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Abstract

This Master’s thesis presents a comparative analysis of St̊almarck’s proof method
and resolution from a theoretical perspective.

We give (to our knowledge) the first complete explicit formal description
of the dilemma proof system underlying St̊almarck’s method. Based on this
description we prove a number of simulation and separation results between
different subsystems of dilemma (defined by restrictions on possible branching
assumptions and rules for merging the results derived in distinct branches).

The key result of the thesis is that dilemma depth translates into resolution
width. More precisely, a dilemma refutation in depth d and length L of a
k-CNF formula F can be transformed to a resolution refutation of F in width
O (kd) and length

(
Lkd

)
O(1).

From this depth-width relation it follows that for k-CNF formulas with
k fixed, resolution p-simulates dilemma restricted to minimum-depth proofs.
Furthermore, the running time of the minimum-width proof search algorithm
suggested by Ben-Sasson and Wigderson is shown to be polynomial in the run-
ning time of St̊almarck’s method.

Finally, using results by Beame et al. we show that if F is a uniformly random
3-CNF formula with ∆n clauses on n variables, then with high probability it
holds for the dilemma hardness HD (F ) that Ω

(
n/∆2+ε

)
≤ HD (F ) ≤ O(n/∆)

(where ε is an arbitrarily small but positive constant).

Referat

St̊almarcks metod versus resolution: En komparativ teoretisk studie.
Denna examensarbetesrapport presenterar en komparativ analys av St̊al-

marcks bevismetod och resolution ur ett teoretiskt perspektiv.
Vi ger den (s̊avitt vi vet) första fullständiga explicita formella beskrivningen

av bevissystemet dilemma, p̊a vilket St̊almarcks metod är baserad. Utg̊aende
ifr̊an denna beskrivning bevisar vi ett antal simulerings- och separationsresultat
mellan olika delsystem av dilemma (definierade genom inskränkningar av reg-
lerna för antaganden vid förgreningar och för att sammanfoga resultat härledda
i olika grenar).

Huvudresultatet i denna rapport är att djup i dilemma svarar mot bredd
i resolution. Mer precist formulerat kan en dilemmarefutation i djup d och
längd L av en k-CNF-formel F överföras till en resolutionsrefutation av F i
bredd O (kd) och längd

(
Lkd

)
O(1).

Fr̊an denna relation mellan djup och bredd följer det att för k-CNF-formler
med k fixerat p-simulerar resolution dilemma begränsat till bevis i minimalt
djup. Vidare visas att exekveringstiden för den algoritm för sökning av bevis
i minimal bredd som föreslagits av Ben-Sasson och Wigderson är polynomiell i
exekveringstiden för St̊almarcks metod.

Slutligen visar vi med användande av resultat av Beame et al. att om F
är en likformigt fördelad slumpmässig 3-CNF-formel med ∆n klausuler över
n variabler s̊a gäller med hög sannolikhet för sv̊arighetsgraden i dilemmaHD (F )
att Ω

(
n/∆2+ε

)
≤ HD (F ) ≤ O(n/∆) (där ε är en godtyckligt liten men positiv

konstant).
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Chapter 1

Introduction

On June 4, 1996, the Ariane 5 rocket exploded less than a minute into its
maiden voyage. The reason was a bug in the onboard navigation and guidance
software, in a piece of program designed for the predecessor Ariane 4 but useless
for Ariane 5. To quote the inquiry board report, this piece of program had been
left in “presumably based on the view that, unless proven necessary, it was not
wise to make changes in software which worked well on Ariane 4.” In other
words, it was an instance of the old and trusted principle of software design: “if
it ain’t broke, don’t fix it.”

It had not been taken into consideration, however, that the flight character-
istics of Ariane 5 in the first 30 seconds of flight differed substantially from that
of Ariane 4. Because of this, the program received unexpectedly large horizontal
velocity data, which caused an overflow error. Since there was a large safety
margin for these values in Ariane 4, no error checking had been included to take
care of a possible overflow, so the program crashed. The ensuing error message
was interpreted by the onboard computer as flight data, and as a result the
rocket made “an abrupt course correction that was not needed, compensating
for a wrong turn that had not taken place”, broke up and exploded (the quote
is from [29], which contains a very readable analysis of the launch failure and
its wider implications). As an extra absurdity, the piece of software containing
the bug actually served no purpose even on Ariane 4 once the rocket was in the
air, but had been designed to keep running during the first 40 seconds or so of
the flight as a “special feature”.

At a cost of more than 7 billion US dollars, the first Ariane 5 launch was
arguably one of the most expensive firework displays in human history. But
although spectacular, the Ariane 5 failure is just one example of many of a
widespread problem in the software industry. Large software systems tend to be-
come highly complex, with intricate interdependencies in the code which makes
it hard or impossible to analyze them and predict their behaviour. For less dra-
matic examples of this one does not have to go further than the most common
word processors and spreadsheets in use today.

The contemporary hardware development industry experiences analogous
problems. Perhaps the most well-known illustration of this is the embarrassing
flaw in Intel’s Pentium microprocessor in October 1994. Then it was discovered
that because of some missing entries in a look-up table in the floating-point unit,
division operations could in rare cases produce wrong results. After first having
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2 CHAPTER 1. INTRODUCTION

tried to downplay the problem, Intel was later forced to offer replacements
to customers at a cost of 475 million US dollars (see for instance [42] for a
chronological account of the story). The Pentium division bug became a wake-
up call that the existing process for chip development was inadequate.

Intel is not alone having problems. The growing complexity of state-of-
the-art hardware devices is outpacing the capacity of the tools used to check
that they are correct. Making things worse, there is an increasing pressure to
keep the development time of new devices to a minimum to reduce the time-to-
market. As a consequence, components under development are more likely to
contain errors, while less time can be spent on validation, that is, making sure
that what has been built corresponds to the intended design.

Today, verification takes anywhere from 40% to 70% of the total time spent
designing a new chip [45]. On some projects in the hardware and telecommu-
nication industries, the cost of simulation and testing is nearing 50% of overall
project funding [9]. But simulation and testing can never provide full coverage
of all possible cases in increasingly complex designs.

One proposed solution to the problems discussed above is the adoption of
formal methods in software and hardware design. If the methods for specifying
and designing systems are formalized, it becomes possible to use mathematical
tools to prove theoretically that the designed system conforms to its specifica-
tion. Formal methods have formerly been the subject of mainly academic study,
but applied research in and usage of formal methods have increased greatly dur-
ing the last decade.

In this Master’s thesis, we address one of the fundamental questions in formal
methods, namely automated theorem proving and its theoretical foundations in
the subject of proof theory . This first chapter is an attempt to give an short,
informal introduction to all three above-mentioned subjects.

1.1 Shortly about Formal Methods

First of all, we have to make clear what we mean by a “formal method”. The
Free On-line Dictionary of Computing (http://foldoc.doc.ic.ac.uk/) de-
scribes formal methods as:

mathematically based techniques for the specification, development
and verification of software and hardware systems.

A more detailed explanation of the term is given in the UK Ministry of Defence
standard for safety-critical software [46], which defines a formal method as:

a software specification and production method, based on mathemat-
ics, that comprises: a collection of mathematical notations address-
ing the specification, design and development processes of software
production; a well-founded logical inference system in which formal
verification proofs and proofs of other properties can be formulated;
and a methodological framework within which software may be de-
veloped from the specification in a formally verifiable manner.

This second definition of formal methods is a rather ambitious one. In practice,
not all of the above mentioned components need be present.
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Before going into more detail, it is important to note that formal methods
are concerned with models of systems and that the methods can only be applied
to these models, not to the real systems themselves. Thus, formal methods
per se is no guarantee for correctness. Nevertheless, the use of formal methods
can greatly increase understanding of a system by revealing inconsistencies and
ambiguities that might otherwise remain undetected.

There are two main approaches to formal methods: specification oriented
and verification oriented.

Specification is the process of describing a system and its desired properties.
A specification oriented formal method provides a language with mathematically
defined syntax and semantics for this process. The kind of properties specified
can be for example functional behaviour, timing behaviour, performance char-
acteristics or internal structure.

The main benefit of specification is that it forces the developer to think
through the system carefully, and in this way helps him or her gain a deeper
understanding of the system being specified. Through this process the developer
can uncover design flaws. What is more, since the specification is written in a
language with formally defined meaning, it can itself be checked for consistency
or used to derive properties about the system. The purpose of such analysis is
to validate the specification, that is to make sure that it matches the intentions
of the designer.

Verification goes one step beyond specification. The goal of a verification
oriented formal method is to make sure that an implementation conforms to
some specification. Two well-established approaches to verification are model
checking and theorem proving.

Model checking is a technique that models the system as a finite state ma-
chine and checks that desired properties hold by exhaustively searching through
the state space of the model. This search is guaranteed to terminate since the
search space is finite, but the challenge is to devise algorithms and data struc-
tures that allow handling of large state spaces. Model checking has been used
primarily in hardware and protocol verification, but is also being applied to
analysis of software system specifications.

The desired properties can be specified in temporal logic, after which an
efficient search algorithm is used to examine whether the given finite state ma-
chine is a model for the specification or not. Another variant is to give the
specification as an automaton and compare it to the system, also modelled as
an automaton, to find out if the behaviour of the latter conforms to that of the
former.

Some advantages of model checking is that it is completely automatic, that
it can be used to check partial specifications and so provide useful information
about correctness even if a system has not been completely specified, and that
it produces counterexamples and thus can be used to debug subtle errors in the
design. The main drawback of the technique is that for real world problems,
the search space can become very big. This is usually referred to as the state
explosion problem. One way of coping with this problem is to avoid representing
the state space explicitly by encoding large sets of states symbolically in a
compact format, so called symbolic model checking .

Theorem proving is a technique where both the system and the specification
are expressed as formulas in some mathematical logic. The logic in question is
given by a formal system, which defines a set of axioms and a set of inference
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rules. The desired relationship between the implementation and the specifica-
tion (for instance that the implementation logically implies the specification, or
that implementation and specification are logically equivalent) is then consid-
ered as a theorem in this logic. Theorem proving is the process of finding proofs
of such theorems (with the assistance of a computer theorem prover). This
technique is increasingly being used today in the verification of safety-critical
properties of hardware and software systems.

Theorem provers can be classified in a wide spectrum ranging from highly
automated general-purpose proof engines to special-purpose interactive systems.
In contrast to model checkers, theorem provers can deal directly with infinite
state spaces, for example by using induction techniques.

Different formal methods can be combined to describe and analyze different
aspects of a complex system, since no single method is likely to be suitable for
analysis of every aspect of a system. Also, formal methods can be integrated
into the overall system development process to complement methods of a less
formal nature. We conclude our short exposition of formal methods by giving
three examples of this:

� Formal methods can be used in requirement analysis to convert the im-
precise ideas of a customer into precise system requirements.

� Formal methods can be used for refinement , the reverse process of verifica-
tion. Refinement is to take one level of specification (or implementation)
and use it to synthesize a lower-level specification (or implementation).

� Formal methods can be used in testing . Testing is one of the costliest parts
in all software projects. It is possible to make the testing procedures more
efficient by using formal methods for instance to generate test suits based
on the information given by a formal specification.

Needless to say, it is impossible to give an exhaustive treatment of formal
methods on a couple of pages, especially considering that different authors in-
terpret the term differently. Below we give some suggestions for further reading.

A nice informal introduction to formal methods (in Swedish) is [40]. This
section relies heavily on [17], which is an informative survey of the subject
with theory and practical examples. [9] is a more practically applied survey of
formal methods in a broader sense which concentrates on the reasons for their
industrial success or failure. [48] is an introduction to the use of formal methods
in hardware verification (for the ambitious reader, [31] is a more extensive survey
of this field). Finally, we are indebted to the introductory material in [8] (which
also contains a short but interesting historic overview).

1.2 Shortly about Automated Theorem Provers

Automated theorem provers, also called proof engines or automated reasoning
systems, are computer programs which perform automated logical deduction
within the framework of some logic.

Often, a natural choice of logic in this context is first-order predicate logic.
An interesting special case of predicate logic is propositional logic, which deals
with the relationship between propositions, but, unlike predicate logic, not their
internal structure. Not seldom problems in predicate logic can be reduced to
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propositional logic in one way or another. In this thesis, we will restrict our
attention to automated theorem provers in propositional logic.

A formula F in propositional logic is a theorem if and only if all truth value
assignments to the variables of F make the formula true, i.e. if there is no way
to satisfy the negation of F . In the opposite direction, if we find a satisfying
assignment of the negation of a formula F , the same assignment falsifies F and
thus proves that this formula cannot be a theorem. Thus theorem proving is very
closely related to the problem of determining propositional satisfiability, usually
abbreviated as SAT . Depending on the perspective, one can reason either in
terms of automated theorem provers or in terms of propositional satisfiability
procedures, also referred to as SAT-based methods. We will not make any
distinction between theorem provers and SAT-based methods in the following,
but consider them to be two sides of the same coin.

Looking back at section 1.1, the connection between automated theorem
provers and the theorem proving approach to formal verification is perhaps
rather obvious. But theorem provers are interesting also in the context of model
checking. As was mentioned above, for realistic design models the number of
states of the system can be very large, which makes explicit traversal of the state
space infeasible. One way of tackling this difficulty is to use a symbolic repre-
sentation of the state space and reduce the resulting symbolic model checking
problem to a propositional satisfiability problem. The latter problem can then
be solved by an automated theorem prover.

Formal verification is one application area for the automation of proof, but
the list of applications is much larger. Apart from hardware and software design
analysis and verification, automated theorem provers are used among other
things for scheduling problems, in artificial intelligence and even to prove results
in theoretical mathematics.

There are a number of different approaches to automated theorem proving.
The first theorem provers originated in the 1950s in the context of artificial
intelligence research. The goal was to invent a “thinking machine”, to simulate
the human process of deduction. Parallel development in research concentrated
on methods rooted more strongly in the traditions of mathematical logic led
to Robinson’s resolution principle [47]. Since then, most theorem provers have
been based either on some variant of resolution or on semantic tableaux [50].
During the last ten years or so, provers based on binary decision diagrams, or
BDDs [12, 13] have also gained in popularity.

Another promising approach in automated theorem proving is a relatively
new proof search algorithm invented by Gunnar St̊almarck in the mid 1980s [49].
St̊almarck’s method, as it is called, was patented in 1989 and is the basis of the
proof engines offered by Prover Technology AB, founded in Stockholm, Sweden
the same year. The distinctive feature of St̊almarck’s method is that in contrast
to for instance BDD packages, it can cope with very large formulas provided that
they are easy according to a formally defined measure which will be discussed
later in this thesis. Empirically, important cases of real world problems give rise
to large but easy formulas.

Prover Technology’s main markets are Electronic Design Automation (EDA)
and Computer Aided Software Engineering (CASE), and its products have also
been successfully applied to system development in avionics, nuclear power gen-
eration, railroads, automotive industry and telecommunications. Furthermore,
St̊almarck’s method has been the subject of a number of industrial and aca-
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demic research projects. We refer to [49] or www.prover.com for an updated
list of references.

1.3 Shortly about Proof Theory

The main focus of this Master’s thesis is a comparison of St̊almarck’s theorem
proving algorithm with algorithms based on resolution. In particular, we prove
bounds on running time by deriving theoretical bounds on the proofs which can
be found by these algorithms.

All theorem provers, regardless of whether they actually produce a written
proof or not, explicitly or implicitly define a system in which proofs are searched
for and format rules which determine what proofs in this system look like. Such
“systems” with “format rules” are called proof systems and are studied in the
subject of proof theory .

Slightly more formally, a proof system can be described as a format for
presenting proofs together with an efficient algorithm for checking that proofs
presented in this format are valid. An automated theorem prover can then be
seen as an algorithm for searching for proofs in the corresponding proof system.

The design of a proof system can have a dramatic impact on the performance
of proof search algorithms in the system. If a proof system has the property
that certain formulas have no small proofs satisfying the format rules, then no
proof search algorithm based on this system can be efficient for these particular
formulas (since the running time of the algorithm must be at least as large as
the proof it eventually finds). Putting it differently, lower bounds on proofs in
proof systems give theoretically proven lower bounds on the running time of
corresponding automated theorem provers. Also, theoretical upper bounds on
proof size in a system can give upper bounds on the running time of a proof
search algorithm, provided that the algorithm can be shown to search for proofs
in the system in an efficient manner.

In view of the above, the goal of automated theorem proving can be expressed
as constructing powerful proof systems and efficient algorithms to search for
proofs in these systems.

The most powerful proof systems we can reasonably expect are systems
where the sizes of proofs are at most as large as some polynomial expression in
the size of the formula proven (where the polynomial expression does not depend
on the particular formula in question but only on the proof system). Such proof
systems are called polynomially bounded . It is not known whether there exist any
polynomially bounded systems at all for propositional logic. For example, the
proof systems studied in this thesis are known not to be polynomially bounded
(more about this below).

Regardless of whether there exist polynomially bounded proof systems or
not, we are not very much helped by a strong proof system if there are no
efficient algorithms for searching for proofs in the system. Proof systems which
have efficient proof search algorithms are called automatizable. The efficiency of
a proof search algorithm is measured by how fast it can find a proof of a formula
in terms of the smallest possible proof for this formula in the system. This means
that the fact that a proof system is automatizable does not necessarily imply
that it is powerful, only that there are algorithms which so to speak realize the
full potential of the system, however large or small this potential may be.
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Sadly enough, the results of contemporary research indicate that we most
probably cannot expect a proof system to be both powerful and automatizable.
But this does not exclude the possibility that we can find proof systems and
algorithms with the help of which most problems which turn up in practice can
be solved efficiently. Therefore, even a non-automatizable proof system which
is not polynomially bounded can be of great interest if it has small proofs which
can be found efficiently for most formulas resulting from real world problems.

Proof theory is also a subject of independent interest, quite apart from its
connection to automated theorem proving. This is mainly because of the fact
that it is intimately related to fundamental questions in complexity theory.

Loosely put, complexity theory is the discipline of computer science which
measures the resources needed to solve problems on a computer, for example the
amount of time or memory that a computation demands. Informally, from the
point of view of complexity theory problems are considered easy, or tractable, if
they can be solved by computer algorithms that run in polynomial time; that is,
for a problem of size n, the time or number of steps needed to find the solution
is bounded by a polynomial function of n. Problems which can only be solved
by algorithms that require an amount of time exponential in the problem size n
are considered hard, or intractable. Polynomial-time algorithms are regarded as
efficient, while exponential-time algorithms are considered inefficient, because
the execution times of the latter grow much more rapidly as the problem size
increases.

We say that problems which have polynomial-time solutions are members of
the complexity class P. A very much simplified way of describing P is to say
that it is the class of problems which can be solved on a computer not only in
theory but also in practice.1

Another important class of problems is the class known as NP. Problems in
NP can be described by the property that they can be hard to solve (at least
empirically), but if we are somehow given a proposed solution it is easy to verify
whether it is correct or not. One natural example of such a problem is integer
factorization. Given a large integer it can be hard to compute its factors, but it
is easy to multiply together the factors in a suggested factorization to check that
it is correct. More precisely, a problem is said to be in the complexity class NP,
or to be solvable in nondeterministic polynomial time, if a guessed solution can
be verified in polynomial time; nondeterministic means that unfortunately, there
are not necessarily any good rules for making the needed lucky guess.

Note that not all problems in NP are hard. In particular, all problems in P
are also members of NP, since for such problems we can always “guess and
verify” a solution in polynomial time by actually computing it. A less trivial
example of a member of NP is the integer factorization problem discussed above.
The hardest problems in NP are the so called NP-complete ones. Two examples
of NP-complete problems are the travelling salesman problem TSP (given a set
of towns and the distances between them, determine the shortest path starting
from a given town, passing through all the other towns and returning to the first
town) and the satisfiability problem SAT (given a propositional logic formula F ,
decide if there is some assignment to the variables in F which makes the formula
true).

1This is of course an irresponsibly oversimplified and arguably erroneous way of describ-
ing P, but we still find it appropriate in this very informal setting.
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Many important real-life problems have been shown to be NP-complete, but
so far no efficient algorithms for solving such problems have been invented. It is
not known whether any efficient algorithms exist at all. However, all NP-com-
plete problems are mutually related in the sense that they can be reformulated
in terms of each other. Therefore, if there is some effective algorithm for one
of the NP-complete problems (i.e. an algorithm which runs in time polynomial
in the input), then this algorithm can be used to solve all problems in NP
efficiently.

Determining whether NP-complete problems are tractable or intractable,
that is whether P = NP or not, remains one of the most important questions in
theoretical computer science. This is also a question of great practical impor-
tance, since some widely used modern cryptosystems are based on the assump-
tion that factorization while probably not NP-complete still is not a tractable
problem. Most computer scientist suspect that P 6= NP. This has not been
proven, though, and there are proponents of the opposite view.2

The connection to proof theory is that one way of proving the inequality
P 6= NP would be to show that there cannot exist any polynomially bounded
proof systems for propositional logic. This result is stronger than P 6= NP,
however, so the existence of polynomially bounded proof systems would not
imply P = NP.

1.4 Organization of This Thesis

The organization of the rest of this thesis is as follows. In chapter 2, we give
a formal presentation of the subject of proof theory, including the resolution
proof system. We continue our study of resolution in chapter 3, where we
present some recent results. A detailed exposition of St̊almarck’s method, and
the dilemma proof system in terms of which is is defined, follows in chapter 4.
In chapter 5, we develop tools for proving results about the dilemma proof
system and St̊almarck’s method and their relation to resolution and resolution-
based proof methods. Chapter 6 contains the results proved in this thesis. These
results are summarized in chapter 7, where we also note some open questions and
give suggestions for further research. Appendix A contains some missing details
regarding the dilemma proof system left out in chapters 4 and 5. In appendix B,
finally, we provide detailed proofs of two of the theorems in chapter 6.

2In fact, St̊almarck’s method was invented as a result of a failed proof of P = NP.



Chapter 2

Proof Theory

In section 1.3 we gave a short and popular presentation of proof theory in the
context of formal methods and automated theorem proving. This chapter is in-
tended as a more formal (if selective) introduction to proof theory in general and
resolution in particular. Our presentation is based on material from [5, 14, 57],
to which the reader is referred for more details.

2.1 Elementary Definitions

Although the subject matter of this chapter is logic, we start off by making clear
our usage of asymptotic notation and terminology.

Definition 2.1 (Asymptotic notation) We say that f(n) is O(g(n)) and
write f(n) = O (g(n)) if there exist c ∈ R+ and n0 ∈ N such that f(n) ≤ c · g(n)
for all n ≥ n0.

f(n) = Ω (g(n)) if ∃ c ∈ R+, n0 ∈ N such that f(n) ≥ c · g(n) for n ≥ n0.
f(n) = Θ (g(n)) if f(n) = O (g(n)) and f(n) = Ω (g(n)).
f(n) = o (g(n)) if ∀ c ∈ R+ ∃n0 ∈ N such that 0 ≤ f(n) < c·g(n) for n ≥ n0.
f(n) = ω (g(n)) if ∀ c ∈ R+ ∃n0 ∈ N such that 0 ≤ c·g(n) < f(n) for n ≥ n0.

Definition 2.2 (Asymptotic terminology) A function f(n) is polynomial
in n if f(n) = O

(
nk
)

for some k ∈ N. We will (strictly speaking incorrectly)
usually write this as f(n) = nO(1), using O(1) as a shorthand for an arbitrary
non-negative constant or function limited by a constant.

f(n) is pseudo- or quasi-polynomial in n if f(n) = O
(
exp
((

log n
)k)) for

some k ∈ N, which we will usually simplify as f(n) = exp
(
(log n)O(1)).

f(n) is subexponential in n if f(n) = o
(
exp
(
nc
))

for all c ∈ R+.
f(n) is superlogarithmic in n if f(n) = ω (log n).
f(n) is superpolynomial in n if f(n) = ω

(
nk
)

for all k ∈ N.
f(n) is exponential in n if f(n) = Ω

(
exp
(
nc
))

for some c ∈ R+.

Remark 2.3 We include definitions 2.1 and 2.2 since there seem to be vari-
ations in the literature concerning asymptotic notation and what is meant by
terms such as “exponential”, “subexponential”, “quasi-polynomial” et cetera.
The reason for our definitions of “exponential” and “subexponential” is that we

9
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want for example exp(
√
n) to be exponential and definitely not subexponen-

tial (otherwise changing the parameter n of a problem polynomially could turn
exponential problems into subexponential ones and vice versa).

In the rest of this section, we give some elementary definitions from propo-
sitional logic. We refer the reader to, for example, [22] for a fuller and more
stringent treatment of (most of) the definitions, notation and terminology below.

We assume the existence of an infinite set Vars of boolean (or propositional
logic) variables. We let the boolean variables range over {⊥,>} or {0, 1}, where
we identify ⊥ and 0 with FALSE and > and 1 with TRUE respectively. We
usually let the letters x, y, z and w (possibly with indices) denote variables.

We use the traditional set of logical connectives: negation ¬, conjunction ∧,
disjunction ∨, implication → and bi-implication ↔ (to avoid confusion, we will
refer to↔ as “bi-implication” and reserve the term “equivalence” for the formula
equivalence relation defined in chapter 4).

Definition 2.4 The set PROP of propositional logic formulas is the smallest
set X such that

� x ∈ X for all propositional logic variables x ∈ Vars,

� if F,G ∈ X then
(
F ∧G

)
,
(
F ∨G

)
,
(
F → G

)
,
(
F ↔ G

)
∈ X,

� if F ∈ X then
(
¬F
)
∈ X.

For convenience, we will usually omit the outermost pair of parentheses in
a propositional logic formula. Also, we define ¬ to have higher precedence
than ∧ and ∨, which in turn have higher precedence than → and ↔, and skip
unnecessary parentheses whenever this order of precedence makes the intended
meaning clear.

The set of variables of a formula F is denoted Vars(F ). The symbol .= used
in the definitions below denotes syntactic equality.

