
Pseudo-Boolean Solving and Optimization

Jakob Nordström

University of Copenhagen
and Lund University

“Satisfiability: Theory, Practice, and Beyond” Boot Camp
Simons Institute for the Theory of Computing

February 4, 2021

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 1/121

Organization of This Tutorial

Part I: Pseudo-Boolean Preliminaries

Part II: Pseudo-Boolean Solving

Part III: Pseudo-Boolean Optimization

Part IV: Mixed Integer Linear Programming

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 2/121

Organization of This Tutorial

Part I: Pseudo-Boolean Preliminaries

Part II: Pseudo-Boolean Solving

Part III: Pseudo-Boolean Optimization

Part IV: Mixed Integer Linear Programming

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 3/121

Outline of Part I: Pseudo-Boolean Preliminaries

1 Pseudo-Boolean Functions and Constraints

2 Pseudo-Boolean Solving and Optimization

3 Some Further References

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 4/121

Pseudo-Boolean Functions and Constraints

Pseudo-Boolean?

Pseudo-Boolean function: f : {0, 1}n → R

Studied since 1960s in operations research and 0-1 integer linear
programming [BH02]

Restricted versions:
f represented as polynomial
f represented as linear form [focus of this tutorial]

Many problems expressible as optimizing value of linear pseudo-Boolean
function under linear pseudo-Boolean constraints

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 5/121

Pseudo-Boolean Functions and Constraints

Pseudo-Boolean vs. SAT

Pseudo-Boolean format richer than conjunctive normal form (CNF)

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x4 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially stronger than
conflict-driven clause learning (CDCL)
Yet close enough to SAT to benefit from SAT solving advances
Also possible synergies with 0-1 integer linear programming (ILP)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 6/121

Pseudo-Boolean Functions and Constraints

Pseudo-Boolean vs. SAT

Pseudo-Boolean format richer than conjunctive normal form (CNF)

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x4 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially stronger than
conflict-driven clause learning (CDCL)
Yet close enough to SAT to benefit from SAT solving advances
Also possible synergies with 0-1 integer linear programming (ILP)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 6/121

Pseudo-Boolean Functions and Constraints

Pseudo-Boolean vs. SAT

Pseudo-Boolean format richer than conjunctive normal form (CNF)

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x4 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially stronger than
conflict-driven clause learning (CDCL)
Yet close enough to SAT to benefit from SAT solving advances
Also possible synergies with 0-1 integer linear programming (ILP)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 6/121

Pseudo-Boolean Functions and Constraints

Pseudo-Boolean vs. SAT

Pseudo-Boolean format richer than conjunctive normal form (CNF)

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x4 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially stronger than
conflict-driven clause learning (CDCL)
Yet close enough to SAT to benefit from SAT solving advances
Also possible synergies with 0-1 integer linear programming (ILP)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 6/121

Pseudo-Boolean Functions and Constraints

Pseudo-Boolean Constraints and Normalized Form
In this talk, pseudo-Boolean constraints are 0-1 integer linear constraints∑

i

ai`i ./ A

./ ∈ {≥,≤,=, >,<}
ai, A ∈ Z
literals `i: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Convenient to use normalized form [Bar95]∑
i

ai`i ≥ A

constraint always greater-than-or-equal
ai, A ∈ N
A = deg(

∑
i ai`i ≥ A) referred to as degree (of falsity)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 7/121

Pseudo-Boolean Functions and Constraints

Pseudo-Boolean Constraints and Normalized Form
In this talk, pseudo-Boolean constraints are 0-1 integer linear constraints∑

i

ai`i ./ A

./ ∈ {≥,≤,=, >,<}
ai, A ∈ Z
literals `i: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Convenient to use normalized form [Bar95]∑
i

ai`i ≥ A

constraint always greater-than-or-equal
ai, A ∈ N
A = deg(

∑
i ai`i ≥ A) referred to as degree (of falsity)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 7/121

Pseudo-Boolean Functions and Constraints

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 8/121

Pseudo-Boolean Functions and Constraints

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 8/121

Pseudo-Boolean Functions and Constraints

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 8/121

Pseudo-Boolean Functions and Constraints

Conversion to Normalized Form: Example
Normalized form used for convenience and without loss of generality

−x1 + 2x2 − 3x3 + 4x4 − 5x5 < 0

1 Make inequality non-strict

−x1 + 2x2 − 3x3 + 4x4 − 5x5 ≤ −1

2 Multiply by −1 to get greater-than-or-equal

x1 − 2x2 + 3x3 − 4x4 + 5x5 ≥ 1

3 Replace −` by −(1− `) [where we define x .= x]

x1 − 2(1− x2) + 3x3 − 4(1− x4) + 5x5 ≥ 1
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

4 Replace “=” by two inequalities “≥” and “≤”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 9/121

Pseudo-Boolean Functions and Constraints

Conversion to Normalized Form: Example
Normalized form used for convenience and without loss of generality

−x1 + 2x2 − 3x3 + 4x4 − 5x5 < 0

1 Make inequality non-strict

−x1 + 2x2 − 3x3 + 4x4 − 5x5 ≤ −1

2 Multiply by −1 to get greater-than-or-equal

x1 − 2x2 + 3x3 − 4x4 + 5x5 ≥ 1

3 Replace −` by −(1− `) [where we define x .= x]

x1 − 2(1− x2) + 3x3 − 4(1− x4) + 5x5 ≥ 1
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

4 Replace “=” by two inequalities “≥” and “≤”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 9/121

Pseudo-Boolean Functions and Constraints

Conversion to Normalized Form: Example
Normalized form used for convenience and without loss of generality

−x1 + 2x2 − 3x3 + 4x4 − 5x5 < 0

1 Make inequality non-strict

−x1 + 2x2 − 3x3 + 4x4 − 5x5 ≤ −1

2 Multiply by −1 to get greater-than-or-equal

x1 − 2x2 + 3x3 − 4x4 + 5x5 ≥ 1

3 Replace −` by −(1− `) [where we define x .= x]

x1 − 2(1− x2) + 3x3 − 4(1− x4) + 5x5 ≥ 1
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

4 Replace “=” by two inequalities “≥” and “≤”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 9/121

Pseudo-Boolean Functions and Constraints

Conversion to Normalized Form: Example
Normalized form used for convenience and without loss of generality

−x1 + 2x2 − 3x3 + 4x4 − 5x5 < 0

1 Make inequality non-strict

−x1 + 2x2 − 3x3 + 4x4 − 5x5 ≤ −1

2 Multiply by −1 to get greater-than-or-equal

x1 − 2x2 + 3x3 − 4x4 + 5x5 ≥ 1

3 Replace −` by −(1− `) [where we define x .= x]

x1 − 2(1− x2) + 3x3 − 4(1− x4) + 5x5 ≥ 1
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

4 Replace “=” by two inequalities “≥” and “≤”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 9/121

Pseudo-Boolean Functions and Constraints

Conversion to Normalized Form: Example
Normalized form used for convenience and without loss of generality

−x1 + 2x2 − 3x3 + 4x4 − 5x5 < 0

1 Make inequality non-strict

−x1 + 2x2 − 3x3 + 4x4 − 5x5 ≤ −1

2 Multiply by −1 to get greater-than-or-equal

x1 − 2x2 + 3x3 − 4x4 + 5x5 ≥ 1

3 Replace −` by −(1− `) [where we define x .= x]

x1 − 2(1− x2) + 3x3 − 4(1− x4) + 5x5 ≥ 1
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

4 Replace “=” by two inequalities “≥” and “≤”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 9/121

Pseudo-Boolean Functions and Constraints

Conversion to Normalized Form: Formal Details
Given linear form

∑
i ai`i with

∑
i ai = M

Syntactic sugar Meaning∑
i ai`i > A

∑
i ai`i ≥ A+ 1∑

i ai`i ≤ A
∑
i ai`i ≥M −A∑

i ai`i < A
∑
i ai`i ≥M −A+ 1∑

i ai`i = A
∑
i ai`i ≥ A and∑
i ai`i ≥M −A

In what follows:
Use syntactic sugar when convenient
Assume (implicit) normalization whenever it matters

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 10/121

Pseudo-Boolean Functions and Constraints

Linearization

Possible to linearize nonlinear constraints∑k
i=1 aimi ≥ A

with
mi

.=
∏di
j=1 `i,j

For instance, using fresh variables yi we can write:∑k
i=1 aiyi ≥ A

di · yi +
∑di
j=1 `i,j ≥ di i ∈ [k]

yi +
∑di
j=1 `i,j ≥ 1 i ∈ [k]

We won’t go further into this during this talk, though. . .

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 11/121

Pseudo-Boolean Functions and Constraints

Linearization

Possible to linearize nonlinear constraints∑k
i=1 aimi ≥ A

with
mi

.=
∏di
j=1 `i,j

For instance, using fresh variables yi we can write:∑k
i=1 aiyi ≥ A

di · yi +
∑di
j=1 `i,j ≥ di i ∈ [k]

yi +
∑di
j=1 `i,j ≥ 1 i ∈ [k]

We won’t go further into this during this talk, though. . .

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 11/121

Pseudo-Boolean Functions and Constraints

Linearization

Possible to linearize nonlinear constraints∑k
i=1 aimi ≥ A

with
mi

.=
∏di
j=1 `i,j

For instance, using fresh variables yi we can write:∑k
i=1 aiyi ≥ A

di · yi +
∑di
j=1 `i,j ≥ di i ∈ [k]

yi +
∑di
j=1 `i,j ≥ 1 i ∈ [k]

We won’t go further into this during this talk, though. . .

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 11/121

Pseudo-Boolean Functions and Constraints

Some Notation for Operations on Constraints (1/2)

Given
constraints C1

.=
∑
i ai`i ≥ A and C2

.=
∑
i bi`i ≥ B

linear form L
.=
∑
i c`i

positive integer k ∈ N+

we will use notation:

C1 + C2
.=
∑
i(ai + bi) · `i ≥ A+B

C1 + L
.=
∑
i(ai + ci) · `i ≥ A

k · C1
.=
∑
i kai · `i ≥ kA

(assuming appropriate normalization whenever needed)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 12/121

Pseudo-Boolean Functions and Constraints

Some Notation for Operations on Constraints (2/2)
Given constraint C .=

∑
i ai`i ≥ A with

∑
i ai = M

Negation
¬C .=

∑
i ai`i ≥M −A+ 1

Reification
z ⇒ C

.= A · z +
∑
i ai`i ≥ A

z ⇐ C
.= (M −A+ 1) · z +

∑
i ai`i ≥M −A+ 1

z ⇔ C
.= z ⇒ C and z ⇐ C

Some calculations
C + ¬C .= 0 ≥ 1
z ⇐ C

.= z ⇒ ¬C
deg(C) · (z ≥ 1) + (z ⇒ C) .= C

C + (z ⇐ C) .= deg(¬C) · z ≥ 1

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 13/121

Pseudo-Boolean Solving and Optimization

Formulas, Decision Problems, and Optimization Problems

Pseudo-Boolean (PB) formula
Conjunction of pseudo-Boolean constraints
F

.= C1 ∧ C2 ∧ · · · ∧ Cm

Pseudo-Boolean Solving (PBS)
Decide whether F is satisfiable/feasible

Pseudo-Boolean Optimization (PBO)
Find satisfying assignment to F that minimizes objective function

∑
iwi`i

(Maximization: minimize −
∑
iwi`i)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 14/121

Pseudo-Boolean Solving and Optimization

Some Problems Expressed as PBO (1/2)

Input:
undirected graph G = (V,E)
weight function w : V → N+

Weighted minimum vertex cover
min

∑
v∈V w(v) · xv

xu + xv ≥ 1 (u, v) ∈ E

Weighted maximum clique
min −

∑
v∈V w(v) · xv

xu + xv ≥ 1 (u, v) /∈ E

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 15/121

Pseudo-Boolean Solving and Optimization

Some Problems Expressed as PBO (2/2)
Input:

sets S1, . . . , Sm ⊆ U
weight function w : U → N+

Weighted minimum hitting set
Find H ⊆ U such that

H ∩ Si 6= ∅ for all i ∈ [m] (H is a hitting set)∑
h∈H w(h) is minimal

min
∑
e∈U w(e) · xe∑

e∈Si
xe ≥ 1 i ∈ [m]

Note: In all of these examples, the problem is to
optimize a linear function
subject to a CNF formula (all constraints are clausal)

Already expressive framework!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 16/121

Pseudo-Boolean Solving and Optimization

Some Problems Expressed as PBO (2/2)
Input:

sets S1, . . . , Sm ⊆ U
weight function w : U → N+

Weighted minimum hitting set
Find H ⊆ U such that

H ∩ Si 6= ∅ for all i ∈ [m] (H is a hitting set)∑
h∈H w(h) is minimal

min
∑
e∈U w(e) · xe∑

e∈Si
xe ≥ 1 i ∈ [m]

Note: In all of these examples, the problem is to
optimize a linear function
subject to a CNF formula (all constraints are clausal)

Already expressive framework!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 16/121

Pseudo-Boolean Solving and Optimization

Some Problems Expressed as PBO (2/2)
Input:

sets S1, . . . , Sm ⊆ U
weight function w : U → N+

Weighted minimum hitting set
Find H ⊆ U such that

H ∩ Si 6= ∅ for all i ∈ [m] (H is a hitting set)∑
h∈H w(h) is minimal

min
∑
e∈U w(e) · xe∑

e∈Si
xe ≥ 1 i ∈ [m]

Note: In all of these examples, the problem is to
optimize a linear function
subject to a CNF formula (all constraints are clausal)

Already expressive framework!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 16/121

Pseudo-Boolean Solving and Optimization

Approaches for Pseudo-Boolean Problems

What we will discuss in this tutorial:
1 Pseudo-Boolean (PB) solving and optimization [main focus]
2 MaxSAT solving
3 Integer linear programming (ILP) — or, more generally,

mixed integer linear programming (MIP)

Rough conceptual difference:
PB/SAT: Focus on integral solutions, try to find optimal one
ILP/MIP: Find optimal non-integer solution; search for integral
solutions nearby

Basic trade-off: Inference power vs. inference speed

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 17/121

Pseudo-Boolean Solving and Optimization

Approaches for Pseudo-Boolean Problems

What we will discuss in this tutorial:
1 Pseudo-Boolean (PB) solving and optimization [main focus]
2 MaxSAT solving
3 Integer linear programming (ILP) — or, more generally,

mixed integer linear programming (MIP)

Rough conceptual difference:
PB/SAT: Focus on integral solutions, try to find optimal one
ILP/MIP: Find optimal non-integer solution; search for integral
solutions nearby

Basic trade-off: Inference power vs. inference speed

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 17/121

Some Further References

Some References for Further Reading (and Watching)
Handbook of Satisfiability (PB and MaxSAT)

Chapter 7: Proof Complexity and SAT Solving
Chapter 23: MaxSAT, Hard and Soft Constraints
Chapter 24: Maximum Satisfiability
Chapter 28: Pseudo-Boolean and Cardinality

Constraints

Mixed integer linear programming

https://tinyurl.com/MIPsurveypaper [Wol08]
https://tinyurl.com/MIPperformance [KMP13]

Videos
MaxSAT tutorial by Berg et al. https://tinyurl.com/MaxSATtutorial

MIP tutorial by Gleixner https://tinyurl.com/MIPtutorial

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 18/121

https://tinyurl.com/MIPsurveypaper
https://tinyurl.com/MIPperformance
https://tinyurl.com/MaxSATtutorial
https://tinyurl.com/MIPtutorial

Organization of This Tutorial

Part I: Pseudo-Boolean Preliminaries

Part II: Pseudo-Boolean Solving

Part III: Pseudo-Boolean Optimization

Part IV: Mixed Integer Linear Programming

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 19/121

Outline of Part II: Pseudo-Boolean Solving

4 Conflict-Driven Clause Learning
CDCL by Example
Pseudocode and Analysis

5 CDCL-Based Pseudo-Boolean Solving
Some Example CNF Encodings
Properties of CNF Encodings

6 “Native” Cutting-Planes-Based Pseudo-Boolean Solving
Preliminaries on Pseudo-Boolean Reasoning
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division
More About Pseudo-Boolean Reasoning

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 20/121

Conflict-Driven Clause Learning CDCL by Example

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 21/121

Conflict-Driven Clause Learning CDCL by Example

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 21/121

Conflict-Driven Clause Learning CDCL by Example

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 21/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0 Decision

Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0 Decision

Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 22/121

Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 23/121

Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 23/121

Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 23/121

Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 23/121

Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 23/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

⊥

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 24/121

Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Main Loop Pseudocode (High Level)
forever do

if current assignment falsifies clause then
apply learning scheme to derive new clause;
if learned clause empty then output UNSATISFIABLE and exit;
else

add learned clause and backjump
end

else if all variables assigned then output SATISFIABLE and exit;
else if exists unit clause C propagating x to value b ∈ {0, 1} then

add propagated assignment x
C= b

else if time to restart then
remove all variable assignments

else
if time for clause database reduction then

erase (roughly) half of learned clauses in memory
end
use decision scheme to choose assignment x

d= b;
end

end

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 25/121

Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Main Loop Pseudocode (High Level)
forever do

if current assignment falsifies clause then
apply learning scheme to derive new clause;
if learned clause empty then output UNSATISFIABLE and exit;
else

add learned clause and backjump
end

else if all variables assigned then output SATISFIABLE and exit;
else if exists unit clause C propagating x to value b ∈ {0, 1} then

add propagated assignment x
C= b

else if time to restart then
remove all variable assignments

else
if time for clause database reduction then

erase (roughly) half of learned clauses in memory
end
use decision scheme to choose assignment x

d= b;
end

end

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 25/121

Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 26/121

Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 26/121

Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 26/121

Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 26/121

Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing
together conflict analyses:

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 27/121

Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution. . . by stringing
together conflict analyses:

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

⊥

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 27/121

Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:

w
d
=0

u
u∨w
= 0

x
d
=0

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

x ∨ z

x ∨ z

x

x
x
=0

u
u∨x
= 1

u ∨ w

u ∨ w

u

x

⊥

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 27/121

Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x x ∨ z

x ∨ z

x

u ∨ w

u ∨ w

u

x

⊥

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 27/121

Conflict-Driven Clause Learning Pseudocode and Analysis

Current State of Affairs

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)
Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong lower
bounds for “obvious” formulas, e.g., [Hak85, Urq87, BW01, MN14]

Explore stronger reasoning methods (potential exponential speed-up)

In particular, pseudo-Boolean solving (a.k.a. 0-1 integer
programming) corresponding to cutting planes proof system

Importantly, extends to pseudo-Boolean optimization
[we will return to this topic in Part III]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 28/121

CDCL-Based Pseudo-Boolean Solving

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses
Lazy approach: learn clauses from PB constraints

Sat4j [LP10] (one of versions in library)
Eager approach: re-encode to clauses and run CDCL

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 29/121

CDCL-Based Pseudo-Boolean Solving

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses
Lazy approach: learn clauses from PB constraints

Sat4j [LP10] (one of versions in library)
Eager approach: re-encode to clauses and run CDCL

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 29/121

CDCL-Based Pseudo-Boolean Solving

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses
Lazy approach: learn clauses from PB constraints

Sat4j [LP10] (one of versions in library)
Eager approach: re-encode to clauses and run CDCL

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 29/121

CDCL-Based Pseudo-Boolean Solving

Re-encoding to CNF

CNF encoding can be exponentially larger than PB encoding

Use extension variables for more compact encoding

High-level idea: new variables = gates in circuit evaluating PB
constraint

Consider first two concrete examples for cardinality constraints
n∑
i=1

xi ./ k

(where ./ ∈ {≥,≤,=})

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 30/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Sequential Counter Encoding∑n
i=1 xi ./ k for ./ ∈ {≥,≤,=}

si,j = “sum of i first variables ≥ j” (from [Sin05] with slight twists)

Base case (j > 1):
x1 ∨ s1,1

s1,j

x1 ∨ s1,1

Inductive step (i ≥ 2, j ≥ 1):
xi ∨ si,1
si−1,j ∨ si,j
xi ∨ si−1,j ∨ si,j+1

xi ∨ si−1,j+1 ∨ si,j+1

si−1,j ∨ si−1,j+1 ∨ si,j+1

To enforce cardinality constraint
./

.= ≥: Add unit clause sn,k
./

.= ≤: Add unit clause sn,k+1

./
.= =: Add both unit clauses above

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 31/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Sequential Counter Encoding∑n
i=1 xi ./ k for ./ ∈ {≥,≤,=}

si,j = “sum of i first variables ≥ j” (from [Sin05] with slight twists)

