|$ along any path
- has depth $=$ length of longest path
- solves search problem $S \subseteq \{0, 1\}^m \times Q$ if $\forall \alpha \in \{0, 1\}^m$ path defined by α ends in leaf with q s.t. $(\alpha, q) \in S$
- Can be simulated by Alice & Bob to solve lifted problem (easy)
Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V_t; has $2|V_t|$ outgoing edges

Parallel decision tree:
- uses $\#$ queries $= \max \sum |V_t|$ along any path
- has depth $=$ length of longest path
- solves search problem $S \subseteq \{0, 1\}^m \times Q$ if $\forall \alpha \in \{0, 1\}^m$ path defined by α ends in leaf with q s.t. $(\alpha, q) \in S$
- Can be simulated by Alice & Bob to solve lifted problem (easy)

Simulation theorem of protocol by decision tree (hard direction)

Let S search problem with domain $\{0, 1\}^m$ and let $\ell = m^{3+\epsilon}$, $\epsilon > 0$. Then:
- $\exists r$-round real communication protocol in cost c solving $\text{Lift}_\ell(S)$
- $\Rightarrow \exists$ depth-r parallel decision tree solving S width $\mathcal{O}(c/\log \ell)$ queries.
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players Pebbler and Challenger
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players **Pebbler** and **Challenger**
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays

Lemma

$$\exists \text{ depth-} r \text{ parallel decision tree for } \text{Search}(\text{Peb} \ G) \Rightarrow \text{Pebbler wins} \ r \text{-round Dymond–Tompa game on } G \text{ in cost} \leq c + 1.$$
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players **Pebbler** and **Challenger**
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players **Pebbler** and **Challenger**
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players Pebbler and Challenger
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players Pebbler and Challenger
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players Pebbler and Challenger
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players Pebbler and Challenger
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players Pebbler and Challenger
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players **Pebbler** and **Challenger**
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players **Pebbler** and **Challenger**
- In each round
 - **Pebbler places pebbles** on subset of vertices (including sink in 1st round)
 - **Challenger either jumps** to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when **Challenger on vertex with all predecessors pebbled** (or on source vertex)
From [DT85]; recently studied in [Cha13, CLNV15]

Two players Pebbler and Challenger

In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays

Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players Pebbler and Challenger
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)
From Parallel Decision Trees to Dymond–Tompa Games

- From [DT85]; recently studied in [Cha13, CLNV15]
- Two players Pebbler and Challenger
- In each round
 - Pebbler places pebbles on subset of vertices (including sink in 1st round)
 - Challenger either jumps to newly pebbled vertex (always in 1st round) or stays
- Pebbler wins at end of round when Challenger on vertex with all predecessors pebbled (or on source vertex)

Lemma

\[\exists \text{ depth-} r \text{ parallel decision tree for } Search(Peb_G) \text{ with } \leq c \text{ queries} \]
\[\Rightarrow \text{ Pebbler wins } r\text{-round Dymond–Tompa game on } G \text{ in cost } \leq c + 1. \]
Clinching the Argument

Prove round-cost trade-offs for Dymond–Tompa games on graphs G (hacking graph constructions from [CS82, LT82, Nor12])
Clinching the Argument

Prove round-cost trade-offs for Dymond–Tompa games on graphs G
(hacking graph constructions from [CS82, LT82, Nor12])

\[\Downarrow \]

Depth-query trade-offs for parallel decision trees for $\text{Search}(\text{Peb}_G)$
Clinching the Argument

Prove round-cost trade-offs for Dymond–Tompa games on graphs G
(hacking graph constructions from [CS82, LT82, Nor12])

\Downarrow

Depth-query trade-offs for parallel decision trees for $\text{Search}(\text{Peb}_G)$

\Downarrow

Real communication round-cost trade-offs for $\text{Lift}(\text{Search}(\text{Peb}_G))$
Clinching the Argument

Prove round-cost trade-offs for Dymond–Tompa games on graphs G (hacking graph constructions from [CS82, LT82, Nor12])

\Downarrow

Depth-query trade-offs for parallel decision trees for $\text{Search}(\text{Peb}_G)$

\Downarrow

Real communication round-cost trade-offs for $\text{Lift}(\text{Search}(\text{Peb}_G))$

\Downarrow

Same communication lower bounds hold for $\text{Search}(\text{Lift}(\text{Peb}_G))$, i.e., search problem for lifted formulas in [BHP10]
Clinching the Argument

Prove round-cost trade-offs for Dymond–Tompa games on graphs G (hacking graph constructions from [CS82, LT82, Nor12])

\Downarrow

Depth-query trade-offs for parallel decision trees for $\text{Search}(\text{Peb}_G)$

\Downarrow

Real communication round-cost trade-offs for $\text{Lift}(\text{Search}(\text{Peb}_G))$

\Downarrow

Same communication lower bounds hold for $\text{Search}(\text{Lift}(\text{Peb}_G))$, i.e., search problem for lifted formulas in [BHP10]

\Downarrow

Cutting planes length-space trade-off for $\text{Lift}(\text{Peb}_G)$
Some Remaining Open Questions

Communication complexity

- Smaller length of lift?
- Simulation theorems for stronger communication models (randomized, multi-party)?
Some Remaining Open Questions

Communication complexity
- Smaller length of lift?
- Simulation theorems for stronger communication models (randomized, multi-party)?

Proof complexity
- Better Dymond–Tompa trade-offs?
- Reduction to black-white pebbling instead of Dymond–Tompa?
- Size-space trade-offs for Tseitin formulas à la [BBI12, BNT13]?
- Line space lower bounds for CP with bounded coefficients (strengthening [GPT15])
Take-Home Message

Summary of results

- Modern SAT solvers **enormously successful in practice** — key issue is to **minimize time and memory consumption**
- Modelled by **proof size and space** in proof complexity
- We show **uniform trade-offs** indicating that **simultaneous optimization impossible** for (essentially all) state-of-the-art techniques
Take-Home Message

Summary of results

- Modern SAT solvers *enormously successful in practice* — key issue is to *minimize time and memory consumption*
- Modelled by *proof size and space* in proof complexity
- We show *uniform trade-offs* indicating that *simultaneous optimization impossible* for (essentially all) state-of-the-art techniques

Future directions

- **Proof complexity:** Understand size and space in cutting planes better
- **Communication complexity:** Tighter reductions and/or lower bounds in stronger models
Take-Home Message

Summary of results

- Modern SAT solvers enormously successful in practice — key issue is to minimize time and memory consumption
- Modelled by proof size and space in proof complexity
- We show uniform trade-offs indicating that simultaneous optimization impossible for (essentially all) state-of-the-art techniques

Future directions

- Proof complexity: Understand size and space in cutting planes better
- Communication complexity: Tighter reductions and/or lower bounds in stronger models

Thank you for your attention!
References I

References II

References V

References VI