Definition 2.5 (Subformula) For F and G arbitrary formulas in propositional
logic, G is a subformula of F if

� G
.= F , or

� F
.= P ◦Q (where ◦ ∈ {∧,∨,→,↔}), and G is a subformula of P or Q, or

� F
.= ¬P and G is a subformula of P .

The set of (true syntactic) subformulas of a formula F is denoted Sub .= (F ).

More often, we will be interested in subformulas of F and their negations.

Definition 2.6 (Formula complement) Let P be a formula in propositional
logic. The formula complement (or just complement) PC of P is defined by

PC =

{
Q if P .= ¬Q for some Q,
¬P otherwise.
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Definition 2.7 We define

Sub (F ) :=Sub .= (F )∪
{
GC |G ∈ Sub .= (F )

}
∪{⊥,>}

to be the set of subformulas of a formula F as well as the complements of these
formulas and the constants > and ⊥.

In this thesis, we will abuse terminology slightly and refer to the set Sub (F )
as the “subformulas of F”.

Definition 2.8 (Compound subformula) Given a formula F , the set of com-
pound subformulas of F , which we denote Compound (F ), is defined as

Compound (F ) :=Sub (F ) \
(
{>,⊥}∪{x,¬x,¬(¬x), . . . |x ∈ Vars(F )}

)
and we call G a compound subformula of F if G ∈ Compound (F ).

That is, compound subformulas are all subformulas other than truth value
constants and unnegated or negated (possibly repeatedly) variables.

Given a formula F , a valuation on F is a function α : Sub .= (F ) 7→ {⊥,>}
which respects the traditional semantics of {¬,∧,∨,→,↔}. We say that F is

� satisfiable if there is an valuation α on F with α(F ) = >,

� valid or tautological if all valuations on F satisfy F ,

� falsifiable if there is an valuation α on F with α(F ) = ⊥,

� unsatisfiable or contradictory if all valuations on F falsify F .

If a valuation α satisfies a formula F , α is called a model of F . If α falsifies
F , α is called a counter-model . The set of all tautological propositional logic
formulas (or tautologies) F is denoted TAUT .

Every assignment of truth values to the variables in Vars(F ) defines a
valuation α on F . In this way, any formula F induces a boolean function
fF : Vars(F ) 7→ {⊥,>} with fF

(
α
)

= α(F ). At times, we will somewhat incor-
rectly let F denote the function fF induced by F and speak of the “(boolean)
function” F .

Definition 2.9 For F a formula and G = {G1, . . . , Gn} a set of formulas, we
say that G implies F , denoted G |= F , if every valuation satisfying all formulas
G ∈ G satisfies F as well.

In view of the paragraph just before the definition, we will use the same
terminology and notation when F and G1, . . . , Gn are boolean functions.

2.2 Propositional Proof Systems

Given a tautological formula F in propositional logic, what is the minimum size
of a proof of F in a proof system P? And what is the relation between minimal
proofs proof πi of F in different proof systems Pi?

Before we can answer such questions, we have to decide what exactly consti-
tutes a “proof” and what a “proof system” is. For example, since there are only
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finitely many truth value assignments to check, why not allow the formula F
itself as a proof of the fact that F is a tautology? The key observation here
is that a proof, unlike the tautology itself, should be easy to check. Also, in
order to make this check we need to know the format in which the proof will be
presented.

These considerations lead us to the following definition.

Definition 2.10 (Propositional proof system) A propositional proof sys-
tem is a polynomial-time computable binary predicate P satisfying the following
property: for all propositional logic formulas F it holds that F ∈ TAUT if and
only if there exists a proof π of F such that P

(
F, π

)
is true.

That is, we identify a proof system P with a procedure for checking the
correctness of proofs π of tautologies F which has running time polynomial in
F and π. (Anticipating the notation and terminology presented in section 2.3,
we assume that F and π are strings in some alphabet Σ such that PROP ⊆ Σ∗).

The complexity of a propositional proof system is defined as the lowest bound
on the size of proofs of tautological formulas as a function of the size of the
formulas themselves.

Definition 2.11 (Size) The size S (F ) of a formula F is defined to be the total
number of symbols in F . The size S (π) of a proof π in some propositional proof
system P is the total number of symbols in π.

Definition 2.12 (Complexity) The complexity of a propositional proof sys-
tem P, which we denote compP , is the smallest bounding function g : N 7→ N
for which

F ∈ TAUT ⇔ ∃π S (π) ≤ g
(
S (F )

)
∧ P

(
F, π

)
.

If a proof system is of polynomial complexity, it is said to be polynomially
bounded or p-bounded.

It is not known whether there exist any p-bounded propositional proof sys-
tems. The answer to this question has far-reaching implications for computa-
tional complexity theory, as we will see in theorem 2.15 below.

The main tool for comparing proof systems is p-simulation.

Definition 2.13 (p-simulation) Let P1 and P2 be propositional proof sys-
tems. P1 p-simulates P2 if there exists a polynomial-time computable func-
tion f mapping proofs in P2 into proofs in P1, i.e. a function f such that for
all F ∈ TAUT it holds that P2

(
F, π

)
is true if and only if P1

(
F, f

(
π
))

is true.
If P1 p-simulates P2 it must be the case that compP1

≤ compP2
O(1). If we

have this latter condition but do not know whether the function f exists, we say
that P1 weakly p-simulates P2.

By taking the symmetric closure of the p-simulation relation, we can order
proof systems and put them into equivalence classes with respect to their rela-
tive complexity. Proof systems belonging to the same equivalence class can be
considered as having “essentially” the same complexity (i.e. up to a polynomial).

Definition 2.14 (p-equivalence) Two propositional proof systems P1 and P2

are said to be p-equivalent if each proof system p-simulates the other.
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If P1 p-simulates P2 but there is no p-simulation in the reverse direction
P1 can be considered to be essentially more efficient than P2, since P1 is poly-
nomially bounded for every F ∈ TAUT with a polynomial-size proof in P2 but
the opposite does not hold.

2.3 Connection to Complexity Theory

As was noted above, the study of proof theory has bearing on questions in
computational complexity theory. Before discussing this matter in more detail,
let us first recall some basic definitions (for a more detailed treatment the reader
is referred to for instance [20]).

An alphabet Σ is a finite set of symbols. A language L over Σ is any set of
finite strings made up of symbols from Σ. The language of all (finite) strings
over Σ is denoted Σ∗. All languages L over Σ are subsets of Σ∗.

Given a language L over an alphabet Σ, we can define the decision prob-
lem DL of determining which strings s ∈ Σ∗ belong to L. A particular instance
of the decision problem is a question of the form “is s in L?”, to which the
answer is “yes” or “no”.

The complexity class P is the class of decision problems D solvable in poly-
nomial time. Equivalently, P can be defined as the set of languages L decidable
in polynomial time. A language L is decidable in polynomial time if there is a
polynomial-time computable function fL : Σ∗ 7→ {⊥,>} for which it holds that
fL
(
s
)

= > if and only if s ∈ L (i.e. if and only if the answer to the corresponding
decision problem instance is “yes”).

A verification function is a binary function f : Σ∗ × Σ∗ 7→ {⊥,>}, where
the first argument is an ordinary input string s and the second argument is a
string c called a certificate. We say that a string s is verified by f if there exists
a certificate c such that f

(
s, c
)

= >. The language L verified by a verification
function f is L =

{
s ∈ Σ∗ | ∃c ∈ Σ∗ such that f

(
s, c
)

= >
}
. The role of c in the

definition above can be understood as providing a verifiable proof of the fact
that s is indeed in the language L.

The complexity class NP is the class of languages L (or corresponding deci-
sion problems DL) that can be verified by verification functions fL computable
in polynomial time. More precisely, a language L belongs to NP if and only if
there exists a polynomial-time binary function fL for which it holds that

L =
{
s ∈ Σ∗ | ∃c ∈ Σ∗ such that |c| = |s|O(1) and f

(
s, c
)

= >
}
. (2.1)

If this is the case we say that fL verifies L in polynomial time. NP stands for
“nondeterministic polynomial time”, a term that has its origin in an alternate
but equivalent definition involving nondeterministic Turing machines that are
allowed to guess a certificate and then check it in polynomial time.

Let L1 and L2 be languages over alphabets Σ1 and Σ2, respectively. We say
that L1 is polynomial-time reducible to L2 and write L1 ≤p L2 if there exists
a polynomial-time computable function g : Σ1

∗ 7→ Σ2
∗ such that s ∈ L1 if

and only if g
(
s
)
∈ L2. This means that if we can test strings for membership

in L2 in time t, we can use g to test strings for membership in L1 in time
polynomial in t. A language L (or decision problem DL) is NP-hard if, for every
language L′ ∈ NP, L′ is polynomially reducible to L. A language L (or decision
problem DL) is NP-complete if it is both NP-hard and in NP.
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The complexity class co-NP is the set of languages L such that L ∈ NP
(where the language L = Σ∗ \ L is called the complement of L).

Returning to proof theory, it is well known than the set SAT of satisfiable
propositional logic formulas is an NP-complete language. Since a formula F is
unsatisfiable if and only if ¬F is a tautology, the set TAUT can be seen to be
in co-NP.

The following theorem by Cook and Reckhow demonstrates the intimate
connection between propositional proof systems and one of the central questions
of complexity theory, namely whether P = NP or not. This connection is one
of the main (theoretical) motivations behind the study of propositional proof
systems.

Theorem 2.15 (Cook and Reckhow [19])
NP = co-NP if and only if there exists a p-bounded propositional proof system.

Proof: (⇒) If NP = co-NP, then TAUT ∈ NP. That is, there is a polynomial-
time computable verification function fTAUT such that a formula F is in TAUT
if and only if there is a certificate c polynomial in the size of F for which
fTAUT

(
F, c
)

= >. But then we can pick c as our proof π of F and it is easy to
verify that P = fTAUT is a p-bounded propositional proof system in accordance
with definitions 2.10 and 2.12.

(⇐) Conversely, assume that there exists a p-bounded propositional proof
system P and let L be a language in NP. To show that NP = co-NP we need
to prove that L ∈ NP.

As discussed above, L is polynomial-time reducible to the complement of
TAUT in the following sense: there is a polynomial-time function g such that
for any string s, it holds that s ∈ L if and only if g

(
s
)

= F ∈ SAT , i.e. if and
only if ¬F 6∈ TAUT .

Now let fL be the function that on input s computes g
(
s
)

= F and accepts
if there is a proof π of ¬F in P (i.e. if P

(
¬F, π

)
= > for some π). If s ∈ L

then ¬F must be a tautology, and since P is p-bounded there is a polynomial-
size certificate c = π of this fact. Also, by definition 2.10 the predicate P is
polynomial-time computable. It follows that fL verifies L in polynomial time
in accordance with (2.1), so L ∈ NP and NP = co-NP. 2

To see the connection to P
?= NP, suppose that we can show that there are

no p-bounded propositional proof systems (i.e. that for all proof systems one
can find a family of tautologies which does not have polynomial-size proofs in
the system). Then theorem 2.15 says that it must be the case that P 6= NP
(since P = co-P).

2.4 Proof Methods

The definition 2.10 of propositional proof systems is non-constructive. We do
not say anything about how the proofs should be found, only that they should
be checkable in polynomial time. A proof method is a constructive algorithm
that on input F generates a proof of F if the formula is valid.

Definition 2.16 (Proof method) Let P denote a propositional proof system.
A proof method (or proof procedure) AP for P is a deterministic algorithm AP
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that takes as input a formula F and generates a proof π of F in the format
specified by the proof system P (i.e. such that P

(
F, π

)
= >) if F is valid and

reports that F is falsifiable otherwise.

Given a proof method AP , an important question is how efficient AP is. The
efficiency of AP is bounded from below by the proof system P in the sense that
the minimal size of a proof of a tautology F in P places an obvious lower bound
on the running time of any proof method for P on input F . A natural way
of measuring the performance of the algorithm AP is to consider the running
time of AP on input F relative to this minimal proof size. For convenience, we
introduce a notation for this measure.

Definition 2.17 Let P be a propositional proof system and suppose that F is a
tautological propositional logic formula. Then the size of a minimal proof of F
in P is denoted SP(` F ) (or just S(` F ) when the proof system is clear from
context).

In this way, we can classify proof systems based on whether there are efficient
proof methods for them or not. When choosing between proof systems on which
to base, say, an automated theorem prover, ideally we would like to use a proof
system which has both small proofs and an algorithm for finding these small
proofs efficiently.

As usual, by “efficient” in this context we mean polynomial. We consider a
proof method efficient if it finds a proof for a formula F in time polynomial in
the size of a smallest proof. A proof system for which such an algorithm exists
is called automatizable.

Definition 2.18 (Automatizability) A propositional proof system P is au-
tomatizable if there exists a proof method AP that takes as input a tautology F
and outputs a P-proof of F in time polynomial in the size SP(` F ) of a smallest
P-proof of F .

P is called quasi-automatizable if the running time of AP is quasi-polynomial
in the size SP(` F ) of a minimal proof, i.e. if

Time (AP(F )) ≤ exp
(
(logSP(` F ))O(1)

)
.

2.5 More about Proof Systems and Methods

We continue our study of proof systems and proof methods by giving some
examples. As we discuss the examples we also introduce some new terminology
and notation.

Perhaps the simplest example imaginable of a propositional proof system is
truth tables.

Example 2.1 (Truth tables) Given a formula F , we construct the truth table
for F by assigning truth values to the variables in Vars(F ) according to all all
possible assignments α ∈ {⊥,>}Vars(F ) in turn. For each assignment, we write
down the truth values of all variables and subformulas of F in a bottom-up
fashion until we reach the formula F itself.
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Truth tables are an automatizable proof system, since the algorithm sketched
above is obviously linear in the size of the constructed truth table. Unfortu-
nately, this is not very exiting news for the simple reason that a truth table
proof is typically exponential in the size S (F ) of a formula F . 3

Despite the simplicity of truth tables, there are examples of formal verifica-
tion problems in industrial applications where the usage of truth tables seem to
be the only practical solution [51].

Of course, in general more advanced proof systems and proof methods are
much more efficient. A natural way of designing such proof systems is to define
the format of proofs in terms of a system for natural deduction [22, 43]. A proof
can then be represented as a sequence of propositional logic formulas, where
each line in the proof follows from the preceding ones by the rules of the natural
deduction system.

Given such a proof format, we can construct a proof system P as a procedure
for checking that each step in the derivation is in accordance with the rules of
the deduction system. It is not hard to see that (for reasonable deduction
systems) this can be done in time polynomial in the size of the proof, and thus
P is a propositional proof system. (To be more precise, in order to be efficiently
checkable, proofs in proof systems based on systems for natural deduction should
include annotations for each step in the derivation about how it was derived.
Since such annotations will affect proof size only by a constant factor, we will
usually ignore this issue.)

For derivations in natural deduction systems, a relevant measure in addition
to the size of the derivation is the number of lines in it.

Definition 2.19 (Proof length) Let P be a propositional proof system defined
in terms of a system for natural deduction.

The proof length of a proof π in P, denoted L (π), is the number of lines in
the proof π. For a tautology F , we let LP(` F ) denote the length of a shortest
proof of F in the proof system P.

Remark 2.20 A note on notation: To avoid ambiguity, we do not use the
notation |π| or |F | in measures of proofs and formulas. The reason for this is
that for instance |F | is used to denote formula size in some articles and the
number of clauses of a CNF formula in others, and the notation |π| is used to
denote proof size in some articles and number of lines of a proof in others.

Instead, we write S (π) to denote size (total number of characters) and L (π)
to denote length (number of lines). This notation is somewhat cumbersome,
but has the advantage of being wholly unambiguous.

A characteristic property of most propositional proof systems based on sys-
tems for natural deduction is that if there is a proof of a formula F , then there
is a proof using only subformulas or negated subformulas of F . This is called
the subformula principle.

Definition 2.21 (Subformula principle) A propositional proof system P or
proof π is said to obey the subformula principle (or possess the subformula
property) if the only formulas occurring in the proof of a formula F belong to
Sub (F ) (i.e. are subformulas of F or negations of such formulas or the constants
> and ⊥).
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A proof system P or proof π which respects the subformula principle is said
to be analytic.

If a proof system P uses only subformulas of the formula F to be proved, we
can exploit this fact to design proof search algorithms for P with guaranteed
bounds on worst performance. Upper bounds on the running time for such algo-
rithms can be given in terms of the formula size S (F ), since the only formulas
which need to be considered during the proof search are the subformulas of F .

We conclude this section by giving two examples of (families of) propositional
proof systems which can be considered to be part of general knowledge in proof
theory.

Example 2.2 (Gentzen systems) In sequent calculi , which were introduced
by Gentzen [28] and are therefore also known as Gentzen systems, proofs consist
of expressions on the form

F1, . . . , Fn ` G1, . . . , Gm, (2.2)

so called sequents. In the sequent above, the sequence F1, . . . , Fn is called the
antecedent and G1, . . . , Gm is called the succedent . They are both referred to
as cedents.

The intended interpretation of a sequent is that if all of the formulas in the
antecedent are true, then one of the formulas in the succedent is true. Thus,
the sequent (2.2) is equivalent in meaning to the formula

n∧
i=1

Fi →
m∨
j=1

Gj . (2.3)

Proofs start from obviously valid sequents of the form F ` F (initial sequents
or axioms). Complex sequents are built up by applications of inference rules.
For each connective, there are “left” and “right” rules. If we let Γ and ∆ denote
sequences of formulas, then for instance we have the rules

OrL
Γ, F ` ∆ Γ, G ` ∆

Γ, F ∨G ` ∆
OrR

Γ ` ∆, F,G
Γ ` ∆, F ∨G

(2.4)

for disjunction and

AndL
Γ, F,G ` ∆

Γ, F ∧G ` ∆
AndR

Γ ` ∆, F Γ ` ∆, G
Γ ` ∆, F ∧G

(2.5)

for conjunction. Furthermore, there are the two structural rules

Cut
Γ, F ` ∆ Γ ` ∆, F

Γ ` ∆
(2.6)

and

Thinning
Γ ` ∆

Γ, F ` ∆, G
(2.7)

(thinning is also known as weakening). Finally, if the cedents are defined as
sequences and not as sets, we need so called weak structural rules for purely
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formal manipulations (such as reordering formulas within a cedent or eliminating
duplicates).

Thinning can be used to minimize the number of different sequents in proofs
and hence to reduce proof complexity. The cut rule in sequent calculi is not
needed for completeness and is thus unnecessary. However, the use of the cut
rule can shorten proofs significantly. A proof is said to be cut-free if it does not
contain any cut inferences.

Gentzen systems are interesting both in their own right and in connection
with the dilemma proof system which we will study in chapter 4. We refer
to [49] for a discussion of this. 3

Example 2.3 (Frege systems) A Frege rule is a pair
(
{F1, . . . , Fn}, G

)
, for

propositional logic formulas F1, . . . , Fn, G over variables x1, . . . , xm, such that
the implication

(
F1 ∧ . . .∧Fn

)
→ G is a tautology. Usually we write the rule as

F1, . . . , Fn
G

. (2.8)

In derivations, one uses instances of a Frege rule by substituting arbitrary for-
mulas for the variables x1, . . . , xm. If a rule has zero assumptions, it is called
an axiom schema. A Frege proof is a sequence of formulas where each formula
follows from previous ones by an application of a Frege rule from a given set.

A Frege system is determined by a finite, implicationally complete set of
Frege rules based on a functionally complete set of connectives. (A set of rules
is implicationally complete if whenever

(
F1 ∧ . . . ∧ Fn

)
→ G is a tautology, it is

also the case that G is derivable from F1, . . . , Fn.)
Remarkably, although Frege systems are defined without reference to proof

size, proof length or any other proof-theoretic measure of efficiency, all Frege sys-
tems are polynomially equivalent. Frege systems can be extended by including
the substitution rule, which allows substitution in derived formulas, or the ex-
tension rule, which permits the introduction of abbreviations for long formulas.
Every two substitution Frege systems and every two extension Frege systems
(or EF-systems) are p-equivalent. Moreover, Frege system are p-equivalent to
Gentzen systems [19]. 3

We will not discuss Gentzen or Frege systems any further in this thesis. The
reader is referred to to the references given at the beginning of this chapter for
more details.

2.6 Resolution

It is possible to convert any propositional logic formula F to a formula in con-
junctive normal form in such a way that it has only polynomially larger size and
is unsatisfiable if and only if the original formula is a tautology. One example
of such a conversion is a transformation first used by Tseitin [56].

The idea in Tseitin’s transformation is to introduce a new variable xP for
each subformula P

.= Q ◦ R in F . The formula F is then translated to con-
junctive normal form by adding a set of clauses Cl

(
P
)

for each subformula P
which enforces that the the truth value of xP is computed correctly given the
truth values of xQ and xR. These clauses Cl

(
P
)

are presented in figure 2.1.
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P
.= Q ∧R : Cl

(
P
)
:=

(
xP ∨ xQ

)
∧
(
xP ∨ xR

)
∧
(
xP ∨ xQ ∨ xR

)
P

.= Q ∨R : Cl
(
P
)
:=

(
xP ∨ xQ ∨ xR

)
∧
(
xP ∨ xQ

)
∧
(
xP ∨ xR

)
P

.= Q→ R : Cl
(
P
)
:=

(
xP ∨ xQ ∨ xR

)
∧
(
xP ∨ xQ

)
∧
(
xP ∨ xR

)
P

.= Q↔ R : Cl
(
P
)
:=

(
xP ∨ xQ ∨ xR

)
∧
(
xP ∨ xQ ∨ xR

)
∧
(
xP ∨ xQ ∨ xR

)
∧
(
xP ∨ xQ ∨ xR

)
Figure 2.1: Tseitin’s transformation to CNF clauses.

(Of course, if Q or R in P .= Q ◦R is a negated subformula, say Q .= ¬Q′, xQ is
replaced by xQ′ .) Finally, a unit clause xF is added. It is easy to verify that the
resulting CNF formula is unsatisfiable if and only if F is a tautology. In this
way, any sound and complete system which produces refutations of formulas
in conjunctive normal form can be considered as a general propositional proof
system.

One such system which is widely used as the basis for different proof search
algorithms is resolution [47]. Resolution can be viewed as a very specialized form
of a Frege system that can only manipulate clauses and has only one inference
rule, namely the rule that from the clauses B∨x and C∨¬x derives B∨C. This
rule can be seen to be a special form of the cut rule (2.6). The contradictory
formula to be derived is simply an empty clause. Although resolution is a very
simple proof system, it has been popular as a basis for proof search algorithms
in for instance formal verification and artificial intelligence research.

2.6.1 Definitions and Elementary Results

We now describe resolution in more detail. First, we make exact our choice of
terminology by giving some elementary definitions.

Definition 2.22 A literal over a propositional logic variable x is either x it-
self or its negation ¬x (alternatively denoted x). In some contexts it will be
convenient to use the notation x1 for x and x0 for x.
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A clause is a disjunction of literals. A clause containing exactly k literals is
called a k-clause. We say that a clause C is ordinary if there is no variable x
such that both x and x are literals in C.

A CNF formula is a conjunction of clauses. A k-CNF formula is a CNF for-
mula consisting of k-clauses.

Remark 2.23 It is a somewhat unfortunate fact that the term “k-CNF for-
mula” is used to mean a formula with exactly k literals in each clause in some
articles and a formula with at most k literals in each clause in others.

Probably, it would be better to use (for instance) the term “Ek-CNF formu-
la” for a CNF formula with exactly k literals in each clause and let k-CNF formu-
las be the more general class of CNF formulas with clauses of at most k literals.
Since the definition of k-CNF formulas given in definition 2.22 seems to be the
one used in the literature in connection with bounds for resolution refutations,
however, we have chosen to use it in this thesis.

We use the lower-case letters a, b, c and d, with or without indices, to
denote literals. Also, we adopt the notational convention that a :=x if a = x.
The upper-case letters A, B, C and D are used to denote clauses. Normally,
only ordinary clauses will be of interest.

In the context of CNF formulas F we always let n denote the number of
variables in F and m the number of clauses in F . One important measure
for random k-CNF formulas is the quotient of the number of clauses and the
number of variables.

Definition 2.24 (Density) For a k-CNF formula F with m clauses over n vari-
ables, we say that ∆ :=m/n is the density of F .

The intuition behind this definition is that a dense formula has many clauses
over comparatively few variables, and so is likely to be “overdetermined” (that
is, unsatisfiable). In contrast, a sparse k-CNF formula has few clauses restricting
the possible truth values of the variables, and is therefore likely to be satisfiable.
We will return to the concept of density in section 3.3.

In some articles, alternate definitions are used of a clause C as a set of
literals and a CNF formula F as a set of clauses. Although possibly somewhat
counter-intuitive, these definitions have a number of advantages. For instance,
it becomes very natural to use set-theoretic notation like a ∈ B or C ∈ F to
mean that the literal a occurs in B or that C is a clause in F , respectively.
More significantly, we automatically get that ∨ is commutative and associative,
so that a∨ b∨ c and c∨ b∨ a are two ways of writing the same clause, and that
this clause is identical to a ∨ b ∨ c ∨ b ∨ a, since clauses are sets and duplicates
are thus automatically removed.

To make use of these advantages, we will sometimes allow ourselves to switch
between definition 2.22 and the definition sketched in the last paragraph. More
specifically, we will always assume that the order between the literals in a clause
is insignificant and that there are no duplicates of literals or clauses.

Our choice of notation concerning CNF formulas is described in the following
definition.

Definition 2.25 (Notation for CNF formulas) For CNF formulas F , F ′

and a clause C we let C ∈ F denote that C is one of the clauses of F . We use
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F ′ ⊆ F to mean that all clauses in F ′ are also found in F , and F \ F ′ denotes
the CNF formula containing all clauses in F that are not clauses of F ′. C \{a}
denotes the clause C with any occurrences of the literal a deleted.

The set of variables in a clause C is denoted Vars(C). Lit(C) denotes the
set of literals in C. We extend these definitions to CNF formulas F in the
natural way by defining Vars(F ) :=

⋃
C∈FVars(C) and Lit(F ) :=

⋃
C∈FLit(C).