Base case (j > 1):
x1 ∨ s1,1

s1,j

x1 ∨ s1,1

Inductive step (i ≥ 2, j ≥ 1):
xi ∨ si,1
si−1,j ∨ si,j
xi ∨ si−1,j ∨ si,j+1

xi ∨ si−1,j+1 ∨ si,j+1

si−1,j ∨ si−1,j+1 ∨ si,j+1

To enforce cardinality constraint
./

.= ≥: Add unit clause sn,k
./

.= ≤: Add unit clause sn,k+1

./
.= =: Add both unit clauses above

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 31/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Sequential Counter Encoding∑n
i=1 xi ./ k for ./ ∈ {≥,≤,=}

si,j = “sum of i first variables ≥ j” (from [Sin05] with slight twists)

Base case (j > 1):
x1 ∨ s1,1

s1,j

x1 ∨ s1,1

Inductive step (i ≥ 2, j ≥ 1):
xi ∨ si,1
si−1,j ∨ si,j
xi ∨ si−1,j ∨ si,j+1

xi ∨ si−1,j+1 ∨ si,j+1

si−1,j ∨ si−1,j+1 ∨ si,j+1

To enforce cardinality constraint
./

.= ≥: Add unit clause sn,k
./

.= ≤: Add unit clause sn,k+1

./
.= =: Add both unit clauses above

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 31/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Totalizer Encoding∑n
i=1 xi ./ k for ./ ∈ {≥,≤,=}

Build binary tree: children have t bits ai, bi each; parent outputs 2t bits cj
cj = “sum of input variables ≥ j” [BB03]

Base case (two bits x1, x2):
xi ∨ c1

x1 ∨ x2 ∨ c2

x1 ∨ x2 ∨ c1

xi ∨ c2

Inductive step (i+ j ≥ 1):
ai ∨ bj ∨ ci+j
ai+1 ∨ bj+1 ∨ ci+j+1

(a0 = b0 = 1)

To enforce cardinality constraint, add for root node
./

.= ≥: unit clause ck
./

.= ≤: unit clause ck+1
./

.= =: both unit clauses above
Can be extended to arbitrary PB constraints [JMM15]; blow-up can be bad
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 32/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Totalizer Encoding∑n
i=1 xi ./ k for ./ ∈ {≥,≤,=}

Build binary tree: children have t bits ai, bi each; parent outputs 2t bits cj
cj = “sum of input variables ≥ j” [BB03]

Base case (two bits x1, x2):
xi ∨ c1

x1 ∨ x2 ∨ c2

x1 ∨ x2 ∨ c1

xi ∨ c2

Inductive step (i+ j ≥ 1):
ai ∨ bj ∨ ci+j
ai+1 ∨ bj+1 ∨ ci+j+1

(a0 = b0 = 1)

To enforce cardinality constraint, add for root node
./

.= ≥: unit clause ck
./

.= ≤: unit clause ck+1
./

.= =: both unit clauses above
Can be extended to arbitrary PB constraints [JMM15]; blow-up can be bad
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 32/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Totalizer Encoding∑n
i=1 xi ./ k for ./ ∈ {≥,≤,=}

Build binary tree: children have t bits ai, bi each; parent outputs 2t bits cj
cj = “sum of input variables ≥ j” [BB03]

Base case (two bits x1, x2):
xi ∨ c1

x1 ∨ x2 ∨ c2

x1 ∨ x2 ∨ c1

xi ∨ c2

Inductive step (i+ j ≥ 1):
ai ∨ bj ∨ ci+j
ai+1 ∨ bj+1 ∨ ci+j+1

(a0 = b0 = 1)

To enforce cardinality constraint, add for root node
./

.= ≥: unit clause ck
./

.= ≤: unit clause ck+1
./

.= =: both unit clauses above
Can be extended to arbitrary PB constraints [JMM15]; blow-up can be bad
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 32/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Adder Network Encoding (Sketch)

For general pseudo-Boolean constraints
∑n
i=1 ai`i ≥ A, write

coefficients ai in binary 〈ai,B ai,B−1 · · · ai,1 ai,0〉
Assuming B large enough for rest of this slide, it clearly holds that

n∑
i=1

ai`i =
n∑
i=1

B∑
j=0

2j · ai,j · `i

Introduce new variables cout, sout and use encodings of full adders

2 · cout + sout = x+ y + z

in CNF to enforce
n∑
i=1

B∑
j=0

2j · ai,j · `i =
B∑
j=0

2j · sj and
B∑
j=0

2j · sj ≥ A

See [ES06] for all the missing details. . .
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 33/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Adder Network Encoding (Sketch)

For general pseudo-Boolean constraints
∑n
i=1 ai`i ≥ A, write

coefficients ai in binary 〈ai,B ai,B−1 · · · ai,1 ai,0〉
Assuming B large enough for rest of this slide, it clearly holds that

n∑
i=1

ai`i =
n∑
i=1

B∑
j=0

2j · ai,j · `i

Introduce new variables cout, sout and use encodings of full adders

2 · cout + sout = x+ y + z

in CNF to enforce
n∑
i=1

B∑
j=0

2j · ai,j · `i =
B∑
j=0

2j · sj and
B∑
j=0

2j · sj ≥ A

See [ES06] for all the missing details. . .
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 33/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Adder Network Encoding (Sketch)

For general pseudo-Boolean constraints
∑n
i=1 ai`i ≥ A, write

coefficients ai in binary 〈ai,B ai,B−1 · · · ai,1 ai,0〉
Assuming B large enough for rest of this slide, it clearly holds that

n∑
i=1

ai`i =
n∑
i=1

B∑
j=0

2j · ai,j · `i

Introduce new variables cout, sout and use encodings of full adders

2 · cout + sout = x+ y + z

in CNF to enforce
n∑
i=1

B∑
j=0

2j · ai,j · `i =
B∑
j=0

2j · sj and
B∑
j=0

2j · sj ≥ A

See [ES06] for all the missing details. . .
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 33/121

CDCL-Based Pseudo-Boolean Solving Some Example CNF Encodings

Adder Network Encoding (Sketch)

For general pseudo-Boolean constraints
∑n
i=1 ai`i ≥ A, write

coefficients ai in binary 〈ai,B ai,B−1 · · · ai,1 ai,0〉
Assuming B large enough for rest of this slide, it clearly holds that

n∑
i=1

ai`i =
n∑
i=1

B∑
j=0

2j · ai,j · `i

Introduce new variables cout, sout and use encodings of full adders

2 · cout + sout = x+ y + z

in CNF to enforce
n∑
i=1

B∑
j=0

2j · ai,j · `i =
B∑
j=0

2j · sj and
B∑
j=0

2j · sj ≥ A

See [ES06] for all the missing details. . .
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 33/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

CNF Encoding Desiderata
Generalized arc consistency (GAC)
For FC encoding PB constraint C and ρ partial assignment, want:

If C propagates under ρ, then FC should yield same propagations
If ρ falsifies C, then FC should unit propagate to contradiction

True for sequential counter and totalizer; false for adder network

Encoding size
Want as few variables and clauses as possible

Adder network very compact
Totalizer has fewer variables than sequential counter
But generalized totalizer encoding can get exponentially large

Possible to achieve both GAC and polynomial-size encoding [BBR09]
But complicated; and in practice not better than totalizer [JMM15]?
Rich literature on encodings — see SAT handbook for more references
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 34/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

CNF Encoding Desiderata
Generalized arc consistency (GAC)
For FC encoding PB constraint C and ρ partial assignment, want:

If C propagates under ρ, then FC should yield same propagations
If ρ falsifies C, then FC should unit propagate to contradiction

True for sequential counter and totalizer; false for adder network

Encoding size
Want as few variables and clauses as possible

Adder network very compact
Totalizer has fewer variables than sequential counter
But generalized totalizer encoding can get exponentially large

Possible to achieve both GAC and polynomial-size encoding [BBR09]
But complicated; and in practice not better than totalizer [JMM15]?
Rich literature on encodings — see SAT handbook for more references
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 34/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

CNF Encoding Desiderata
Generalized arc consistency (GAC)
For FC encoding PB constraint C and ρ partial assignment, want:

If C propagates under ρ, then FC should yield same propagations
If ρ falsifies C, then FC should unit propagate to contradiction

True for sequential counter and totalizer; false for adder network

Encoding size
Want as few variables and clauses as possible

Adder network very compact
Totalizer has fewer variables than sequential counter
But generalized totalizer encoding can get exponentially large

Possible to achieve both GAC and polynomial-size encoding [BBR09]
But complicated; and in practice not better than totalizer [JMM15]?
Rich literature on encodings — see SAT handbook for more references
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 34/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

Performance of CDCL-Based Pseudo-Boolean Solving

CDCL-based pseudo-Boolean can be very competitive
(sometimes beating native pseudo-Boolean solvers hands down)

Extension variables potentially gives solver lots of power
Allows branching over complex statements
Can learn clauses corresponding to polytopes in original problem

But performance gain from extension variables seems quite sensitive
to input order [EGNV18]

And sometimes extension variables cannot make up for CDCL being
exponentially weaker than pseudo-Boolean reasoning [EGNV18]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 35/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

Question About Forward vs. Backward Propagation

Forward propagation: If
∑n
i=1 xi ≥ k true, then sn,k / ck propagates

to true
Backward propagation: If

∑n
i=1 xi ≥ k false, then sn,k / ck

propagates to false

Sequential counter
xi ∨ si,1
si−1,j ∨ si,j
xi ∨ si−1,j ∨ si,j+1

xi ∨ si−1,j+1 ∨ si,j+1

si−1,j ∨ si−1,j+1 ∨ si,j+1

Totalizer
ai ∨ bj ∨ ci+j
ai+1 ∨ bj+1 ∨ ci+j+1

Solvers like Open-WBO [MML14] only encode forward propagation
Can having propagation in both directions help?
Or does it on the contrary hurt? Why?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 36/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

Question About Forward vs. Backward Propagation

Forward propagation: If
∑n
i=1 xi ≥ k true, then sn,k / ck propagates

to true
Backward propagation: If

∑n
i=1 xi ≥ k false, then sn,k / ck

propagates to false

Sequential counter
xi ∨ si,1
si−1,j ∨ si,j
xi ∨ si−1,j ∨ si,j+1

xi ∨ si−1,j+1 ∨ si,j+1

si−1,j ∨ si−1,j+1 ∨ si,j+1

Totalizer
ai ∨ bj ∨ ci+j
ai+1 ∨ bj+1 ∨ ci+j+1

Solvers like Open-WBO [MML14] only encode forward propagation
Can having propagation in both directions help?
Or does it on the contrary hurt? Why?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 36/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

Question About Forward vs. Backward Propagation

Forward propagation: If
∑n
i=1 xi ≥ k true, then sn,k / ck propagates

to true
Backward propagation: If

∑n
i=1 xi ≥ k false, then sn,k / ck

propagates to false

Sequential counter
xi ∨ si,1
si−1,j ∨ si,j
xi ∨ si−1,j ∨ si,j+1

xi ∨ si−1,j+1 ∨ si,j+1

si−1,j ∨ si−1,j+1 ∨ si,j+1

Totalizer
ai ∨ bj ∨ ci+j
ai+1 ∨ bj+1 ∨ ci+j+1

Solvers like Open-WBO [MML14] only encode forward propagation
Can having propagation in both directions help?
Or does it on the contrary hurt? Why?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 36/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

Question About Forward vs. Backward Propagation

Forward propagation: If
∑n
i=1 xi ≥ k true, then sn,k / ck propagates

to true
Backward propagation: If

∑n
i=1 xi ≥ k false, then sn,k / ck

propagates to false

Sequential counter
xi ∨ si,1
si−1,j ∨ si,j
xi ∨ si−1,j ∨ si,j+1

xi ∨ si−1,j+1 ∨ si,j+1

si−1,j ∨ si−1,j+1 ∨ si,j+1

Totalizer
ai ∨ bj ∨ ci+j
ai+1 ∨ bj+1 ∨ ci+j+1

Solvers like Open-WBO [MML14] only encode forward propagation
Can having propagation in both directions help?
Or does it on the contrary hurt? Why?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 36/121

CDCL-Based Pseudo-Boolean Solving Properties of CNF Encodings

More Questions

1 How to find best possible CNF encodings of PB constraints for given
problem?

Trade-offs between propagation strength and encoding size?
Rigorous mathematical insights?

2 Understand complementary strengths of CDCL-based and “native”
cutting-planes-based PB solving?

Theoretical results on computational complexity?
Harness complementary strengths in applied solvers?

3 How to make sure re-encoding into CNF is guaranteed to be correct?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 37/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

“Native” Pseudo-Boolean Conflict-Driven Search

Want to do “same thing” as CDCL but with pseudo-Boolean constraints
without re-encoding

Variable assignments
1 Always propagate forced assignment if possible
2 Otherwise make assignment using decision heuristic

At conflict
1 Do conflict analysis to derive new constraint
2 Add new constraint to instance
3 Backjump by rolling back decisions so that asserting literal flips

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 38/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 39/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 39/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 39/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 39/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 39/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 39/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 39/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 39/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 40/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 40/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥
y ∨ z falsified by
trail ρ = {w, u, x, y, z}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 40/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 40/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

u ∨ x falsified by
trail ρ′′ = {w, u, x}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 40/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

u ∨ x falsified by
trail ρ′′ = {w, u, x}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 40/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

u ∨ x falsified by
trail ρ′′ = {w, u, x}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 40/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

u ∨ x falsified by
trail ρ′′ = {w, u, x}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 40/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Generalized Resolution
Can mimic resolution step

x ∨ y ∨ z y ∨ z
x ∨ y

by adding clauses as pseudo-Boolean constraints
x+ y + z ≥ 1 y + z ≥ 1

x+ 2y ≥ 1

(Recall z + z = 1)

Generalized resolution rule (from [Hoo88, Hoo92])
Positive linear combination so that some variable cancels

a1x1 +
∑
i≥2 ai`i ≥ A b1x1 +

∑
i≥2 bi`i ≥ B∑

i≥2
(
c
a1
ai + c

b1
bi)`i ≥ c

a1
A+ c

b1
B − c

[c = lcm(a1, b1)]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 41/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Generalized Resolution
Can mimic resolution step

x ∨ y ∨ z y ∨ z
x ∨ y

by adding clauses as pseudo-Boolean constraints
x+ y + z ≥ 1 y + z ≥ 1

x+ 2y ≥ 1

(Recall z + z = 1)

Generalized resolution rule (from [Hoo88, Hoo92])
Positive linear combination so that some variable cancels

a1x1 +
∑
i≥2 ai`i ≥ A b1x1 +

∑
i≥2 bi`i ≥ B∑

i≥2
(
c
a1
ai + c

b1
bi)`i ≥ c

a1
A+ c

b1
B − c

[c = lcm(a1, b1)]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 41/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Generalized Resolution
Can mimic resolution step

x ∨ y ∨ z y ∨ z
x ∨ y

by adding clauses as pseudo-Boolean constraints
x+ y + z ≥ 1 y + z ≥ 1

x+ 2y ≥ 1

(Recall z + z = 1)

Generalized resolution rule (from [Hoo88, Hoo92])
Positive linear combination so that some variable cancels

a1x1 +
∑
i≥2 ai`i ≥ A b1x1 +

∑
i≥2 bi`i ≥ B∑

i≥2
(
c
a1
ai + c

b1
bi)`i ≥ c

a1
A+ c

b1
B − c

[c = lcm(a1, b1)]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 41/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Saturation
Actually, don’t get quite the right constraint in mimicking of resolution

x+ y + z ≥ 1 y + z ≥ 1
x+ 2y ≥ 1

But clearly valid to conclude
x+ 2y ≥ 1
x+ y ≥ 1

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Sound over integers, not over rationals (need such rules for SAT solving)
[Generalized resolution as defined in [Hoo88, Hoo92] includes fix above, but convenient
here to make the two separate steps explicit]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 42/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Saturation
Actually, don’t get quite the right constraint in mimicking of resolution

x+ y + z ≥ 1 y + z ≥ 1
x+ 2y ≥ 1

But clearly valid to conclude
x+ 2y ≥ 1
x+ y ≥ 1

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Sound over integers, not over rationals (need such rules for SAT solving)
[Generalized resolution as defined in [Hoo88, Hoo92] includes fix above, but convenient
here to make the two separate steps explicit]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 42/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Saturation
Actually, don’t get quite the right constraint in mimicking of resolution

x+ y + z ≥ 1 y + z ≥ 1
x+ 2y ≥ 1

But clearly valid to conclude
x+ 2y ≥ 1
x+ y ≥ 1

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Sound over integers, not over rationals (need such rules for SAT solving)
[Generalized resolution as defined in [Hoo88, Hoo92] includes fix above, but convenient
here to make the two separate steps explicit]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 42/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Saturation
Actually, don’t get quite the right constraint in mimicking of resolution

x+ y + z ≥ 1 y + z ≥ 1
x+ 2y ≥ 1

But clearly valid to conclude
x+ 2y ≥ 1
x+ y ≥ 1

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Sound over integers, not over rationals (need such rules for SAT solving)
[Generalized resolution as defined in [Hoo88, Hoo92] includes fix above, but convenient
here to make the two separate steps explicit]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 42/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)

2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3
x4 ≥ 1

Applying saturate(x4 ≥ 1) does nothing

Non-negative slack w.r.t. ρ′ =
{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 43/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)

2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3
x4 ≥ 1

Applying saturate(x4 ≥ 1) does nothing

Non-negative slack w.r.t. ρ′ =
{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 43/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)

2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3
x4 ≥ 1

Applying saturate(x4 ≥ 1) does nothing

Non-negative slack w.r.t. ρ′ =
{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 43/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)

2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3
x4 ≥ 1

Applying saturate(x4 ≥ 1) does nothing

Non-negative slack w.r.t. ρ′ =
{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 43/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)

2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3
x4 ≥ 1

Applying saturate(x4 ≥ 1) does nothing

Non-negative slack w.r.t. ρ′ =
{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 43/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

What Went Wrong? And What to Do About It?
Accident report

Generalized resolution sound over the reals
Given ρ′ =

{
x1 = 0, x2 = 1

}
, over the reals have

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4 propagates x3 ≥ 1

2
C2

.= 2x1 + 2x2 + 2x3 ≥ 3 satisfied by x3 ≤ 1
2

So after resolving away x3, “can’t see any conflict”

Remedial action
Strengthen propagation to x3 ≥ 1 also over the reals
I.e., want reason C with slack(C; ρ′) = 0
Fix (non-obvious): Apply weakening

weaken(
∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj

to reason constraint and then saturate
Approach in [CK05] (seems to go back to observations in [Wil76])

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 44/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Preliminaries on Pseudo-Boolean Reasoning

What Went Wrong? And What to Do About It?
Accident report

Generalized resolution sound over the reals
Given ρ′ =

{
x1 = 0, x2 = 1

}
, over the reals have

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4 propagates x3 ≥ 1

2
C2

.= 2x1 + 2x2 + 2x3 ≥ 3 satisfied by x3 ≤ 1
2

So after resolving away x3, “can’t see any conflict”

Remedial action
Strengthen propagation to x3 ≥ 1 also over the reals
I.e., want reason C with slack(C; ρ′) = 0
Fix (non-obvious): Apply weakening

weaken(
∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj

to reason constraint and then saturate
Approach in [CK05] (seems to go back to observations in [Wil76])

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 44/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Try to Reduce the Reason Constraint

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

Let’s try to
1 Weaken reason on non-falsified literal (but not last propagated)
2 Saturate weakened constraint
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x2 2x1 + 2x3 + x4 ≥ 2saturate
2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 + x4 ≥ 1

Bummer! Still non-negative slack — not conflicting
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 45/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Try to Reduce the Reason Constraint

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

Let’s try to
1 Weaken reason on non-falsified literal (but not last propagated)
2 Saturate weakened constraint
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x2 2x1 + 2x3 + x4 ≥ 2saturate
2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 + x4 ≥ 1

Bummer! Still non-negative slack — not conflicting
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 45/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Try to Reduce the Reason Constraint

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

Let’s try to
1 Weaken reason on non-falsified literal (but not last propagated)
2 Saturate weakened constraint
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x2 2x1 + 2x3 + x4 ≥ 2saturate
2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 + x4 ≥ 1

Bummer! Still non-negative slack — not conflicting
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 45/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting!
Backjump propagates to conflict without solver making any decisions
Done! Next conflict analysis will derive contradiction
(Or, in practice, terminate immediately when conflict without decisions)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 46/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting!
Backjump propagates to conflict without solver making any decisions
Done! Next conflict analysis will derive contradiction
(Or, in practice, terminate immediately when conflict without decisions)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 46/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting!
Backjump propagates to conflict without solver making any decisions
Done! Next conflict analysis will derive contradiction
(Or, in practice, terminate immediately when conflict without decisions)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 46/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting!
Backjump propagates to conflict without solver making any decisions
Done! Next conflict analysis will derive contradiction
(Or, in practice, terminate immediately when conflict without decisions)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 46/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 47/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 47/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 47/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 47/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 47/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Pseudo-Boolean Conflict Analys

analyzePBconflict(Cconfl, ρ)
while Cconfl not asserting do

`← literal assigned last on trail ρ;
if ` occurs in Cconfl then

Creason ← reason(`, ρ);
Creason ← reduceSat(Creason, Cconfl, `, ρ);
Cconfl ← resolve(Cconfl, Creason, `);
Cconfl ← saturate(Cconfl);

end
ρ← removeLast(ρ);

end
return Cconfl;

Reduction of reason new compared to CDCL — everything else the same
Essentially conflict analysis used in Sat4j [LP10]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 48/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Some Problems Compared to CDCL

Compared to clauses harder to detect propagation for constraints like
n∑
i=1

xi ≥ n− 1

Generalized resolution for general pseudo-Boolean constraints
⇒ lots of lcm computations
⇒ coefficient sizes can explode (expensive arithmetic)

For CNF inputs, degenerates to resolution!
⇒ CDCL but with super-expensive data structures

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 49/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Some Problems Compared to CDCL

Compared to clauses harder to detect propagation for constraints like
n∑
i=1

xi ≥ n− 1

Generalized resolution for general pseudo-Boolean constraints
⇒ lots of lcm computations
⇒ coefficient sizes can explode (expensive arithmetic)

For CNF inputs, degenerates to resolution!
⇒ CDCL but with super-expensive data structures

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 49/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Saturation

Some Problems Compared to CDCL

Compared to clauses harder to detect propagation for constraints like
n∑
i=1

xi ≥ n− 1

Generalized resolution for general pseudo-Boolean constraints
⇒ lots of lcm computations
⇒ coefficient sizes can explode (expensive arithmetic)

For CNF inputs, degenerates to resolution!
⇒ CDCL but with super-expensive data structures

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 49/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

The Cutting Planes Proof System
Cutting planes as defined in theory literature [CCT87] doesn’t use
saturation but instead division (a.k.a. Chvátal-Gomory cut)

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB

Division
∑
i ai`i ≥ A∑

idai/ce`i ≥ dA/ce

Cutting planes with division implicationally complete
Cutting planes with saturation is not [VEG+18]
Can division yield stronger conflict analysis?
(Used for general integer linear programming in CutSat [JdM13])

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 50/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

The Cutting Planes Proof System
Cutting planes as defined in theory literature [CCT87] doesn’t use
saturation but instead division (a.k.a. Chvátal-Gomory cut)

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB

Division
∑
i ai`i ≥ A∑

idai/ce`i ≥ dA/ce

Cutting planes with division implicationally complete
Cutting planes with saturation is not [VEG+18]
Can division yield stronger conflict analysis?
(Used for general integer linear programming in CutSat [JdM13])

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 50/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

The Cutting Planes Proof System
Cutting planes as defined in theory literature [CCT87] doesn’t use
saturation but instead division (a.k.a. Chvátal-Gomory cut)

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB

Division
∑
i ai`i ≥ A∑

idai/ce`i ≥ dA/ce

Cutting planes with division implicationally complete
Cutting planes with saturation is not [VEG+18]
Can division yield stronger conflict analysis?
(Used for general integer linear programming in CutSat [JdM13])

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 50/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 51/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 51/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 51/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 51/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 52/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 52/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 52/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 52/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Round-to-1 Reduction used in RoundingSat

Reduction method used in RoundingSat does max weakening right away

roundToOne(C, `, ρ)
c← coeff (C, `);
foreach literal `j in C do

if `j /∈ ρ and c - coeff (C, `j) then
C ← weaken(C, `j);

end
end
return divide(C, c);

And roundToOne used more aggressively in conflict analysis in [EN18]
(though now we are dialling back on this. . .)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 53/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

RoundingSat Conflict Analysis

analyzePBconflict(Cconfl, ρ)
while Cconfl contains no or multiple falsified literals on last level do

if no current solver decisions then
output UNSATISFIABLE and terminate

end
`← literal assigned last on trail ρ;
if ` occurs in Cconfl then

Cconfl ← roundToOne(Cconfl, `, ρ);
Creason ← roundToOne(reason(`, ρ), `, ρ);
Cconfl ← resolve(Cconfl, Creason, `);

end
ρ← removeLast(ρ);

end
`← literal in Cconfl last falsified by ρ;
return roundToOne(Cconfl, `, ρ);

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 54/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving Pseudo-Boolean Conflict Analysis Using Division

Division vs. Saturation

Higher conflict speed when PB reasoning doesn’t help [EN18]

Seems to perform better when PB reasoning crucial [EGNV18]

Keeps coefficients small — can (often) do fixed-precision arithmetic

But Sat4j still better for some circuit verification problems [LBD+20]

And still equally hard to detect propagation

Also, still degenerates to resolution for CNF inputs

Sometimes very poor performance even on infeasible 0-1 LPs!

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 55/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules I: Cardinality Constraint Reduction
Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] only learns cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i ai`i ≥ A∑

i : ai>0 `i ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Can be simulated with weakening + division
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 56/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules I: Cardinality Constraint Reduction
Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] only learns cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i ai`i ≥ A∑

i : ai>0 `i ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Can be simulated with weakening + division
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 56/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules I: Cardinality Constraint Reduction
Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] only learns cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i ai`i ≥ A∑

i : ai>0 `i ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Can be simulated with weakening + division
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 56/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules I: Cardinality Constraint Reduction
Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] only learns cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i ai`i ≥ A∑

i : ai>0 `i ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Can be simulated with weakening + division
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 56/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules II: Strengthening

Strengthening by example:
Set x = 0 and propagate on constraints

x+ y ≥ 1 x+ z ≥ 1 y + z ≥ 1

y
x+y≥1= 1 and z x+z≥1= 1 ⇒ y + z ≥ 1 oversatisfied by margin 1

Hence, can deduce constraint x+ y + z ≥ 2

Strengthening rule (imported by [DG02] from operations research)
Suppose ` = 0 ⇒

∑
i ai`i ≥ A oversatisfied by amount K

Then can deduce K`+
∑
i ai`i ≥ A+K

In theory, can recover from bad encodings (e.g., CNF)
In practice, seems inefficient and hard to get to work. . .

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 57/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules II: Strengthening

Strengthening by example:
Set x = 0 and propagate on constraints

x+ y ≥ 1 x+ z ≥ 1 y + z ≥ 1

y
x+y≥1= 1 and z x+z≥1= 1 ⇒ y + z ≥ 1 oversatisfied by margin 1

Hence, can deduce constraint x+ y + z ≥ 2

Strengthening rule (imported by [DG02] from operations research)
Suppose ` = 0 ⇒

∑
i ai`i ≥ A oversatisfied by amount K

Then can deduce K`+
∑
i ai`i ≥ A+K

In theory, can recover from bad encodings (e.g., CNF)
In practice, seems inefficient and hard to get to work. . .

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 57/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules II: Strengthening

Strengthening by example:
Set x = 0 and propagate on constraints

x+ y ≥ 1 x+ z ≥ 1 y + z ≥ 1

y
x+y≥1= 1 and z x+z≥1= 1 ⇒ y + z ≥ 1 oversatisfied by margin 1

Hence, can deduce constraint x+ y + z ≥ 2

Strengthening rule (imported by [DG02] from operations research)
Suppose ` = 0 ⇒

∑
i ai`i ≥ A oversatisfied by amount K

Then can deduce K`+
∑
i ai`i ≥ A+K

In theory, can recover from bad encodings (e.g., CNF)
In practice, seems inefficient and hard to get to work. . .

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 57/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules II: Strengthening

Strengthening by example:
Set x = 0 and propagate on constraints

x+ y ≥ 1 x+ z ≥ 1 y + z ≥ 1

y
x+y≥1= 1 and z x+z≥1= 1 ⇒ y + z ≥ 1 oversatisfied by margin 1

Hence, can deduce constraint x+ y + z ≥ 2

Strengthening rule (imported by [DG02] from operations research)
Suppose ` = 0 ⇒

∑
i ai`i ≥ A oversatisfied by amount K

Then can deduce K`+
∑
i ai`i ≥ A+K

In theory, can recover from bad encodings (e.g., CNF)
In practice, seems inefficient and hard to get to work. . .

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 57/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules II: Strengthening

Strengthening by example:
Set x = 0 and propagate on constraints

x+ y ≥ 1 x+ z ≥ 1 y + z ≥ 1

y
x+y≥1= 1 and z x+z≥1= 1 ⇒ y + z ≥ 1 oversatisfied by margin 1

Hence, can deduce constraint x+ y + z ≥ 2

Strengthening rule (imported by [DG02] from operations research)
Suppose ` = 0 ⇒

∑
i ai`i ≥ A oversatisfied by amount K

Then can deduce K`+
∑
i ai`i ≥ A+K

In theory, can recover from bad encodings (e.g., CNF)
In practice, seems inefficient and hard to get to work. . .

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 57/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution

“Fusion resolution” [Goc17]
a`+

∑
i bi`i ≥ B a`+

∑
i bi`i ≥ B′∑

i bi`i ≥ min{B,B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 58/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution

“Fusion resolution” [Goc17]
a`+

∑
i bi`i ≥ B a`+

∑
i bi`i ≥ B′∑

i bi`i ≥ min{B,B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 58/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution
6y + 4z + 2w ≥ 4

“Fusion resolution” [Goc17]
a`+

∑
i bi`i ≥ B a`+

∑
i bi`i ≥ B′∑

i bi`i ≥ min{B,B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 58/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution + saturation
4y + 4z + 2w ≥ 4

“Fusion resolution” [Goc17]
a`+

∑
i bi`i ≥ B a`+

∑
i bi`i ≥ B′∑

i bi`i ≥ min{B,B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 58/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution + saturation + division
2y + 2z + w ≥ 2

“Fusion resolution” [Goc17]
a`+

∑
i bi`i ≥ B a`+

∑
i bi`i ≥ B′∑

i bi`i ≥ min{B,B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 58/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution + saturation + division
2y + 2z + w ≥ 2

“Fusion resolution” [Goc17]
a`+

∑
i bi`i ≥ B a`+

∑
i bi`i ≥ B′∑

i bi`i ≥ min{B,B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 58/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Some PB Solving Challenges I: Input Format

1 Preprocessing/presolving: Important in SAT solving and integer linear
programming, but not done in PB solvers — why?

Follow up on preliminary work on PB preprocessing in [MLM09]?
Use presolver PaPILO [PaP] from MIP solver SCIP [SCI]?

2 CNF: How to go beyond conflict-driven clause learning CDCL for
decision problems encoded in CNF?

3 Cardinality constraint detection: Proposed as preprocessing [BLLM14]
or inprocessing [EN20] — not yet competitive in practice

4 Robustness: Make PB solvers less sensitive to presence of extra
constraints (anecdotally, CDCL solvers seem more stable)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 59/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Some PB Solving Challenges II: Conflict Analysis
1 Choice of Boolean rule:

Division, saturation, or select adaptively?
Or some other cut rule from ILP?
Try to avoid irrelevant literals? [LMMW20]

2 Many more degrees of freedom than in CDCL:
Skip resolution steps when slack very negative?
How aggressively to weaken reason in reduction step? [LMW20]
Learn general PB constraints or more limited form?
How far to backjump when learned constraint asserting at many levels?
How large precision to use in integer arithmetic?

3 Do constraint minimization à la [SB09, HS09]?
4 How to assess quality of learned constraints?
5 Theoretical potential and limitations poorly understood [VEG+18]

Separations of subsystems of cutting planes?
In particular, is division reasoning stronger than saturation? [GNY19]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 60/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Some PB Solving Challenges III: Solver Heuristics

Many heuristics more or less copied from CDCL — maybe tailor more
carefully to PB setting?

1 Variable selection: VSIDS [MMZ+01] or VMTF [Rya04] or something
else?

2 Variable bumping: Consider different bumping score depending on
whether literal falsified,
whether literal cancels,
coefficient of literal and/or degree of constraint?

3 Phase saving: Standard as in [PD07], multiple phases [BF20], or
something else?

4 Different “modes” for SAT-focused and UNSAT-focused search?

See [Wal20] for a first in-depth investigation of some of these questions

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 61/121

“Native” Cutting-Planes-Based Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Some PB Solving Challenges IV: Efficiency and Correctness

1 Efficient unit propagation for PB constraints is a major challenge —
latest news in [Dev20], but still much left to do

2 Efficient detection of assertiveness during conflict analysis

3 Efficient and concise proof logging for pseudo-Boolean solving
(shameless self-plug: ongoing work on PB proof checker
VeriPB [Ver19, GMN20b] in [EGMN20, GMN20a, GMM+20, GN21])

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 62/121

Organization of This Tutorial

Part I: Pseudo-Boolean Preliminaries

Part II: Pseudo-Boolean Solving

Part III: Pseudo-Boolean Optimization

Part IV: Mixed Integer Linear Programming

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 63/121

Outline of Part III: Pseudo-Boolean Optimization

7 MaxSAT

8 Linear Search SAT-UNSAT (LSU)

9 Core-Guided Search

10 Implicit Hitting Set (IHS) Algorithm

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 64/121

MaxSAT

MaxSAT Problem
Pseudo-Boolean optimization and MaxSAT solving intimately connected,
so let’s do a detour and define MaxSAT

Weighted partial MaxSAT problem
Input: Soft clauses C1, . . . , Cm with weights wi ∈ R+, i ∈ [m]

Hard clauses Cm+1, . . . , CM
Goal: Find assignment ρ such that

• for all hard clauses Cm+1, . . . , CM it holds that ρ(Cj) = 1
• ρ maximizes

∑
ρ(Ci)=1,i∈[m]wi

All hard clauses must be satisfied
Maximize weight of satisfied soft clauses =
Minimize penalty of falsified soft clauses
Write (C)w for clause C with weight w (w =∞ for hard clause)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 65/121

MaxSAT

From MaxSAT to Pseudo-Boolean Optimization

MaxSAT instance

(x)5

(y ∨ z)4

(y ∨ z)3

(x∨ y ∨ z)∞
(x∨ y ∨ z)∞

PBO instance
min 5b1 + 4b2 + 3b3

b1 + x ≥ 1
b2 + y + z ≥ 1
b3 + y + z ≥ 1
x+ y + z ≥ 1
x+ y + z ≥ 1

So-called blocking variable transformation
Variables bi are blocking or relaxation variables

Optimal solution ρ = {x = 0, y = 1, z = 0} with penalty 3

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 66/121

MaxSAT

From MaxSAT to Pseudo-Boolean Optimization

MaxSAT instance

(x)5

(y ∨ z)4

(y ∨ z)3

(x∨ y ∨ z)∞
(x∨ y ∨ z)∞

PBO instance
min 5b1 + 4b2 + 3b3

b1 + x ≥ 1
b2 + y + z ≥ 1
b3 + y + z ≥ 1
x+ y + z ≥ 1
x+ y + z ≥ 1

So-called blocking variable transformation
Variables bi are blocking or relaxation variables

Optimal solution ρ = {x = 0, y = 1, z = 0} with penalty 3

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 66/121

MaxSAT

From MaxSAT to Pseudo-Boolean Optimization

MaxSAT instance

(x)5

(y ∨ z)4

(y ∨ z)3

(x∨ y ∨ z)∞
(x∨ y ∨ z)∞

PBO instance
min 5b1 + 4b2 + 3b3

b1 + x ≥ 1
b2 + y + z ≥ 1
b3 + y + z ≥ 1
x+ y + z ≥ 1
x+ y + z ≥ 1

So-called blocking variable transformation
Variables bi are blocking or relaxation variables

Optimal solution ρ = {x = 0, y = 1, z = 0} with penalty 3

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 66/121

MaxSAT

From MaxSAT to Pseudo-Boolean Optimization

MaxSAT instance

(x)5

(y ∨ z)4

(y ∨ z)3

(x∨ y ∨ z)∞
(x∨ y ∨ z)∞

PBO instance
min 5b1 + 4b2 + 3b3

b1 + x ≥ 1
b2 + y + z ≥ 1
b3 + y + z ≥ 1
x+ y + z ≥ 1
x+ y + z ≥ 1

So-called blocking variable transformation
Variables bi are blocking or relaxation variables

Optimal solution ρ = {x = 0, y = 1, z = 0} with penalty 3

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 66/121

MaxSAT

From Pseudo-Boolean Optimization to MaxSAT/WBO

“MaxSAT instance” but with PB constraints:
Weighted Boolean Optimization [MMP09]

PBO instance
min

∑n
i=1wi`i

C1

C2
...
CM

MaxSAT/WBO instance

(`1)w1

...
(`n)wn

(C1)∞
...

(CM)∞

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 67/121

MaxSAT

From Pseudo-Boolean Optimization to MaxSAT/WBO

“MaxSAT instance” but with PB constraints:
Weighted Boolean Optimization [MMP09]

PBO instance
min

∑n
i=1wi`i

C1

C2
...
CM

MaxSAT/WBO instance

(`1)w1

...
(`n)wn

(C1)∞
...

(CM)∞

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 67/121

MaxSAT

From Pseudo-Boolean Optimization to MaxSAT/WBO

“MaxSAT instance” but with PB constraints:
Weighted Boolean Optimization [MMP09]

PBO instance
min

∑n
i=1wi`i

C1

C2
...
CM

MaxSAT/WBO instance

(`1)w1

...
(`n)wn

(C1)∞
...