Thus, in this thesis the fact that x is a variable in C is expressed by the
notation x ∈ Vars(C) and we write a ∈ Lit(F ) to express that the literal
a occurs in the formula F . While this notation might seem to be somewhat
awkward, just as in remark 2.20 we feel that it has the advantage of eliminating
some possible sources of ambiguity (for example, it is not clear whether x ∈ C
should mean that x is one of the variables in C or that the literal x occurs in C).

We are now ready to define more formally what a resolution derivation is.

Definition 2.26 (Resolution) A resolution derivation of a clause A from a
CNF formula F is a sequence of clauses π = {D1, . . . , Ds} such that Ds = A
and each line Di, 1 ≤ i ≤ s, is either one of the clauses in F or is derived from
clauses Dj , Dk in π (with j, k < i) by the resolution rule

B ∨ x C ∨ x
B ∨ C

(2.9)

(where the variable x and the clauses B,C are arbitrary). We refer to (2.9)
as resolution on the variable x and B ∨ C is called the resolvent of the clauses
B ∨ x and C ∨ x on x.

A resolution refutation of a CNF formula F is a resolution derivation of the
empty clause (the clause with no literals), denoted 0 or Λ, from F .

A resolution derivation is tree-like if any clause in the derivation is used at
most once as a premise in an application of the resolution rule.

Every truth assignment satisfying both B ∨ x and C ∨ x obviously must
satisfy the resolvent B ∨ C as well. By straightforward induction, any truth
assignment satisfying F must satisfy all clauses Di in a resolution derivation
from F . Since the last step in a refutation of F by resolution must be x x

0
for some variable x, a resolution refutation of F as defined above clearly is a
proof of the fact that F is unsatisfiable. If we view a resolution refutation as a
directed acyclic graph (DAG) with clauses as nodes and edges from the premises
to the conclusion of each resolution step, a resolution refutation is tree-like if
its DAG is a tree. Note that resolution is not an analytic proof system.

Remark 2.27 In some articles the (arguably somewhat unfortunate) phrases
“resolution proof for F” or “resolution proof of F” is used to mean a resolution
refutation of F . We will avoid this usage, but will otherwise consider the terms
“resolution refutation” and “resolution proof” to be synonymous.

Definition 2.19 of proof length extends naturally to resolution in the following
manner.

Definition 2.28 (Length) The length L (F ) of a CNF formula F is the num-
ber of clauses in F . In the same way, the length L (π) of a resolution derivation π
is the number of clauses (counted with repetitions) in π.
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The length of refuting F by resolution, denoted LR(F ` ⊥) (or just L(F ` ⊥)
without index when the proof system is clear from context), is defined to be
LR(F ` ⊥) := minπ {L (π)}, where the minimum is taken over all resolution
refutations π of F .

In an analogous fashion, the length of refuting F by tree-like resolution is
LT (F ` ⊥) := minπT

{L (πT )}, where the minimum is taken over all tree-like
resolution refutations πT of F .

In addition to size and length, an important measure on a resolution deriva-
tion π is the width of π, i.e. the maximum number of literals in any clause
in π.

Definition 2.29 (Width) The width W (C) of a clause C is the number of
literals appearing in it. The width of a formula (or set of clauses) F is the
maximal width of a clause in the formula (or set), W (F ) := maxC∈F {W (C)},
and the width of a resolution derivation π is W (π) := maxD∈π {W (D)}.

The width of deriving a clause A from the formula F by resolution, denoted
WR(F ` A) (or just W(F ` A) when the meaning is clear from context), is
defined as WR(F ` A) := minπ {W (π)}, where the minimum is taken over all
resolution derivation π of A from F .

We use the notation F `w A to mean that A can be derived from F in width
less than or equal to w.

We will mainly be interested in the width WR(F ` ⊥) of refuting a CNF for-
mula F by resolution. (Note that the width measure is independent of whether
we use tree-like or general resolution, i.e. WR(F ` A) = WT (F ` A).)

When proving theorems about resolution refutation, it is sometimes conve-
nient to add a derivation rule for thinning or weakening, the weakening rule

B

B ∨ C
(2.10)

(for arbitrary clauses B,C). It is a routine matter to show that the use of
thinning in a resolution refutation can be eliminated to produce a proof that
employs only the resolution rule.

Proposition 2.30 (Elimination of weakening rule)
Suppose that π is a refutation of a CNF formula F using the resolution rule (2.9)
and the weakening rule (2.10). Then π can be transformed to a resolution
refutation π′ of F using only the resolution rule without increasing the length,
width or size of the proof.

Sketch of proof: This is an easy induction over the refutation π. It is obvious
from the construction in the induction proof that the length, width and size of
the resolution refutation can only decrease as a result of the transformation. 2

In view of this proposition, we will allow ourselves to use the weakening rule
to simplify the proofs for some of the theorems about resolution presented in
this thesis. We prove most of our theorems using resolution extended with the
weakening rule, tacitly assuming that the transformation described by propo-
sition 2.30 is applied to all refutations in order to reduce them to resolution
proofs in the strict sense of definition 2.26.
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One important technique for proving bounds on resolution proofs is the
application of randomly chosen restrictions on formulas and derivations. Intu-
itively, restricting a formula means assigning truth values to a set of variables
occurring in the formula and simplifying the result.

Definition 2.31 (Restriction) For C a clause, x a variable and ν ∈ {0, 1} a
truth value, the 1-restriction of x to ν in C is

C|x=ν :=


C if x 6∈ Vars(C),
1 if xν ∈ Lit(C),
C \ {x1−ν} if x1−ν ∈ Lit(C).

We extend the definition of 1-restrictions by defining F |x=ν :=
∧
C∈F C|x=ν

for CNF formulas F and π|x=ν := {D1|x=ν , . . . , Ds|x=ν} for resolution deriva-
tions π = {D1, . . . , Ds}.

A partial assignment or restriction ρ is a partial function ρ : V 7→ {0, 1},
where V is a set of boolean variables of a clause or formula.

For a clause C, let D ⊆ Vars(C) be the domain of ρ, i.e. the set of variables
for which the function is defined, and let x1, . . . , xt be some ordering of the
variables in D. Then the ρ-restriction of C is defined to be

C|ρ :=
(
. . .
(
C|x1=ρ(x1)

)
|. . .
)
|xt=ρ(xt)

.

In analogy with the definition of 1-restrictions, we extend the definition of gen-
eral restrictions to formulas and derivations by stipulating F |ρ :=

∧
C∈F C|ρ and

π|ρ := {D1|ρ, . . . , Ds|ρ} if π = {D1, . . . , Ds}.

In the definition above, 1 denotes the trivially true clause. The result of
resolving any clause C with 1 is defined to be C. In the following, we assume
without loss of generality that π|ρ does not contain any clauses 1 (by removing
all such clauses from the derivation if need be).

Before we proceed any further we note that restriction is well-defined. Also,
we note that the property of being a resolution refutation is preserved under
restrictions.

Proposition 2.32
C|ρ, F |ρ and π|ρ as described in definition 2.31 are well-defined.

Proposition 2.33
If π is a resolution refutation of F and ρ is a restriction on Vars(F ), then π|ρ
is a refutation of F |ρ using the resolution and (possibly) weakening rules.

Sketch of proof [of propositions 2.32 and 2.33]: It is enough to prove
proposition 2.32 for a restriction over a clause C|ρ, which is straightforward.
Proposition 2.33 can be shown for 1-restrictions by an easy induction over the
resolution refutation, from which the general case follows. 2

Note that by proposition 2.30, π|ρ can be transformed to a refutation of (at
most) the same size, length and width using the resolution rule only.

Note also that the definition of restriction above can be extended to sets of
clauses in the same way that it was extended to formulas and proofs. When
convenient, we will tacitly assume such extensions in the following.
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2.6.2 Proof Methods for Resolution

We conclude our introduction to resolution with a short presentation of two
proof methods. The input to the algorithms is a (supposedly contradictory)
CNF formula F on n variables. Both algorithms reduce the problem of refut-
ing F to a problem on n− 1 variables, but in rather different ways.

Example 2.4 (Davis-Putnam) Given a CNF formula F on n variables, pick
a variable x ∈ F and eliminate it by replacing the set of clauses containing x
with all their possible resolvents. The algorithm which performs this reduc-
tion repeatedly for n, n − 1, . . . , 1 until finally the empty clause is derived (or
the formula is found to be satisfiable) is due to Davis and Putnam [24], and
is consequently known as the Davis-Putnam procedure. The resolution proof
system restricted to proofs produced by the Davis-Putnam procedure is called
Davis-Putnam resolution (or DP-resolution for short).

Although the Davis-Putnam procedure might seem to be a rather general
proof search algorithm for resolution, the restriction that the variables be elim-
inated one at a time is a severe one. DP-resolution has been shown to be
exponentially weaker than general resolution [10]. 3

One obvious disadvantage of Davis-Putnam is the large memory space it
might use. Saving all possible resolvents might require space that is exponen-
tial in n. In the next example we present a proof search algorithm which is
potentially much weaker than Davis-Putnam with respect to proof length, but
is more efficient with respect to space and therefore is the algorithm preferred
in practice.

Example 2.5 (DLL) A simple scheme for a family of algorithms for refuting a
contradictory CNF formula F on n variables is as follows: If the empty clause 0
is in F , report that F in unsatisfiable and halt. Otherwise, pick a variable x ∈ F
and recursively try to refute F |x=0 and F |x=1. This family of proof methods
was introduced by Davis, Logemann and Loveland [23], and such algorithms are
therefore known as DLL procedures.

DLL procedures have recursion depth bounded by the number of variables n.
The space required is thus at most linear in the input size, so DLL procedures
are very space-efficient. Their main flaw is that the execution corresponds to
a decision tree for the problem of finding a clause falsified by a given truth
value assignment to the variables in F . Such a decision tree is isomorphic
to a tree-like resolution refutation of F . In other words, all DLL algorithms
produce tree-like proofs. This means that DLL procedures can be time costly
on inputs that do not have short tree-like refutations, and it has been shown
that tree-like resolution is exponentially weaker than general resolution [6] (see
also section 3.2) and even DP-resolution [11].

A particular DLL algorithm is specified by a splitting rule, which is the
subroutine that for each recursively constructed formula determines the next
variable to split over and which truth value to try first. Different splitting rules
may result in vastly different running times.

If a formula F contains a unit clause (i.e. a clause consisting of a single
literal x or x), setting this unit clause to FALSE falsifies the whole formula F .
A simple principle for any splitting rule, therefore, is to set the literal in the
unit clause to FALSE , immediately terminate the FALSE -branch (since F was
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falsified), set the literal to TRUE and then continue. A splitting rule which
always chooses unit clauses when possible is said to obey unit resolution or unit
propagation. Virtually all splitting rules considered in the literature obey unit
propagation, and any splitting rule can be modified to obey unit propagation
at the cost of a factor O (n) [3] (where as before n is the number of variables).

The simplest such splitting rule is to fix an ordering x1, . . . , xn of the vari-
ables in F . For all subformulas F ′ that arise at some point in the execution of
the algorithm, if there is a unit clause the splitting rule chooses the variable in
the first such clause. Otherwise the first unfixed variable with respect to the
ordering is selected. The DLL procedure obtained from this splitting rule is
called fixed-order DLL. 3

Remark 2.34 Confusingly enough, some authors use the label “Davis-Putnam”
to refer to DLL procedures. Since the difference between Davis-Putnam and
DLL procedures is significant (in the worst case exponential), we choose to
make the distinction between the two methods clear by adopting the terminol-
ogy presented above.

For an example of another approach to proof search in the resolution proof
system, see the algorithm presented in section 3.1.3.
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Chapter 3

Bounds for Resolution

The resolution proof system introduced in section 2.6 is one of the most well-
studied models in proof theory [5]. In this chapter we discuss resolution in
greater detail and give some current results for bounds on proof length, which
are used as a basis for the theorems proved in chapter 6. The main references
for the material presented below are Ben-Sasson and Wigderson [7] and Beame
et al. [3] (based on their earlier article [2]).

3.1 Relating Width and Length of Proofs

If the minimal resolution refutation π of a CNF formula F is long, it seems rather
natural to assume that π contains clauses with many literals. Conversely, short
proofs can be expected to be narrow as well.

In this section, we make this intuition precise by relating proof width to
proof length in tree-like and general resolution. The two key results presented
are:

� If a contradictory CNF formula F has a tree refutation of length LT , then
it has a refutation of maximal width log2 LT .

� If a contradictory CNF formula F has a general resolution refutation of
length L, then it has a refutation of maximal width O

(√
n logL

)
(where

n is the number of variables in F ).

Thus, if we want to give a lower bound on the length of a resolution proof,
we can concentrate on finding a lower bound for the width of a proof. In the
other direction, the width-length relations rather naturally suggest a simple
dynamic programming procedure for automated theorem proving, namely one
that searches for small width proofs (see section 3.1.3).

The results presented in this section are from [7], and our presentation follows
that article rather closely. The main difference is that [7] uses the term “size”
instead of “length” for the number of lines in a proof. We reserve the word size to
mean the total number of symbols in a proof in order to be able to reason about
p-simulations without too much terminological confusion. As a consequence
of this, and also in order to achieve notational consistency throughout this
thesis, we use a slightly different notation from that of [7]. Moreover, minor

27
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modifications have been made in a couple of definitions to eliminate some gaps
of a purely technical nature in the proofs.

3.1.1 The Length-Width Relations

Stated informally, theorems 3.3 and 3.5 below say that if a CNF formula F has
a short resolution refutation, then it has a refutation with small width.

We start by proving two technical lemmas (where F |x=ν denotes a restriction
as defined in definition 2.31 on page 23).

Lemma 3.1
For ν ∈ {0, 1}, if F |x=ν `w A then F `w+1 A ∨ x1−ν (possibly by use of the
weakening rule).

Proof: Consider a derivation π = {D1, . . . , Ds} of A from F |x=ν in width
W (π) ≤ w. Add the literal x1−ν to all clauses in π. We claim that this gives a
legal derivation π′ of A ∨ x1−ν from F .

Obviously, W (π′) ≤ w + 1, and the last line in π′ is A ∨ x1−ν . To prove
that π′ is a resolution derivation, we need to show that each Di ∨x1−ν ∈ π′ can
be derived according to the resolution rule (2.9) and the weakening rule (2.10).

Let Fx1−ν :=
{
C ∈ F |x1−ν ∈ Lit(C)

}
be the set of all clauses of F containing

the literal x1−ν . We get three cases:

1. Di ∈ Fx1−ν |x=ν : Then Di ∨ x1−ν ∈ F , so this line in the derivation is
certainly legal.

2. Di ∈ F |x=ν \ Fx1−ν |x=ν : This means that Di ∈ F , so Di ∨ x1−ν can be
derived by weakening.

3. Di is derived from Dj , Dk ∈ π by the resolution rule Dj Dk

Di
: In this

case, by induction Di ∨ x1−ν can be derived by the resolution rule from
earlier clauses Dj ∨ x1−ν , Dk ∨ x1−ν ∈ π′.

The lemma follows. 2

Lemma 3.2
For ν ∈ {0, 1}, let Fxν := {C ∈ F |xν ∈ Lit(C)} denote the set of all clauses in F
containing the literal xν .

If F |x=ν `w−1 0 and F |x=1−ν `w 0 then W(F ` ⊥) ≤ max {w,W (Fxν )}.

Proof: Suppose that F |x=ν `w−1 0 and F |x=1−ν `w 0.
By lemma 3.1, F `w x1−ν . Having derived the clause x1−ν , we resolve it

with the clauses in Fxν one by one to yield all clauses in F |x=1−ν . The width of
this part of the derivation is W (Fxν ). Finally, we derive a contradiction from
the clauses in F |x=1−ν , which by assumption can be done in width at most w.

Since according to proposition 2.30 all applications of the weakening rule
can be eliminated without increasing the width of the proof, we are finished.
(In the following, we will no longer explicitly eliminate uses of weakening, but
implicitly assume the application of proposition 2.30 when needed.) 2

Lemma 3.2 is our main tool in the proofs of the upper bounds for width
given in the theorems below.
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Theorem 3.3
For tree-like resolution, the width of refuting a CNF formula F is bounded from
above by

W(F ` ⊥) ≤W (F ) + log2 LT (F ` ⊥).

Proof: We prove by induction over b, and for each b by nested induction over
the number of variables n, that if LT (F ` ⊥) ≤ 2b then W(F ` ⊥) ≤W (F )+b.

If b = 0 then 0 ∈ F and we are done.
For the induction step over b, suppose that for all b′ < b it holds that if

LT (F ` ⊥) ≤ 2b
′

then W(F ` ⊥) ≤ W (F ) + b′. Suppose furthermore (for the
induction over n) that for all contradictory CNF formulas F on n′ < n variables
it holds that W(F ` ⊥) ≤ W (F ) + b if LT (F ` ⊥) ≤ 2b. (The induction base
n = 1 for formulas on only one variable is trivial for all b).

Let F be a contradictory CNF formula on n variables and let π be a tree
refutation of F of minimal length LT ≤ 2b. The last step in the derivation is
x x

0 for some variable x, where x and x have been derived by tree derivations
Tx and Tx respectively and LT = L (Tx) + L (Tx) + 1. By proposition 2.33,
Tx|x=0 and Tx|x=1 are tree refutation of F |x=0 and F |x=1 of lengths at most
L (Tx) and L (Tx) respectively.

Since LT ≤ 2b, one of Tx and Tx must have length less than 2b−1. Suppose
without loss of generality that L (Tx) ≤ 2b−1. Then by induction over b it
follows that W(F |x=0 ` ⊥) ≤ W (F ) + b − 1. Furthermore, Tx|x=1 is a tree
refutation of length L (Tx) ≤ 2b of a formula F |x=1 with (at most) n−1 variables,
so by induction over n we have W(F |x=1 ` ⊥) ≤ W (F ) + b. By lemma 3.2,
W(F ` ⊥) ≤W (F ) + b. The theorem follows by induction. 2

Corollary 3.4
For tree-like resolution, the length of refuting a CNF formula F is bounded from
below by

LT (F ` ⊥) ≥ 2(W(F`⊥)−W (F )).

Theorem 3.5
For general resolution, the width of refuting a CNF formula F is bounded from
above by

W(F ` ⊥) ≤W (F ) + O
(√

n logLR(F ` ⊥)
)

(where n is the number of variables in F ).

Proof: Fix a contradictory CNF formula F on n variables and let π be a
refutation of F of minimal length L.

If L = 1 then 0 ∈ F and we are done, so suppose L > 1. Set w :=W (F ),
d :=

⌈√
2n lnL

⌉
and a :=

(
1− d

2n

)−1 (where we have a > 1 since LR(F ` ⊥) ≤
2n · 2n < e2n).

Let F ′ be a contradictory CNF formula with Vars(F ′) ⊆ Vars(F ) and
W (F ′) ≤ W (F ), and let π′ be a refutation of F ′. Let π′∗ denote the set
of fat clauses of π′ of width strictly greater than d. We claim that if the number
of fat clauses

∣∣π′∗∣∣ < ab then W(F ′ ` ⊥) ≤ w + d+ b.
Now F satisfies the conditions on F ′ and clearly |π∗| < L ≤ ab for b = loga L.

Furthermore, we claim that loga L = O (
√
n lnL). Combining the two claims,

we get the required inequality W(F ` ⊥) ≤W (F ) + O (
√
n lnL), which proves

the theorem.
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It remains to prove the claims.
For the first claim, we again use induction over b, and for each b nested

induction over the number of variables n.
If b = 0 then π′ has no fat clauses and trivially W(F ′ ` ⊥) ≤ w + d.
In the induction step, just as in the proof of theorem 3.3 we want to apply

a smart restriction and then appeal to lemma 3.2. The key here is to choose a
restriction that minimizes the number of fat clauses.

There are 2n literals in F ′, so by the pigeonhole principle there is some
literal, say (without loss of generality) x1, appearing in more than d

2n

∣∣π′∗∣∣ fat
clauses. Restricting x = 1 removes all clauses where x1 appears and yields a
refutation π′|x=1 of F ′|x=1 having at most

(
1 − d

2n

)∣∣π′∗∣∣ < ab−1 fat clauses.
By the induction hypothesis for b we have F ′|x=1 `(w+d+b−1) 0. F ′|x=0 has (at
most) n − 1 variables and for the fat clauses we have

∣∣π′|x=0
∗∣∣ < ab, so by

induction over n we get F ′|x=0 `(w+d+b) 0 (again, the base case n = 1 is trivial
regardless of b). By lemma 3.2, F ′ `(w+d+b) 0 and the claim follows.

As to the second claim, loga L = lnL/ ln a. Now ln a = − ln
(
1− d

2n

)
≥

d
2n ≥

√
lnL/2n (where we use the inequality ln(1 + x) ≤ x). Putting this

together, we get loga L = O (
√
n lnL) as claimed. 2

Corollary 3.6
For general resolution, the length of refuting a CNF formula F is bounded from
below by

LR(F ` ⊥) ≥ exp
(

Ω
(

(W(F ` ⊥)−W (F ))2

n

))
.

3.1.2 A Proof Strategy for Lower Bounds

We now turn to the question of how the results in section 3.1.1 can be used to
obtain bounds on proof length by proving lower bounds on the width of refuting
a CNF formula F . The strategy described in this section consists of four steps:

1. Define a complexity measure µ : {Clauses} 7→ N+ such that µ
(
C
)

= 1 for
all C ∈ F .

2. Prove that µ
(
0
)

must be large (where 0 is the empty clause concluding
any resolution refutation).

3. Infer that in every refutation π of F there must be a clauseD with medium-
sized complexity measure µ

(
D
)
.

4. Prove that if the measure µ
(
D
)

of a clause D ∈ π is medium then the
width W (D) is large.

Once we have showed a lower bound on the width, we appeal to corollary 3.6
to get a lower bound on the length of a resolution refutation (or corollary 3.4
for a lower bound for tree-like resolution).

We now formalize and explain this strategy. First we define a measure that
takes care of steps 1–3 above.

Definition 3.7 (Complexity measure) Let Γ be an unsatisfiable set of
boolean functions, i.e. Γ |= 0 (but such that the function identically false for
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all α ∈ {0, 1}Vars(Γ) is not in Γ) and let C be a clause. The complexity measure
of C with respect to Γ , denoted µΓ

(
C
)
, is defined as

µΓ

(
C
)
:=min {|Γ′| : Γ′ ⊆ Γ, Γ′ |= C}.

It follows immediately from the definition that µΓ is a sub-additive complex-
ity measure with respect to resolution steps. We state this as a lemma.

Lemma 3.8
Let Γ be an unsatisfiable set of boolean functions and suppose that B C

D is an

application of the resolution rule. Then µΓ

(
D
)
≤ µΓ

(
B
)

+ µΓ

(
C
)
.

In order to satisfy step 1 of our strategy, we want clauses C ∈ F to have a
small measure µΓ

(
C
)
.

Definition 3.9 (Compatibility) Let Γ be an unsatisfiable set of boolean func-
tions and F a CNF formula. We say that Γ is compatible with F if µΓ

(
C
)

= 1
for all clauses C ∈ F .

Only compatible Γ will be used for our complexity measures.
Note that step 2 puts another requirement on Γ, namely that no small subset

of it should be unsatisfiable. Intuitively, this means that the boolean functions
in Γ should come from a “hard” contradiction.

We now turn to step 3 in our strategy. Given any resolution refutation π
of a formula F , µΓ

(
0
)

denotes the complexity of the final empty clause of the
refutation π with respect to Γ. If we use a compatible set Γ, by the sub-additivity
of µΓ we have that for every interval

[
c, 2c

]
⊆
[
1, µΓ

(
0
)]

there must be a D ∈ π
with µΓ

(
D
)
∈
[
c, 2c

]
.

Lemma 3.10
Suppose that Γ is a set of boolean functions compatible with an unsatisfiable

CNF formula F and let γ ∈
(
2, µΓ

(
0
))

. Then for every resolution refutation π
of F there is a clause D ∈ π with

µΓ

(
0
)

γ
≤ µΓ

(
D
)
≤ 2

µΓ

(
0
)

γ
.

Proof: Let S =
{
B ∈ π |µΓ

(
B
)
≥ µΓ

(
0
)
/γ
}
. S 6= ∅ since 0 ∈ S. Consider

the first clause D in the proof π which is a member of S. D 6∈ F since by the
compatibility of Γ it holds that µΓ

(
C
)

= 1 for C ∈ F . Hence D is derived by
the resolution rule from clauses B1, B2 ∈ π \ S with µΓ

(
Bi
)
< µΓ

(
0
)
/γ. By

sub-additivity, µΓ

(
D
)
< 2µΓ

(
0
)
/γ. 2

Remark 3.11 We deviate from [7] by using the constant γ in lemma 3.10
above (and in the following) to “move” the interval where we want our “medium
complex” clause D to be. γ is introduced for purely technical reasons to fill in
a small gap in the proofs in [7]. Typical values for γ could be γ = 3 or γ = 2+ ε
for a small ε > 0.

The rest of this section is devoted to step 4 in our strategy. We prove that
medium-sized complexity measure implies large width by relating both concepts
to the expansion properties of sets of sensitive functions compatible with F .
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Definition 3.12 (Sensitivity) A boolean function f is sensitive if any two
distinct falsifying assignments α, β ∈ f−1 (0) have Hamming distance greater
than 1 (i.e. differ in at least two variables).

Definition 3.13 (Critical assignment) For Γ a set of boolean functions and
f ∈ Γ, α ∈ {0, 1}Vars(f) is a critical assignment for f if

α(g) =

{
0 if g = f,

1 if g ∈ Γ, g 6= f.

Definition 3.14 (Boundary) For truth value assignments α, β, we say that
β is the result of flipping x in α (or flipping α on x) if

β(y) =

{
1− α(y) if y = x,

α(y) otherwise.

A boolean function f is dependent on a variable x if there is an assignment
α ∈ {0, 1}Vars(f) such that α(f) = 0 but flipping x in α satisfies f .