(CM)∞

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 67/121

MaxSAT

Flavours of MaxSAT

Partial MaxSAT: Hard and soft clauses

MaxSAT: Only soft clauses

Unweighted MaxSAT: All soft clauses have same weight (w.l.o.g. 1)

Weighted MaxSAT: Different weights for soft clauses

4 different subproblems
But most current solvers deal with the most general problem

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 68/121

MaxSAT

Main Approaches for MaxSAT Solving (and PBO)

1 Linear search SAT-UNSAT (LSU) (or model-improving search)

2 Core-guided search

3 Implicit hitting set (IHS) algorithm

Will describe all of these algorithms as trying to
minimize

∑n
i=1wi`i

subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm
(possibly clausal)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 69/121

MaxSAT

Main Approaches for MaxSAT Solving (and PBO)

1 Linear search SAT-UNSAT (LSU) (or model-improving search)

2 Core-guided search

3 Implicit hitting set (IHS) algorithm

Will describe all of these algorithms as trying to
minimize

∑n
i=1wi`i

subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm
(possibly clausal)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 69/121

Linear Search SAT-UNSAT (LSU)

Linear Search SAT-UNSAT (LSU) Algorithm

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Set ρbest = ∅ and repeat the following:
1 Run SAT/PB solver
2 If solver returns UNSATISFIABLE, output ρbest and terminate
3 Otherwise, let ρbest := returned solution ρ
4 Add constraint

∑n
i=1wi`i ≤ −1 +

∑n
i=1wi · ρ(`i)

5 Start over from the top

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 70/121

Linear Search SAT-UNSAT (LSU)

Linear Search Toy Example

1 Given PB formula F and objective function
min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

2 Solver run on F returns ρ1 = {x1 =x2 =x3 =x6 =0;x4 =x5 =1}
3 Yields objective value 0 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 1 + 6 · 0 = 9, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 8

4 Solver run on F plus this new constraint returns
ρ2 = {x1 =x3 =x5 =x6 =0;x2 =x4 =1}

5 Yields objective value 6, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 5

6 Now solver returns UNSATISFIABLE
7 Hence, minimum value of objective function subject to F is 6

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 71/121

Linear Search SAT-UNSAT (LSU)

Linear Search Toy Example

1 Given PB formula F and objective function
min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

2 Solver run on F returns ρ1 = {x1 =x2 =x3 =x6 =0;x4 =x5 =1}
3 Yields objective value 0 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 1 + 6 · 0 = 9, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 8

4 Solver run on F plus this new constraint returns
ρ2 = {x1 =x3 =x5 =x6 =0;x2 =x4 =1}

5 Yields objective value 6, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 5

6 Now solver returns UNSATISFIABLE
7 Hence, minimum value of objective function subject to F is 6

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 71/121

Linear Search SAT-UNSAT (LSU)

Linear Search Toy Example

1 Given PB formula F and objective function
min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

2 Solver run on F returns ρ1 = {x1 =x2 =x3 =x6 =0;x4 =x5 =1}
3 Yields objective value 0 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 1 + 6 · 0 = 9, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 8

4 Solver run on F plus this new constraint returns
ρ2 = {x1 =x3 =x5 =x6 =0;x2 =x4 =1}

5 Yields objective value 6, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 5

6 Now solver returns UNSATISFIABLE
7 Hence, minimum value of objective function subject to F is 6

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 71/121

Linear Search SAT-UNSAT (LSU)

Linear Search Toy Example

1 Given PB formula F and objective function
min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

2 Solver run on F returns ρ1 = {x1 =x2 =x3 =x6 =0;x4 =x5 =1}
3 Yields objective value 0 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 1 + 6 · 0 = 9, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 8

4 Solver run on F plus this new constraint returns
ρ2 = {x1 =x3 =x5 =x6 =0;x2 =x4 =1}

5 Yields objective value 6, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 5

6 Now solver returns UNSATISFIABLE
7 Hence, minimum value of objective function subject to F is 6

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 71/121

Linear Search SAT-UNSAT (LSU)

Linear Search Toy Example

1 Given PB formula F and objective function
min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

2 Solver run on F returns ρ1 = {x1 =x2 =x3 =x6 =0;x4 =x5 =1}
3 Yields objective value 0 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 1 + 6 · 0 = 9, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 8

4 Solver run on F plus this new constraint returns
ρ2 = {x1 =x3 =x5 =x6 =0;x2 =x4 =1}

5 Yields objective value 6, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 5

6 Now solver returns UNSATISFIABLE
7 Hence, minimum value of objective function subject to F is 6

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 71/121

Linear Search SAT-UNSAT (LSU)

Linear Search Toy Example

1 Given PB formula F and objective function
min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

2 Solver run on F returns ρ1 = {x1 =x2 =x3 =x6 =0;x4 =x5 =1}
3 Yields objective value 0 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 1 + 6 · 0 = 9, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 8

4 Solver run on F plus this new constraint returns
ρ2 = {x1 =x3 =x5 =x6 =0;x2 =x4 =1}

5 Yields objective value 6, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 5

6 Now solver returns UNSATISFIABLE
7 Hence, minimum value of objective function subject to F is 6

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 71/121

Linear Search SAT-UNSAT (LSU)

Linear Search Toy Example

1 Given PB formula F and objective function
min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

2 Solver run on F returns ρ1 = {x1 =x2 =x3 =x6 =0;x4 =x5 =1}
3 Yields objective value 0 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 1 + 6 · 0 = 9, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 8

4 Solver run on F plus this new constraint returns
ρ2 = {x1 =x3 =x5 =x6 =0;x2 =x4 =1}

5 Yields objective value 6, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 5

6 Now solver returns UNSATISFIABLE
7 Hence, minimum value of objective function subject to F is 6

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 71/121

Linear Search SAT-UNSAT (LSU)

Linear vs. Binary Search?
What if we run binary search instead of linear search?
Conventional wisdom appears to be that linear search is better

Two possible explanations:
1 In theory, objective value could decrease by just 1 every time — in

practice, tend to get much larger jumps
2 Potentially very different cost for

SAT calls (feasible instances where solver will find solution)
UNSAT calls (where solver determines no solution exists)

Properties of linear search SAT-UNSAT:
Can get some decent solution quickly, even if not optimal one

Important for anytime solving (when time is limited and something is
better than nothing)

But get no estimate of how good the solution is
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 72/121

Linear Search SAT-UNSAT (LSU)

Linear vs. Binary Search?
What if we run binary search instead of linear search?
Conventional wisdom appears to be that linear search is better

Two possible explanations:
1 In theory, objective value could decrease by just 1 every time — in

practice, tend to get much larger jumps
2 Potentially very different cost for

SAT calls (feasible instances where solver will find solution)
UNSAT calls (where solver determines no solution exists)

Properties of linear search SAT-UNSAT:
Can get some decent solution quickly, even if not optimal one

Important for anytime solving (when time is limited and something is
better than nothing)

But get no estimate of how good the solution is
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 72/121

Linear Search SAT-UNSAT (LSU)

Linear vs. Binary Search?
What if we run binary search instead of linear search?
Conventional wisdom appears to be that linear search is better

Two possible explanations:
1 In theory, objective value could decrease by just 1 every time — in

practice, tend to get much larger jumps
2 Potentially very different cost for

SAT calls (feasible instances where solver will find solution)
UNSAT calls (where solver determines no solution exists)

Properties of linear search SAT-UNSAT:
Can get some decent solution quickly, even if not optimal one

Important for anytime solving (when time is limited and something is
better than nothing)

But get no estimate of how good the solution is
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 72/121

Core-Guided Search

Core-Guided Search

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Think first of this as MaxSAT instance with `i as blocking variables

Set valbest = 0 and repeat the following:
1 Run SAT solver with assumptions (pre-made decisions) `i = 0 for

all `i in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say `1 ∨ · · · ∨ `k
4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t

satisfy K and all hard constraints
5 Introduce new variables zj ⇔

∑k
i=1 `i ≥ j

6 Update objective function and valbest using
∑k
i=1 `i = 1 +

∑k
j=2 zj to

cancel at least one literal `i
7 Start over from top with updated objective function

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 73/121

Core-Guided Search

Core-Guided Search

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Think first of this as MaxSAT instance with `i as blocking variables

Set valbest = 0 and repeat the following:
1 Run SAT solver with assumptions (pre-made decisions) `i = 0 for

all `i in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say `1 ∨ · · · ∨ `k
4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t

satisfy K and all hard constraints
5 Introduce new variables zj ⇔

∑k
i=1 `i ≥ j

6 Update objective function and valbest using
∑k
i=1 `i = 1 +

∑k
j=2 zj to

cancel at least one literal `i
7 Start over from top with updated objective function

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 73/121

Core-Guided Search

Core-Guided Search

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Think first of this as MaxSAT instance with `i as blocking variables

Set valbest = 0 and repeat the following:
1 Run SAT solver with assumptions (pre-made decisions) `i = 0 for

all `i in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say `1 ∨ · · · ∨ `k
4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t

satisfy K and all hard constraints
5 Introduce new variables zj ⇔

∑k
i=1 `i ≥ j

6 Update objective function and valbest using
∑k
i=1 `i = 1 +

∑k
j=2 zj to

cancel at least one literal `i
7 Start over from top with updated objective function

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 73/121

Core-Guided Search

Core-Guided Search

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Think first of this as MaxSAT instance with `i as blocking variables

Set valbest = 0 and repeat the following:
1 Run SAT solver with assumptions (pre-made decisions) `i = 0 for

all `i in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say `1 ∨ · · · ∨ `k
4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t

satisfy K and all hard constraints
5 Introduce new variables zj ⇔

∑k
i=1 `i ≥ j

6 Update objective function and valbest using
∑k
i=1 `i = 1 +

∑k
j=2 zj to

cancel at least one literal `i
7 Start over from top with updated objective function

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 73/121

Core-Guided Search

Core-Guided Search

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Think first of this as MaxSAT instance with `i as blocking variables

Set valbest = 0 and repeat the following:
1 Run SAT solver with assumptions (pre-made decisions) `i = 0 for

all `i in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say `1 ∨ · · · ∨ `k
4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t

satisfy K and all hard constraints
5 Introduce new variables zj ⇔

∑k
i=1 `i ≥ j

6 Update objective function and valbest using
∑k
i=1 `i = 1 +

∑k
j=2 zj to

cancel at least one literal `i
7 Start over from top with updated objective function

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 73/121

Core-Guided Search

Core-Guided Search

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Think first of this as MaxSAT instance with `i as blocking variables

Set valbest = 0 and repeat the following:
1 Run SAT solver with assumptions (pre-made decisions) `i = 0 for

all `i in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say `1 ∨ · · · ∨ `k
4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t

satisfy K and all hard constraints
5 Introduce new variables zj ⇔

∑k
i=1 `i ≥ j

6 Update objective function and valbest using
∑k
i=1 `i = 1 +

∑k
j=2 zj to

cancel at least one literal `i
7 Start over from top with updated objective function

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 73/121

Core-Guided Search

Core-Guided Search

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Think first of this as MaxSAT instance with `i as blocking variables

Set valbest = 0 and repeat the following:
1 Run SAT solver with assumptions (pre-made decisions) `i = 0 for

all `i in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say `1 ∨ · · · ∨ `k
4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t

satisfy K and all hard constraints
5 Introduce new variables zj ⇔

∑k
i=1 `i ≥ j

6 Update objective function and valbest using
∑k
i=1 `i = 1 +

∑k
j=2 zj to

cancel at least one literal `i
7 Start over from top with updated objective function

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 73/121

Core-Guided Search

Core-Guided Search

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Think first of this as MaxSAT instance with `i as blocking variables

Set valbest = 0 and repeat the following:
1 Run SAT solver with assumptions (pre-made decisions) `i = 0 for

all `i in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say `1 ∨ · · · ∨ `k
4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t

satisfy K and all hard constraints
5 Introduce new variables zj ⇔

∑k
i=1 `i ≥ j

6 Update objective function and valbest using
∑k
i=1 `i = 1 +

∑k
j=2 zj to

cancel at least one literal `i
7 Start over from top with updated objective function

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 73/121

Core-Guided Search

Core-Guided Search for Pseudo-Boolean Optimization

Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of `i as markers
for soft clauses — they are just literals in objective function

And rewriting very convenient — just use PB constraints without
re-encoding

Core-guided PB search: assume optimistically that objective can
reach best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 74/121

Core-Guided Search

Core-Guided Search for Pseudo-Boolean Optimization

Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of `i as markers
for soft clauses — they are just literals in objective function

And rewriting very convenient — just use PB constraints without
re-encoding

Core-guided PB search: assume optimistically that objective can
reach best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 74/121

Core-Guided Search

Core-Guided Search for Pseudo-Boolean Optimization

Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of `i as markers
for soft clauses — they are just literals in objective function

And rewriting very convenient — just use PB constraints without
re-encoding

Core-guided PB search: assume optimistically that objective can
reach best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 74/121

Core-Guided Search

Core-Guided Search for Pseudo-Boolean Optimization

Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of `i as markers
for soft clauses — they are just literals in objective function

And rewriting very convenient — just use PB constraints without
re-encoding

Core-guided PB search: assume optimistically that objective can
reach best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 74/121

Core-Guided Search

Core-Guided Search for Pseudo-Boolean Optimization

Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of `i as markers
for soft clauses — they are just literals in objective function

And rewriting very convenient — just use PB constraints without
re-encoding

Core-guided PB search: assume optimistically that objective can
reach best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 74/121

Core-Guided Search

Core-Guided Search for Pseudo-Boolean Optimization

Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of `i as markers
for soft clauses — they are just literals in objective function

And rewriting very convenient — just use PB constraints without
re-encoding

Core-guided PB search: assume optimistically that objective can
reach best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 74/121

Core-Guided Search

Core-Guided Search for Pseudo-Boolean Optimization

Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of `i as markers
for soft clauses — they are just literals in objective function

And rewriting very convenient — just use PB constraints without
re-encoding

Core-guided PB search: assume optimistically that objective can
reach best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 74/121

Core-Guided Search

Core-Guided Search Toy Example (1/3)

1 Given same PB formula F and objective function

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 (1)
2 Run solver on F with assumptions xi = 0, i ∈ [6]
3 Suppose solver returns PB core constraint

3x2 + 2x3 + x4 + x5 ≥ 4 (2)
4 Round to nicer-to-work-with cardinality core constraint

x2 + x3 + x4 + x5 ≥ 2 (3)
5 Introduce new, fresh variables y3 and y4 and constraints

x2 + x3 + x4 + x5 = 2 + y3 + y4 (4a)
y3 ≥ y4 (4b)

to enforce that yj means “x2 + x3 + x4 + x5 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 75/121

Core-Guided Search

Core-Guided Search Toy Example (1/3)

1 Given same PB formula F and objective function

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 (1)
2 Run solver on F with assumptions xi = 0, i ∈ [6]
3 Suppose solver returns PB core constraint

3x2 + 2x3 + x4 + x5 ≥ 4 (2)
4 Round to nicer-to-work-with cardinality core constraint

x2 + x3 + x4 + x5 ≥ 2 (3)
5 Introduce new, fresh variables y3 and y4 and constraints

x2 + x3 + x4 + x5 = 2 + y3 + y4 (4a)
y3 ≥ y4 (4b)

to enforce that yj means “x2 + x3 + x4 + x5 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 75/121

Core-Guided Search

Core-Guided Search Toy Example (1/3)

1 Given same PB formula F and objective function

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 (1)
2 Run solver on F with assumptions xi = 0, i ∈ [6]
3 Suppose solver returns PB core constraint

3x2 + 2x3 + x4 + x5 ≥ 4 (2)
4 Round to nicer-to-work-with cardinality core constraint

x2 + x3 + x4 + x5 ≥ 2 (3)
5 Introduce new, fresh variables y3 and y4 and constraints

x2 + x3 + x4 + x5 = 2 + y3 + y4 (4a)
y3 ≥ y4 (4b)

to enforce that yj means “x2 + x3 + x4 + x5 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 75/121

Core-Guided Search

Core-Guided Search Toy Example (1/3)

1 Given same PB formula F and objective function

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 (1)
2 Run solver on F with assumptions xi = 0, i ∈ [6]
3 Suppose solver returns PB core constraint

3x2 + 2x3 + x4 + x5 ≥ 4 (2)
4 Round to nicer-to-work-with cardinality core constraint

x2 + x3 + x4 + x5 ≥ 2 (3)
5 Introduce new, fresh variables y3 and y4 and constraints

x2 + x3 + x4 + x5 = 2 + y3 + y4 (4a)
y3 ≥ y4 (4b)

to enforce that yj means “x2 + x3 + x4 + x5 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 75/121

Core-Guided Search

Core-Guided Search Toy Example (1/3)

1 Given same PB formula F and objective function

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 (1)
2 Run solver on F with assumptions xi = 0, i ∈ [6]
3 Suppose solver returns PB core constraint

3x2 + 2x3 + x4 + x5 ≥ 4 (2)
4 Round to nicer-to-work-with cardinality core constraint

x2 + x3 + x4 + x5 ≥ 2 (3)
5 Introduce new, fresh variables y3 and y4 and constraints

x2 + x3 + x4 + x5 = 2 + y3 + y4 (4a)
y3 ≥ y4 (4b)

to enforce that yj means “x2 + x3 + x4 + x5 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 75/121

Core-Guided Search

Core-Guided Search Toy Example (2/3)

6 Multiply (4a) by 2 and add to (1) to cancel x2 and get updated,
equivalent objective function

x1 + x3 + 2x4 + 3x5 + 6x6 + 2y3 + 2y4 + 4 (5)

and update valbest = 4
7 Run solver on F assuming all literals in (5) being 0
8 Suppose solver returns the clausal core constraint

x4 + x5 + x6 + y3 ≥ 1 (6)
9 Introduce new variables z2, z3, z4 and the constraints

x4 + x5 + x6 + y3 = 1 + z2 + z3 + z4 (7a)
z2 ≥ z3 (7b)
z3 ≥ z4 (7c)

to enforce that zj means “x4 + x5 + x6 + y3 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 76/121

Core-Guided Search

Core-Guided Search Toy Example (2/3)

6 Multiply (4a) by 2 and add to (1) to cancel x2 and get updated,
equivalent objective function

x1 + x3 + 2x4 + 3x5 + 6x6 + 2y3 + 2y4 + 4 (5)

and update valbest = 4
7 Run solver on F assuming all literals in (5) being 0
8 Suppose solver returns the clausal core constraint

x4 + x5 + x6 + y3 ≥ 1 (6)
9 Introduce new variables z2, z3, z4 and the constraints

x4 + x5 + x6 + y3 = 1 + z2 + z3 + z4 (7a)
z2 ≥ z3 (7b)
z3 ≥ z4 (7c)

to enforce that zj means “x4 + x5 + x6 + y3 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 76/121

Core-Guided Search

Core-Guided Search Toy Example (2/3)

6 Multiply (4a) by 2 and add to (1) to cancel x2 and get updated,
equivalent objective function

x1 + x3 + 2x4 + 3x5 + 6x6 + 2y3 + 2y4 + 4 (5)

and update valbest = 4
7 Run solver on F assuming all literals in (5) being 0
8 Suppose solver returns the clausal core constraint

x4 + x5 + x6 + y3 ≥ 1 (6)
9 Introduce new variables z2, z3, z4 and the constraints

x4 + x5 + x6 + y3 = 1 + z2 + z3 + z4 (7a)
z2 ≥ z3 (7b)
z3 ≥ z4 (7c)

to enforce that zj means “x4 + x5 + x6 + y3 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 76/121

Core-Guided Search

Core-Guided Search Toy Example (2/3)

6 Multiply (4a) by 2 and add to (1) to cancel x2 and get updated,
equivalent objective function

x1 + x3 + 2x4 + 3x5 + 6x6 + 2y3 + 2y4 + 4 (5)

and update valbest = 4
7 Run solver on F assuming all literals in (5) being 0
8 Suppose solver returns the clausal core constraint

x4 + x5 + x6 + y3 ≥ 1 (6)
9 Introduce new variables z2, z3, z4 and the constraints

x4 + x5 + x6 + y3 = 1 + z2 + z3 + z4 (7a)
z2 ≥ z3 (7b)
z3 ≥ z4 (7c)

to enforce that zj means “x4 + x5 + x6 + y3 ≥ j”
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 76/121

Core-Guided Search

Core-Guided Search Toy Example (3/3)

10 Multiply (7a) by 2 and add to (5) to get 3rd equivalent objective

x1 + x3 + x5 + 4x6 + 2y4 + 2z2 + 2z3 + 2z4 + 6 (8)

and update valbest = 6
11 For 3rd time run solver on F , assuming all literals in (8) being 0
12 Suppose solver reports it is possible to achieve

ρ = {x1 =x3 =x5 =x6 =y4 =z2 =z3 =z4 =0} (9)

13 Under assignment (9) the equality (4a) simplifies to

x2 + x4 = 2 + y3 (10)

which can hold only if y3 =0 and x2 =x4 =1, and this also
satisfies (7a). Hence, have recovered optimal solution 6 (as before)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 77/121

Core-Guided Search

Core-Guided Search Toy Example (3/3)

10 Multiply (7a) by 2 and add to (5) to get 3rd equivalent objective

x1 + x3 + x5 + 4x6 + 2y4 + 2z2 + 2z3 + 2z4 + 6 (8)

and update valbest = 6
11 For 3rd time run solver on F , assuming all literals in (8) being 0
12 Suppose solver reports it is possible to achieve

ρ = {x1 =x3 =x5 =x6 =y4 =z2 =z3 =z4 =0} (9)

13 Under assignment (9) the equality (4a) simplifies to

x2 + x4 = 2 + y3 (10)

which can hold only if y3 =0 and x2 =x4 =1, and this also
satisfies (7a). Hence, have recovered optimal solution 6 (as before)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 77/121

Core-Guided Search

Core-Guided Search Toy Example (3/3)

10 Multiply (7a) by 2 and add to (5) to get 3rd equivalent objective

x1 + x3 + x5 + 4x6 + 2y4 + 2z2 + 2z3 + 2z4 + 6 (8)

and update valbest = 6
11 For 3rd time run solver on F , assuming all literals in (8) being 0
12 Suppose solver reports it is possible to achieve