The boundary of a set of boolean functions Γ, denoted ∂Γ, is the set of
variables x ∈ Vars(Γ) such that there is a unique function f ∈ Γ dependent on x.

The next lemma is an immediate consequence of the definitions above.

Lemma 3.15
Suppose that Γ is a set of boolean functions, f ∈ Γ is a sensitive function, α is
a critical assignment for f and x ∈ Vars(f)∩ ∂Γ. Then flipping x in α yields
an assignment β which satisfies all g ∈ Γ.

Loosely put, we define the expansion of Γ to be the size of the minimal
boundary of all medium size subformulas of Γ.

Definition 3.16 (γ-expansion) Let Γ be an unsatisfiable set of boolean func-
tions, and let γ ∈

(
2, µΓ

(
0
))

. The γ-expansion of Γ, denoted eγ(Γ), is defined
as

eγ(Γ) := min

{
|∂Γ′| : Γ′ ⊆ Γ,

µΓ

(
0
)

γ
≤ |Γ′| ≤ 2

µΓ

(
0
)

γ

}
.

We are now ready to present our main tool in proving lower bounds on the
width of resolution refutations:

Theorem 3.17
For F an unsatisfiable CNF formula it holds that

W(F ` ⊥) ≥ max eγ(Γ),

where the maximum is taken over all sets Γ of sensitive functions compatible
with F and all γ ∈

(
2, µΓ

(
0
))

for each Γ.
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Proof: Given an unsatisfiable CNF formula F , fix some set Γ of sensitive
functions compatible with F and a γ ∈

(
2, µΓ

(
0
))

.
Suppose that π is a refutation of F . By lemma 3.10, there must exist a

clause D ∈ π with µΓ

(
0
)
/γ ≤ µΓ

(
D
)
≤ 2µΓ

(
0
)
/γ. Let Γ′ ⊆ Γ be a minimal

set such that Γ′ |= D. We claim that for all x ∈ ∂Γ′ it is also the case that
x ∈ Vars(D). Given this claim, we get the inequality W (π) ≥ W (D) ≥ eγ(Γ)
for arbitrary resolution refutations π of F and compatible sensitive sets Γ. The
theorem follows.

To prove the claim, note that for all f ∈ Γ′ there exists an assignment αf
such that αf (D) = αf (f) = 0 but αf (g) = 1 for g ∈ Γ′, g 6= f . (Otherwise
it would hold that Γ′ \ {f} |= D, but Γ′ is minimal.) If x ∈ ∂Γ′ ∩Vars(f) but
x 6∈ Vars(D), then flipping αf on x yields an assignment β which satisfies Γ′

(by lemma 3.15) but falsifies D (since β agrees with αf on all y ∈ Vars(D)).
Contradiction. Consequently, x ∈ Vars(D) and the claim is proved. 2

3.1.3 Minimum Width Proof Search

One of the most extensively used methods for proving unsatisfiability of CNF for-
mulas is DLL (see example 2.5 on page 24). If a CNF formula F is unsatisfiable,
a DLL algorithm produces a tree refutation of F .

The results in section 3.1.1 about the length-width trade-off suggest a differ-
ent method for refuting unsatisfiable formulas (which was also suggested in [4]
based on an algorithm in [18]). The idea is to search for a refutation in mini-
mal width. We give a rough pseudocode for the algorithm in figure 3.1 on the
following page. This algorithm has a running time bounded by nO(W(F`⊥)),
(where as before n is the number of variables) since this is the maximal number
of different clauses that will be encountered.

Thus, if a DLL algorithm produces a (tree-like) refutation of a constant-
width formula F which is polynomial in the size S (F ), then by theorem 3.3
the running time of the algorithm above can be no worse than S (F )O(log S(F )),
i.e. it is at most quasi-polynomial in the size of F .

On the other hand, there are families of formulas which have exponential
tree refutations but constant-width general resolution refutations. We give ex-
amples of this in the next section. For such formulas the above algorithm will
exponentially outperform any DLL procedure.

3.2 Separations of Variants of Resolution

When presenting the resolution proof system in section 2.6, we also shortly
discussed two subsystems of resolution, namely tree-like resolution and DP-reso-
lution. There are a number of other resolution variants as well, which have been
studied and for which various separations have been proved. See for instance [11]
for a description of a number of resolution-based proof systems and some recent
separation results.

In this thesis, we restrict our attention to general resolution R and tree-
like resolution T . Below, we sketch the proof of an exponential separation
of R from T due to [6, 7]. We will use this result when proving separations
between the dilemma and resolution proof systems in chapter 6 (theorem 6.14
on page 104).
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w := 0
S := {C ∈ F}
while 0 6∈ S

w :=w + 1
Derive all resolvents of width ≤ w and add to S

Figure 3.1: Pseudocode for minimum width proof search algorithm.

Theorem 3.18 (Exponential separation of R from T )
There exists an infinite family of polynomial-size contradictory CNF formulas Fn
such that LR(Fn ` ⊥) = O (n) but LT (Fn ` ⊥) = exp (Ω (n/ log n)).

The separation in theorem 3.18 is based on so called pebbling measures of
circuits. Intuitively, the pebbling measure of a circuit is the space needed for
simulating the computation of the circuit on a Turing machine.

Definition 3.19 (Circuit) A circuit is a directed acyclic graph (DAG) in which
each vertex has fan-in 0 or 2. A vertex with fan-in 0 is called a source and vertex
with fan-in 2 is called a target.

Definition 3.20 (Pebbling game) Let G be a circuit with sources S and tar-
gets T . The pebbling game on G is the 1-player game described below.

At any point in the game, some vertices of G will have pebbles on them (one
pebble per vertex). A configuration is the subset of V

(
G
)

comprising just those
vertices that have pebbles on them.

The rules of the pebbling game are as follows:

� At any time, a pebble may be placed on any vertex in S.

� If all immediate predecessors of a vertex v have pebbles on them, a pebble
may be placed on v.

� At any time, a pebble may removed from any vertex.

� The game ends when a pebble is placed on a vertex in T .

A legal pebbling of T from S in G is a sequence of configurations where
the first configuration is the empty set, the last one contains a vertex in T and
each configuration follows from the previous one by the rules of the pebbling
game. The cost of a legal pebbling is the maximum number of pebbles in any
configuration of the pebbling. The pebbling measure (or pebbling price) of G,
denoted PG, is the minimal cost of any legal pebbling of T from S in G.

The pebbling game is used to prove lower bounds on tree-like resolution
refutations of a family of formulas known as pebbling contradictions.

Definition 3.21 (Pebbling contradiction) Let G be a circuit with sources S
and targets T . Associate a pair of variables x(v)0, x(v)1 with every vertex
v ∈ V

(
G
)
. The pebbling contradiction on G, denoted PebG, is the conjunc-

tion of the following clauses:
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� x(s)0 ∨ x(s)1 for all s ∈ S ( source axioms),

� The unit clauses x(t)0 and x(t)1 for all t ∈ T ( target axioms),

� The four clauses x(u1)a ∨ x(u2)b ∨ x(v)0 ∨ x(v)1 for each v ∈ V
(
G
)
\ S,

where u1, u2 are the two predecessors of v and a and b range over {0, 1}
(pebbling axioms).

The formula PebG is an unsatisfiable CNF formula in width W (PebG) = 4
with O

(∣∣V(G)∣∣) clauses over 2
∣∣V(G)∣∣ variables. It is easy to see that PebG has

a short constant width resolution refutation.

Lemma 3.22
For a circuit G, LR(PebG ` ⊥) = O

(∣∣V(G)∣∣) and W(PebG ` ⊥) = O (1).

Proof: Fix a topological sort of G and derive x(v)0∨x(v)1 for each v ∈ V
(
G
)

in
the order of the sort. Then resolve with the target axioms and derive the empty
clause 0. It is a routine matter to verify that this refutation can be performed
in width 5. 2

Since the refutation in the proof above has fix width, we cannot use corol-
lary 3.4 to get a lower bound for tree-like resolution. Instead, we relate the
length of tree refutations of PebG to the pebbling price PG by the next lemma
(for a proof, see [6]).

Lemma 3.23
For G a circuit, LT (PebG ` ⊥) = 2Ω(PG).

By lemma 3.23, what we need to get a separation is to find small circuits
with high pebbling price. Such circuits are provided by the next lemma.

Lemma 3.24 (Paul et al. [41])
There is an infinite family of explicitly constructible circuits Gn with

∣∣V(G)∣∣ = n
and PG = Ω (n/ log n).

Combining lemmas 3.23 and 3.24, theorem 3.18 follows.

3.3 Refutations of Random k-CNF Formulas

Random k-CNF formulas have been widely studied for a number of different
reasons. Among other things, they have been used as benchmarks for satisfia-
bility algorithms and for proving lower bounds in propositional proof systems.

It has been known for quite some time that with high probability, random
k-CNF formulas from suitably chosen distributions have minimal resolution
refutations of exponentially growing length [16], while other distributions yield
formulas with polynomial-length refutations [27]. Below, we refer more re-
cent results on lower and upper bounds on the length of refutations of random
k-CNF formulas as a function of the density of the formula [3, 7].

We start by making precise the model of random k-CNF formulas which we
will study.
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Definition 3.25 (Random k-CNF formulas) By a random k-CNF formula
we mean a k-CNF formula F on n variables and m = ∆n clauses chosen at
random by picking ∆n clauses independently and identically distributed from the
set of all 2k

(
n
k

)
ordinary k-clauses with repetitions. We let F ∼ Fn,∆k denote

that F is a formula from such a random distribution Fn,∆k .

A fundamental conjecture about random k-CNF formulas (see for example
[15, 16, 26, 35, 36, 39]) is the following.

Conjecture 3.26 (Existence of satisfiability threshold)
If F ∼ Fn,∆k , there is a constant θk, the satisfiability threshold, depending
only on the clause width k and not on the number of variables n, such that F
is satisfiable with probability 1 − o (1) in n if ∆ < θk and unsatisfiable with
probability 1− o (1) in n if ∆ > θk.

It is obvious that there is a lower threshold θlk such that F is satisfiable with
high probability if ∆ ≤ θlk (indeed, pick θlk = 1/k to get a limit below which F is
trivially guaranteed to be satisfiable). A number of authors (among others [16])
have observed that F is unsatisfiable with high probability for densities larger
than the upper threshold θuk = 2k ln 2. To see this, note that a random truth
assignment α satisfies F with probability

(
1− 2−k

)
∆n. Since there are precisely

2n choices for α, the probability that F is satisfiable is at most
(
2
(
1− 2−k

)
∆
)
n,

which approaches zero as n goes to infinity if ∆ > 2k ln 2. Conjecture 3.26 can
be reformulated as the statement that for all k, the greatest lower threshold is
equal to the least upper threshold, i.e. θlk = θuk = θk.

Such a threshold value θ2 is known to exist for 2-CNF formulas, where
θl2 = θu2 = 1 [15, 30]. For 3-CNF formulas, we only have the weaker result that
θl3 ≥ 3.003 and θu3 ≤ 4.571 [26, 34, 36, 37]. Empirically, however, it seems to be
the case that there is a threshold θ3 ≈ 4.2 (see for example [21, 35, 38, 39]). In
fact, for k ≥ 3, [25] has shown that there is a threshold θk(n) for the density
∆ = m/n where formulas change from being satisfiable with high probability
to being unsatisfiable with high probability, but this threshold has not been
proven to be independent of n.

A related question is how the difficulty of refuting an unsatisfiable random
k-CNF formula F (i.e. the minimum length of a refutation) depends on the
density of F . It has been shown that for fix ∆ > θk(n), with high probability
LR(F ` ⊥) = 2Ω(k∆·n) (where k∆ > 0) [16], and if ∆ = Ω

(
nk−2

)
then it holds

with high probability that LR(F ` ⊥) = nO(1) [27]. But how does LR(F ` ⊥)
change as a function of ∆ and n between these limits? This is the question that
will be studied below.

3.3.1 Upper Bounds on Length of Refutations

A trivial upper bound for the length of a minimum resolution refutation of
a CNF formula F on n variables is 2n + 1 (just make a tree-like resolution
derivation branching over all variables). By using fixed-order DLL, we can
improve this bound to

L(F ` ⊥) = 2O(n/∆1/(k−2))nO(1) (3.1)

with high probability for tree-like resolution refutations (and thus general reso-
lution refutations as well) if F ∼ Fn,∆k . This is the next theorem.
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Theorem 3.27 (Beame et al. [3])
Let k ≥ 3 and m = ∆n where ∆ > θk(n) and suppose that F ∼ Fn,∆k .

Then with probability 1 − o (1) in n, the length of the refutation of F pro-

duced by fixed-order DLL is 2O(n/∆1/(k−2))nO(1). In particular, when k = 3 the
refutation has length 2O(n/∆)nO(1) with probability 1− o (1) in n.

The proof rests on the fact that if a DLL procedure has set a sufficient
number of variables, then it is quite probable that a contradiction will follow
simply by unit propagation. Using this fact, we can give an upper bound for
the size of the DLL tree, and hence for the length of a tree refutation, which
holds with high probability.

Definition 3.28 (Critical variable) A variable x is critical at a point in the
execution of a DLL procedure if setting x to 0 or 1 and then applying unit
propagation in either case creates the empty clause.

Thus, if the splitting rule chooses a critical variable x the current branch of
the DLL tree will terminate simply by unit propagation.

A point in the execution of a DLL procedure corresponds in a natural way
to the restriction ρ defined by all variables set by the DLL procedure (includ-
ing variables set by unit propagation). In the following lemma we prove that
for suitably large restrictions, with high probability over half of the remaining
unfixed variables are critical. This means that at the corresponding point in
fixed-order DLL, it is very likely that the current branch will soon terminate.

Lemma 3.29
For any k ≥ 3, there exists a constant c, depending only on k and not on n,

such that if F ∼ Fn,∆k , m = ∆n and ρ is a fixed restriction of t variables with
n/2 ≥ t ≥ cdn(n/m

)
1/(k−2)

⌉
, then with probability at least 1 − 2−n at least

half of the n′ = n− t unrestricted variables are critical.

Proof [of lemma 3.29]: For a k-CNF formula F and a restriction ρ, let
Ĉ2(F, ρ) denote the set of induced 2-clauses in F |ρ on the remaining n′ variables.
We now give a sufficient condition for a variable x ∈ Vars(F ) \Vars(ρ) to be
critical in terms of the set of clauses Ĉ2(F, ρ).

Define the standard directed graph G(F, ρ) on 2n′ vertices, one for each
literal in {x, x |x ∈ Vars(F ) \Vars(ρ)}, that has directed edges

(
a, b
)

and
(
b, a
)

corresponding to each 2-clause a ∨ b in Ĉ2(F, ρ). It is clear that a sufficient
condition for the variable x to be critical is that there be directed paths from
x to x and from x to x, i.e. that x and x lie in the same strongly connected
component of G(F, ρ).

Thus, it is sufficient to show that with probability at least 1−2−n, G(F, ρ) has
a strongly connected component of size at least 3n′/2. Let C1, C2, . . . , Cd be the
strongly connected components ordered so that all edges between components
go from lower to higher numbered components, and consider the first j such that
|C1 ∪ . . . ∪ Cj | ≥ n′/4. We will show that that the probability that |Cj | < 3n′/2
is at most 2−n.

If |Cj | < 3n′/2 then the set S = C1 ∪ . . . ∪ Cj satisfies n′/4 ≤ |S| ≤ 7n′/4
and there is no edge from the complement S to S. Consequently, to upper bound
the probability that |Cj | < 3n′/2 it is sufficient to upper bound the probability
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that there is a set S ⊆ V
(
G(F, ρ)

)
with n′/4 ≤ |S| ≤ 7n′/4 which is bad in the

sense that there is no edge from S to S.
For this purpose fix a set S of size s where n′/4 ≤ s ≤ 7n′/4. The total

number of distinct (ordinary) k-clauses over n variables is 2k
(
n
k

)
. To construct

a clause C that when restricted by ρ gives an edge from S to S, we first choose
k − 2 literals among the t literals set to 0 by the restriction ρ in

(
t

k−2

)
ways.

Then we choose a literal a in S in s ways. Finally, to get the edge
(
b, a
)

we
choose a literal b 6= a such that b ∈ S, which can be done in at least 2n′ − s− 1
ways. It follows that the probability that a random k-clause C restricted by ρ
yields an edge from S to S is at least

s (2n′ − s− 1)
(
t
k

)
2k
(
n
k

) ≥ K1
(n− t)2t! k! (n− k)!

(k − 2)! (t− k + 2)!n!

≥ K2
t(t− 1) · · · (t− k + 3)
n(n− 1) · · · (n− k + 3)

≥ K3

(
t

n

)k−2

≥ K4

(
cn(n/m)1/(k−2)

n

)k−2

≥ K4c
k−2

( n
m

)
(3.2)

where the (positive) constants Ki depend only on k and c is the constant men-
tioned in the lemma. Hence, the probability that none of the m clauses of F
give an edge from S to S is at most(

1−K4c
k−2 n

m

)m
≤ exp

(
−K4c

k−2n
)
≤ 2−3n (3.3)

if c is chosen large enough (depending only on k).
There are at most 22n′ sets S of size s with n′/4 ≤ s ≤ /7n′/4, so the

probability that there is a bad set S is at most 2−n, which was to be proved. 2

Using this lemma we can prove the upper bound given in the theorem.

Proof [of theorem 3.27]: Since we are interested in the asymptotic behaviour
of the length of the refutation as a function of n and ∆ = m/n, without loss
of generality we may assume that m ≥ (4c)(k−2)n, where c is the constant of
lemma 3.29.

Let t = cn/∆1/(k−2). Then by the above assumption t ≤ n/4. Furthermore,
fixed-order DLL is clearly monotone in the number of clauses (adding extra
clauses can only make it easier to refute a formula). We can therefore prove
the theorem under the assumption that the number of clauses m is such that
t = Ω (log n). This is no restriction, for if m is larger we will have 2O(n/∆1/(k−2))

smaller than nO(1) in (3.1), and the bound will hold because of monotonicity.
Since by this assumption t goes to infinity with n, it follows that it is sufficient
to prove that the bound holds with probability 1− o (1) in t.

Fix a restriction ρ of the first t variables. We claim that the probability
that there is a branch of the fixed-order DLL tree consistent with ρ that is still
active (not terminated) after the first 4t variables have been set and the unit
propagations along the way have been processed is at most 2−2t. Since there are
2t choices for ρ, using the inequality Pr {

⋃
Ei} ≤

∑
Pr {Ei} we get that with

probability at least 1 − 2−t, every branch of the DLL tree is completed after
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at most the first 4t variables have been set and the resulting unit propagations
done. It follows that with the same asymptotic probability the tree has at most
2n24t nodes (including nodes from unit propagation).

It remains to prove the claim. By lemma 3.29, the probability that the size r
of the set of critical variables for F |ρ is less than n′/2 is at most 2−n ≤ 2−4t.
Suppose that r ≥ n′/2. Then the set of critical variables is equally likely to be
any r-subset of the n′ = n − t unfixed variables. The probability that none of
the next 3t variables in order are critical is at most(

n′ − 3t
r

)/(
n′

r

)
=

(n′ − 3t)! (n′ − r)!
n′! (n′ − 3t− r)!

=
(n′ − 3t)(n′ − 3t− 1) · · · (n′ − 3t− r + 1)

n′(n′ − 1) · · · (n′ − r + 1)
≤
(
n′ − 3t
n′

)r
=
(

1− 3t
n′

)r
≤
(

1− 3t/2
n′/2

)n′/2
≤ e−3t/2. (3.4)

Hence the probability that some branch consistent with ρ is unfinished after
fixing the next 3t variables is at most 2−4t + e−3t/2 ≤ 2−2t, which proves the
claim. 2

3.3.2 Lower Bounds on Length of Refutations

We now turn to the question of giving lower bounds on the length of refutations
of random k-CNF formulas. We prove the bound given in the following theorem
by using the results in section 3.1 relating lower bounds on refutation length
and refutation width.

Theorem 3.30 (Beame et al. [3])
For F ∼ Fn,∆3 and any ε > 0, with probability 1− o (1) in n it holds that

LR(F ` ⊥) = exp
(
Ω
(
n/∆4+ε

))
.

To prove this lower bound, we look at the expansion properties of hyper-
graphs HF which we associate with every k-CNF formula F . The vertices
of HF are the variables in F and each clause of F defines a hyperedge.

Definition 3.31 For a k-CNF formula F with m = ∆n clauses on n variables,
let HF be the hypergraph with vertices V

(
HF

)
and edges E

(
HF

)
given by

V
(
HF

)
:=
[
n
]
,

E
(
HF

)
:=
{(
i1, . . . , ik

)
| ∃C ∈ F : {xi1 , . . . , xik} = Vars(C)

}
.

For any subset V ′ of vertices, let E
(
V ′
)

denote the set of edges within V ′,

E
(
V ′
)
:=
{(
i1, . . . , ik

)
∈ E
(
HF

)
| i1, . . . , ik ∈ V ′

}
,

and for any subset E′ of edges, let V
(
E′
)

denote the set of vertices covered by E′,

V
(
E′
)
:=
{
i ∈ V

(
HF

)
| ∃i2, . . . , ik :

(
i, i2, . . . , ik

)
∈ E′

}
.

We will need a special definition for expansion suited for hypergraphs.
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Definition 3.32 (Hypergraph expansion) Let H be a k-regular hypergraph
with n vertices. The hypergraph δ-expansion (or just δ-expansion) of H is

eδ(H) := min
{
2 ·
∣∣V(E′)∣∣− k · |E′| : E′ ⊆ E

(
H
)
, δn ≤ |E′| ≤ 2δn

}
.

However, positive expansion of HF will not alone be sufficient to ensure that
the width of refuting F is large. We also need to know that there is not a small
unsatisfiable subformula of F . This is taken care of by the next definition.

Definition 3.33 (λ-matchability) A k-regular hypergraph H with n vertices
is λ-matchable (0 < λ ≤ 1) if for all subsets of edges E′ ⊆ E

(
H
)

such that
|E′| ≤ λn it holds that

∣∣V(E′)∣∣ ≥ |E′|.

The main theorem of this section states that for a k-CNF formula F with
a “sufficiently matchable” hypergraph HF (i.e. with sufficiently large λ in def-
inition 3.33 above), the width of refuting F is bounded from below by the
hypergraph expansion of HF .

Theorem 3.34
Let F be an unsatisfiable k-CNF formula with m = ∆n clauses on n variables
such that the associated hypergraph HF is 1/∆2-matchable. Then

W(F ` ⊥) ≥ eδ(HF )

for any δ ≤ 1/(2∆2).

Proof: Set Γ := {C ∈ F}. Certainly, the set of clauses of F is a set of sensitive
functions (definition 3.12) compatible with F (definition 3.9).

Since HF is 1/∆2-matchable, µΓ

(
0
)
> n/∆2. To see this, note that by

the 1/∆2-matchability of HF , for any Γ′ ⊆ Γ with |Γ′| ≤ n/∆2 it holds that
|Vars(Γ′)| ≥ |Γ′|. By Hall’s marriage theorem, this means that for any Γ′ with
|Γ′| ≤ n/∆2 there is a perfect matching between the clauses in Γ′ and the
variables in Vars(Γ′). Using such a matching, we can satisfy all clauses in Γ′

by setting the variables to appropriate values so that every variable satisfies the
clause to which it has been matched. Hence µΓ

(
0
)
> n/∆2 as claimed.

Now let π be a refutation of F . By the compatibility of Γ and lemma 3.10,
for any δ ≤ 1/(2∆2) there is a clause D ∈ π with δn ≤ µΓ

(
D
)
≤ 2δn (≤ n/∆2).

For such a D, let Γ′ ⊆ Γ be a minimal set of clauses such that Γ′ |= D. Every
variable outside the boundary of Γ′ (definition 3.14) must be covered by at least
two clauses of Γ′, so

|Vars(Γ′)| ≤ |∂Γ′|+ 1
2 (k · |Γ′| − |∂Γ′|) (3.5)

or equivalently
|∂Γ′| ≥ 2 · |Vars(Γ′)| − k · |Γ′|. (3.6)

If we let E′ denote the edges in HF corresponding to the clauses in Γ′ and switch
to hypergraph notation, the inequality (3.6) becomes

|∂Γ′| ≥ 2 ·
∣∣V(E′)∣∣− k · |E′|. (3.7)

Thus, for a suitably chosen γ (namely γ = µΓ

(
0
)
/δn), it holds that eγ(Γ) ≥

eδ(HF ). By theorem 3.17, W(F ` ⊥) ≥ eγ(Γ) ≥ eδ(HF ), which concludes the
proof. 2
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For 3-CNF formulas we have the following lemma (which can be extended
to k-CNF formulas for any fixed k [2, 3]).

Lemma 3.35
For all ε > 0 there is a constant cε > 0, not dependent of n, such that if

∆ < n1/2−ε and H is a uniformly random 3-regular hypergraph with n vertices
and m = ∆n edges, then with probability 1 − o (1) in n the hypergraph H is
1/∆2-matchable and eδ(H) ≥ cεn/∆2+ε (for a suitably chosen δ).

Lemma 3.35 is proved by calculating a union bound using the techniques in
[2, 7]. Theorem 3.34 in combination with lemma 3.35 yields:

Theorem 3.36
For F ∼ Fn,∆3 and any ε > 0, with probability 1− o (1) in n it holds that

WR(F ` ⊥) = exp
(
Ω
(
n/∆2+ε

))
.

If we plug in the width bound in the last theorem in corollary 3.6 on page 30,
we get the bound stated in theorem 3.30 at the beginning of this section.
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Chapter 4

St̊almarck’s Method

So far in this Master’s thesis, we have given a general introduction to proof
theory and reviewed some current results for the resolution proof system. It is
now time to attend to the main subject of the thesis, namely St̊almarck’s proof
method and the propositional proof system on which it is based.

St̊almarck’s method is defined in terms of a system for natural deduction
incorporating the subformula principle. A central concept in this system is the
proof-theoretic measure of proof depth, that is, the maximal number of nested
assumptions in a proof. This measure turns out to capture the hardness of
proving a tautology F in the sense that if F has a short proof, then there is
also a shallow proof of F . In view of this, a natural strategy when trying to
prove a tautology is to search for shallow proofs. St̊almarck’s proof procedure
pursues this strategy by implementing an algorithm called κ-saturation, which
performs efficient exhaustive search for proofs in fixed depth κ.

The propositional proof system underlying St̊almarck’s method can roughly
be described as consisting of two components. Firstly, it includes all deriva-
tion rules that do not discharge assumptions but derive consequences which
follow “immediately” from the truth tables for the logical connectives, so called
propagation rules. In order to exploit fully the power of the propagation rules,
derivations are defined not in terms of sequences of formulas but sequences of
formula equivalence relations. Secondly, the system contains a discharge rule
embodying the bivalence principle (i.e. that the logic is two-valued). Loosely
put, the rule splits over subexpressions of the formula to be proved and inves-
tigates what consequences can be derived in the two branches assuming the
subexpressions true and false, respectively. The results are then merged by con-
cluding all consequences derived in both branches (they must be true since they
hold regardless of the truth or falsehood of the assumptions in the branches).

The discharge rule is known as the dilemma rule. It is the design of this
rule which gives proofs produced by St̊almarck’s method their characteristic
series-parallel shape. In this way, one can avoid duplication of subderivations
at different places in the proof which can lead to exponential blow-up in tree-
shaped proofs. Because of the importance of this, the proof system itself has
taken its name from the dilemma rule and is consequently called the dilemma
proof system (or just dilemma for short).

This chapter is divided into two parts. In section 4.1, we introduce the
dilemma proof system. In section 4.2, St̊almarck’s algorithm for exhaustive

43
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proof search in this system is presented. Our exposition of the dilemma proof
system and St̊almarck’s method relies heavily on the tutorial by Sheeran and
St̊almarck [49]. The material presented here expands and formalizes the con-
cepts in [49], however, and also introduces new, more precise terminology and
notation. This was necessitated by the need to be able to reason strictly for-
mally about the proof system when proving the results in chapter 6. To our
knowledge, this thesis contains the first complete explicit formal description of
the dilemma proof system.

4.1 The Proof System

This section is organized as follows. The formula equivalence relations which are
the building blocks of derivations in dilemma are introduced in section 4.1.1.
The propagation and dilemma rules which together constitute the derivation
rules of the proof system are discussed in sections 4.1.2 and 4.1.3, respectively,
after which a formal description of the dilemma proof system is given in sec-
tion 4.1.4. In section 4.1.5, we investigate the relation between proof depth and
proof length and introduce the measure of proof hardness, according to which
formulas can be classified as hard or easy. We conclude our presentation of
dilemma in section 4.1.6 by a short discussion of the hierarchy resulting from
ordering formulas with respect to proof hardness.

4.1.1 Formula Relations

In the proof systems presented in chapter 2, we keep track on formulas that
are true (and false, if we negate true formulas) and use the derivation rules to
derive new true (and false, respectively) formulas.

The dilemma proof system uses a larger set of rules for which it is no longer
sufficient to maintain only sets of formulas known to be true or false. We must
also maintain information about pairs of formulas whose truth values are as yet
unknown but which have been showed to have the same truth value or opposite
truth values. To this end we introduce formula relations.

A formula relation is an equivalence relation over the subformulas of a logical
formula F and their complements which in addition to being reflexive, symmet-
ric and transitive also respects the semantic interpretation of logical negation.
(We remind that the complement of a formula P as defined in definition 2.6 on
page 10 is ¬P if P is not a negation and P with the outermost negation removed
otherwise.)

Here and in the following, we assume that our formulas F contain no double
negations, i.e. that there is no ¬P ∈ Sub (F ) such that ¬

(
¬P
)
∈ Sub (F ).

(An alternate way of seeing this is to imagine a “preprocessor step” before a
formula F is passed to a proof system or proof search algorithm, in which all
occurrences of ¬

(
¬P
)

are replaced by P .) While this restriction is not strictly
necessary, it simplifies the proofs of some theorems somewhat. In particular, it
has the consequence that

(
PC
)
C = P .

Definition 4.1 (Formula relation) Let F be a formula in propositional logic.
A formula relation on F is an equivalence relation ≡ with domain Sub (F ),
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subject to the additional constraint that if P ≡ Q holds, it must also hold that
PC ≡ QC (where we adopt the convention that >C = ⊥).

We use the letter R to denote an arbitrary formula relation and C and D to
denote equivalence classes of formula relations.

Definition 4.2 If R is a formula relation on F , we define Vars(R) :=Vars(F ),
Sub (R) :=Sub (F ) and Compound (R) :=Compound (F ).

We call the equivalence class containing > the TRUE -class and the class
containing ⊥ the FALSE -class. These are the determinate classes. The re-
maining classes are called indeterminate.

If C = {P1, . . . , Pn} is an equivalence class of R, the complement of C is
CC =

{
P1

C , . . . , Pn
C
}
.

Note that if C ∈ R, then we also have CC ∈ R (since formula relations respect
complement).

If P and Q are in the same equivalence class of a formula relation, this means
that (under the assumptions made) they must have the same truth value. By
defining formula relations on Sub (F ), which includes the complements of all
subformulas of F , we can encode both equality and inequality of truth values.
The fact that P and Q have opposite truth values is encoded as P ≡ QC .

In order for our definition of dilemma derivations as sequences of formula
relations to be meaningful, the formula relations must be defined over the same
domain.

Definition 4.3 (Compatibility) Two formula relations R1 and R2 are said
to be compatible if they are defined on the same formula F , i.e. if it holds that
Sub (R1) = Sub (R2).

Compatible formula relations can be compared. The more subformulas have
been related in a formula relation, the stronger the relation is.

Definition 4.4 We say that R2 is a stronger or larger formula relation than
R1, denoted R1vR2, if R1 and R2 are compatible and every equivalence class
C1 of R1 is a subset of an equivalence class C2 of R2.

If R1vR2 and R1 6= R2, we say that R2 is strictly stronger (larger) than R1

and write R1 <R2.

In the dilemma proof system we prove (or disprove) formulas by gradually
enlarging formula relations on the formula in question, or, phrasing it somewhat
differently, by adding new associations.

Definition 4.5 (Association) For R a formula relation and P,Q ∈ Sub (R),
we write R

[
P ≡ Q

]
to denote the least formula relation which contains R and

relates or associates P and Q (that is, merges the equivalence classes of P
and Q). We call P ≡ Q an association on R. If ψ is the association P ≡ Q,
then ψC denotes the complementary association P ≡ QC .

We extend the notation for additions to relations from single associations
to sets of associations in the obvious way. If Ψ = {ψ1, . . . , ψn} is a set of
associations, then R

[
Ψ
]
, which we write R

[
ψ1, . . . , ψn

]
, is (R

[
ψ1

]
)
[
ψ2, . . . , ψn

]
.

Also, if Ψ and Φ are two sets of associations, then we will let R
[
Ψ,Φ

]
denote

the relation
(
R
[
Ψ
]) [

Φ
]
.
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It is trivial to show that formula relation associations are commutative.
The smallest formula relation on a formula F is the identity relation on

Sub (F ), which we denote F+. It simply places each element in Sub (F ) in
its own equivalence class. Two rather more interesting formula relations are
F+
[
F ≡ >

]
, which we abbreviate by F>, and F+

[
F ≡ ⊥

]
, abbreviated F⊥.

These two relations will be the starting points when we try to prove that F is
a contradictory or valid formula, respectively.

Definition 4.6 If F is a contradictory (or valid) formula, we say that the re-
lation F> (or F⊥, respectively) is (implicitly) contradictory. A formula rela-
tion R is said to be explicitly contradictory if one of the equivalence classes in
R contains both a subformula and its complement.

Perhaps the simplest example of an explicitly contradictory formula relation
is the relation F+

[
F ≡ FC

]
.

4.1.2 Propagation Rules

Given a formula relation R, we can inspect subformulas P ◦Q ∈ Sub (R) (for
connectives ◦ ∈ {∧,∨,→,↔}) to see if the semantics of the connective ◦ can
be exploited to derive new associations on R based on already known truth
values or relations between truth values of P , Q and P ◦ Q. Such derivations
propagate information which is already “explicit” in R without discharging any
assumptions, and the rules for making them are consequently called propagation
rules (or simple rules).

Definition 4.7 (Propagation rule) A propagation rule (or simple rule) for
a binary logical connective ◦ ∈ {∧,∨,→,↔} is a rule for how one of the formulas
in the set M = {P,Q, P ◦Q} can be unambiguously associated to > or ⊥ (that
is, assigned a truth value) or to another formula or complement of another
formula in M , given that the truth value of one or two of the other formulas in
M are known or that the relation between the truth values of two of the formulas
in M has been determined.

The propagation rules for a connective ◦ can be described by schemas

U1 ≡ V1, . . . , Un ≡ Vn
U ≡ V

(4.1)

where Ui, Vi, U, V ∈
{
P,Q, P ◦Q,PC , QC ,>,⊥

}
. Each such schematic rule can

be seen to correspond to a partial function on formula relations that takes a
relation R in which Ui ≡ Vi for i = 1, . . . , n and returns the relation R

[
U ≡ V

]
.

When picking a set of propagation rules for a proof system, we include only
proper rules. A propagation rule is proper if

{U1 ≡ V1, . . . , Un ≡ Vn} |= U ≡ V (4.2)
{U1 ≡ V1, . . . , Un ≡ Vn} 6|= ⊥ (4.3)

{U1 ≡ V1, . . . , Un ≡ Vn} \ {Ui ≡ Vi} 6|= U ≡ V (4.4)

For the dilemma proof system, a systematic study of the semantics of the logical
connectives reveals that n = 1 suffices in the rule schema (4.1) for all propagation
rules (see appendix A). We will make use of this observation later in this chapter.
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In dilemma, at each propagation step in a derivation we apply to a formula
relation R the partial function corresponding to some propagation rule in order
to derive new information about equivalences between the subformulas in R.
The principle behind the set of propagation rules in the dilemma proof system
is that whenever subformulas P ◦ Q, P and Q are related to each other, to
complements of each other or to > and ⊥ in such a way that the semantics of
the connective ◦ imply that further equivalences between the subformulas can
be derived, there is a rule on the form (4.1) to derive that equivalence.

We now give some examples of propagation rules, deferring a discussion of
the rather extensive full set of propagation rules to appendix A.

Two examples of (symmetric pairs of) propagation rules for conjunction are
the elimination rules

P ∧Q ≡ >
P ≡ >

P ∧Q ≡ >
Q ≡ >

(4.5)

and the “negative” introduction rules

P ≡ ⊥
P ∧Q ≡ ⊥

Q ≡ ⊥
P ∧Q ≡ ⊥

. (4.6)

The corresponding rules for disjunction are the elimination rules

P ∨Q ≡ ⊥
P ≡ ⊥

P ∨Q ≡ ⊥
Q ≡ ⊥

(4.7)

and the introduction rules

P ≡ >
P ∨Q ≡ >

Q ≡ >
P ∨Q ≡ >

. (4.8)

Note that the above rules (or variants of them) can be found also in the
proof systems presented in chapter 2. We see that using only information about
true or false subformulas to derive new true of false formulas corresponds to
restricting Vi and V to the set {>,⊥} in the rule schema (4.1).

As mentioned above, the dilemma proof system extends the set of propaga-
tion rules by allowing Vi and V to be arbitrary subformulas of the formula to
be refuted or proved valid.

Examples of such rules for conjunction based on information about subfor-
mula equivalences are the rules

P ∧Q ≡ PC

P ≡ >
P ∧Q ≡ QC

Q ≡ >
(4.9)

P ∧Q ≡ PC

Q ≡ ⊥
P ∧Q ≡ QC

P ≡ ⊥
(4.10)

(if a conjunction of two subformulas is equivalent to the complement of one of
the subformulas we know the truth values of both subformulas),

P ≡ Q

P ∧Q ≡ P

P ≡ Q

P ∧Q ≡ Q
(4.11)
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(if two subformulas are equivalent, then the conjunction of them is equivalent
to either subformula) and

P ≡ QC

P ∧Q ≡ ⊥
(4.12)

(if two subformulas have different truth values the conjunction of them is cer-
tainly false).

For disjunction the corresponding rules are:

P ∨Q ≡ PC

P ≡ ⊥
P ∨Q ≡ QC

Q ≡ ⊥
(4.13)

P ∨Q ≡ PC

Q ≡ >
P ∨Q ≡ QC

P ≡ >
(4.14)

P ≡ Q

P ∨Q ≡ P

P ≡ Q

P ∨Q ≡ Q
(4.15)

P ≡ QC

P ∨Q ≡ >
(4.16)

A complete set of propagation rules in the dilemma proof system for the
logical connectives {∧,∨,→,↔} is given in section A.2 of appendix A. We refer
to

� figure A.2 on page 127 for conjunction ∧,

� figure A.3 on page 127 for disjunction ∨,

� figure A.4 on page 128 for implication →,

� figure A.5 on page 129 for bi-implication ↔.

No special rules for negation are needed because of the constraint that formula
equivalences should respect complement. One way of looking at this constraint
is as an implicit application of the complement rule

P ≡ Q

PC ≡ QC
(4.17)

after each step in a derivation.
In dilemma, reaching a contradiction means deriving an explicitly contra-

dictory formula relation, i.e. a relation on the form R
[
ψ,ψC

]
. To simplify the

reasoning, we will usually assume that an explicitly contradictory relation on
a formula F is always extended (in one derivation step) to the relation on F
consisting of only one equivalence class by the rule

P ≡ PC

Q ≡ >
∀Q ∈ Sub (F ) (4.18)

which we will call the contradiction rule.
For convenience, we will sometimes treat the complement and contradiction

rules as simple rules. It should be observed, however, that these rules are not
simple rules in the strict sense of definition 4.7.
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4.1.3 The Dilemma Rule

Formula relations together with the large set of propagation rules for them that
we have introduced allow us to reach conclusions which would require branching
in proof systems with a smaller set of propagation rules. In this way we can
minimize the amount of branching, something which is of great importance. As
we shall see when we prove bounds on proof length (section 4.1.5) and analyze
St̊almarck’s method (section 4.2.2) later in this chapter, it is branching that
is the critical factor for proof complexity and efficiency of the proof search
algorithm.

Of course, branching cannot be avoided altogether, since the simple rules
discussed in section 4.1.2 are not complete for propositional logic. The branching
rule used in the dilemma proof system is a special rule for branching and merging
called the dilemma rule. Schematically it can be described as:

R
R
[
P ≡ Q

]
R
[
P ≡ QC

]
π1 π2

R1 R2

R1uR2

(4.19)

This rule schema is to be interpreted as follows: Given a formula relation R
on a formula F , we apply the dilemma rule by choosing subformulas P and Q
of F from different (and non-complementary) equivalence classes in R. Next,
we make two new dilemma derivations starting from the relations R

[
P ≡ Q

]
and R

[
P ≡ QC

]
, deriving R1 and R2, Finally, we conclude the formula relation

intersection R1uR2 of the two formula relations, that is the formula relation con-
taining all common associations in R1 and R2 (a formal definition is given below).
This corresponds to the fact that equivalences derived both under the assump-
tion P ≡ Q and under the assumption P ≡ QC must hold regardless of the truth
values of P and Q. We call the equivalences P ≡ Q and P ≡ QC above dilemma
rule assumptions and instances of rule (4.19) dilemma rule applications.

Definition 4.8 (Formula relation intersection) Let R1 and R2 be compat-
ible formula relations. The formula relation intersection R1uR2 of R1 and R2

is the largest formula relation R for which RvR1 and RvR2.
Alternatively, we may define R1uR2 by

R1uR2 :=
{
{C1 ∩C2} |

(
C1,C2

)
∈ R1 × R2

}
\ {∅}.

If we reach a contradiction in, say, the left branch of a dilemma rule ap-
plication, by the contradiction rule (4.18) we have R1uR2 = R2, and closing
the application of the dilemma rule corresponds to concluding all equivalences
derived in the right branch. Thus, this special case of the dilemma rule is just
a slightly more complicated way of expressing the derivation rule reductio ad
absurdum or RAA.

Thanks to the more general formulation of rule (4.19), however, we can use
results deduced in both branches even when no contradiction has been derived.
This makes our proof system much more efficient. If we would omit the merg-
ing of the branches and refute R1 and R2 separately, then the two subproofs
would probably to have much in common (since R1 and R2 have R in common).
Merging the two branches avoids this repetition.
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4.1.4 Definition of Dilemma Derivation

We now define formally1 what we mean by a derivation in the dilemma proof
system, or a dilemma derivation. We also define the proof-theoretic measures of
depth and length of dilemma derivations and discuss the rather close relationship
between length and size in dilemma (in contrast to for example in resolution).

Definition 4.9 (Dilemma derivation) Let F be a formula in propositional
logic. Let R, Ri denote formula relations on F and suppose that ψ is an associ-
ation on R.

Simple derivation If an application of one of the simple rules in figures A.2,
A.3, A.4 or A.5 (followed by automatic closure under complement by
rule (4.17)) or of the contradiction rule (4.18) to the relation R1 yields
the relation R2 (where R1 <R2) then

π =
R1

R2

is a (simple) dilemma derivation of R2 from R1 (or a dilemma derivation
step from R1 to R2). As a special case,

π′ = R

is a derivation of R from R. Here and in the following, we write the
assertion that π is a dilemma derivation of R2 from R1 as π : R1 ⇒ R2.

The derivation depth D (π) of a simple derivation π is zero. The deriva-
tion length of the simple derivation π : R1 ⇒ R2 above is L (π) = 2 and
the length of π′ : R ⇒ R is L (π′) = 1.

Composition If π1 : R1 ⇒ R2 and π2 : R2 ⇒ R3 (where R1 <R3) then the com-
position π1•π2 of π1 and π2 defined by

π1•π2 =
π1

π2

(containing only one copy of the intermediate relation R2) is a dilemma
derivation π1•π2 : R1 ⇒ R3.

The depth of a composition π1•π2 is D (π1•π2) = max {D (π1), D (π2)}
and the length is L (π1•π2) = L (π1) + L (π2)− 1.

Dilemma rule If π1 : R
[
ψ
]
⇒ R1 and π2 : R

[
ψC
]
⇒ R2 then

π =
R

π1 π2

R1uR2

1As remarked in chapter 2, in order to be formally correct a proof in a propositional proof
system should include annotations for each step by which rules it was derived so that the
validity of the proof can be efficiently checked. However, such annotations would change the
proof size only by a small constant factor. Therefore they are of little theoretical or practical
interest and we have omitted them in the definition of the dilemma proof system.
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(where R
[
ψ
]
6= R 6= R

[
ψC
]

and R<R1uR2) is a dilemma rule derivation
(or dilemma rule application) π : R ⇒ R1uR2.

The depth of π : R ⇒ R1uR2 is D (π) = max {D (π1), D (π2)}+ 1 and the
length is L (π) = L (π1) + L (π2) + 2.

We see that the depth of a dilemma derivation is the maximum number of
simultaneously open branches, and the length of a derivation is the number of
occurrences (with repetitions) of formula relations in it.

As for proof systems in general, the size S (π) of a dilemma derivation π is
defined to be the total number of symbols in the derivation. In the dilemma
proof system a full formula relation on F is explicitly given at each step in
a derivation based on the formula F . If we encode formula relations in the
naive way2 by writing out each subformula in the relation in full, the number
of symbols needed is Ω (S (F )) and O (S (F )2), so the size S (π) of a dilemma
derivation π based on the formula F is related to the length L (π) by

L (π) · Ω (S (F )) ≤ S (π) ≤ L (π) ·O
(
S (F )2

)
. (4.20)

The interpretation of this inequality is that for all practical purposes, the mea-
sures of length and size of dilemma derivations are interchangeable. (Note that
this is not true for proof systems in general. In particular, it does not hold for
resolution.)

Our definition of dilemma derivations explicitly disallows redundant rule
applications (a redundant rule application is one that does not draw any new
conclusions, so that the concluding relation is the same as the starting one). In
some contexts it can be convenient to relax the demand on inequality between
the formula relations in the definition above and allow such redundancy. Also,
in some contexts it is advantageous to ignore the convention that the derivation
of an explicitly contradictory formula relation should always be followed by an
application of the contradiction rule (4.18). In order to be able to make these
distinctions, we introduce some new terminology.

Definition 4.10 A derivation formed according to the rules in definition 4.9
except for the fact that R1 = R2 for some simple derivation, R1 = R3 for some
composition or R = R1uR2 for some dilemma rule application is called a non-
proper dilemma derivation. Derivations conforming strictly to definition 4.9 are
called proper derivations.

A dilemma derivation (proper or non-proper) where the derivation of an
explicitly contradictory formula relation is always immediately followed by an
application of the contradiction rule (4.18) is called a standardized derivation.
A derivation for which this is not the case is called non-standardized.

We say that a dilemma derivation (proper or non-proper) π : R1 ⇒ R2 is
nontrivial if R1 6= R2 and trivial otherwise.

The proof of the following technical proposition is easy.

2In section 4.2.1 we introduce a more efficient representation of formula relations in size
O (S (F )). However, since a factor S (F ) in size does not affect our results in any significant
way, we choose the more straightforward O (S (F )2)-representation for the theoretical analysis.
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Proposition 4.11
1. Any non-proper dilemma derivation π′ : R1 ⇒ R2 can be transformed to

an equivalent proper derivation π : R1 ⇒ R2 of at most the same depth,
length and size.

2. Any non-standardized dilemma derivation π′ : R1 ⇒ R2 (which can be
proper or non-proper) can be transformed to an equivalent proper, stan-
dardized derivation π : R1 ⇒ R2 with D (π) ≤ D (π′), L (π) ≤ 3

2L (π′) and
S (π) ≤ 3

2S (π′).

In view of this proposition, it is often sufficient in proofs of theorems about
the dilemma proof system to reason in terms of non-proper, non-standardized
dilemma derivations since such derivations can easily be transformed to proper,
standardized derivations of essentially the same size and shape. Usually, the
constant factor involved in the transformation is of no consequence.

We have defined derivations in the dilemma proof system in terms of rela-
tions, not formulas. To prove something in the dilemma proof system, we start
from a formula relation corresponding to the negation of what is to be proved
and derive a contradiction. Thus, a dilemma proof is a dilemma derivation
which ends by deriving an explicitly contradictory formula relation.

To make the connection back from derivations involving formula relations
to proofs about formulas, note that the derivation of an explicitly contradictory
formula relation from F> constitutes a refutation of the formula F . Similarly,
we can prove that F is a tautology by refuting the formula relation F⊥. At
times, the distinction between refutations and (tautology) proofs of formulas
tends to become rather blurred. This is quite natural, since proving F valid
corresponds to refuting ¬F . However, in this thesis we will try to stick to the
terminology presented in the following definition.

Definition 4.12 (Dilemma proof and refutation) Suppose that R is a for-
mula relation and let ⊥R denote the canonical explicitly contradictory formula
relation on the domain of R consisting of only one equivalence class.

A dilemma proof from the formula relation R (or dilemma refutation of the
relation R) is a dilemma derivation π : R ⇒ ⊥R.

A dilemma proof of the formula F (a proof that F is valid) is a dilemma
derivation π : F⊥ ⇒ ⊥F+ .

A dilemma refutation of the formula F (a proof that F is contradictory) is
a dilemma derivation π : F> ⇒ ⊥F+ .

Remark 4.13 In dilemma as defined by definitions 4.9 and 4.12, one cannot
derive anything without premises. Thus, the dilemma proof system is not com-
plete and does not in itself constitute a natural deduction system in the strict
sense of the word. However, it is refutation complete for formulas in proposi-
tional logic. That is, given an unsatisfiable (or tautological) formula F , we can
refute (or prove) F in dilemma by making a derivation of ⊥F+ from F> (or F⊥,
respectively).

We could easily remedy this by changing definition 4.12 so that a dilemma
derivation π starts from a formula relation F+ with no premises and consti-
tutes a proof of all subformulas of F found in the TRUE -class at the end of
the derivation (and, if we wish, change definition 4.9 so that we start with an
empty formula relation and let its domain grow by adding Sub (P )∪Sub (Q) for
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each new dilemma rule assumption P ≡ Q). In this case, a proof that F is a
valid formula would be a derivation π : F+ ⇒ R

[
F ≡ >

]
where R is some (not

explicitly contradictory) relation on F . Indeed, if π′ is a dilemma proof of F in
the sense of definition 4.12, then the derivation

F+

F+
[
F ≡ ⊥

]
F+
[
F ≡ >

]
π′

F+
[
F ≡ >

] (4.21)

would be a proof of F in the above alternative (and formally more correct)
sense.

This example shows that the remark about dilemma not being a natural
deduction system in the strict sense is inconsequential. In order to make our
description of dilemma agree with that of [49], and in order to get a closer corre-
spondence between the proof system and the proof search algorithm St̊almarck’s
method, we therefore choose to discuss the dilemma proof system as defined by
definitions 4.9 and 4.12.

For the record, we state the following theorem.

Theorem 4.14 (Dilemma is a propositional proof system)
The dilemma proof system as defined by definitions 4.9 and 4.12 is a propo-
sitional proof system.

Sketch of proof: In order to prove that dilemma is a propositional proof
system in the sense of definition 2.2 on page 11, we need to show that it is a
sound and complete “deduction system” (with the reservations in remark 4.13)
with polynomial-time checkable proofs.

Assuming that we augment every formula relation in a dilemma derivation
with a note about how it was derived from earlier formula relations in the
derivation, it is not hard to construct an algorithm that checks dilemma proofs
in polynomial time.

To see that dilemma is complete, suppose that F is a tautology and order
the n variables in Vars(F ) in some order x1, . . . , xn. Construct a dilemma
derivation which opens with the formula relation F⊥ immediately followed by
n nested levels of dilemma rule applications, where the applications on level i
branches on the truth value of xi. In each of the 2n innermost branches we
have one of the 2n possible different valuations on Vars(F ) and the simple rules
can be used to propagate values from the variables upwards to subformulas all
the way to F . If F is a valid formula we will get contradictions in all of the
branches, and closing the dilemma rule applications one by one we finally derive
a contradiction at zero-level, showing that F is a tautology.