ρ = {x1 =x3 =x5 =x6 =y4 =z2 =z3 =z4 =0} (9)

13 Under assignment (9) the equality (4a) simplifies to

x2 + x4 = 2 + y3 (10)

which can hold only if y3 =0 and x2 =x4 =1, and this also
satisfies (7a). Hence, have recovered optimal solution 6 (as before)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 77/121

Core-Guided Search

Core-Guided Search Toy Example (3/3)

10 Multiply (7a) by 2 and add to (5) to get 3rd equivalent objective

x1 + x3 + x5 + 4x6 + 2y4 + 2z2 + 2z3 + 2z4 + 6 (8)

and update valbest = 6
11 For 3rd time run solver on F , assuming all literals in (8) being 0
12 Suppose solver reports it is possible to achieve

ρ = {x1 =x3 =x5 =x6 =y4 =z2 =z3 =z4 =0} (9)

13 Under assignment (9) the equality (4a) simplifies to

x2 + x4 = 2 + y3 (10)

which can hold only if y3 =0 and x2 =x4 =1, and this also
satisfies (7a). Hence, have recovered optimal solution 6 (as before)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 77/121

Core-Guided Search

Properties of (Pure) Core-Guided Search

Can get decent lower bounds on solution quickly

Helps to cut off parts of search space that are “too good to be true”

But find no actual solution until the final, optimal one

Also, no estimate of how good the lower bound is

Linear search much better at finding solutions — how to get the best
of both worlds?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 78/121

Core-Guided Search

Improvements of Core-Guided Search (1/2)
Weight stratification [ABGL12]
Set only literals with largest weight in objective to 0 ⇒

1 More compact core; or
2 Decent solution found early on

Independent cores [BJ17]
If found core constraint over `1, `2, . . . , `k, remove these literals from
assumptions and immediately run solver again with remaining assumptions

Core boosting [BDS19]
Start with core-guided search to get good lower bound estimate;
then switch to linear search to find optimal solution

Hybrid/interleaving search [ADMR15]
Switch back and forth repeatedly between core-guided and linear search —
cumbersome in CNF-based solver, but fairly cheap (and efficient) in native
pseudo-Boolean solver [DGD+21]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 79/121

Core-Guided Search

Improvements of Core-Guided Search (1/2)
Weight stratification [ABGL12]
Set only literals with largest weight in objective to 0 ⇒

1 More compact core; or
2 Decent solution found early on

Independent cores [BJ17]
If found core constraint over `1, `2, . . . , `k, remove these literals from
assumptions and immediately run solver again with remaining assumptions

Core boosting [BDS19]
Start with core-guided search to get good lower bound estimate;
then switch to linear search to find optimal solution

Hybrid/interleaving search [ADMR15]
Switch back and forth repeatedly between core-guided and linear search —
cumbersome in CNF-based solver, but fairly cheap (and efficient) in native
pseudo-Boolean solver [DGD+21]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 79/121

Core-Guided Search

Improvements of Core-Guided Search (1/2)
Weight stratification [ABGL12]
Set only literals with largest weight in objective to 0 ⇒

1 More compact core; or
2 Decent solution found early on

Independent cores [BJ17]
If found core constraint over `1, `2, . . . , `k, remove these literals from
assumptions and immediately run solver again with remaining assumptions

Core boosting [BDS19]
Start with core-guided search to get good lower bound estimate;
then switch to linear search to find optimal solution

Hybrid/interleaving search [ADMR15]
Switch back and forth repeatedly between core-guided and linear search —
cumbersome in CNF-based solver, but fairly cheap (and efficient) in native
pseudo-Boolean solver [DGD+21]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 79/121

Core-Guided Search

Improvements of Core-Guided Search (1/2)
Weight stratification [ABGL12]
Set only literals with largest weight in objective to 0 ⇒

1 More compact core; or
2 Decent solution found early on

Independent cores [BJ17]
If found core constraint over `1, `2, . . . , `k, remove these literals from
assumptions and immediately run solver again with remaining assumptions

Core boosting [BDS19]
Start with core-guided search to get good lower bound estimate;
then switch to linear search to find optimal solution

Hybrid/interleaving search [ADMR15]
Switch back and forth repeatedly between core-guided and linear search —
cumbersome in CNF-based solver, but fairly cheap (and efficient) in native
pseudo-Boolean solver [DGD+21]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 79/121

Core-Guided Search

Improvements of Core-Guided Search (2/2)

Core minimization
In CDCL-based solver, try to get smaller core clauses. For PB solver, not
so clear how to do this (constraint minimization also interesting problem in
general for PB conflict analysis)

Lazy variables [MJML14, DGD+21]
For real-world instances, rewriting of objective function can introduce huge
numbers of new variables, slowing down the solver — so don’t introduce
all variables in one go but only lazily as needed

Inference strength of core-guided search?
Extension variables very strong in theory, but hard to use in practice
Core-guided search provides principled way of introducing them
Can we characterize the power of this method?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 80/121

Core-Guided Search

Improvements of Core-Guided Search (2/2)

Core minimization
In CDCL-based solver, try to get smaller core clauses. For PB solver, not
so clear how to do this (constraint minimization also interesting problem in
general for PB conflict analysis)

Lazy variables [MJML14, DGD+21]
For real-world instances, rewriting of objective function can introduce huge
numbers of new variables, slowing down the solver — so don’t introduce
all variables in one go but only lazily as needed

Inference strength of core-guided search?
Extension variables very strong in theory, but hard to use in practice
Core-guided search provides principled way of introducing them
Can we characterize the power of this method?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 80/121

Core-Guided Search

Improvements of Core-Guided Search (2/2)

Core minimization
In CDCL-based solver, try to get smaller core clauses. For PB solver, not
so clear how to do this (constraint minimization also interesting problem in
general for PB conflict analysis)

Lazy variables [MJML14, DGD+21]
For real-world instances, rewriting of objective function can introduce huge
numbers of new variables, slowing down the solver — so don’t introduce
all variables in one go but only lazily as needed

Inference strength of core-guided search?
Extension variables very strong in theory, but hard to use in practice
Core-guided search provides principled way of introducing them
Can we characterize the power of this method?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 80/121

Core-Guided Search

Evaluation of Core-Guided PB Solver in [DGD+21]
RoundingSat variants with core-guided (CG) and linear search (LSU)
#instances solved to optimality; highlighting 1st, 2nd, and 3rd best

PB16opt MIPopt KNAP CRAFT
(1600) (291) (783) (985)

Hybrid (interleave CG & LSU) 968 78 306 639
HybridCl (w/ clausal cores) 937 75 298 618
HybridNL (w/ non-lazy variables) 936 70 186 607
HybridClNL (w/ both) 917 67 203 612
RoundingSat (only LSU) 853 75 341 309
Coreguided (only CG) 911 61 43 595
Coreboosted (10% CG, then LSU) 959 80 344 580
Sat4j 773 61 373 105
NaPS 896 65 111 345
SCIP 1057 125 765 642

Significant improvement over PB state of the art, but MIP still better
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 81/121

Core-Guided Search

Evaluation of Core-Guided PB Solver in [DGD+21]
RoundingSat variants with core-guided (CG) and linear search (LSU)
#instances solved to optimality; highlighting 1st, 2nd, and 3rd best

PB16opt MIPopt KNAP CRAFT
(1600) (291) (783) (985)

Hybrid (interleave CG & LSU) 968 78 306 639
HybridCl (w/ clausal cores) 937 75 298 618
HybridNL (w/ non-lazy variables) 936 70 186 607
HybridClNL (w/ both) 917 67 203 612
RoundingSat (only LSU) 853 75 341 309
Coreguided (only CG) 911 61 43 595
Coreboosted (10% CG, then LSU) 959 80 344 580
Sat4j 773 61 373 105
NaPS 896 65 111 345
SCIP 1057 125 765 642

Significant improvement over PB state of the art, but MIP still better
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 81/121

Core-Guided Search

Evaluation of Core-Guided PB Solver in [DGD+21]
RoundingSat variants with core-guided (CG) and linear search (LSU)
#instances solved to optimality; highlighting 1st, 2nd, and 3rd best

PB16opt MIPopt KNAP CRAFT
(1600) (291) (783) (985)

Hybrid (interleave CG & LSU) 968 78 306 639
HybridCl (w/ clausal cores) 937 75 298 618
HybridNL (w/ non-lazy variables) 936 70 186 607
HybridClNL (w/ both) 917 67 203 612
RoundingSat (only LSU) 853 75 341 309
Coreguided (only CG) 911 61 43 595
Coreboosted (10% CG, then LSU) 959 80 344 580
Sat4j 773 61 373 105
NaPS 896 65 111 345
SCIP 1057 125 765 642

Significant improvement over PB state of the art, but MIP still better
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 81/121

Core-Guided Search

Core-Guided PB Solving for PB16 benchmarks [DGD+21]

Cumulative plot for
solver performance on
PB16 optimization
benchmarks

Also including
weight strati-
fication (strat)
independent
cores (ind)

100 101 102 103

Timeout limit (s)

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f s
ol

ve
d

in
st

an
ce

s

PB16 (higher is better, 1600 instances)
SCIP (1057 solved)
hybrid (968)
hybrid-strat (965)
hybrid-strat-ind (943)
NaPS (896)
RoundingSat (853)
Sat4J (773)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 82/121

Implicit Hitting Set (IHS) Algorithm

Implicit Hitting Set (IHS) Algorithm (1/2)

Minimize
∑n
i=1wi`i

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm
(consider clausal constraints)

As in core-guided search, use solving with assumptions, but maintain
collection K of learned core clauses

C1
.= `1,1 ∨ `1,2 ∨ · · · ∨ `1,ks

C2
.= `2,1 ∨ `2,2 ∨ · · · ∨ `2,ks

...
Cs

.= `s,1 ∨ `s,2 ∨ · · · ∨ `s,ks

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 83/121

Implicit Hitting Set (IHS) Algorithm

Implicit Hitting Set (IHS) Algorithm (2/2)

Set K = ∅ and repeat the following:

1 Compute minimum hitting set for K, i.e., H = {`i} s.t.
H ∩ C 6= ∅ for all C ∈ K (H is hitting set)∑

`i∈H wi minimal among H with this property.

2 Run the solver with assumptions
{`i = 1 | `i ∈ H} ∪ {`j = 0 | `j /∈ H}

3 If solver found solution, it must be optimal (since hitting set is
optimal), so return solution with value

∑
`i∈H wi

4 Otherwise, solver returns new core Cs+1 — add it to K and start over
from top

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 84/121

Implicit Hitting Set (IHS) Algorithm

More About the Hitting Sets

Minimality is actually not needed except in the very final step

Save time by computing “decent” hitting sets earlier on in the search

How to find hitting set?

This is itself a pseudo-Boolean optimization problem
[as discussed in Part I of tutorial]

Run MIP solver
Or PB solver

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 85/121

Implicit Hitting Set (IHS) Algorithm

Implicit Hitting Set vs. Core-Guided

IHS and core-guided approaches for MaxSAT seem orthogonal [Bac21]

For MaxSAT problems with many interchangeable soft clauses
core-guided seems better (i.e., when it is not important exactly which
of these clauses end up in core)

For MaxSAT problems with many distinct weights, IHS seems better

Relation between IHS and core-guided search?
Provide a more precise theoretical comparison of IHS and core-guided
search with simulations and/or separations

(Some theoretical work on related problems in, e.g., [FMSV20, MIB+19])

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 86/121

Implicit Hitting Set (IHS) Algorithm

Some More Open Questions

Combine IHS and core-guided search in MaxSAT solving?
Recent work on this in [BBP20]

Combine IHS with pseudo-Boolean optimization?
In PB setting, cores will not be subsets of clauses but PB constraints
C1, . . . , Cs over objective function literals
Hitting set H is partial assignment guaranteed to satisfy all
constraints C1, . . . , Cs

Want to find minimum-cost set H of literals (w.r.t. objective
function) with this property
Not implemented in native PB solvers (to best of my knowledge)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 87/121

Implicit Hitting Set (IHS) Algorithm

Some More Open Questions

Combine IHS and core-guided search in MaxSAT solving?
Recent work on this in [BBP20]

Combine IHS with pseudo-Boolean optimization?
In PB setting, cores will not be subsets of clauses but PB constraints
C1, . . . , Cs over objective function literals
Hitting set H is partial assignment guaranteed to satisfy all
constraints C1, . . . , Cs

Want to find minimum-cost set H of literals (w.r.t. objective
function) with this property
Not implemented in native PB solvers (to best of my knowledge)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 87/121

Organization of This Tutorial

Part I: Pseudo-Boolean Preliminaries

Part II: Pseudo-Boolean Solving

Part III: Pseudo-Boolean Optimization

Part IV: Mixed Integer Linear Programming

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 88/121

Outline of Part IV: Mixed Integer Linear Programming

11 MIP and ILP Solving
MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

12 Combining PB and MIP Techniques
Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 89/121

MIP and ILP Solving MIP Preliminaries

Mixed Integer Linear Programming

Mixed integer linear program
Minimize

∑
j ajxj

Subject to
∑
j ai,jxj ≤ Ai, i = 1, . . . ,m

xj ∈ N for j = 1, . . . , n
xj ∈ R≥0 for j = n+ 1, . . . , N

Linear constraints
Integer-valued variables
Real-valued variables
Linear objective function

No real-valued variables:
integer linear program (ILP)
0 ≤ xj ≤ 1 for all j: 0-1 ILP
Vacuous objective

∑
j 0 · xj :

decision problem
But MIP best for optimization

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 90/121

MIP and ILP Solving MIP Preliminaries

Mixed Integer Linear Programming

Mixed integer linear program
Minimize

∑
j ajxj

Subject to
∑
j ai,jxj ≤ Ai, i = 1, . . . ,m

xj ∈ N for j = 1, . . . , n
xj ∈ R≥0 for j = n+ 1, . . . , N

Linear constraints
Integer-valued variables
Real-valued variables
Linear objective function

No real-valued variables:
integer linear program (ILP)
0 ≤ xj ≤ 1 for all j: 0-1 ILP
Vacuous objective

∑
j 0 · xj :

decision problem
But MIP best for optimization

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 90/121

MIP and ILP Solving MIP Preliminaries

Mixed Integer Linear Programming

Mixed integer linear program
Minimize

∑
j ajxj

Subject to
∑
j ai,jxj ≤ Ai, i = 1, . . . ,m

xj ∈ N for j = 1, . . . , n
xj ∈ R≥0 for j = n+ 1, . . . , N

Linear constraints
Integer-valued variables
Real-valued variables
Linear objective function

No real-valued variables:
integer linear program (ILP)
0 ≤ xj ≤ 1 for all j: 0-1 ILP
Vacuous objective

∑
j 0 · xj :

decision problem
But MIP best for optimization

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 90/121

MIP and ILP Solving MIP Preliminaries

Two Differences Compared to SAT/PB

Academia vs. industry
Best solvers are commercial and closed-source
E.g., CPLEX [CPL], Gurobi [Gur], and Xpress [Xpr]
Academic solvers like SCIP [SCI] are excellent but not as good

Search vs. backtracking
SAT/PB: Fast decisions; careful, slow(er) conflict analysis
MIP: Lots of time & effort on decisions; backtracking not so advanced

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 91/121

MIP and ILP Solving MIP Preliminaries

Two Differences Compared to SAT/PB

Academia vs. industry
Best solvers are commercial and closed-source
E.g., CPLEX [CPL], Gurobi [Gur], and Xpress [Xpr]
Academic solvers like SCIP [SCI] are excellent but not as good

Search vs. backtracking
SAT/PB: Fast decisions; careful, slow(er) conflict analysis
MIP: Lots of time & effort on decisions; backtracking not so advanced

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 91/121

MIP and ILP Solving MIP Preliminaries

MIP Solving at a High Level

1 Preprocessing (called presolving)

2 Linear programming + branch-and-bound

3 Add cutting planes ruling out infeasible LP-solutions
(branch-and-cut method going back to [Gom58])

4 Heuristics for quickly finding good feasible solutions

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 92/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Linear Programming Relaxation

Linear Programming Relaxation (LPR)
Minimize

∑
j ajxj

Subject to
∑
j ai,jxj ≤ Ai, i = 1, . . . ,m

xj ∈ N for j = 1, . . . , n xj ∈ R≥0 for j = 1, . . . , n
xj ∈ R≥0 for j = n+ 1, . . . , N

Fast to solve (just linear programming)
LP solution x∗ yields lower bound
Or, if x∗ “accidentally” feasible, have optimal solution
Use simplex algorithm — will have many LP calls for same problem
with different variable bounds; need efficient hot restarts

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 93/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

LP-Based Branch-and-Bound

Branch-and-bound
Choose integer-valued xj and B ∈ N

Solve MIP plus constraint xj ≥ B
Solve MIP plus constraint xj ≤ B − 1

Creates (growing) branch-and-bound tree of subproblems
Prune subproblem/node when

LP is infeasible
LP bound > incumbent (current best solution)

Branch on
Variables
General linear constraints (powerful but difficult)
Corresponds to stabbing planes proof system [BFI+18]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 94/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

LP-Based Branch-and-Bound

Branch-and-bound
Choose integer-valued xj and B ∈ N

Solve MIP plus constraint xj ≥ B
Solve MIP plus constraint xj ≤ B − 1

Creates (growing) branch-and-bound tree of subproblems
Prune subproblem/node when

LP is infeasible
LP bound > incumbent (current best solution)

Branch on
Variables
General linear constraints (powerful but difficult)
Corresponds to stabbing planes proof system [BFI+18]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 94/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

LP-Based Branch-and-Bound

Branch-and-bound
Choose integer-valued xj and B ∈ N

Solve MIP plus constraint xj ≥ B
Solve MIP plus constraint xj ≤ B − 1

Creates (growing) branch-and-bound tree of subproblems
Prune subproblem/node when

LP is infeasible
LP bound > incumbent (current best solution)

Branch on
Variables
General linear constraints (powerful but difficult)
Corresponds to stabbing planes proof system [BFI+18]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 94/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Branch-and-Cut

General cutting plane method
1 Solve LP relaxation
2 If solution x∗ feasible for MIP ⇒ found optimum
3 Otherwise generate and add constraint

∑
j bjxj ≤ B that is

valid for MIP
violated by LP solution x∗

4 Repeat from the top

PB solving rules division and saturation are examples of cut rules

Branch-and-cut
Run branch-and-bound
But in each subproblem, use cutting plane method to repeatedly

solve LP relaxation
add cut

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 95/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Branch-and-Cut

General cutting plane method
1 Solve LP relaxation
2 If solution x∗ feasible for MIP ⇒ found optimum
3 Otherwise generate and add constraint

∑
j bjxj ≤ B that is

valid for MIP
violated by LP solution x∗

4 Repeat from the top

PB solving rules division and saturation are examples of cut rules

Branch-and-cut
Run branch-and-bound
But in each subproblem, use cutting plane method to repeatedly

solve LP relaxation
add cut

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 95/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Branch-and-Cut

General cutting plane method
1 Solve LP relaxation
2 If solution x∗ feasible for MIP ⇒ found optimum
3 Otherwise generate and add constraint