Dilemma is sound since the simple rules and the dilemma rule are all sound.
We leave the detailed proof of this fact to the reader.

The theorem follows. 2

Next, we turn our attention to bounds on dilemma proofs and the related
notion of hardness degree in the dilemma proof system.
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4.1.5 Proof Hardness and Bounds on Proof Length

As has already been mentioned, the amount of nested branching needed (or,
using the language of definition 4.9, the derivation depth) is a critical factor for
the complexity of dilemma proofs. The more branching is needed, the harder
a formula relation becomes to refute. Before elaborating on this further, we
introduce some terminology.

Definition 4.15 (Hardness degree) Given κ ∈ N, a formula relation R is
said to be κ-easy if there is a derivation π : R ⇒ ⊥R with D (π) ≤ κ and κ-hard
if there is no derivation π : R ⇒ ⊥R with D (π) < κ. If a formula relation R
is both κ-easy and κ-hard, we say that it is exactly κ-hard and has hardness
degree H (R) = κ.

We extend these definitions to formulas by stipulating that a tautology F is
κ-easy, κ-hard or exactly κ-hard (has hardness degree H (F ) = κ) if the corre-
sponding formula relation F⊥ is κ-easy, κ-hard or exactly κ-hard (has hardness
degree H

(
F⊥
)

= κ), respectively. For a contradictory formula F , the same
measures are defined in terms of the formula relation F>.

For convenience, we adopt the convention that a non-contradictory (and thus
non-refutable) formula relation R has hardness degree H (R) = ∞.3

The justification for the terminology in definition 4.15 is that the mea-
sure of hardness degree of a formula relation actually captures the traditional
complexity-inspired notion of hardness in terms of proof size. Easy formulas
(i.e. formulas with low hardness degree) have short dilemma proofs while hard
formulas (only) have long proofs. Furthermore, when presenting St̊almarck’s
method, we will see that this algorithm has a favourable asymptotic behaviour
with respect to formula size as long as the formulas are easy in the sense of def-
inition 4.15 (which from our point of view serves as the main motivation behind
the definition).

In analogy with definitions 2.17 and 2.19, we introduce notation for the
minimum length and size of dilemma proofs.

Definition 4.16 Let R be a contradictory formula relation. Then the minimum
length of any dilemma refutation of R is denoted LD(R ` ⊥). The minimum size
of any dilemma refutation is denoted SD(R ` ⊥).

In the same way, we let LD(F ` ⊥) and SD(F ` ⊥) denote the minimum
length and size of a dilemma refutation of a contradictory formula F . If F is a
tautology, we use the notation LD(` F ) and SD(` F ) for the minimum length
and size of a dilemma proof of F .

The rest of this section is devoted to stating and proving upper and lower
bounds on the length (and thus by the inequalities (4.20) on the size) of dilemma
derivations π from R in terms of the hardness degree H (R) (theorems 4.18
and 4.23). To simplify the proofs, we first extend the concept of associations to
dilemma derivations.

3An alternate and perhaps just as natural definition would be that the hardness of a formula
relation R is the minimal depth in which R can be proved contradictory or satisfiable. In this
thesis, however, defining H (R) = ∞ for a non-contradictory relation R suits our purposes
better.
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Definition 4.17 Given a dilemma derivation π : R1 ⇒ R2 and an association ψ
on R1, we define π augmented by ψ, denoted π

[
ψ
]

to be the derivation where
every relation R in π is augmented with the association ψ. That is, π

[
ψ
]

is
a (possibly non-proper and/or non-standardized) dilemma derivation of R2

[
ψ
]

from R1

[
ψ
]
.

For Ψ a set of associations, π
[
Ψ
]

is defined in an analogous fashion.

We now give a lower bound on the length of dilemma refutations of a formula
relation R.

Theorem 4.18 (Lower bound on length of dilemma proofs)
Let R be a contradictory formula relation. Then

LD(R ` ⊥) ≥ 2H(R)/2.

In order to prove the theorem, we introduce a useful piece of notation and
show a technical lemma.

By definition 4.15, if a relation R has (finite) hardness degree h there must
exist a dilemma derivation π : R ⇒ ⊥R of depth h. We write proof

(
R
)

to denote
some representative (arbitrary but fix) of such a derivation.

Lemma 4.19 (Unrolling lemma)
Suppose that π is a dilemma derivation π : R ⇒ R

[
Ψ
]
, where Ψ = {ψ1, . . . , ψn}

is a set of associations. Set Ψ′i = {ψ1, . . . , ψi−1, ψi
C} for 1 ≤ i ≤ n and let

h = max1≤i≤n
{
H
(
R
[
Ψ′i
])}

.

Then h <∞ and there is a derivation π′ : R ⇒ R
[
Ψ
]

with D (π′) ≤ h+ 1.

Proof [of lemma 4.19]: Since there is a dilemma derivation π : R ⇒ R
[
Ψ
]
,

the formula relation R
[
Ψ′i
]

must be (implicitly) contradictory for each i. Indeed,
we can augment each relation in the derivation π with the associations Ψ′i to
get a new (possibly non-proper) derivation π

[
Ψ′i
]

: R
[
Ψ′i
]
⇒ R

[
Ψ′i,Ψ

]
. The final

relation in π
[
Ψ′i
]

is explicitly contradictory (since it contains both ψi and ψiC)
and can be extended in one step to the canonical explicitly contradictory formula
relation ⊥R. If we remove all redundant derivation steps from this derivation,
we get a proper dilemma refutation of R

[
Ψ′i
]
, which we may call π′i. We see

that H
(
R
[
Ψ′i
])

is finite for all i and consequently h <∞.
By the above paragraph, for each formula relation R

[
Ψ′i
]

there is a dilemma
refutation proof

(
R
[
Ψ′i
])

with depth H
(
R
[
Ψ′i
])

. We use these refutations as
building blocks in the derivation presented in figure 4.1 on the next page,
which we call unroll

(
R,Ψ

)
. For all i it holds that D

(
proof

(
R
[
Ψ′i
]))

≤ h, so
D
(
unroll

(
R,Ψ

))
≤ h+ 1 and the lemma follows. 2

Remark 4.20 Note that the construction in lemma 4.19 works equally well if
we start from a dilemma derivation π : R ⇒ R

[
Ψ,Φ

]
, where Φ is an arbitrary

set of associations. The resulting derivation unroll
(
R,Ψ

)
will still be from R

to R
[
Ψ
]
, though.

Proof [of theorem 4.18]: We prove the theorem by showing the contra-
positive: If the length L (π) of a (proper) dilemma derivation π : R ⇒ ⊥R is
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R

proof
(
R
[
ψ1

C
])

R
[
ψ1

]
R
[
ψ1

]
proof

(
R
[
ψ1, ψ2

C
])

R
[
ψ1, ψ2

]
R
[
ψ1, ψ2

]
...

R
[
ψ1, . . . , ψn−1

]
proof

(
R
[
ψ1, . . . , ψn−1, ψn

C
])

R
[
ψ1, . . . , ψn−1, ψn

]
R
[
Ψ
]

Figure 4.1: unroll
(
R, Ψ

)
in the proof of lemma 4.19.

strictly less than b, then the hardness H (R) of the relation R must be strictly
less than 2 log b. The proof is by (strong) induction on b.

Base case: If b = 2 then L (π) = 1, i.e. π consists of a single (explicitly
contradictory) formula relation R and trivially H (R) = 0.

Induction step: Assume that for all b′ < b and derivations π′ : R′ ⇒ ⊥R′ it
holds that L (π′) < b′ implies H (R′) < 2 log b′. Let π : R ⇒ ⊥R be a derivation
of length L (π) < b.

The derivation π starts either with a simple derivation or with an application
of the dilemma rule. We consider the two cases in turn.

1. Suppose that π = π1•π2 where π1 : R ⇒ R1 is a simple derivation and
π2 : R1 ⇒ ⊥R is a (general) dilemma derivation. We have L (π2) = b− 1,
so by the induction hypotesis D (π2) < 2 log(b−1) < 2 log b, and obviously
D (π1) = 0. Thus D (π) < 2 log b.

2. If π starts by a dilemma rule application, it has the form

R
π1 π2

π3

(4.22)

for derivations π1 : R
[
φ
]
⇒ R1, π2 : R

[
φC
]
⇒ R2 and π3 : R1uR2 ⇒ ⊥R

(where φ is some association on R). To simplify the applications below of
lemma 4.19, let Ψ be a set of associations chosen so that R

[
Ψ
]

= R1uR2.
Then π3 is a refutation of R

[
Ψ
]
, and the derivations π1 and π2 can be writ-

ten as π1 : R
[
φ
]
⇒ R

[
φ,Ψ,Φ1

]
and π2 : R

[
φC
]
⇒ R

[
φC ,Ψ,Φ2

]
for some

sets of associations Φ1 and Φ2.

Now since L (π) = L (π1) + L (π2) + L (π3) + 1 < b (and b ≥ 3), it must
hold that at least two of the πi are shorter than b/2 − 1. We get three
cases:

(a) L (π1) < b/2− 1 and L (π2) < b/2− 1,

(b) L (π1) < b/2− 1 and L (π3) < b/2− 1,

(c) L (π2) < b/2− 1 and L (π3) < b/2− 1.
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(a) The derivations π1 and π2 are both short, so we apply the induction
hypotesis and lemma 4.19 (with remark 4.20) to construct equivalent
shallow derivations in both dilemma rule branches.
Starting with π1 : R

[
φ
]
⇒ R

[
φ,Ψ,Φ1

]
, if L (π1) < b/2 − 1 it follows

that the refutations π′i : R
[
φ,Ψ′i

]
⇒ ⊥R constructed in the proof of

lemma 4.19 must be shorter than b/2. But then by the induction hy-
potesis each of the relations R

[
φ,Ψ′i

]
has hardness degree less than

2 log(b/2) = 2 log b − 2. Thus, the derivation unroll
(
R
[
φ
]
,Ψ
)

con-
structed as in figure 4.1 has depth strictly less than 2 log b− 1.
In the same way, applying the unrolling lemma to π2 we see that
there is a derivation unroll

(
R
[
φC
]
,Ψ
)

from R
[
φC
]

to R
[
φC ,Ψ

]
in

depth less than 2 log b− 1.
Finally, L (π3) < b − 1 so by the induction hypotesis it must hold
that H

(
R
[
Ψ
])
< 2 log(b− 1) < 2 log b.

Putting it all together, we arrive at the dilemma proof

R
unroll

(
R
[
φ
]
,Ψ
)

unroll
(
R
[
φC
]
,Ψ
)

proof
(
R
[
Ψ
]) (4.23)

of depth strictly less than 2 log b, so H (R) < 2 log b.

(b) In this case π1 and π3 are short, but π2 is not. Therefore, we insert
shallow modifications of π1 and π3 deriving ⊥ into the left branch
and move π2 below the dilemma rule application.
Just as in case (a), we can construct a derivation unroll

(
R
[
φ
]
,Ψ
)

from R
[
φ
]

to R
[
φ,Ψ

]
in depth less than 2 log b − 2. Then we take

π3 : R
[
Ψ
]
⇒ ⊥R and augment this derivation with the association φ.

The resulting refutation π3

[
φ
]

of R
[
φ,Ψ

]
has length less than b/2,

so by the induction hypotesis H
(
R
[
φ,Ψ

])
< 2 log b − 2. Inserting

unroll
(
R
[
φ
]
,Ψ
)

followed by proof
(
R
[
φ,Ψ

])
into the left branch of

the dilemma rule application, we get a dilemma derivation of R
[
φC
]

in depth less than 2 log b− 1.
We now use π2 to derive R

[
φC ,Ψ,Φ2

]
from R

[
φC
]

and then augment
π3 a second time to get the refutation π3

[
φC ,Φ2

]
of R

[
φC ,Ψ,Φ2

]
.

The composition of these two derivations is a dilemma proof from
R
[
φC
]

in length less than b− 1, and by yet another appeal to the in-
duction hypotesis we conclude that there is a refutation proof

(
R
[
φC
])

with depth less than 2 log b.
Combining the derivations above we get a refutation of R

R
unroll

(
R
[
φ
]
,Ψ
)

R
[
φC
]

proof
(
R
[
φ,Ψ

])
proof

(
R
[
φC
]) (4.24)

in depth less than 2 log b, which shows that H (R) < 2 log b.

(c) Symmetric to case (b).

The theorem follows by the induction principle. 2
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When comparing dilemma to other proof systems, it can be convenient to
express the lower bound on the length of dilemma proofs in terms of formulas
instead of relations.

Corollary 4.21 (Lower bound, formula version)
Let F be a valid (or contradictory) formula and suppose that π is a dilemma

proof (or refutation, respectively) of F . Then L (π) ≥ 2H(F )/2.

Formula relations respect complement, so if one equivalence class in a re-
lation R contains a particular set of subformulas, there is a complementary
equivalence class in R containing the complements of those subformulas. Each
successful application of a simple rule to R merges a pair of equivalence classes
as well as the corresponding pair of complementary classes, and so reduces the
number of equivalence classes in R by two. Non-redundant applications of the
dilemma rule certainly reduce the number of equivalence classes by at least two.
For this reason a proper dilemma derivation cannot go on forever. This simple
observation underlies the proof of the upper bound on the length of dilemma
proofs which we shall give presently.

Definition 4.22 (Proper d-derivation) A proper d-derivation (d-refutation,
d-proof) is a dilemma derivation (refutation, proof) in depth d without redundant
rule applications.

Given a fix d, the theorem below gives a bound for the length of a proper
d-derivation from a formula relation R which is polynomial in the size |R| of the
relation, i.e. the number of equivalence classes in R. (To be more precise, the
bound is in |R|/2, which in view of what has been said above can be considered
to be the number of “independent” equivalence classes of R.)

Theorem 4.23 (Upper bound on length of proper d-derivations)
Let f(d, s) be defined by

f(d, s) =

{
s for d = 0 or s ≤ 3,

s+ 2 ·
∑s−1
j=1 f(d− 1, j) for d > 0 and s > 3.

Suppose that R and R′ are compatible formula relations (where R is not explicitly
contradictory) and set s := |R|/2.

If π : R ⇒ R′ is a proper d-derivation, then L (π) ≤ f(d, s). In particular, it
holds that L (π) ≤ sd+1.

Proof: By induction on d.
Base case (d = 0): π is a 0-derivation in which only simple rules are applied,

and so is just a sequence of formula relations. By the reasoning above, for each
new relation in the sequence the number of equivalence classes in the relation
is decreased by (at least) two. In other words, |R| − |R′| ≥ 2 · (L (π)− 1), from
which it follows that L (π) ≤ |R|/2 = s.

Induction step: Assume that the bound holds for all d′ < d and let π be
a d-derivation. π consists of at most

⌊(
|R| − |R′|

)
/2
⌋
≤ s − 1 applications of

simple or dilemma rules. Clearly, the worst case is when π is a composition of
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s− 1 dilemma rule applications

R
ρ1 σ1

R1

ρ2 σ2

R2

...
Rs−2

ρs−1 σs−1

R′

(4.25)

where the branches ρj , σj must have depth less than d. The first relation in
each ρj and σj contains at most 2(s− j) equivalence classes. By the induction
hypotesis we have L (ρj) ≤ f

(
d− 1, s− j

)
and L (σj) ≤ f

(
d− 1, s− j

)
. For the

length L (π) of the whole derivation we obtain

L (π) = s+
s−1∑
j=1

L (ρj) +
s−1∑
j=1

L (σj) ≤ s+ 2 ·
s−1∑
j=1

f
(
d− 1, j

)
= f

(
d, s
)
, (4.26)

so the bound holds for d as well.
By the induction principle, L (π) ≤ f(d, s) holds for all d ≥ 0.
It is easy to show that f(d, s) ≤ sd+1, so the second bound is just a weaker

version of the first. The theorem follows. 2

For reference, we state the following reformulation of the second part of
theorem 4.23 for dilemma proofs as a corollary.

Corollary 4.24 (Upper bound on length of dilemma proofs)
Let R be a contradictory formula relation with hardness degree H (R) ≤ h and
suppose that π : R ⇒ ⊥R is a proper h-refutation of R. Then

L (π) ≤
(
|R|/2

)h+1

and it follows that

LD(R ` ⊥) ≤ O
(
|R|H(R)+1

)
.

Since the size of any formula relation R on a formula F is bounded by
|R| ≤ 2 · (S (F ) + 1), the bound on the minimum length of a dilemma proof
or refutation of a formula F can be expressed in terms of the size S (F ) of the
formula as in the next corollary.

Corollary 4.25 (Upper bound on length of proofs, formula version)
Let F be a valid (or contradictory) formula and suppose that π is any dilemma
proof (or refutation, respectively) of F in minimal depth H (F ). Then

L (π) ≤ O
(
S (F )H(F )+1

)
.
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Suppose that F is a tautological formula with hardness degree H (F ) = h.
From corollaries 4.21 and 4.25 it follows that we can search exhaustively for
a proof of F in depth h, knowing that the proof eventually found will be at
most quasi-polynomially larger than a smallest possible proof. This observation
lies at heart of St̊almarck’s proof search algorithm, which will be described in
section 4.2. We conclude our discussion on proof bounds by stating this as a
theorem and proving it.

Theorem 4.26
Let F be a tautology having hardness degree H (F ) = h. Then the size and
length of any proper h-proof of F is quasi-polynomial in the size SD(` F ) of a
smallest possible proof of F .

Proof: Let π be an arbitrary proper h-proof of F . It is sufficient to show that
the length L (π) is quasi-polynomial in SD(` F ), since by the inequalities (4.20)
it holds that S (π) ≤ L (π) · O(S (F )2). Note that L (π) ≤ O(S (F ))h+1 by
corollary 4.25.

If F is 0-easy, L (π) ≤ O(S (F )) ≤ SD(` F ), where the last inequality follows
since SD(` F ) ≥ S (F ) (each formula relation in π contains a copy of F ).

Now suppose h ≥ 1. By corollary 4.21 we have SD(` F ) ≥ LD(` F ) ≥ 2h/2.
Using this inequality as well as SD(` F ) ≥ S (F ) we get

L (π) ≤ O
(
S (F )h+1

)
≤
((

2h/2
)4)O(log S(F ))

≤ SD(` F )O(log SD (`F ))
, (4.27)

so L (π) is quasi-polynomial in SD(` F ) and the theorem follows. 2

4.1.6 The Hardness Degree Hierarchy

The corollaries of the previous section give lower and upper bounds on proof
length in terms of hardness of individual formulas. We can translate these
bounds into bounds for sequences as follows.

Suppose that
(
F1, F2, F3, . . .

)
is a sequence of formulas with formula sizes

S (Fn) polynomial in n. If the hardness degrees H (Fn) increase linearly with n,
the sequence requires exponentially increasing proof lengths (and sizes) by corol-
lary 4.21. By corollary 4.25, if the hardness grows logarithmically the proof
lengths and sizes increase (at most) quasi-polynomially, and for constant hard-
ness degrees we get polynomial-size proofs. Thus our concept of hardness degree
really captures the more traditional proof-theoretical measure of hardness in
terms of proof size.

The question remains, however, whether the hardness degrees actually form
an infinite hierarchy or whether everything collapses at some particular degree d.
The answer to this question is that the infinite hierarchy does indeed exist.
Ajtai [1] has shown that there cannot exist polynomial-size proofs of the so
called PHP -formulas, which encode the pigeonhole principle, in bounded depth
Frege systems. Furthermore, according to [51] it is easy to polynomially embed
dilemma proofs of depth d of the PHP -formulas in a bounded depth Frege
system. From the upper bound in corollary 4.25 it follows that the hardness of
these formulas must be increasing. (See also remark 6.24 on page 113.)

Perhaps it is not very surprising that the hierarchy is infinite. If it collapsed
at some level d, then all tautologies in propositional logic would be d-easy and so
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by corollary 4.25 would have polynomial-size dilemma proofs. In other words,
dilemma would be a p-bounded propositional proof system, which by theo-
rem 2.15 would imply that NP = co-NP. This is an equality which would go
contrary to the intuition of most complexity theorists.

It should be noted, though, that the existence of the hardness degree hier-
archy depends on the fact that dilemma is an analytic proof system, i.e. that
it respects the subformula principle (although this has not been stated explic-
itly, it is implicit in the definitions 4.9 and 4.12). If this restriction is removed
the hierarchy breaks down. We show this (in a rather informal manner) in the
following example.

Example 4.1 Consider the proof π in figure 4.2 on the next page (where for
simplicity of notation we have replaced all but the first and final formula rela-
tions with just the new association added to the relation at the corresponding
step in the derivation). Assume that D (π1) = d − 1 and D (πi) = d − 2 for
2 ≤ i ≤ 6, so that it holds that D (π) = d.

If we are allowed to ignore the subformula principle (and extend the defi-
nition of formula relation to include arbitrary formulas), we can use the rules
for bi-implication in figure A.5 on page 129 to move freely between associa-
tions P ≡ Q and P ↔ Q ≡ > or associations P ≡ QC and P ↔ Q ≡ ⊥. Thus,
we can transform all dilemma rule applications branching over the equivalence
of P and Q to applications branching over the truth or falsehood of P ↔ Q.
Furthermore, we can lump together the dilemma rule assumptions P ↔ Q ≡ >
and R↔ S ≡ > to (P ↔ Q) ∧ (R↔ S) ≡ >, and then so to speak deal with
the assumptions in this conjunction in turn, thereby decreasing the depth of the
proof.

By applying these tricks, we arrive at the “dilemma proof” π′ in figure 4.3
in depth D (π′) = d − 1. Unless all of our newly constructed formulas in the
dilemma rule assumptions happen to be subformulas of F , this proof is non-
analytic, i.e. it does not respect the subformula principle. 3

The above example outlines how the depth of a dilemma proof can be reduced
by one when discarding the subformula principle. It is not hard to see that the
same techniques can be generalized to transform dilemma proofs of any depth
to equivalent non-analytic proofs of depth one. We omit the details.

4.2 The Proof Method

In the previous section we defined the dilemma proof system and investigated it
in some detail. We now turn to the question how to construct an efficient proof
search algorithm based on this system. The construction is divided into three
steps:

� First, we devise good data structures for representing formulas, formula
relations and derivations.

� Then, we construct an efficient algorithm that searches exhaustively for
(preferably short) dilemma proofs.

� Finally, we add some optimization to our algorithm to make it run fast
not only asymptotically but also in practice.
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F>

P ≡ Q P ≡ QC

π2 π1

R ≡ S R ≡ SC

π3 π4

π5

π6

⊥F+

Figure 4.2: Schematic dilemma proof π respecting the subformula principle.

F>

(P ↔ Q) ∧ (R↔ S) ≡ > (P ↔ Q) ∧ (R↔ S) ≡ ⊥
P ↔ Q ≡ >
R↔ S ≡ >
P ≡ Q
R ≡ S
π2

π3

π5

π6

⊥F+

(P ↔ Q) ∧ (R↔ S) ≡ ⊥
P ↔ Q ≡ > P ↔ Q ≡ ⊥
R↔ S ≡ ⊥
P ≡ Q
R ≡ SC

π2

π4

π5

π6

⊥F+

P ↔ Q ≡ ⊥
P ≡ QC

π1

π6

⊥F+

Figure 4.3: Transformed non-analytic proof π′.
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The algorithm discussed in this section is called St̊almarck’s method. The
main motivation for this algorithm is theorem 4.26, which says that we can
expect to find reasonably small proofs of a formula F (in terms of the minimum
size of any dilemma proof of F ) by searching exhaustively for shallow proofs,
i.e. proofs with small branching depth.

We describe St̊almarck’s method by attending to the above three steps in
turn. In section 4.2.1 we introduce triplets and try to develop a feel for dilemma
derivations by giving a few examples. At the end of the section we introduce
some new terminology inspired by these examples. In section 4.2.2, we in-
troduce the κ-saturation algorithm on which St̊almarck’s method is based and
analyze the running times of (different versions of) κ-saturation and St̊almarck’s
method. We conclude by giving a very brief overview in section 4.2.3 of some
of the additional optimizations and features in the commercial proof engine
Prover Plug-in�, which implements an extended version of St̊almarck’s method.
Needless to say, a more detailed study of what tricks are used when making the
St̊almarck method into a software product goes far beyond our interests in this
thesis.

As in the previous section, our presentation is based on [49], but the material
has been greatly expanded and elaborated. The terminology in section 4.2.2 is
inspired partly by [58], although the definitions there differ quite substantially
from ours ([58] defines the terms more abstractly, without any reference to
dilemma derivations, and uses sets of judgements instead of formula relations).
Section 4.2.3 makes use of material from [44].

4.2.1 Data Structures and Derivation Fundamenta

As was noted in section 4.1.4, representing a formula relation by writing out all
subformulas in it in full is very inefficient indeed. A more economical way of
representing formula relations is to label all (compound) subformulas and use
these labels instead. Following [44, 49], we call these labels triplets.

Definition 4.27 (Triplet) For F a formula in propositional logic, the triplet
variables Ui of F are defined by introducing variables UP for all subformu-
las P .= Q ◦R in F (where ◦ ∈ {∧,∨,→,↔}) and setting Ux :=x for variables
x ∈ Vars(F ) and UP :=¬UP ′ for subformulas P .= ¬P ′ in F .

If P .= Q ◦R is a subformula in F , we say that UP : UQ ◦ UR is the triplet
representing P .= Q◦R, where UQ and UR are called the (triplet) children of UP
and UP is called the (triplet) parent of UQ and UR. The set {UP |P ∈ Sub (F )}
is the triplet representation of F .

Using triplets, formula relations on F can be represented as relations on the
set of triplet variables of F , with identical subformulas in F represented by the
same triplet. It is not too hard to see that the number of symbols in a triplet
representation of a formula F is at most O (S (F )) and at least Ω (logS (F ))
(the latter bound follows for instance by induction). Any formula relation on F
can be represented in O (S (F )) number of symbols, since the number of triplets
is O (S (F )).