∑
j bjxj ≤ B that is

valid for MIP
violated by LP solution x∗

4 Repeat from the top

PB solving rules division and saturation are examples of cut rules

Branch-and-cut
Run branch-and-bound
But in each subproblem, use cutting plane method to repeatedly

solve LP relaxation
add cut

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 95/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Example Cut 1: Knapsack Cover Cut
Given constraint ∑

j∈I
ajxj ≤ A

for xj ∈ {0, 1} and aj , A ∈ N+

Find minimal cover C ⊂ I such that∑
j∈C

aj > A

∑
j∈C\{i}

aj ≤ A for all i ∈ C

Then can derive ∑
j∈C

xj ≤ |C| − 1

(In cutting planes, weaken & divide
∑
j∈I ajxj ≥ −A+

∑
j∈I aj to get

disjunctive clause
∑
j∈C xj ≥ 1)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 96/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Example Cut 1: Knapsack Cover Cut
Given constraint ∑

j∈I
ajxj ≤ A

for xj ∈ {0, 1} and aj , A ∈ N+

Find minimal cover C ⊂ I such that∑
j∈C

aj > A

∑
j∈C\{i}

aj ≤ A for all i ∈ C

Then can derive ∑
j∈C

xj ≤ |C| − 1

(In cutting planes, weaken & divide
∑
j∈I ajxj ≥ −A+

∑
j∈I aj to get

disjunctive clause
∑
j∈C xj ≥ 1)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 96/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Example Cut 1: Knapsack Cover Cut
Given constraint ∑

j∈I
ajxj ≤ A

for xj ∈ {0, 1} and aj , A ∈ N+

Find minimal cover C ⊂ I such that∑
j∈C

aj > A

∑
j∈C\{i}

aj ≤ A for all i ∈ C

Then can derive ∑
j∈C

xj ≤ |C| − 1

(In cutting planes, weaken & divide
∑
j∈I ajxj ≥ −A+

∑
j∈I aj to get

disjunctive clause
∑
j∈C xj ≥ 1)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 96/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Example Cut 1: Knapsack Cover Cut
Given constraint ∑

j∈I
ajxj ≤ A

for xj ∈ {0, 1} and aj , A ∈ N+

Find minimal cover C ⊂ I such that∑
j∈C

aj > A

∑
j∈C\{i}

aj ≤ A for all i ∈ C

Then can derive ∑
j∈C

xj ≤ |C| − 1

(In cutting planes, weaken & divide
∑
j∈I ajxj ≥ −A+

∑
j∈I aj to get

disjunctive clause
∑
j∈C xj ≥ 1)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 96/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Example Cut 2: Mixed Integer Rounding (MIR) Cut
Mixed integer rounding (MIR) cut [MW01] applied to (normalized)
pseudo-Boolean constraint ∑

i ai`i ≥ A

with divisor d ∈ N+ produces constraint∑
i

(
min(ai mod d,A mod d) +

⌊ai
d

⌋
(A mod d)

)
`i ≥

⌈
A
d

⌉
(A mod d)

Concretely, MIR cut with divisor 3 applied on

x+ 2y + 3z + 4w + 5u ≥ 5

yields
x+ 2y + 2z + 3w + 4u ≥ 4

For comparison, standard division by 3 and multiplication by 2 produces

2x+ 2y + 2z + 4w + 4u ≥ 4

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 97/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Example Cut 2: Mixed Integer Rounding (MIR) Cut
Mixed integer rounding (MIR) cut [MW01] applied to (normalized)
pseudo-Boolean constraint ∑

i ai`i ≥ A

with divisor d ∈ N+ produces constraint∑
i

(
min(ai mod d,A mod d) +

⌊ai
d

⌋
(A mod d)

)
`i ≥

⌈
A
d

⌉
(A mod d)

Concretely, MIR cut with divisor 3 applied on

x+ 2y + 3z + 4w + 5u ≥ 5

yields
x+ 2y + 2z + 3w + 4u ≥ 4

For comparison, standard division by 3 and multiplication by 2 produces

2x+ 2y + 2z + 4w + 4u ≥ 4

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 97/121

MIP and ILP Solving Branch-and-Bound and Branch-and-Cut

Example Cut 2: Mixed Integer Rounding (MIR) Cut
Mixed integer rounding (MIR) cut [MW01] applied to (normalized)
pseudo-Boolean constraint ∑

i ai`i ≥ A

with divisor d ∈ N+ produces constraint∑
i

(
min(ai mod d,A mod d) +

⌊ai
d

⌋
(A mod d)

)
`i ≥

⌈
A
d

⌉
(A mod d)

Concretely, MIR cut with divisor 3 applied on

x+ 2y + 3z + 4w + 5u ≥ 5

yields
x+ 2y + 2z + 3w + 4u ≥ 4

For comparison, standard division by 3 and multiplication by 2 produces

2x+ 2y + 2z + 4w + 4u ≥ 4

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 97/121

MIP and ILP Solving Additional Techniques

Presolving

Topic for a separate talk (well, like everything else in this part. . .)
Important for performance (but not as important as in CDCL?)

Some simple (but efficient) techniques:
Substitution of fixed variables
Normalization of constraints: divide integer constraints by gcd on
left-hand side and round on right-hand side
Probing: tentatively assign binary variables and propagate
Dominance test: remove constraints implied by other constraints

For more details, see talk by Gleixner https://tinyurl.com/MIPtutorial

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 98/121

https://tinyurl.com/MIPtutorial

MIP and ILP Solving Additional Techniques

Presolving

Topic for a separate talk (well, like everything else in this part. . .)
Important for performance (but not as important as in CDCL?)

Some simple (but efficient) techniques:
Substitution of fixed variables
Normalization of constraints: divide integer constraints by gcd on
left-hand side and round on right-hand side
Probing: tentatively assign binary variables and propagate
Dominance test: remove constraints implied by other constraints

For more details, see talk by Gleixner https://tinyurl.com/MIPtutorial

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 98/121

https://tinyurl.com/MIPtutorial

MIP and ILP Solving Additional Techniques

Presolving

Topic for a separate talk (well, like everything else in this part. . .)
Important for performance (but not as important as in CDCL?)

Some simple (but efficient) techniques:
Substitution of fixed variables
Normalization of constraints: divide integer constraints by gcd on
left-hand side and round on right-hand side
Probing: tentatively assign binary variables and propagate
Dominance test: remove constraints implied by other constraints

For more details, see talk by Gleixner https://tinyurl.com/MIPtutorial

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 98/121

https://tinyurl.com/MIPtutorial

MIP and ILP Solving Additional Techniques

MIP Conflict Analysis
MIP conflict analysis [Ach07] analogous to CDCL, but

operate on clausal reasons extracted from constraints
not on constraints themselves

Exponential loss in power!

Pigeonhole principle∑n
j=1 xi,j ≥ 1 i ∈ [n+ 1]∑n+1
i=1 xi,j ≤ 1 j ∈ [n]

Conflict analysis with clausal reasons ⇒ indistinguishable from resolution
on CNF encoding ⇒ exponential lower bound in [Hak85] applies

A bit stupid example. . . solved immediately, since LP relaxation infeasible

But can find other, more interesting benchmarks where MIP conflict
analysis seems to suffer from this problem [DGN21]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 99/121

MIP and ILP Solving Additional Techniques

MIP Conflict Analysis
MIP conflict analysis [Ach07] analogous to CDCL, but

operate on clausal reasons extracted from constraints
not on constraints themselves

Exponential loss in power!

Pigeonhole principle∑n
j=1 xi,j ≥ 1 i ∈ [n+ 1]∑n+1
i=1 xi,j ≤ 1 j ∈ [n]

Conflict analysis with clausal reasons ⇒ indistinguishable from resolution
on CNF encoding ⇒ exponential lower bound in [Hak85] applies

A bit stupid example. . . solved immediately, since LP relaxation infeasible

But can find other, more interesting benchmarks where MIP conflict
analysis seems to suffer from this problem [DGN21]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 99/121

MIP and ILP Solving Additional Techniques

MIP Conflict Analysis
MIP conflict analysis [Ach07] analogous to CDCL, but

operate on clausal reasons extracted from constraints
not on constraints themselves

Exponential loss in power!

Pigeonhole principle∑n
j=1 xi,j ≥ 1 i ∈ [n+ 1]∑n+1
i=1 xi,j ≤ 1 j ∈ [n]

Conflict analysis with clausal reasons ⇒ indistinguishable from resolution
on CNF encoding ⇒ exponential lower bound in [Hak85] applies

A bit stupid example. . . solved immediately, since LP relaxation infeasible

But can find other, more interesting benchmarks where MIP conflict
analysis seems to suffer from this problem [DGN21]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 99/121

MIP and ILP Solving Additional Techniques

MIP Conflict Analysis
MIP conflict analysis [Ach07] analogous to CDCL, but

operate on clausal reasons extracted from constraints
not on constraints themselves

Exponential loss in power!

Pigeonhole principle∑n
j=1 xi,j ≥ 1 i ∈ [n+ 1]∑n+1
i=1 xi,j ≤ 1 j ∈ [n]

Conflict analysis with clausal reasons ⇒ indistinguishable from resolution
on CNF encoding ⇒ exponential lower bound in [Hak85] applies

A bit stupid example. . . solved immediately, since LP relaxation infeasible

But can find other, more interesting benchmarks where MIP conflict
analysis seems to suffer from this problem [DGN21]
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 99/121

MIP and ILP Solving Additional Techniques

Branching Heuristics

Dual gain
Given LP solution x∗, branch on xj such that xj ≥

⌈
x∗j
⌉

and xj ≤
⌊
x∗j
⌋

both provide good lower bound increase

Look ahead (strong branching)
Consider all free variables xj
Solve LP for all branching decisions xj ≥

⌈
x∗j
⌉

and xj ≤
⌊
x∗j
⌋

Pick best variable

Look back
Compute estimate on gains based on past branching history (pseudo-costs)

Keep also other statistics about variables to guide search
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 100/121

MIP and ILP Solving Additional Techniques

Branching Heuristics

Dual gain
Given LP solution x∗, branch on xj such that xj ≥

⌈
x∗j
⌉

and xj ≤
⌊
x∗j
⌋

both provide good lower bound increase

Look ahead (strong branching)
Consider all free variables xj
Solve LP for all branching decisions xj ≥

⌈
x∗j
⌉

and xj ≤
⌊
x∗j
⌋

Pick best variable

Look back
Compute estimate on gains based on past branching history (pseudo-costs)

Keep also other statistics about variables to guide search
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 100/121

MIP and ILP Solving Additional Techniques

Branching Heuristics

Dual gain
Given LP solution x∗, branch on xj such that xj ≥

⌈
x∗j
⌉

and xj ≤
⌊
x∗j
⌋

both provide good lower bound increase

Look ahead (strong branching)
Consider all free variables xj
Solve LP for all branching decisions xj ≥

⌈
x∗j
⌉

and xj ≤
⌊
x∗j
⌋

Pick best variable

Look back
Compute estimate on gains based on past branching history (pseudo-costs)

Keep also other statistics about variables to guide search
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 100/121

MIP and ILP Solving Additional Techniques

Branching Heuristics

Dual gain
Given LP solution x∗, branch on xj such that xj ≥

⌈
x∗j
⌉

and xj ≤
⌊
x∗j
⌋

both provide good lower bound increase

Look ahead (strong branching)
Consider all free variables xj
Solve LP for all branching decisions xj ≥

⌈
x∗j
⌉

and xj ≤
⌊
x∗j
⌋

Pick best variable

Look back
Compute estimate on gains based on past branching history (pseudo-costs)

Keep also other statistics about variables to guide search
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 100/121

MIP and ILP Solving Additional Techniques

Node Selection

How to grow search tree?

Depth-first search (DFS): keeps cost for simplex calls small

Best bound search (BBS): Focus on improving lower bound
(dual bound)

Best estimate search (BES): Focus on improving solution
(primal bound)

Combine BBS and BES with DFS plunges to exploit simplex hot restarts

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 101/121

MIP and ILP Solving Additional Techniques

Node Selection

How to grow search tree?

Depth-first search (DFS): keeps cost for simplex calls small

Best bound search (BBS): Focus on improving lower bound
(dual bound)

Best estimate search (BES): Focus on improving solution
(primal bound)

Combine BBS and BES with DFS plunges to exploit simplex hot restarts

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 101/121

MIP and ILP Solving Additional Techniques

Primal Heuristics

Improve solution (primal bound)
Guide remaining search

Example: Relaxation-enforced neighbourhood search
1 Solve LP relaxation to get x∗
2 Fix values of all xj such that x∗j ∈ N
3 For xj with fractional solution, reduce domain to xj ∈ {

⌊
x∗j
⌋
,
⌈
x∗j
⌉
}

4 Solve new subproblem

Example of “fix-and-MIP” local neighbourhood search heuristic
(Interestingly, this turns ILP into 0-1 ILP subproblem)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 102/121

MIP and ILP Solving Additional Techniques

Primal Heuristics

Improve solution (primal bound)
Guide remaining search

Example: Relaxation-enforced neighbourhood search
1 Solve LP relaxation to get x∗
2 Fix values of all xj such that x∗j ∈ N
3 For xj with fractional solution, reduce domain to xj ∈ {

⌊
x∗j
⌋
,
⌈
x∗j
⌉
}

4 Solve new subproblem

Example of “fix-and-MIP” local neighbourhood search heuristic
(Interestingly, this turns ILP into 0-1 ILP subproblem)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 102/121

MIP and ILP Solving Additional Techniques

Primal Heuristics

Improve solution (primal bound)
Guide remaining search

Example: Relaxation-enforced neighbourhood search
1 Solve LP relaxation to get x∗
2 Fix values of all xj such that x∗j ∈ N
3 For xj with fractional solution, reduce domain to xj ∈ {

⌊
x∗j
⌋
,
⌈
x∗j
⌉
}

4 Solve new subproblem

Example of “fix-and-MIP” local neighbourhood search heuristic
(Interestingly, this turns ILP into 0-1 ILP subproblem)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 102/121

MIP and ILP Solving Additional Techniques

And More. . .

1 Decomposition
Branch-and-price / column generation
Bender’s decomposition

2 Symmetry handling
Via graph automorphism
Or dedicated symmetry detection (commercial solvers)

3 Extended formulations (with new variables and constraints)
4 Parallelization
5 Restarts

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 103/121

MIP and ILP Solving Additional Techniques

Numerics and Correctness
Numerics

Use floating point for efficiency reasons
Can lead to rounding errors
Exact MIP solvers like [CKSW13]

are significantly slower
don’t support the full range of state-of-the-art techniques

Proof logging / certification
Currently not available for state-of-the-art solvers
Though known that even best commercial solvers sometimes give
wrong results
Some work on proof logging in [CGS17] — challenges:

How to capture wide diversity of techniques?
What is a convenient format?
How to generate proofs efficiently on-the-fly?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 104/121

MIP and ILP Solving Additional Techniques

Numerics and Correctness
Numerics

Use floating point for efficiency reasons
Can lead to rounding errors
Exact MIP solvers like [CKSW13]

are significantly slower
don’t support the full range of state-of-the-art techniques

Proof logging / certification
Currently not available for state-of-the-art solvers
Though known that even best commercial solvers sometimes give
wrong results
Some work on proof logging in [CGS17] — challenges:

How to capture wide diversity of techniques?
What is a convenient format?
How to generate proofs efficiently on-the-fly?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 104/121

MIP and ILP Solving Additional Techniques

Some Interesting MIP Questions

1 Develop better heuristics to branch on general linear constraints
(cf. stabbing planes [BFI+18])

2 Design stronger conflict analysis operating directly on linear
constraints (borrow ideas from native pseudo-Boolean solvers?)

3 Provide rigorous understanding of MIP solver performance

4 Develop families of theory benchmarks and computational complexity
results for them (cf. SAT solving and proof complexity [BN21])

5 Steal best MIP ideas and use for pseudo-Boolean solving?!
[next and final topic]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 105/121

MIP and ILP Solving Additional Techniques

Some Interesting MIP Questions

1 Develop better heuristics to branch on general linear constraints
(cf. stabbing planes [BFI+18])

2 Design stronger conflict analysis operating directly on linear
constraints (borrow ideas from native pseudo-Boolean solvers?)

3 Provide rigorous understanding of MIP solver performance

4 Develop families of theory benchmarks and computational complexity
results for them (cf. SAT solving and proof complexity [BN21])

5 Steal best MIP ideas and use for pseudo-Boolean solving?!
[next and final topic]

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 105/121

Combining PB and MIP Techniques

Combining PB Solving and Mixed Integer Programming

Pseudo-Boolean solvers
Sophisticated conflict analysis using cutting planes method
Sometimes terrible performance even when LP relaxation
infeasible [EGNV18]

Mixed integer linear programming solvers
Powerful search
Exploits information from LP relaxations
Rich variety of cut generation routines
But conflict analysis not so great. . .

Why not merge the two to get the best of both worlds of SAT-style
conflict-driven search and MIP-style branch-and-cut?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 106/121

Combining PB and MIP Techniques

Combining PB Solving and Mixed Integer Programming

Pseudo-Boolean solvers
Sophisticated conflict analysis using cutting planes method
Sometimes terrible performance even when LP relaxation
infeasible [EGNV18]

Mixed integer linear programming solvers
Powerful search
Exploits information from LP relaxations
Rich variety of cut generation routines
But conflict analysis not so great. . .

Why not merge the two to get the best of both worlds of SAT-style
conflict-driven search and MIP-style branch-and-cut?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 106/121

Combining PB and MIP Techniques

Combining PB Solving and Mixed Integer Programming

Pseudo-Boolean solvers
Sophisticated conflict analysis using cutting planes method
Sometimes terrible performance even when LP relaxation
infeasible [EGNV18]

Mixed integer linear programming solvers
Powerful search
Exploits information from LP relaxations
Rich variety of cut generation routines
But conflict analysis not so great. . .

Why not merge the two to get the best of both worlds of SAT-style
conflict-driven search and MIP-style branch-and-cut?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 106/121

Combining PB and MIP Techniques Some Challenges When Integrating PB and LP Solving

Balance Time Allocation for PB and LP Solving?

High-level idea: Give pseudo-Boolean solver access to LP solver

First challenge:

1 Using LP solver as preprocessor not sufficient
PB formulas can have feasible LP relaxations
but quickly turn infeasible after just a couple of decisions
Some such benchmarks very hard for PB solvers [EGNV18]

2 Consulting LP solver before each variable decision impractical
PB solving based on rapid alternation of decisions and propagations
Solving an LP relaxation is orders of magnitude slower

Need to carefully balance time allocation for PB solver and LP solver

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 107/121

Combining PB and MIP Techniques Some Challenges When Integrating PB and LP Solving

Balance Time Allocation for PB and LP Solving?

High-level idea: Give pseudo-Boolean solver access to LP solver

First challenge:

1 Using LP solver as preprocessor not sufficient
PB formulas can have feasible LP relaxations
but quickly turn infeasible after just a couple of decisions
Some such benchmarks very hard for PB solvers [EGNV18]

2 Consulting LP solver before each variable decision impractical
PB solving based on rapid alternation of decisions and propagations
Solving an LP relaxation is orders of magnitude slower

Need to carefully balance time allocation for PB solver and LP solver

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 107/121

Combining PB and MIP Techniques Some Challenges When Integrating PB and LP Solving

Balance Time Allocation for PB and LP Solving?

High-level idea: Give pseudo-Boolean solver access to LP solver

First challenge:

1 Using LP solver as preprocessor not sufficient
PB formulas can have feasible LP relaxations
but quickly turn infeasible after just a couple of decisions
Some such benchmarks very hard for PB solvers [EGNV18]

2 Consulting LP solver before each variable decision impractical
PB solving based on rapid alternation of decisions and propagations
Solving an LP relaxation is orders of magnitude slower

Need to carefully balance time allocation for PB solver and LP solver

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 107/121

Combining PB and MIP Techniques Some Challenges When Integrating PB and LP Solving

Balance Time Allocation for PB and LP Solving?

High-level idea: Give pseudo-Boolean solver access to LP solver

First challenge:

1 Using LP solver as preprocessor not sufficient
PB formulas can have feasible LP relaxations
but quickly turn infeasible after just a couple of decisions
Some such benchmarks very hard for PB solvers [EGNV18]

2 Consulting LP solver before each variable decision impractical
PB solving based on rapid alternation of decisions and propagations
Solving an LP relaxation is orders of magnitude slower

Need to carefully balance time allocation for PB solver and LP solver

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 107/121

Combining PB and MIP Techniques Some Challenges When Integrating PB and LP Solving

Backtracking from LP Infeasibility?

What to do if LP call shows LP relaxation infeasible under current trail?
Obviously, PB solver should backtrack
But can only do conflict analysis on violated PB constraint
And PB solver blissfully unaware of any conflict. . .

More subtle issue:
Efficient LP solvers use inexact floating-point arithmetic
How to incorporate into Boolean solver that must maintain perfectly
sound reasoning?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 108/121

Combining PB and MIP Techniques Some Challenges When Integrating PB and LP Solving

Backtracking from LP Infeasibility?

What to do if LP call shows LP relaxation infeasible under current trail?
Obviously, PB solver should backtrack
But can only do conflict analysis on violated PB constraint
And PB solver blissfully unaware of any conflict. . .

More subtle issue:
Efficient LP solvers use inexact floating-point arithmetic
How to incorporate into Boolean solver that must maintain perfectly
sound reasoning?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 108/121

Combining PB and MIP Techniques Some Challenges When Integrating PB and LP Solving

Sharing of Cut Constraints?