While the triplet representation is certainly much more efficient than the
naive O

(
S (F )2

)
-representation used in the formal definition of the dilemma

proof system, and thus is crucial when implementing proof search algorithms,
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an extra factor S (F ) does not influence the theoretical results about dilemma
in any significant way. We will therefore use triplet representation when de-
scribing the St̊almarck proof search algorithm, but stick to the less economical
but simpler subformula representation for the theoretical analysis.

For a further optimization of formula relation representation, note that if C
is an equivalence class of a formula relation R, then so is CC . Therefore, in im-
plementations of proof search algorithms based on dilemma we can save memory
by storing only half of the equivalence classes and making the complementary
equivalence classes implicit. When two equivalence classes are merged, their
“shadow” complementary classes are also merged implicitly.

In the rest of this section, we work through some examples of dilemma
derivations in triplet representation to get a feel for the proof system. On the
basis of these examples we then introduce some terminology which we will need
when describing St̊almarck’s method and the κ-saturation algorithm in terms
of which it is defined.

The propagation rules used in the derivations are presented in triplet format
in figure 4.4 on the next page.

Example 4.2 (0-depth proof) The formula

F1 := (x ∨ y) ∧ (x ∨ z) → x ∨ (y ∧ z)

is a tautology. It is represented by the following set of triplets:

U1 : x ∨ y U3 : U1 ∧ U2 U5 : x ∨ U4

U2 : x ∨ z U4 : y ∧ z U6 : U3 → U5

A dilemma proof of F1 (where we display only half of the equivalence classes as
explained above) is:{[

>,¬U6

]
,
[
x
]
,
[
y
]
,
[
z
]
,
[
U1

]
,
[
U2

]
,
[
U3

]
,
[
U4

]
,
[
U5

]}
[F1

⊥]{[
>, U3,¬U6

]
,
[
x
]
,
[
y
]
,
[
z
]
,
[
U1

]
,
[
U2

]
,
[
U4

]
,
[
U5

]}
[rule (4.30a) on U6]{[

>, U3,¬U5,¬U6

]
,
[
x
]
,
[
y
]
,
[
z
]
,
[
U1

]
,
[
U2

]
,
[
U4

]}
[rule (4.30b) on U6]{[

>, U1, U3,¬U5,¬U6

]
,
[
x
]
,
[
y
]
,
[
z
]
,
[
U2

]
,
[
U4

]}
[rule (4.28a) on U3]{[

>, U1, U2, U3,¬U5,¬U6

]
,
[
x
]
,
[
y
]
,
[
z
]
,
[
U4

]}
[rule (4.28a) on U3]{[

>,¬x,U1, U2, U3,¬U5,¬U6

]
,
[
y
]
,
[
z
]
,
[
U4

]}
[rule (4.29a) on U5]{[

>,¬x,U1, U2, U3,¬U4,¬U5,¬U6

]
,
[
y
]
,
[
z
]}

[rule (4.29a) on U5]{[
>,¬x, y, U1, U2, U3,¬U4,¬U5,¬U6

]
,
[
z
]}

[rule (4.29b) on U1]{[
>,¬x, y, z, U1, U2, U3,¬U4,¬U5,¬U6

]}
[rule (4.29b) on U2]{[

>,¬x, y, z, U1, U2, U3,U4,¬U4,¬U5,¬U6

]}
[rule (4.28b) on U4]{[

>,⊥, x,¬x, y,¬y, z,¬z, U1,¬U1, . . . , U6,¬U6

]}
[⊥F1

+ by rule (4.18)]

Since this proof uses only simple rules, F1 is 0-easy. 3

If we turn the formula in example 4.2 around, we get the formula

F := x ∨ (y ∧ z) → (x ∨ y) ∧ (x ∨ z). (4.32)

Rules (4.30a) and (4.30b) applied on the outermost implication of F yield that
x ∨

(
y ∧ z

)
≡ > and

(
x ∨ y

)
∧
(
x ∨ z

)
≡ ⊥, but there are no simple rules for con-

junction or disjunction that can propagate these values any further. It follows
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U ≡ >
V ≡ >

U ≡ >
W ≡ >

(U :V ∧W ) (4.28a)

V ≡ >
U ≡W

W ≡ >
U ≡ V

(U :V ∧W ) (4.28b)

U ≡ ⊥
V ≡ ⊥

U ≡ ⊥
W ≡ ⊥

(U :V ∨W ) (4.29a)

V ≡ ⊥
U ≡W

W ≡ ⊥
U ≡ V

(U :V ∨W ) (4.29b)

U ≡ ⊥
V ≡ >

(U :V→W ) (4.30a)

U ≡ ⊥
W ≡ ⊥

(U :V→W ) (4.30b)

U ≡WC

V ≡ ⊥
(U :V→W ) (4.30c)

V ≡ ⊥
U ≡ >

(U :V→W ) (4.30d)

W ≡ ⊥
U ≡ V C

(U :V→W ) (4.30e)

V ≡WC

U ≡ V C
(U :V→W ) (4.30f)

U ≡ >
V ≡W

(U :V↔W ) (4.31a)

U ≡ ⊥
V ≡WC

(U :V↔W ) (4.31b)

U ≡ V

W ≡ >
U ≡W

V ≡ >
(U :V↔W ) (4.31c)

U ≡ V C

W ≡ ⊥
U ≡WC

V ≡ ⊥
(U :V↔W ) (4.31d)

V ≡ >
U ≡W

W ≡ >
U ≡ V

(U :V↔W ) (4.31e)

V ≡ ⊥
U ≡WC

W ≡ ⊥
U ≡ V C

(U :V↔W ) (4.31f)

V ≡W

U ≡ >
(U :V↔W ) (4.31g)

V ≡WC

U ≡ ⊥
(U :V↔W ) (4.31h)

Figure 4.4: Examples of propagation rules in triplet format.
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that F is 1-hard. Branching on for example the truth value of x gives a 1-depth
proof, so F is 1-easy and H (F2) = 1.

We choose not to elaborate on the details. Instead, we give another example
of a exactly 1-hard formula, which is more interesting in that it hints at some
of the power of the dilemma propagation rules.

Example 4.3 (1-depth proof) Consider the formula

F2 := ((x↔ y) ↔ x) ↔ y

represented by the triplets

U1 : x↔ y U2 : U1 ↔ x U3 : U2 ↔ y.

If we assume that F2 is false and propagate, we get:{[
>,¬U3

]
,
[
x
]
,
[
y
]
,
[
U1

]
,
[
U2

]}
[F2

⊥]{[
>,¬U3

]
,
[
x
]
,
[
y,¬U2

]
,
[
U1

]}
[rule (4.31b) on U3]

After this first derivation step we are stuck, since no further consequences can
be derived by simple rules.

To convince ourselves of this, we need only investigate the equivalence classes
of cardinality greater than one. If we study the dilemma proof system simple
rules in figures A.2, A.3, A.4 and A.5, we see that a simple rule can be applied
on a triplet U : V ◦W only if either one of the triplet variables U , V and W
is a member of a determinate equivalence class (which in addition to the triplet
variable contains > or ⊥) or if two of them are in the same (indeterminate)
equivalence class. So in order to decide whether any further consequences can
be derived from a relation R or not, it is sufficient to investigate triplets and
parents of triplets contained in equivalence classes C of R of cardinality |C| ≥ 2.

In the case of F2, the candidate equivalence classes are C1 =
[
>,¬U3

]
and

C2 =
[
y,¬U2

]
. For the TRUE -class C1, since U3 has no parents the only simple

rule applicable is rule (4.31b), which has already been applied. Turning to the
indeterminate class C2, the only possibility is that y and U2 have a common
parent. This is indeed the case, but the rule (4.31h) is just the inverse of
rule (4.31b) and yields no new associations. By the preceding paragraph, it
follows that no other simple rules apply. When this is the case we say that a
formula relation is 0-saturated . (We return to the concept of saturation and
give a more formal definition in section 4.2.2.)

Thus, the formula F2 is 1-hard, but it can be proved a tautology by making
a dilemma rule derivation branching on y. In the branch assuming y ≡ ⊥ we
get the derivation:{[

>,¬y, U2,¬U3

]
,
[
x
]
,
[
U1

]}
[y ≡ ⊥]{[

>,¬y, U2,¬U3

]
,
[
x,U1

]}
[rule (4.31a) on U2]{[

>,y,¬y, U2,¬U3

]
,
[
x,U1

]}
[rule (4.31c) on U1]{[

>,⊥, x,¬x, y,¬y, . . . , U3,¬U3

]}
[⊥F2

+ by rule (4.18)]

and in the other branch, where y ≡ >, we derive:{[
>, y,¬U2,¬U3

]
,
[
x
]
,
[
U1

]}
[y ≡ >]{[

>, y,¬U2,¬U3

]
,
[
x,¬U1

]}
[rule (4.31b) on U2]{[

>,y,¬y,¬U2,¬U3

]
,
[
x,¬U1

]}
[rule (4.31d) on U1]{[

>,⊥, x,¬x, y,¬y, . . . , U3,¬U3

]}
[⊥F2

+ by rule (4.18)]
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(note the applications of rules (4.31c) and (4.31d), which deduce the truth
value of y from the equivalence of x and U1 although their truth values are not
known). We arrive at contradictions in both branches, so closing the dilemma
rule application yields a contradiction.

Consequently, F2 is a exactly 1-hard tautology. 3

Theorem 4.14 tells us that dilemma is complete, i.e. that all tautological
formulas are provable, but what happens if we try to prove a formula which is
not a tautology?

Example 4.4 (Counter-model) Let us change the connective in F2 to impli-
cation and try to prove

F3 := ((x→ y) → x) → y.

We represent F3 by the set of triplets

U1 : x→ y U2 : U1 → x U3 : U2 → y.

As before, we assume that the formula is false and propagate:{[
>,¬U3

]
,
[
x
]
,
[
y
]
,
[
U1

]
,
[
U2

]}
[F3

⊥]{[
>, U2,¬U3

]
,
[
x
]
,
[
y
]
,
[
U1

]}
[rule (4.30a) on U3]{[

>,¬y, U2,¬U3

]
,
[
x
]
,
[
U1

]}
[rule (4.30b) on U3]{[

>,¬y, U2,¬U3

]
,
[
x,¬U1

]}
[rule (4.30e) on U1]{[

>, x,¬y,¬U1, U2,¬U3

]}
[rule (4.30f) on U2]

It is not hard to show that no further simple rules apply, so the last relation

R =
{[
>, x,¬y,¬U1, U2,¬U3

]
,
[
⊥,¬x, y, U1,¬U2, U3

]}
is 0-saturated. But we can say more that that. The relation consists of only the
two determinate classes. Each variable of F3 is in exactly one of the TRUE - and
FALSE -classes, so R can be seen as a truth value assignment to the variables
in Vars(F3). Furthermore, since R is 0-saturated these values are correctly
propagated all the way up the formula to U3 = F3. This means that R defines
a valuation on F3, and this valuation places F3 in the FALSE -class. In other
words, F3 is falsifiable and R gives a counter-model. 3

It is not always the case for a falsifiable formula F that dilemma yields a
counter-model at zero level, but a falsifying valuation can always be found if
we branch over all possible assignments to the variables of F . Conversely, if
we ever reach a 0-saturated formula relation R with |R| = 2 in a branch of a
(possibly nested) dilemma rule application then we can terminate the attempt
to prove F . Since |R| = 2, all variables have been assigned values, and the
fact that R is 0-saturated means that the relation defines a counter-model of F
(the triplet representing F was placed in the FALSE -class at the outset of the
derivation).

In our applications of the dilemma rule so far, we have branched only on the
truth or falsehood of propositional variables or of the formula in question. We
call such dilemma rule applications atomic. Proofs which employ only atomic
applications of the dilemma rule are called atomic dilemma proofs. We now give
an example of a 1-easy formula which becomes 2-hard if we allow only atomic
dilemma rule applications.
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Example 4.5 (1-depth non-atomic proof) The formula

F4 := ((x↔ y) → (z ↔ w)) ↔ (¬(z ↔ w) → ¬(x↔ y))

is a (moderately clever) way of disguising the tautological statement that an
implication is equivalent to its contrapositive. Using the triplets

U1 : x↔ y U3 : U1 → U2 U5 : U3 ↔ U4

U2 : z ↔ w U4 : ¬U2 → ¬U1

to represent F4, we assume that U5 is false and propagate. Because of the fact
that the outermost connective is a bi-implication, the relation becomes 0-satu-
rated after just one rule application:{[

>,¬U5

]
,
[
x
]
,
[
y
]
,
[
z
]
,
[
w
]
,
[
U1

]
,
[
U2

]
,
[
U3

]
,
[
U4

]}
[F4

⊥]{[
>,¬U5

]
,
[
x
]
,
[
y
]
,
[
z
]
,
[
w
]
,
[
U1

]
,
[
U2

]
,
[
U3,¬U4

]}
[rule (4.31b) on U5]

If we branch on x, in the branch assuming x false we get the derivation{[
>,¬x,¬U5

]
,
[
y
]
,
[
z
]
,
[
w
]
,
[
U1

]
,
[
U2

]
,
[
U3,¬U4

]}
[x ≡ ⊥]{[

>,¬x,¬U5

]
,
[
y,¬U1

]
,
[
z
]
,
[
w
]
,
[
U2

]
,
[
U3,¬U4

]}
[rule (4.31f) on U1]

and in the branch assuming x true we get:{[
>, x,¬U5

]
,
[
y
]
,
[
z
]
,
[
w
]
,
[
U1

]
,
[
U2

]
,
[
U3,¬U4

]}
[x ≡ >]{[

>, x,¬U5

]
,
[
y, U1

]
,
[
z
]
,
[
w
]
,
[
U2

]
,
[
U3,¬U4

]}
[rule (4.31e) on U1]

It is easy to see that the last formula relation in each branches is 0-saturated
and that the formula relation intersection of the two relations is{[

>,¬U5

]
,
[
x
]
,
[
y
]
,
[
z
]
,
[
w
]
,
[
U1

]
,
[
U2

]
,
[
U3,¬U4

]}
,

which is the same relation as that preceding the dilemma rule application. That
is, branching on x gives no new conclusions, and its easy to verify that the same
holds for y, z and w. Thus, there is no 1-depth atomic dilemma proof of F4.

If we instead branch on the equivalence of x and y we derive{[
>,¬U5

]
,
[
x, y
]
,
[
z
]
,
[
w
]
,
[
U1

]
,
[
U2

]
,
[
U3,¬U4

]}
[x ≡ y]{[

>, U1,¬U5

]
,
[
x, y
]
,
[
z
]
,
[
w
]
,
[
U2

]
,
[
U3,¬U4

]}
[rule (4.31g) on U1]{[

>, U1,¬U5

]
,
[
x, y
]
,
[
z
]
,
[
w
]
,
[
U2,¬U3, U4

]}
[rule (4.30e) on U4]{[

>,U1,¬U1,¬U5

]
,
[
x, y
]
,
[
z
]
,
[
w
]
,
[
U2,¬U3, U4

]}
[rule (4.30c) on U3]{[

>,⊥, x,¬x, y,¬y, . . . , U4,¬U4, U5,¬U5

]}
[⊥F4

+ by rule (4.18)]

in the branch assuming that x and y are equivalent and{[
>,¬U5

]
,
[
x,¬y

]
,
[
z
]
,
[
w
]
,
[
U1

]
,
[
U2

]
,
[
U3,¬U4

]}
[x ≡ ¬y]{[

>,¬U1,¬U5

]
,
[
x,¬y

]
,
[
z
]
,
[
w
]
,
[
U2

]
,
[
U3,¬U4

]}
[rule (4.31h) on U1]{[

>,¬U1, U3,¬U4,¬U5

]
,
[
x,¬y

]
,
[
z
]
,
[
w
]
,
[
U2

]}
[rule (4.30d) on U3]{[

>,U1,¬U1, U3,¬U4,¬U5

]
,
[
x,¬y

]
,
[
z
]
,
[
w
]
,
[
U2

]}
[rule (4.30b) on U4]{[

>,⊥, x,¬x, y,¬y, . . . , U4,¬U4, U5,¬U5

]}
[⊥F4

+ by rule (4.18)]

in the branch assuming that they are not. Both assumptions yield a contradic-
tion, so H (F4) = 1. 3
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In the last example we used the most general kind of dilemma rule assump-
tions, namely assumptions of type P ≡ Q and P ≡ QC for some subformulas
P and Q of F . It is not hard to see that the proof above can be simplified by
replacing the assumptions x ≡ y and x ≡ ¬y with assumptions about the truth
or falsehood of x↔ y, i.e. assumptions of type P ≡ ⊥ and P ≡ >. We will call
the latter type of assumptions bivalent , since they make use of the bivalence
principle (i.e. that P is either true or false). As we shall see presently, when
St̊almarck’s method searches for a proof or refutation of a formula it uses only
bivalent dilemma rule applications.

We can formalize the reasoning in the last paragraph and define subsystems
of dilemma with restrictions on which types of dilemma rule assumptions may
occur. In order to be able to distinguish between the different kinds of dilemma
derivations encountered in this section, we introduce terminology and notation
for such restrictions of the dilemma proof system below.

Definition 4.28 (Atomic, bivalent and general dilemma) Let π : R ⇒ R′

be a dilemma derivation as defined in definition 4.9.
If the dilemma rule assumptions in π are all of the form x ≡ ⊥ or x ≡ >

for x ∈ Vars(R), we say that π is an atomic dilemma derivation. If all dilemma
rule assumptions in π are of the form P ≡ ⊥ or P ≡ > for P ∈ Sub (R), π is
said to be a bivalent derivation. Otherwise, π is a general (analytic) dilemma
derivation.

We let D denote the general dilemma proof system (with the simple rules
in figures A.2, A.3, A.4 and A.5 plus rules (4.17) and (4.18) and the dilemma
rule (4.19)). The dilemma proof system restricted to atomic derivations only is
denoted DA and dilemma restricted to bivalent derivations is denoted DB.

Also, we extend the definition of hardness in definition 4.15 in the natural
way to atomic and bivalent dilemma, letting HDA

(R) denote the hardness of a
formula relation R with respect to atomic dilemma DA and HDB

(R) the hard-
ness with respect to bivalent dilemma DB (and correspondingly for formulas F ).
When we need to make the distinction, we denote the hardness of a formula
relation R in general dilemma HD (R).

Using this notation, for the formula F4 in example 4.5 above it holds that
HDB

(F4) = HD (F4) = 1, and it is easy to see that HDA
(F4) = 2 (make nested

atomic dilemma rule applications branching on x and y and then insert two
copies each of the subderivations in the proof in the example).

The atomic and bivalent dilemma proof systems arise when we impose re-
strictions on which kind of assumptions may be branched on when introducing a
dilemma rule application. Another way of modifying the proof system is to put
restrictions on which conclusions may be drawn when closing a dilemma rule
application. In dilemma we take the intersection of the consequences derived
in the two branches. If we remove the “merging” part of the dilemma rule and
limit rule applications to the special case where a contradiction is reached in
one of the branches (schematically

R
R
[
P ≡ Q

]
R
[
P ≡ QC

]
π
⊥

R
[
P ≡ QC

] (4.33)



70 CHAPTER 4. STÅLMARCK’S METHOD

and
R

R
[
P ≡ Q

]
R
[
P ≡ QC

]
π
⊥

R
[
P ≡ Q

] (4.34)

for contradictions in the left and right branches respectively), we see that this is
equivalent to the reductio ad absurdum or RAA rule. Consequently, the proof
system using this branching rule is called the RAA proof system.

Definition 4.29 (RAA proof systems) Let π : R ⇒ R′ be a dilemma deriva-
tion according to definition 4.9.

If all dilemma rule applications in π derive a contradiction in at least one
of the two branches, i.e. are all of the form (4.33) or (4.34), we say that π is
an RAA derivation.

The dilemma proof system restricted to RAA derivations only is called the
reductio or RAA proof system and is denoted RAA. The hardness of a formula
relation R (or formula F ) with respect to the RAA proof system is denoted
HRAA (R) (or HRAA (F )). The atomic and bivalent varieties of RAA (defined
in analogy with definition 4.28) are denoted RAAA and RAAB, respectively.

4.2.2 κ-saturation and Proof Methods

The proof systems in definitions 4.28 and 4.29 can be compared with respect
to the minimal depth, length or size of proofs of formulas. The object of such
analysis is to prove that one system is at least as strong as another with respect
to proof depth, length or size or find families of formulas Fn that separate two
systems with respect to one or more of these parameters. We will study these
questions in more detail in chapter 6. At the moment, our aim is to present
a general framework for constructing proof search algorithms in these systems
and to analyze the two proof search algorithms which are most interesting from
a practical point of view.

We first give the intuition behind the construction of our proof methods. As
in definition 4.28 above, let D denote the full dilemma proof system. The idea
is to construct a proof method by defining a sequence of increasingly powerful
subsystems of D and devising proof search algorithms for these subsystems.

Let D0 be D without the dilemma rule and let Di+1 be D with the restriction
that derivations in applications of the dilemma rule should be Di-derivations.
That is, proofs in D1 have at most one open assumption, proofs in D2 at most
two open assumptions etc. Then St̊almarck’s method can be seen as a family of
algorithms which search exhaustively for proofs in Di for increasing i.

Proofs in D0 can be found in linear time by taking the closure of the simple
rules. The time required to search exhaustively for a proof in Di is O

(
sO(i)

)
,

where s is the size of the formula. Empirically, many industrial verification
problems give rise to formulas with proofs in D0 or D1. Such formulas may be
large, but this need not be a problem since the proof method copes well with
even very large formulas as long as the hardness degree is low.

The algorithm that searches exhaustively for proofs in Dκ for κ ≥ 0 is called
κ-saturation. In order to present the algorithm more formally we need a couple
of definitions.
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Definition 4.30 (κ-consequence) Let P denote one of the dilemma proof
systems D, DB or DA or one of the reductio proof systems RAA, RAAB
or RAAA and let R and R′ be compatible formula relations. We say that R′

is a κ-consequence of R (with respect to the proof system P) if there is a deriva-
tion π : R ⇒ R′ in P with D (π) ≤ κ.

If the relations R
[
Ψ
]

and R
[
Φ
]

are κ-consequences of R, then so is R
[
Ψ,Φ

]
.

For if π1 : R ⇒ R
[
Ψ
]

and π2 : R ⇒ R
[
Φ
]

are derivations of depth at most κ,
then the composition π1•

(
π2

[
Ψ
])

: R ⇒ R
[
Ψ,Φ

]
is a (possibly non-proper and

non-standardized) derivation of R
[
Ψ,Φ

]
of depth max {D (π1), D (π2)} ≤ κ. If

we order the set of κ-consequences of R with respect to v, it follows (since the
set of formula relations on Sub (R) is finite) that there is a unique maximal
κ-consequence of R. This relation is called the κ-saturation of R.

Definition 4.31 (κ-saturation) Let P denote one of D, DB or DA or one of
RAA, RAAB or RAAA.

The κ-saturation of a relation R with respect to P, denoted SatP
(
R, κ

)
or

just Sat
(
R, κ

)
when the meaning is clear from context, is the closure of R under

κ-consequence in P. That is, SatP
(
R, κ

)
is a κ-consequence of R, and for all

κ-consequences R′ of R it holds that R′vSatP
(
R, κ

)
.

R is said to be κ-saturated with respect to P if R = SatP
(
R, κ

)
.

In other words, a relation R is κ-saturated if for any derivation π : R ⇒ R′

of depth D (π) ≤ κ it holds that R′ = R. If a relation R has hardness degree
H (R) ≤ κ, it follows that Sat

(
R, κ

)
must be explicitly contradictory.

The central routine in St̊almarck’s method is a procedure saturate
(
R, κ

)
which κ-saturates relations R with respect to (bivalent) dilemma and returns
the κ-saturated relation. In view of the last paragraph, this can be seen to be
equivalent to searching exhaustively for a κ-depth bivalent dilemma proof.

In our implementation of this procedure, we use one unique representative for
each equivalence class (which is vital for the time complexity of the procedure,
as we shall see later when we analyze it). One way of looking at this is that
we let the algorithm operate on equivalence classes instead of triplets. Before
presenting the saturation algorithm, we introduce some notation for this.

We use CompoundCl (R) to denote the set of compound equivalence classes
of R, i.e. the equivalence classes containing compound subformulas. More for-
mally, CompoundCl (R) is defined by

CompoundCl (R) := {C ∈ R | ∃P ∈ Compound (R) such that P ∈ C}. (4.35)

The set of atomic equivalence classes of R, denoted VarCl (R), is defined by

VarCl (R) := {C ∈ R | ∃x ∈ Vars(R) such that x ∈ C} (4.36)

(note that according to these definitions, an equivalence class can be both atomic
and compound).

For equivalence classes C1,C2,C3 of a relation R and a fix ◦ ∈ {∧,∨,→,↔},
we say that the ternary relation

〈
C1 : C2 ◦ C3

〉
holds if for i = 1, 2, 3 there exist

Ui ∈ Ci such that U1 : U2 ◦ U3 is a triplet in R. If
〈
C1 : C2 ◦ C3

〉
holds, we call

C1 a parent of C2 and C3. The equivalence classes C2 and C3 are called the (left
and right) children of C1.
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saturate
(
R, 0

)
=

S :=CompoundCl (R)
while S 6= ∅ and not

(
contradictory

(
R
))

C := retrieve
(
S
)(

R, N
)

:= investigate
(
R,C

)
S :=S ∪N

return
(
R
)

Figure 4.5: Pseudocode for 0-saturation.

investigate
(
R,C

)
=

N := ∅
For all D1,D2 ∈ R and ◦ ∈ {∧,∨,→,↔} such that

〈
C : D1 ◦ D2

〉
R′ := propagate

(
R,C,D1, ◦,D2

)
if R′ 6= R

N :=N ∪ affected
(
R′,R

)
R :=R′

return
(
R, N

)
Figure 4.6: Pseudocode for 0-saturation subroutine.