Cut constraints from LP solver
When LP relaxation feasible, MIP solver generates cut constraint to
remove the found LP solution
Should such constraints be shared with the PB solver?

Cut constraints from PB solver
PB solvers learns new constraints at high rate from conflict analysis
These learned constraints can also be viewed as cuts
Should such constraints be passed from PB solver to LP solver?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 109/121

Combining PB and MIP Techniques Some Challenges When Integrating PB and LP Solving

Sharing of Cut Constraints?

Cut constraints from LP solver
When LP relaxation feasible, MIP solver generates cut constraint to
remove the found LP solution
Should such constraints be shared with the PB solver?

Cut constraints from PB solver
PB solvers learns new constraints at high rate from conflict analysis
These learned constraints can also be viewed as cuts
Should such constraints be passed from PB solver to LP solver?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 109/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Report on Attempted PB-LP Integration [DGN21]

1 Interleave incremental LP solving within conflict-driven PB search
Limit LP solver time by enforcing total #LP pivots ≤ #PB conflicts
Only run LP solver when this condition holds
Abort if > P pivots in single LP call; but if so also double limit P to
avoid wasted LP calls in future

2 When LP solver detects that LP relaxation infeasible
Farkas’ lemma ⇒ linear combination of constraints violated by trail
Use this Farkas constraint as starting point for conflict analysis
Computed using exact arithmetic, so no rounding errors
But might not be violated — if so, ignore and continue PB search

3 When LP solver finds solution to LP relaxation
Generate MIP-style Gomory cut
Share constraint to tighten search space on both PB side and LP side
Try to use LP solution to guide PB search (e.g., variable decisions)

4 Also explore letting PB solver pass learned constraints to LP solver
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 110/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Report on Attempted PB-LP Integration [DGN21]

1 Interleave incremental LP solving within conflict-driven PB search
Limit LP solver time by enforcing total #LP pivots ≤ #PB conflicts
Only run LP solver when this condition holds
Abort if > P pivots in single LP call; but if so also double limit P to
avoid wasted LP calls in future

2 When LP solver detects that LP relaxation infeasible
Farkas’ lemma ⇒ linear combination of constraints violated by trail
Use this Farkas constraint as starting point for conflict analysis
Computed using exact arithmetic, so no rounding errors
But might not be violated — if so, ignore and continue PB search

3 When LP solver finds solution to LP relaxation
Generate MIP-style Gomory cut
Share constraint to tighten search space on both PB side and LP side
Try to use LP solution to guide PB search (e.g., variable decisions)

4 Also explore letting PB solver pass learned constraints to LP solver
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 110/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Report on Attempted PB-LP Integration [DGN21]

1 Interleave incremental LP solving within conflict-driven PB search
Limit LP solver time by enforcing total #LP pivots ≤ #PB conflicts
Only run LP solver when this condition holds
Abort if > P pivots in single LP call; but if so also double limit P to
avoid wasted LP calls in future

2 When LP solver detects that LP relaxation infeasible
Farkas’ lemma ⇒ linear combination of constraints violated by trail
Use this Farkas constraint as starting point for conflict analysis
Computed using exact arithmetic, so no rounding errors
But might not be violated — if so, ignore and continue PB search

3 When LP solver finds solution to LP relaxation
Generate MIP-style Gomory cut
Share constraint to tighten search space on both PB side and LP side
Try to use LP solution to guide PB search (e.g., variable decisions)

4 Also explore letting PB solver pass learned constraints to LP solver
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 110/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Report on Attempted PB-LP Integration [DGN21]

1 Interleave incremental LP solving within conflict-driven PB search
Limit LP solver time by enforcing total #LP pivots ≤ #PB conflicts
Only run LP solver when this condition holds
Abort if > P pivots in single LP call; but if so also double limit P to
avoid wasted LP calls in future

2 When LP solver detects that LP relaxation infeasible
Farkas’ lemma ⇒ linear combination of constraints violated by trail
Use this Farkas constraint as starting point for conflict analysis
Computed using exact arithmetic, so no rounding errors
But might not be violated — if so, ignore and continue PB search

3 When LP solver finds solution to LP relaxation
Generate MIP-style Gomory cut
Share constraint to tighten search space on both PB side and LP side
Try to use LP solution to guide PB search (e.g., variable decisions)

4 Also explore letting PB solver pass learned constraints to LP solver
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 110/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

(What We Need from) Farkas Lemma [Far02]

Pseudo-Boolean Farkas Lemma
Given

Pseudo-Boolean formula F = {C1, . . . , Cm},
partial assignment ρ,

such that LP relaxation of residual formula F�ρ infeasible
Then ∃ coefficients ki ∈ N such that linear combination∑m

i=1 ki · Ci

is violated by ρ, i.e.,

slack
(∑m

i=1 ki · Ci; ρ
)
< 0

Observed in [MM04] that
∑m
i=1 ki · Ci is valid starting point for

pseudo-Boolean conflict analysis
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 111/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Relation to MIP Solvers with Conflict Analysis?

MIP solvers also combine constraint propagation and SAT-style clause
learning with LP solving

Implemented in SCIP [ABKW08]
And also in closed-source solvers (see [AW13])

Important to understand similarities and differences — let’s give high-level
description of PB search and conflict analysis phrased in MIP language

Pseudo-Boolean search
1 Make decision to assign free variable to 0 or 1
2 Propagate all assignments implied by some linear constraint until

saturation
3 If no contradiction, go to step 1
4 Otherwise some constraint C violated ⇒ trigger conflict analysis

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 112/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Relation to MIP Solvers with Conflict Analysis?

MIP solvers also combine constraint propagation and SAT-style clause
learning with LP solving

Implemented in SCIP [ABKW08]
And also in closed-source solvers (see [AW13])

Important to understand similarities and differences — let’s give high-level
description of PB search and conflict analysis phrased in MIP language

Pseudo-Boolean search
1 Make decision to assign free variable to 0 or 1
2 Propagate all assignments implied by some linear constraint until

saturation
3 If no contradiction, go to step 1
4 Otherwise some constraint C violated ⇒ trigger conflict analysis

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 112/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

PB Conflict Analysis “in MIP Language”

Pseudo-Boolean conflict analysis (simplified description)
1 Find reason constraint R responsible for propagating last variable x

in C to “wrong value”
2 Apply division/saturation to generate cut Rcut propagating x to
{0, 1}-value (over the reals)

3 Set D := smallest integer linear combination of Rcut and C for which
x cancels — D violated by current solvers assignment with x removed

4 Unless D satisfies termination criterion (assertiveness), set C := D
and go to step 1

5 Learn assertive D, i.e., add to solver database of constraints
6 Backjump by undoing further assignments in reverse chronological

order until D is no longer violated
7 Switch back to search phase

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 113/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

PB Conflict Analysis “in MIP Language”

Pseudo-Boolean conflict analysis (simplified description)
1 Find reason constraint R responsible for propagating last variable x

in C to “wrong value”
2 Apply division/saturation to generate cut Rcut propagating x to
{0, 1}-value (over the reals)

3 Set D := smallest integer linear combination of Rcut and C for which
x cancels — D violated by current solvers assignment with x removed

4 Unless D satisfies termination criterion (assertiveness), set C := D
and go to step 1

5 Learn assertive D, i.e., add to solver database of constraints
6 Backjump by undoing further assignments in reverse chronological

order until D is no longer violated
7 Switch back to search phase

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 113/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

PB Conflict Analysis “in MIP Language”

Pseudo-Boolean conflict analysis (simplified description)
1 Find reason constraint R responsible for propagating last variable x

in C to “wrong value”
2 Apply division/saturation to generate cut Rcut propagating x to
{0, 1}-value (over the reals)

3 Set D := smallest integer linear combination of Rcut and C for which
x cancels — D violated by current solvers assignment with x removed

4 Unless D satisfies termination criterion (assertiveness), set C := D
and go to step 1

5 Learn assertive D, i.e., add to solver database of constraints
6 Backjump by undoing further assignments in reverse chronological

order until D is no longer violated
7 Switch back to search phase

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 113/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

PB Conflict Analysis “in MIP Language”

Pseudo-Boolean conflict analysis (simplified description)
1 Find reason constraint R responsible for propagating last variable x

in C to “wrong value”
2 Apply division/saturation to generate cut Rcut propagating x to
{0, 1}-value (over the reals)

3 Set D := smallest integer linear combination of Rcut and C for which
x cancels — D violated by current solvers assignment with x removed

4 Unless D satisfies termination criterion (assertiveness), set C := D
and go to step 1

5 Learn assertive D, i.e., add to solver database of constraints
6 Backjump by undoing further assignments in reverse chronological

order until D is no longer violated
7 Switch back to search phase

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 113/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

PB Conflict Analysis “in MIP Language”

Pseudo-Boolean conflict analysis (simplified description)
1 Find reason constraint R responsible for propagating last variable x

in C to “wrong value”
2 Apply division/saturation to generate cut Rcut propagating x to
{0, 1}-value (over the reals)

3 Set D := smallest integer linear combination of Rcut and C for which
x cancels — D violated by current solvers assignment with x removed

4 Unless D satisfies termination criterion (assertiveness), set C := D
and go to step 1

5 Learn assertive D, i.e., add to solver database of constraints
6 Backjump by undoing further assignments in reverse chronological

order until D is no longer violated
7 Switch back to search phase

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 113/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

PB Conflict Analysis “in MIP Language”

Pseudo-Boolean conflict analysis (simplified description)
1 Find reason constraint R responsible for propagating last variable x

in C to “wrong value”
2 Apply division/saturation to generate cut Rcut propagating x to
{0, 1}-value (over the reals)

3 Set D := smallest integer linear combination of Rcut and C for which
x cancels — D violated by current solvers assignment with x removed

4 Unless D satisfies termination criterion (assertiveness), set C := D
and go to step 1

5 Learn assertive D, i.e., add to solver database of constraints
6 Backjump by undoing further assignments in reverse chronological

order until D is no longer violated
7 Switch back to search phase

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 113/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

PB Conflict Analysis “in MIP Language”

Pseudo-Boolean conflict analysis (simplified description)
1 Find reason constraint R responsible for propagating last variable x

in C to “wrong value”
2 Apply division/saturation to generate cut Rcut propagating x to
{0, 1}-value (over the reals)

3 Set D := smallest integer linear combination of Rcut and C for which
x cancels — D violated by current solvers assignment with x removed

4 Unless D satisfies termination criterion (assertiveness), set C := D
and go to step 1

5 Learn assertive D, i.e., add to solver database of constraints
6 Backjump by undoing further assignments in reverse chronological

order until D is no longer violated
7 Switch back to search phase

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 113/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Comparison to MIP Propagation and Conflict Analysis

Propagation in SCIP
Fast, simple propagation in PB solvers
Plus powerful, but slower, method of solving LP relaxations

Conflict analysis in SCIP [Ach07]
Perform derivation not on reason constraints R as described above
Instead use disjunctive clauses extracted from reason constraints
Incurs exponential loss in reasoning power compared to operating on
actual linear constraints (follows from [BKS04, CCT87, Hak85])

Arithmetic
SCIP uses floating point
Reasoning steps in PB solver computed with exact integer arithmetic
No issues with possible rounding errors

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 114/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Comparison to MIP Propagation and Conflict Analysis

Propagation in SCIP
Fast, simple propagation in PB solvers
Plus powerful, but slower, method of solving LP relaxations

Conflict analysis in SCIP [Ach07]
Perform derivation not on reason constraints R as described above
Instead use disjunctive clauses extracted from reason constraints
Incurs exponential loss in reasoning power compared to operating on
actual linear constraints (follows from [BKS04, CCT87, Hak85])

Arithmetic
SCIP uses floating point
Reasoning steps in PB solver computed with exact integer arithmetic
No issues with possible rounding errors

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 114/121

Combining PB and MIP Techniques A Proof-of-Concept Hybrid PB-LP Solver

Comparison to MIP Propagation and Conflict Analysis

Propagation in SCIP
Fast, simple propagation in PB solvers
Plus powerful, but slower, method of solving LP relaxations

Conflict analysis in SCIP [Ach07]
Perform derivation not on reason constraints R as described above
Instead use disjunctive clauses extracted from reason constraints
Incurs exponential loss in reasoning power compared to operating on
actual linear constraints (follows from [BKS04, CCT87, Hak85])

Arithmetic
SCIP uses floating point
Reasoning steps in PB solver computed with exact integer arithmetic
No issues with possible rounding errors

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 114/121

Combining PB and MIP Techniques Evaluation and Conclusions

Experimental Results for Knapsack Benchmarks [Pis05]

RoundingSat (RS)
enhanced with

LP solver
SoPlex (SPX)
(from SCIP)
Gomory cuts (GC)
shared learned PB
cuts (LC)

compared to other
solvers

10 1 100 101 102 103

Timeout limit (s)

0

100

200

300

400

500

600

700

Nu
m

be
r o

f s
ol

ve
d

in
st

an
ce

s

Knapsack (higher is better, 783 instances)

SCIP (765 solved)
RS (520)
RS+SPX (600)
RS+SPX+GC (670)
RS+SPX+GC+LC (680)
Sat4J (374)
NaPS (111)

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 115/121

Combining PB and MIP Techniques Evaluation and Conclusions

Experimental Results for PB and MIPLIB Benchmarks

RoundingSat (RS) run on PB and 0-1 ILP instances with
LP solver (+SPX)
plus Gomory cuts (+GC)
plus sharing cuts learned by PB solver (+LC)

compared to other solvers

instances solved (to optimality for optimization problems)
Highlighting 1st, 2nd, and 3rd best

SCIP RS +SPX +GC +LC Sat4j NaPS
PB16dec (1783) 1123 1472 1453 1452 1451 1432 1400
PB16opt (1600) 1057 862 988 986 993 776 896
MIPdec (556) 264 203 263 261 259 169 170
MIPopt (291) 125 78 101 102 102 62 65

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 116/121

Combining PB and MIP Techniques Evaluation and Conclusions

Experimental Results for PB and MIPLIB Benchmarks

RoundingSat (RS) run on PB and 0-1 ILP instances with
LP solver (+SPX)
plus Gomory cuts (+GC)
plus sharing cuts learned by PB solver (+LC)

compared to other solvers

instances solved (to optimality for optimization problems)
Highlighting 1st, 2nd, and 3rd best

SCIP RS +SPX +GC +LC Sat4j NaPS
PB16dec (1783) 1123 1472 1453 1452 1451 1432 1400
PB16opt (1600) 1057 862 988 986 993 776 896
MIPdec (556) 264 203 263 261 259 169 170
MIPopt (291) 125 78 101 102 102 62 65

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 116/121

Combining PB and MIP Techniques Evaluation and Conclusions

Performance of Integrated PB-LP Solver

1 Best of both worlds?
At least well-rounded performance
Hybrid PB-LP solver always competitive with best solver
Pretty dramatic improvements for optimization problems compared to
pseudo-Boolean state of the art
. . . But SCIP is hard to beat

2 Adding LP solving causes performance loss on PB decision instances
Worse results on satisfiable instances
Better search (lower conflict count) but slower — doesn’t pay off in
terms of running time

3 Sharing Gomory cuts and learned cuts not so helpful
Except for knapsack benchmarks, where they help a lot
And maybe we could/should fine-tune how sharing is done?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 117/121

Combining PB and MIP Techniques Evaluation and Conclusions

Performance of Integrated PB-LP Solver

1 Best of both worlds?
At least well-rounded performance
Hybrid PB-LP solver always competitive with best solver
Pretty dramatic improvements for optimization problems compared to
pseudo-Boolean state of the art
. . . But SCIP is hard to beat

2 Adding LP solving causes performance loss on PB decision instances
Worse results on satisfiable instances
Better search (lower conflict count) but slower — doesn’t pay off in
terms of running time

3 Sharing Gomory cuts and learned cuts not so helpful
Except for knapsack benchmarks, where they help a lot
And maybe we could/should fine-tune how sharing is done?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 117/121

Combining PB and MIP Techniques Evaluation and Conclusions

Performance of Integrated PB-LP Solver

1 Best of both worlds?
At least well-rounded performance
Hybrid PB-LP solver always competitive with best solver
Pretty dramatic improvements for optimization problems compared to
pseudo-Boolean state of the art
. . . But SCIP is hard to beat

2 Adding LP solving causes performance loss on PB decision instances
Worse results on satisfiable instances
Better search (lower conflict count) but slower — doesn’t pay off in
terms of running time

3 Sharing Gomory cuts and learned cuts not so helpful
Except for knapsack benchmarks, where they help a lot
And maybe we could/should fine-tune how sharing is done?

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 117/121

Combining PB and MIP Techniques Evaluation and Conclusions

Usefulness/Usage of Constraints

Estimate usefulness of different types of constraints
Proxy: how often used in conflict analysis?
Certainly not perfect measure
But hopefully tells us something interesting

Farkas constraints
More useful than regular learned constraints for optimization problems
Not so for decision problems

Constraints learned after Farkas-based conflicts
Less useful than regular learned constraints
But big spread in usage measurements

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 118/121

Combining PB and MIP Techniques Evaluation and Conclusions

Usefulness/Usage of Constraints

Estimate usefulness of different types of constraints
Proxy: how often used in conflict analysis?
Certainly not perfect measure
But hopefully tells us something interesting

Farkas constraints
More useful than regular learned constraints for optimization problems
Not so for decision problems

Constraints learned after Farkas-based conflicts
Less useful than regular learned constraints
But big spread in usage measurements

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 118/121

Combining PB and MIP Techniques Evaluation and Conclusions

Usefulness/Usage of Constraints

Estimate usefulness of different types of constraints
Proxy: how often used in conflict analysis?
Certainly not perfect measure
But hopefully tells us something interesting

Farkas constraints
More useful than regular learned constraints for optimization problems
Not so for decision problems

Constraints learned after Farkas-based conflicts
Less useful than regular learned constraints
But big spread in usage measurements

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 118/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (1/2)

1 Fine-tune heuristics
Improved LP-based cut generation?
Smarter sharing of PB constraints with LP solver?
Dynamic allocation of PB and LP solving time based on contributions?

2 Understand better how constraints from LP solver contribute
Why are Farkas constraints so useful?
But constraints learned from Farkas constraint conflicts not useful?

3 Make more intelligent use in PB solver of information from solutions
to LP relaxations

4 Use MIP presolving in pseudo-Boolean solvers
5 Use MIR cuts and/or other MIP cut rules to improve pseudo-Boolean

conflict analysis

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 119/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (1/2)

1 Fine-tune heuristics
Improved LP-based cut generation?
Smarter sharing of PB constraints with LP solver?
Dynamic allocation of PB and LP solving time based on contributions?

2 Understand better how constraints from LP solver contribute
Why are Farkas constraints so useful?
But constraints learned from Farkas constraint conflicts not useful?

3 Make more intelligent use in PB solver of information from solutions
to LP relaxations

4 Use MIP presolving in pseudo-Boolean solvers
5 Use MIR cuts and/or other MIP cut rules to improve pseudo-Boolean

conflict analysis

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 119/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (1/2)

1 Fine-tune heuristics
Improved LP-based cut generation?
Smarter sharing of PB constraints with LP solver?
Dynamic allocation of PB and LP solving time based on contributions?

2 Understand better how constraints from LP solver contribute
Why are Farkas constraints so useful?
But constraints learned from Farkas constraint conflicts not useful?

3 Make more intelligent use in PB solver of information from solutions
to LP relaxations

4 Use MIP presolving in pseudo-Boolean solvers
5 Use MIR cuts and/or other MIP cut rules to improve pseudo-Boolean

conflict analysis

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 119/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (1/2)

1 Fine-tune heuristics
Improved LP-based cut generation?
Smarter sharing of PB constraints with LP solver?
Dynamic allocation of PB and LP solving time based on contributions?

2 Understand better how constraints from LP solver contribute
Why are Farkas constraints so useful?
But constraints learned from Farkas constraint conflicts not useful?

3 Make more intelligent use in PB solver of information from solutions
to LP relaxations

4 Use MIP presolving in pseudo-Boolean solvers
5 Use MIR cuts and/or other MIP cut rules to improve pseudo-Boolean

conflict analysis

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 119/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (1/2)

1 Fine-tune heuristics
Improved LP-based cut generation?
Smarter sharing of PB constraints with LP solver?
Dynamic allocation of PB and LP solving time based on contributions?

2 Understand better how constraints from LP solver contribute
Why are Farkas constraints so useful?
But constraints learned from Farkas constraint conflicts not useful?

3 Make more intelligent use in PB solver of information from solutions
to LP relaxations

4 Use MIP presolving in pseudo-Boolean solvers
5 Use MIR cuts and/or other MIP cut rules to improve pseudo-Boolean

conflict analysis

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 119/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (2/2)

6 Combine LP solver with core-guided search or IHS approach
7 Improve pseudo-Boolean search

RoundingSat with LP integration or core-guided search seems to be
state of the art for PB solving
But solver much better on unsatisfiable instances (proving optimality)
than on satisfiable ones (finding solutions)

8 Export pseudo-Boolean conflict analysis to MIP
9 Use hybrid PB-LP solver to solve 0-1 MIP problems

PB solver decides on Boolean variables and propagates
LP solver takes care of real-valued variables

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 120/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (2/2)

6 Combine LP solver with core-guided search or IHS approach
7 Improve pseudo-Boolean search

RoundingSat with LP integration or core-guided search seems to be
state of the art for PB solving
But solver much better on unsatisfiable instances (proving optimality)
than on satisfiable ones (finding solutions)

8 Export pseudo-Boolean conflict analysis to MIP
9 Use hybrid PB-LP solver to solve 0-1 MIP problems

PB solver decides on Boolean variables and propagates
LP solver takes care of real-valued variables

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 120/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (2/2)

6 Combine LP solver with core-guided search or IHS approach
7 Improve pseudo-Boolean search

RoundingSat with LP integration or core-guided search seems to be
state of the art for PB solving
But solver much better on unsatisfiable instances (proving optimality)
than on satisfiable ones (finding solutions)

8 Export pseudo-Boolean conflict analysis to MIP
9 Use hybrid PB-LP solver to solve 0-1 MIP problems

PB solver decides on Boolean variables and propagates
LP solver takes care of real-valued variables

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 120/121

Combining PB and MIP Techniques Evaluation and Conclusions

Future Research Directions for PB-LP Integration (2/2)

6 Combine LP solver with core-guided search or IHS approach
7 Improve pseudo-Boolean search

RoundingSat with LP integration or core-guided search seems to be
state of the art for PB solving
But solver much better on unsatisfiable instances (proving optimality)
than on satisfiable ones (finding solutions)

8 Export pseudo-Boolean conflict analysis to MIP
9 Use hybrid PB-LP solver to solve 0-1 MIP problems

PB solver decides on Boolean variables and propagates
LP solver takes care of real-valued variables

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 120/121

Summing up

Pseudo-Boolean optimization powerful and expressive framework
Can be attacked with methods from

SAT solving and MaxSAT solving
“Native” cutting-planes-based pseudo-Boolean reasoning
Mixed integer linear programming

Approaches with complementary strengths — room for synergies?
Some highly nontrivial challenges regarding

Algorithm design
Efficient implementation
Theoretical understanding

But maybe also quite a bit of low-hanging fruit?
And in any case lots of fun questions to work on! ,

Thank you for your attention!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 121/121

Summing up

Pseudo-Boolean optimization powerful and expressive framework
Can be attacked with methods from

SAT solving and MaxSAT solving
“Native” cutting-planes-based pseudo-Boolean reasoning
Mixed integer linear programming

Approaches with complementary strengths — room for synergies?
Some highly nontrivial challenges regarding

Algorithm design
Efficient implementation
Theoretical understanding

But maybe also quite a bit of low-hanging fruit?
And in any case lots of fun questions to work on! ,

Thank you for your attention!
Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 121/121

References I

[ABGL12] Carlos Ansótegui, Maŕıa Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving
SAT-based weighted MaxSAT solvers. In Proceedings of the 18th International
Conference on Principles and Practice of Constraint Programming (CP ’12),
volume 7514 of Lecture Notes in Computer Science, pages 86–101. Springer,
October 2012.

[ABKW08] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Constraint
integer programming: A new approach to integrate CP and MIP. In Proceedings of
the 5th International Conference on the Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR ’08),
volume 5015 of Lecture Notes in Computer Science, pages 6–20. Springer, May
2008.

[Ach07] Tobias Achterberg. Conflict analysis in mixed integer programming. Discrete
Optimization, 4(1):4–20, March 2007.

[ADMR15] Mario Alviano, Carmine Dodaro, João P. Marques-Silva, and Francesco Ricca.
Optimum stable model search: Algorithms and implementation. Journal of Logic
and Computation, 30(4):863–897, August 2015.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 122/121

References II

[AKMS12] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub.
Unsatisfiability-based optimization in clasp. In Technical Communications of the
28th International Conference on Logic Programming (ICLP ’12), volume 17 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 211–221,
September 2012.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing
12 years of progress. In Michael Jünger and Gerhard Reinelt, editors, Facets of
Combinatorial Optimization, pages 449–481. Springer, 2013.

[Bac21] Fahiem Bacchus. Personal communication, 2021.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear
pseudo-Boolean optimization. Technical Report MPI-I-95-2-003,
Max-Planck-Institut für Informatik, January 1995.

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean
cardinality constraints. In Proceedings of the 9th International Conference on
Principles and Practice of Constraint Programming (CP ’03), volume 2833 of
Lecture Notes in Computer Science, pages 108–122. Springer, September 2003.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 123/121

References III

[BBP20] Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting
set MaxSat solving. In Proceedings of the 23rd International Conference on Theory
and Applications of Satisfiability Testing (SAT ’20), volume 12178 of Lecture
Notes in Computer Science, pages 277–294. Springer, July 2020.

[BBR09] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of
pseudo-Boolean constraints into CNF. In Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’09), volume
5584 of Lecture Notes in Computer Science, pages 181–194. Springer, June 2009.

[BDS19] Jeremias Berg, Emir Demirović, and Peter J. Stuckey. Core-boosted linear search
for incomplete MaxSAT. In Proceedings of the 16th International Conference on
the Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR ’19), volume 11494 of Lecture Notes in Computer Science,
pages 39–56. Springer, June 2019.

[BF20] Armin Biere and Mathias Fleury. Chasing target phases. Presented at the workshop
Pragmatics of SAT 2020. Paper available at
http://fmv.jku.at/papers/BiereFleury-POS20.pdf, July 2020.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 124/121

http://fmv.jku.at/papers/BiereFleury-POS20.pdf

References IV

[BFI+18] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis
Pankratov, Toniann Pitassi, and Robert Robere. Stabbing planes. In Proceedings of
the 9th Innovations in Theoretical Computer Science Conference (ITCS ’18),
volume 94 of Leibniz International Proceedings in Informatics (LIPIcs), pages
10:1–10:20, January 2018.

[BH02] Endre Boros and Peter L. Hammer. Pseudo-Boolean optimization. Discrete Applied
Mathematics, 123(1–3):155–225, November 2002.

[BJ17] Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in SAT-based
MaxSAT solving. In Proceedings of the 23rd International Conference on Principles
and Practice of Constraint Programming (CP ’17), volume 10416 of Lecture Notes
in Computer Science, pages 652–670. Springer, August 2017.

[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence
Research, 22:319–351, December 2004. Preliminary version in IJCAI ’03.

[BLLM14] Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey. Detecting
cardinality constraints in CNF. In Proceedings of the 17th International Conference
on Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of
Lecture Notes in Computer Science, pages 285–301. Springer, July 2014.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 125/121

References V

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In
Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and
Applications, chapter 7, pages 233–350. IOS Press, 2nd edition, February 2021.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made
simple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in
STOC ’99.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of
cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros Gleixner, and Daniel E. Steffy. Verifying integer
programming results. In Proceedings of the 19th International Conference on
Integer Programming and Combinatorial Optimization (IPCO ’17), volume 10328
of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 126/121

References VI

[CK05] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(3):305–317, March 2005. Preliminary version in DAC ’03.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid
branch-and-bound approach for exact rational mixed-integer programming.
Mathematical Programming Computation, 5(3):305–344, September 2013.

[CPL] IBM ILOG CPLEX optimization studio.
https://www.ibm.com/products/ilog-cplex-optimization-studio.

[Dev20] Jo Devriendt. Watched propagation of 0-1 integer linear constraints. In
Proceedings of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer
Science, pages 160–176. Springer, September 2020.

[DG02] Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-Boolean
satisfiability solver. In Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI ’02), pages 635–640, July 2002.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 127/121

https://www.ibm.com/products/ilog-cplex-optimization-studio

References VII

[DGD+21] Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter
Stuckey. Cutting to the core of pseudo-Boolean optimization: Combining
core-guided search with cutting planes reasoning. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI ’21), February 2021. To appear.

[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating
0-1 integer linear programming with pseudo-Boolean conflict-driven search.
Constraints, January 2021. Preliminary version in CPAIOR ’20.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all
differences using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI ’20), pages 1486–1494, February 2020.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 128/121

References VIII

[EGNV18] Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using
combinatorial benchmarks to probe the reasoning power of pseudo-Boolean solvers.
In Proceedings of the 21st International Conference on Theory and Applications of
Satisfiability Testing (SAT ’18), volume 10929 of Lecture Notes in Computer
Science, pages 75–93. Springer, July 2018.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster
pseudo-Boolean solving. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI ’18), pages 1291–1299, July 2018.

[EN20] Jan Elffers and Jakob Nordström. A cardinal improvement to pseudo-Boolean
solving. In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI ’20), pages 1495–1503, February 2020.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into
SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26,
March 2006.

[Far02] Julius Farkas. Theorie der einfachen Ungleichungen. Journal für die Reine und
Angewandte Mathematik, 1902(124):1–27, 1902.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 129/121

References IX

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In
Proceedings of the 9th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’06), volume 4121 of Lecture Notes in Computer
Science, pages 252–265. Springer, August 2006.

[FMSV20] Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. MaxSAT
resolution and subcube sums. In Proceedings of the 23rd International Conference
on Theory and Applications of Satisfiability Testing (SAT ’20), volume 12178 of
Lecture Notes in Computer Science, pages 295–311. Springer, July 2020.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick
Prosser, and James Trimble. Certifying solvers for clique and maximum common
(connected) subgraph problems. In Proceedings of the 26th International
Conference on Principles and Practice of Constraint Programming (CP ’20),
volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
September 2020.

[GMN20a] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism
meets cutting planes: Solving with certified solutions. In Proceedings of the 29th
International Joint Conference on Artificial Intelligence (IJCAI ’20), pages
1134–1140, July 2020.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 130/121

References X

[GMN20b] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. VeriPB: The easy way to
make your combinatorial search algorithm trustworthy. Presented at the workshop
From Constraint Programming to Trustworthy AI at the 26th International
Conference on Principles and Practice of Constraint Programming (CP ’20). Paper
available at
http://www.cs.ucc.ie/˜bg6/cptai/2020/papers/CPTAI_2020_paper_2.pdf,
September 2020.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using
pseudo-Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI ’21), February 2021. To appear.

[GNY19] Stephan Gocht, Jakob Nordström, and Amir Yehudayoff. On division versus
saturation in pseudo-Boolean solving. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI ’19), pages 1711–1718, August 2019.

[Goc17] Stephan Gocht. Personal communication, 2017.

[Gom58] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, 64(5):275–278, 1958.

[Gur] Gurobi optimizer. https://www.gurobi.com/.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 131/121

http://www.cs.ucc.ie/~bg6/cptai/2020/papers/CPTAI_2020_paper_2.pdf
https://www.gurobi.com/

References XI

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[Hoo88] John N. Hooker. Generalized resolution and cutting planes. Annals of Operations
Research, 12(1):217–239, December 1988.

[Hoo92] John N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of
Mathematics and Artificial Intelligence, 6(1):271–286, March 1992.

[HS09] Hyojung Han and Fabio Somenzi. On-the-fly clause improvement. In Proceedings
of the 12th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’09), volume 5584 of Lecture Notes in Computer Science, pages
209–222. Springer, July 2009.

[JdM13] Dejan Jovanovic and Leonardo de Moura. Cutting to the chase solving linear
integer arithmetic. Journal of Automated Reasoning, 51(1):79–108, June 2013.
Preliminary version in CADE-23 2011.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 132/121

References XII

[JMM15] Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer
encoding for pseudo-Boolean constraints. In Proceedings of the 21st International
Conference on Principles and Practice of Constraint Programming (CP ’15),
volume 9255 of Lecture Notes in Computer Science, pages 200–209. Springer,
August-September 2015.

[KMP13] Thorsten Koch, Alexander Martin, and Marc E. Pfetsch. Progress in academic
computational integer programming. In Michael Jünger and Gerhard Reinelt,
editors, Facets of Combinatorial Optimization, pages 483–506. Springer, 2013.

[LBD+20] Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers, and Jakob Nordström.
Verifying properties of bit-vector multiplication using cutting planes reasoning. In
Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design
(FMCAD ’20), pages 194–204, September 2020.

[LMMW20] Daniel Le Berre, Pierre Marquis, Stefan Mengel, and Romain Wallon. On irrelevant
literals in pseudo-Boolean constraint learning. In Proceedings of the 29th
International Joint Conference on Artificial Intelligence (IJCAI ’20), pages
1148–1154, July 2020.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 133/121

References XIII

[LMW20] Daniel Le Berre, Pierre Marquis, and Romain Wallon. On weakening strategies for
PB solvers. In Proceedings of the 23rd International Conference on Theory and
Applications of Satisfiability Testing (SAT ’20), volume 12178 of Lecture Notes in
Computer Science, pages 322–331. Springer, July 2020.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on
Satisfiability, Boolean Modeling and Computation, 7:59–64, July 2010.

[MDM14] Antonio Morgado, Carmine Dodaro, and João P. Marques-Silva. Core-guided
MaxSAT with soft cardinality constraints. In Proceedings of the 20th International
Conference on Principles and Practice of Constraint Programming (CP ’14),
volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer,
September 2014.

[MHL+13] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João P.
Marques-Silva. Iterative and core-guided MaxSAT solving: A survey and
assessment. Constraints, 18(4):478–534, October 2013.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 134/121

References XIV

[MIB+19] António Morgado, Alexey Ignatiev, Maŕıa Luisa Bonet, João P. Marques-Silva, and
Samuel R. Buss. DRMaxSAT with MaxHS: First contact. In Proceedings of the
22nd International Conference on Theory and Applications of Satisfiability Testing
(SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages 239–249.
Springer, July 2019.

[MJML14] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. Incremental
cardinality constraints for MaxSAT. In Proceedings of the 20th International
Conference on Principles and Practice of Constraint Programming (CP ’14),
volume 8656 of Lecture Notes in Computer Science, pages 531–548. Springer,
September 2014.

[MLM09] Ruben Martins, Inês Lynce, and Vasco M. Manquinho. Preprocessing in
pseudo-Boolean optimization: An experimental evaluation. In Proceedings of the
8th International Workshop on Constraint Modelling and Reformulation
(ModRef ’09), pages 87–101, September 2009. Available at
https://www-users.cs.york.ac.uk/˜frisch/ModRef/09/proceedings.pdf.

[MM04] Vasco M. Manquinho and João P. Marques-Silva. Satisfiability-based algorithms for
Boolean optimization. Annals of Mathematics and Artificial Intelligence,
40(1):353–372, March 2004.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 135/121

https://www-users.cs.york.ac.uk/~frisch/ModRef/09/proceedings.pdf

References XV

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular
MaxSAT solver. In Proceedings of the 17th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes
in Computer Science, pages 438–445. Springer, July 2014.

[MMP09] Vasco M. Manquinho, João P. Marques-Silva, and Jordi Planes. Algorithms for
weighted Boolean optimization. In Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’09), volume
5584 of Lecture Notes in Computer Science, pages 495–508. Springer, June 2009.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas.
In Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer
Science, pages 121–137. Springer, July 2014.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search algorithm
for satisfiability. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’96), pages 220–227, November 1996.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 136/121

References XVI

[MW01] Hugues Marchand and Laurence A. Wolsey. Aggregation and mixed integer
rounding to solve MIPs. Operations Research, 49(3):325–468, June 2001.

[PaP] PaPILO — parallel presolve for integer and linear optimization.
https://github.com/lgottwald/PaPILO.

[PD07] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme
for satisfiability solvers. In Proceedings of the 10th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’07), volume 4501 of
Lecture Notes in Computer Science, pages 294–299. Springer, May 2007.

[Pis05] David Pisinger. Where are the hard knapsack problems? Computers & Operations
Research, 32(9):2271–2284, September 2005.

[Rya04] Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s
thesis, Simon Fraser University, February 2004. Available at
https://www.cs.sfu.ca/˜mitchell/papers/ryan-thesis.ps.

[SB09] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In Proceedings of
the 12th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’09), volume 5584 of Lecture Notes in Computer Science, pages
237–243. Springer, July 2009.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 137/121

https://github.com/lgottwald/PaPILO
https://www.cs.sfu.ca/~mitchell/papers/ryan-thesis.ps

References XVII

[SCI] SCIP: Solving constraint integer programs. http://scip.zib.de/.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints.
In Proceedings of the 11th International Conference on Principles and Practice of
Constraint Programming (CP ’05), volume 3709 of Lecture Notes in Computer
Science, pages 827–831. Springer, October 2005.

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a
PB-constraint in band form and related techniques for PB-solvers. IEICE
Transactions on Information and Systems, 98-D(6):1121–1127, June 2015.

[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT
solver. Journal on Satisfiability, Boolean Modeling and Computation,
2(1-4):165–189, March 2006. Preliminary version in DATE ’05.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 138/121

http://scip.zib.de/

References XVIII

[VEG+18] Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob
Nordström. In between resolution and cutting planes: A study of proof systems for
pseudo-Boolean SAT solving. In Proceedings of the 21st International Conference
on Theory and Applications of Satisfiability Testing (SAT ’18), volume 10929 of
Lecture Notes in Computer Science, pages 292–310. Springer, July 2018.

[Ver19] VeriPB: Verifier for pseudo-Boolean proofs.
https://doi.org/10.5281/zenodo.3548581, 2019.

[Wal20] Romain Wallon. Pseudo-Boolean Reasoning and Compilation. PhD thesis,
Université d’Artois, 2020.

[Wil76] H. P. Williams. Fourier-Motzkin elimination extension to integer programming
problems. Journal of Combinatorial Theory, Series A, 21(1):118–123, July 1976.

[Wol08] Laurence A. Wolsey. Mixed integer programming. In Wiley Encyclopedia of
Computer Science and Engineering. Wiley, 2008. Available at
https://doi.org/10.1002/9780470050118.ecse244.

[Xpr] FICO Xpress optimization.
https://www.fico.com/en/products/fico-xpress-optimization.

Jakob Nordström (UCPH & LU) Pseudo-Boolean Solving and Optimization Simons Institute Feb ’21 139/121

https://doi.org/10.5281/zenodo.3548581
https://doi.org/10.1002/9780470050118.ecse244
https://www.fico.com/en/products/fico-xpress-optimization

	Pseudo-Boolean Preliminaries
	Pseudo-Boolean Functions and Constraints
	Pseudo-Boolean Solving and Optimization
	Some Further References

	Pseudo-Boolean Solving
	Conflict-Driven Clause Learning
	CDCL by Example
	Pseudocode and Analysis

	CDCL-Based Pseudo-Boolean Solving
	Some Example CNF Encodings
	Properties of CNF Encodings

	``Native'' Cutting-Planes-Based Pseudo-Boolean Solving
	Preliminaries on Pseudo-Boolean Reasoning
	Pseudo-Boolean Conflict Analysis Using Saturation
	Pseudo-Boolean Conflict Analysis Using Division
	More About Pseudo-Boolean Reasoning

	Pseudo-Boolean Optimization
	MaxSAT
	Linear Search SAT-UNSAT (LSU)
	Core-Guided Search
	Implicit Hitting Set (IHS) Algorithm

	Mixed Integer Linear Programming
	MIP and ILP Solving
	MIP Preliminaries
	Branch-and-Bound and Branch-and-Cut
	Additional Techniques

	Combining PB and MIP Techniques
	Some Challenges When Integrating PB and LP Solving
	A Proof-of-Concept Hybrid PB-LP Solver
	Evaluation and Conclusions

	Conclusion
	Appendix