For an equivalence class C of a formula relation R, the set of parent classes
of C, denoted ParentsCl (R), is defined to be all D ∈ R for which there exist
C′ ∈ R and ◦ ∈ {∧,∨,→,↔} such that either

〈
D : C ◦ C′

〉
or
〈
D : C′ ◦ C

〉
holds.

We extend these definitions to triplets of type U1 : U2 ◦ ¬U3, U1 : ¬U2 ◦U3

and U1 : ¬U2 ◦ ¬U3 in the natural way.

0-saturation

The idea behind 0-saturation is to apply propagation rules to a formula relation
until no further new associations can be derived. We start by inserting all
compound triplet variables (i.e. triplets which represent compound subformulas)
into a pool, and then look at all the triplets in the pool in turn and try to apply
simple rules. After a successful rule application, all triplets affected by the
application of the rule are reinserted into the pool so that it can be investigated
whether any further associations can now be derived from the enlarged formula
relation. This continues until the pool of triplets is empty, at which point the
resulting 0-saturated formula relation is returned. A pseudocode description
of 0-saturation (operating on equivalence classes instead of triplets) is given in
figures 4.5 and 4.6. For simplicity, we pass function arguments by value.

In figure 4.5, the function contradictory
(
R
)

returns TRUE if R is the
canonical contradictory relation with |R| = 1. retrieve

(
S
)

returns the next
equivalence class in the pool S (according to some ordering) and deletes it from
the pool. investigate

(
R,C

)
tries to derive new associations on R from the

triplets in the equivalence class C. If investigate is successful, it returns the
enlarged formula relation and a set N of equivalence classes that should be
inserted into the pool S for further investigations.
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Figure 4.6 describes the investigate subroutine in greater detail. For each
relation

〈
C : D1 ◦ D2

〉
, the procedure calls propagate

(
R,C,D1, ◦,D2

)
, which

investigates whether any propagation rules are applicable to this relation, and if
so applies them. If a new association was derived, investigate then determines
which equivalence classes should be added back to the pool.

But how do we determine which equivalence classes should be put back
into the pool? Suppose that some propagation rule is successfully applied and
associates two distinct equivalence classes C1 and C2 of R. Let R′ denote the
new formula relation containing C1 ∪C2. Now we want to insert into the pool S
all equivalence classes that might be affected by the association of C1 and C2,
i.e. all equivalence classes D for which the equivalence of C1 and C2 might lead
to the derivation of further equivalences involving D.

A first suggestion is to add to the pool S the new equivalence class C1 ∪C2

(to let the new information propagate downwards in the formula to children
of C1 and C2) and all parents of C1 and C2 (to let the information propagate
upwards). In this way we cover all equivalence classes that can possibly be
affected by the newly derived equivalence.

We can be smarter than that, however. To see how, consider first a triplet
U1 : U2 ◦U3 in R. The question is in what cases the merging of the equivalence
classes C1 and C2 can affect the triplet U1 so that a propagation rule which was
not applicable before can now be applied on U1.

As we mentioned in section 4.2.1 when giving examples of dilemma deriva-
tions, a propagation rule can be applicable to a triplet U1 only if either one
of the Ui is equivalent to > or ⊥ (i.e. is in a determinate equivalence class) or
Ui ≡ Uj (or Ui ≡ Uj

C) for i 6= j. Consequently, only triplets where one of the
Ui is placed in a determinate equivalence class or where two Ui, Uj are placed
in the same indeterminate equivalence class (or complementary indeterminate
equivalence classes) are candidates for new propagation rule applications.

If we apply the above reasoning to our equivalence classes C1 and C2, we see
that:

� if > ∈ C1 or ⊥ ∈ C1, then C1 ∪C2 and all equivalence classes in the set
ParentsCl (C2) should be placed in the pool (and vice versa if > ∈ C2 or
⊥ ∈ C2),

� otherwise, C1 ∪C2 should be added if C1 is a parent of C2 or C2
C (or vice

versa), as should all D ∈ ParentsCl (C1) ∩ParentsCl (C2) such that one of〈
D : C1 ◦ C2

〉
,
〈
D : C1

C ◦ C2

〉
,
〈
D : C1 ◦ C2

C
〉

or
〈
D : C1

C ◦ C2
C
〉

holds (or
vice versa with C1 and C2 interchanged).

The function which takes R′ and R and computes which equivalence classes are
affected by the new associations derived and should be inserted in the pool is
called affected

(
R′,R

)
.

After having merged two equivalence classes C1 and C2, we replace all ref-
erences to the two classes with references to C1 ∪C2. In this way we make sure
that each equivalence class is represented by one unique representative.

When the pool is empty (or a contradiction has been derived) in figure 4.5
it must be the case that no further associations can be derived by propagation.
Thus, the formula relation is 0-saturated and the algorithm terminates. (Note
that the concept of 0-saturation is independent of the dilemma or reductio proof
system used, since the propagation rules are the same for all the systems).
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We now analyze the time complexity of the 0-saturation algorithm. Clearly,
the critical part is the innermost loop in investigate

(
R,C

)
in figure 4.6. Each

relation
〈
C : D1 ◦ D2

〉
in an equivalence class C corresponds to some triplet

U1 : U2 ◦U3. If we keep a list of the triplets in C, we can implement the for-loop
in investigate efficiently by iterating over this list. As a further optimization,
we can add a flag for each triplet which is set to FALSE when we know that
the relations between the triplet variables are such that the triplet cannot yield
any new information. For such triplets no call to propagate is made, and we
consider the cost of checking the flags to be negligible in the time complexity
calculations.

For the triplets U1 : U2 ◦U3 that generate a call to propagate, the relation〈
C : D1◦D2

〉
corresponding to the triplet is investigated to see if any simple rules

apply. We say that the triplet is evaluated . It is not hard to see that triplets
can be evaluated in constant time. If we accept that the calls to affected
ensuing on a successful evaluation can be completed in constant time (which
of course is not trivial and should be elaborated on, but we skip this and refer
to [49] for more low-level implementation details) it follows that the cost of a
call to investigate can be measured by the number of calls from within this
procedure to propagate.

The total cost of 0-saturation can thus be measured by the total number
of calls to propagate. We claim that this number is linear in the number of
triplets, i.e. in |Sub (R)|.

To see why, consider how many times a triplet U1 : U2 ◦U3 can be evaluated
by propagate. We say that a triplet U1 : U2 ◦U3 is triggered in the course of a
saturation when any two elements in {U1, U2, U3,¬U1,¬U2,¬U3,>,⊥} become
equivalent. The equivalence class containing a triggered triplet is placed in the
pool S to be evaluated using the propagation rules. After an evaluation, a triplet
need not be evaluated again until the relations between the triplet variables
have changed, and a triplet that can no longer propagate any information can
be discarded for the rest of the duration of the saturation. If we augment our
triplet flag with a note specifying the reason why the triplet is not interesting
and avoid evaluating it again until this has changed, we can get an upper limit
on the number of times a triplet is evaluated during 0-saturation.

We divide our analysis into different cases depending on how many of the Ui
have been assigned truth values (i.e. placed in determinate equivalence classes)
and how many distinct non-complementary equivalence classes the remaining Uj
represent:

� If U1, U2 and U3 all belong to distinct indeterminate equivalence classes,
there is no point in evaluating the triplet U1 : U2 ◦ U3. No calls to
propagate will be made for such triplets U1.

� If the Ui belong to two distinct non-complementary equivalence classes, we
evaluate U1. If a new association is derived, the number of distinct non-
complementary indeterminate equivalence classes represented by the Ui
decreases by one. If not, we mark the triplet with FALSE and make a note
not to evaluate it again until the number of distinct non-complementary
indeterminate equivalence classes has been decreased by one.

� If one of the Ui has been assigned, we try to propagate to the other
variables in U1. Again, if the evaluation is successful, the number of
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distinct non-complementary indeterminate equivalence classes decreases
by one, and otherwise we make a note not to try again with this triplet
until this happens (as a result of some other propagation).

� If two of the triplet variables Ui have been assigned, the triplet either
propagates a truth value to the third variable or is useless. We evaluate it
to determine which of the cases hold and then mark it FALSE and throw
it away for good.

� If U1, U2 and U3 all belong to just one equivalence class and its comple-
ment, the triplet either propagates a truth value to all of the variables or
is useless. Again, we evaluate the triplet and then mark it FALSE and
throw it away.

From this case analysis it follows that the number of evaluations in propagate
caused by each triplet can be bounded by a constant (in fact, the maximum
number of evaluations is 2). Thus, the total number of calls to propagate
during 0-saturation is linear in the number of triplets in R.

By applying some further clever optimizations not discussed above, one can
implement the algorithm in figures 4.5 and 4.6 to run in linear time [49, 51].
We do not give any details, but state the fact as a lemma for reference.

Lemma 4.32 (Time complexity of 0-saturation)
0-saturation of a formula relation R can be performed in time O(|Sub (R)|).

(κ+1)-saturation

(κ+1)-saturation is defined inductively in terms of κ-saturation and branching.
Because of the dependence on branching, we get different (κ+1)-saturation
algorithms depending on which rules for branching and merging of the branches
we use.

The general idea behind (κ+1)-saturation is simple: In one iteration, we
branch over all pairs of admissible complementary assumptions (atomic, bivalent
or general) in turn. For each pair of assumptions, we κ-saturate the two branches
and then merge them according to the dilemma or reductio proof system rules.
If the formula relation is enlarged during such an iteration, we repeat the whole
iteration once more. If an iteration results in no new consequences, the formula
relation must be (κ+1)-saturated with respect to the proof system used and the
algorithm terminates.

Although the (κ+1)-saturation algorithm is guaranteed to find as shallow a
proof as possible in all proof systems discussed in this chapter, the variants for
reductio are more of a theoretical interest. If we have taken the time to κ-satu-
rate the formula relations in the two branches, the extra cost of computing their
intersection is insignificant, so there is not much point in designing “undirected”
exhaustive search reductio κ-saturation algorithms. See section 4.2.3 for a brief
discussion of a directed proof search algorithm for reductio.

In this section we present and analyze the two variants of (κ+1)-satura-
tion that are most interesting from an applied perspective: general dilemma
(κ+1)-saturation, which branches on the equivalence of all pairs of equiva-
lence classes in a formula relation (pseudocode given in figure 4.7), and bivalent
dilemma (κ+1)-saturation, which branches on the truth or falsehood of each
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saturateD
(
R, κ+ 1

)
=

repeat
R′ :=R
i := 1
while i < |R|/2

j := i+ 1
while j ≤ |R|/2

R1 := saturateD
(
R
[
Ci ≡ Cj

]
, κ
)

R2 := saturateD
(
R
[
Ci ≡ Cj

C
]
, κ
)

R :=R1uR2

j := j + 1
i := i+ 1

until R′ = R or contradictory
(
R
)

return
(
R
)

Figure 4.7: Pseudocode for general dilemma (κ+1)-saturation.

saturateDB

(
R, κ+ 1

)
=

repeat
R′ :=R
i := 2
while i ≤ |R|/2

R1 := saturateDB

(
R
[
Ci ≡ C>

]
, κ
)

R2 := saturateDB

(
R
[
Ci ≡ C⊥

]
, κ
)

R :=R1uR2

i := i+ 1
until R′ = R or contradictory

(
R
)

return
(
R
)

Figure 4.8: Pseudocode for bivalent dilemma (κ+1)-saturation.
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equivalence class (pseudocode in figure 4.8). Note that if we want to implement
atomic (κ+1)-saturation, we can change the pseudocode in figure 4.8 so that it
loops over equivalence classes in VarCl (R) only.

In figures 4.7 and 4.8, we consider the formula relations to be ordered sets
of equivalence classes R = {C1, . . . ,Cn,C−1, . . . ,C−n, } with |R| = 2n, where
C1 = C> is the TRUE -class, C−1 = C⊥ is the FALSE -class and more generally
Ci
C = C−i. When two equivalence classes Ci and Cj (where we assume |i| < |j|)

are merged, we set Ci :=Ci ∪Cj and renumber the other equivalence classes as
needed.

As to the complexity of these algorithms, note that each iteration in the
saturation algorithms decreases the number of equivalence classes by at least
two (when this is no longer true the algorithms terminate), so there will be a
total of at most |R|/2 iterations.

In general (κ+1)-saturation, each iteration performs at most
(
|R|/2

)2 passes
of κ-saturation, and in bivalent (κ+1)-saturation the maximum number of
κ-saturations is |R|/2. Observing that |R| = O(|Sub (R)|), by lemma 4.32 and
induction we get:

Theorem 4.33 (Time complexity of κ-saturation)
General dilemma κ-saturation of a formula relation R can be performed in time
O(|Sub (R)|3κ+1).

Bivalent dilemma κ-saturation of a formula relation R can be performed in
time O(|Sub (R)|2κ+1).

See [49] for a more detailed upper bound on bivalent dilemma κ-saturation.

The Proof Method

Given a supposedly tautological (or contradictory) formula F , how do we find
a proof (or refutation) of F efficiently?

In view of what has been said earlier in this chapter, it seems to be a good
idea to minimize the branching in the proof and try to find as shallow a proof
as possible. So we start with 0-saturation. If 0-saturation give no conclusive
results, we try 1-saturation, then 2-saturation and so on.

The St̊almarck proof method κ-saturates the relation for the formula in the
dilemma proof system for increasing κ until it finds either a proof or a counter-
model. Of course, information gathered during κ-saturation is available during
subsequent (κ+1)-saturation. We call the variants of St̊almarck’s method using
atomic, bivalent or general dilemma the atomic, bivalent or general St̊almarck’s
method, respectively.

The cost of finding a proof or refutation for a exactly κ-hard formula F is
essentially that of performing κ-saturation of the corresponding formula relation.

Theorem 4.34 (Time complexity of St̊almarck’s method)
Let F be a tautological formula in propositional logic.

Then the general St̊almarck’s method finds a proof of F in time

O
(
S (F )3·HD (F )+1

)
.

The bivalent St̊almarck’s method finds a proof in time

O
(
S (F )2·HDB

(F )+1
)
,



78 CHAPTER 4. STÅLMARCK’S METHOD

which in terms of the hardness HD in general dilemma cannot be worse than

O
(
S (F )4·HD (F )+1)

.

Proof: Let κ :=HD (F ) and R :=F⊥.
Suppose first that no consequences whatsoever are derived until κ-saturation

starts. In this case we will have had one failed iteration each of 0-saturation,
1-saturation, . . . , (κ-1)-saturation. By (the reasoning preceding) theorem 4.33,
the cost of all these failed iterations added together must be less than that of
one iteration in κ-saturation. Consequently, the total cost is at most |R|/2 + 1
iterations of κ-saturation.

If instead κ′-saturation is successful for some κ′ < κ, then each such (full)
κ′-saturation is cheaper than an iteration of κ-saturation and decreases |R| by at
least two (and thus the number of possible remaining κ-saturations by at least
one). We see that a successful κ′-saturation can only lower the upper bound
given in the first case above, which is the worst case.

The theorem follows if we apply theorem 4.33 on our derived upper bound
and note that

∣∣F⊥∣∣ ≤ 2 · S (F ) and HDB
(F ) ≤ 2 ·HD (F ). 2

Although general saturation has better asymptotic properties than bivalent
saturation in theory, the latter seems to achieve superior performance in prac-
tice. Therefore bivalent dilemma saturation is the version of the saturation
algorithm used in commercial implementations of St̊almarck’s method [51].

If we compare corollary 4.25 and theorem 4.34, we see that the time com-
plexity of St̊almarck’s method is less than cubic in the upper bound on proof
length (less than quartic for the bivalent variant). To show that St̊almarck’s
method is an efficient proof search algorithm, however, we would like to bound
the time complexity as a function of a lower bound on proofs. In the next
theorem, we prove that the algorithm finds proofs in time quasi-polynomial in
the size of a smallest proof. That is, dilemma is a quasi-automatizable proof
system (definition 2.18 on page 15).

Theorem 4.35
General and bivalent dilemma are both quasi-automatizable proof systems.

Proof: Let F be a tautology in propositional logic.
Using corollaries 4.21 and 4.25 and theorem 4.34, the same technique as in

the proof of theorem 4.26 can be used to show that the bivalent St̊almarck’s
method finds a (bivalent) proof of F in time quasi-polynomial in the size of a
smallest general dilemma proof. Thus general dilemma is quasi-automatizable.

Since a smallest bivalent dilemma proof certainly is at least as large as a
smallest general proof, this shows that bivalent dilemma is quasi-automatizable
as well. 2

Remark 4.36 For readers not willing to accept lemma 4.32 without a full proof,
we note that there is an easier way to establish theorem 4.35. To make the proof
above go through, it is sufficient to show that κ-saturation can be performed in
time O (S (F )c1·H(F )+c2) for some constants c1 and c2. Perhaps the easiest way
of proving this bound is to show that 0-saturation can be performed not neces-
sarily in linear but in polynomial time (which is trivial), replace the reference
to lemma 4.32 in the proof of theorem 4.33 by this polynomial bound and then
reuse the rest of the proofs of theorems 4.33 and 4.34.
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4.2.3 Extensions of St̊almarck’s Method

St̊almarck’s method has been implemented in the tool Prover Plug-in�, which
in turn is the proof search routine (or proof engine) used in a number of products
from Prover Technology AB. Below follows a short overview of some the types
of optimizations applied in Prover Plug-in�. For a more detailed discussion on
this subject we refer to [44].

Formula Transformation

The St̊almarck method as defined in this chapter operates on formulas contain-
ing all the usual logical connectives {¬,∧,∨,→,↔}. When implementing the
method, to simplify the algorithm the formulas are transformed to equivalent
formulas on fewer connectives. The exact method chosen for rewriting the for-
mulas is not of crucial importance, but it should avoid the blow-up in formula
size that results from splitting logical equivalences.

An early implementation of St̊almarck’s algorithm systematically pulled nega-
tions up the formula, leaving a body involving only conjunction, disjunction,
implication and bi-implication applied to unnegated propositional variables [55].
One advantage of rewriting the formula in this way is that if the resulting for-
mula is negated, we know immediately that it cannot be a tautology (set all
variables to TRUE ). For a description of this transformation (and a further
reduction to a formula over just {¬,→}), see [52]. A rather detailed descrip-
tion of another implementation which uses a transformation to formulas over
{¬,∧,↔} is given in [32]. In the current version of Prover Plug-in�, the internal
representation of formulas are over the set of connectives {¬,→,↔} [51].

Representation of Formula Relations

As has already been noted in sections 4.2.1 and 4.2.2, since formula relations
respect complement, it is sufficient to represent a formula relation by only half
of its equivalence classes. Also, in implementations each equivalence class in a
formula relation is represented by a unique representative, which is important
for the complexity of the proof search algorithm.

Composite rules

In our definition of the dilemma proof system, all propagation rules are simple,
i.e. they act on the triplet representing a subformula P ◦ Q and its immediate
subformulas P and Q. But one can also devise rules that apply not on just
a single subformula but on pairs of subformulas (while still not requiring any
branching). Such rules are called composite propagation rules.

For example, suppose that it has been derived that two subformulas F → G
and G → F have the same truth value. Then it is easy to verify that the
subformulas F and G must have the same truth value as well (and consequently
both implications are true). If we generalize this rule somewhat and write it
down in the notation used for the simple rules, we have:

P ≡ S Q ≡ R P → Q ≡ R→ S

P ≡ Q
(4.37)
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In dilemma as it is described in section 4.1, we would need to insert a 1-depth
derivation branching over P or Q to deduce this equivalence.

Another example of a composite rule is the rule stating that an implication
F → G is equivalent to its contrapositive ¬G→ ¬F :

P ≡ SC Q ≡ RC

P → Q ≡ R→ S
(4.38)

If we augment the dilemma proof system with this rule, the 1-hard formula in
example 4.5 becomes 0-easy.

As these two examples show, composite rules can be used to enhance proof
power by reducing the hardness of a formula. Rules such as (4.37) and (4.38)
decrease the hardness degree with (at most) a constant, which means that they
are of little interest from a theoretical point of view. In practice, however,
they can have a large impact. As we have seen in section 4.2.2, St̊almarck’s
method is sensitive to the hardness degree. Adding composite rules to the proof
system increases the complexity of the saturation algorithm, but if we can avoid
(κ+1)-saturation by proving a formula in depth κ with the use of composite
rules, it might be worth the extra cost. (Of course, to be able to use this type of
rules we need some kind of data structure, for instance a hash table, where we
can search for “companion triplets”, i.e. triplets such as the ones representing
F → G and G→ F in the first example above).

Also, composite rules can be used during formula parsing and construction
of the triplet set to share triplets for semantically equivalent subformulas. If we
run across the two subformulas F → G and ¬G→ ¬F , we know by rule (4.38)
that they are equivalent. Therefore, we do not have to build separate triplets
for these two formulas but can let them share the same triplet (which can be
seen as inserting a dilemma derivation step placing the subformulas in the same
equivalence class “on the fly”).

Implications and Implication Graphs

The formula relations used in dilemma contain information about equivalences
between subformulas. In Prover Plug-in�it is possible to keep record not only
of equivalences but also of formula implications P ⇒ Q between subformulas.
The interpretation of this notation is that if we derive that P is true, then Q
must be true also. If P ⇒ Q and Q⇒ P then P ≡ Q.

The rules for deriving formula implications are of three kinds:

Simple implication rules One example of a simple rule is P ∧Q⇒ P (such
rules can be applied when parsing a formula and building the triplets).

Transitivity rule If P ⇒ Q and Q⇒ R then P ⇒ R.

Introduction rule If we derive Q ≡ > under the assumption P ≡ > then it
holds that P ⇒ Q.

The main motivation for formula implications is that on the basis of them one
can construct implication graphs which can be used to find efficient variable
orderings for backtracking (see below).
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Backtracking

In industrial applications, if 1-saturation of a formula relation F⊥ does not
yield a contradiction, there might be reason to suspect that the formula F is
falsifiable. In this case, Prover Plug-in�can be instructed to search for a counter-
model (i.e. a satisfying valuation of ¬F ) by backtracking . One can also switch
to backtracking with the purpose of searching for a proof if one still believes
that F is valid but it is simply too expensive to continue the proof search by
2-saturating the formula relation.

Backtracking works as follows: Based on some ordering of the variables
(chosen for instance by considering the number of occurrences or information
from an implication graph), the backtracking procedure divides the problem into
two subproblems in which the first variable with respect to the chosen order is
assumed false and true respectively. The assumption is propagated by 0-satu-
ration, and if no contradiction or counter-model is derived the procedure then
branches recursively on the truth value of the second variable, and so on.

If in any branch we derive a 0-saturated formula relation R with |R| = 2,
that formula relation gives a counter-model for F . When we reach an explicitly
contradictory relation in a branch, that branch is terminated. If as a result
contradictions are derived in all branches, the formula F must be valid and the
derivations of the backtracking procedure constitute a tree-shaped proof of this
fact.

A moment of thought reveals that the constructed proof is (isomorphic to) a
bivalent RAA proof. Thus backtracking can be seen as a proof search algorithm
for RAAB as defined in definition 4.29 on page 70. Note, however, that search-
ing exhaustively for proofs with back-tracking can be very expensive in terms
of the shortest RAA proof, and this proof may in turn be long and/or deep
compared to the shortest dilemma proof. Thus, backtracking is not designed
to be an efficient general proof method. Rather, it is an algorithm that we can
apply when for example 1-saturation has given us enough information about a
formula (in terms of equivalences and implications) to make us believe that we
can heuristically choose a variable ordering which will lead us to a proof faster
than the more undirected “brute-force” search of κ-saturation.

Extension to Finite Domain Integer Arithmetic

The proof systems and proof search algorithms described in this thesis are all
defined for propositional logic. In applications, it is sometimes necessary, or at
least very convenient, to be able to express arithmetic relations between num-
bers. In Prover Plug-in�, the propositional logic language is augmented with
functionality for integer arithmetic and the proof search algorithm used is an
extension of St̊almarck’s method to finite domain integer arithmetic. Formulas
can also declare and use enumerated types, which is useful for system modelling.

St̊almarck’s method has also been extended in various other ways, for exam-
ple to many sorted first order logic and to propositional linear temporal logic.
As before, we refer to www.prover.com for an updated list of references.
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Chapter 5

Tool kit

This chapter is devoted to developing some of the tools used to prove the results
in chapter 6.

5.1 Simulations and Separations

In order to be able to compare proof systems in more detail, we generalize the
concept of p-simulation in definition 2.13 as follows.

Definition 5.1 (Simulation) Suppose that P1 and P2 are propositional proof
systems and that M is some proof-theoretic measure defined on both P1 and P2.

P1 is said to simulate P2 with respect to M if there exists a polynomial-time
computable function f mapping proofs π in P2 to equivalent proofs f(π) in P1

such that MP2 (f(π)) ≤MP1 (π).
The proof system P1 simulates P2 linearly with respect to M if the function f

mapping proofs from P2 to P1 satisfies MP2 (f(π)) ≤ O(MP1 (π)).
If there exists a polynomial-time computable function f from P2 to P1 such

that MP1 (f(π)) ≤ MP2 (π)O(1), we say that P1 simulates P2 polynomially (or
p-simulates P2) with respect to M.

Two proof systems can be shown to be “essentially equally strong” with
respect to some measure M by proving that they simulate each other (usually
polynomially, but that depends on the measure) with respect to M. We demon-
strate that two proof systems P1 and P2 are not “essentially equally strong”
by finding a family of (polynomial-size) formulas which separates them with re-
spect to some measure M. If we find such a family of formulas Fn which shows
that P1 is stronger than P2, we say that the formulas Fn separate P1 from P2

(with respect to M).

Definition 5.2 (Separation) Let P1 and P2 be propositional proof systems
and M be some measure defined on both P1 and P2. Suppose that {Fn}∞n=1 is
a family of polynomial-size formulas (with S (Fn) = ω (1)) and let πni denote a
minimal proof for Fn in Pi with respect to M.

If MP1 (πn1 ) = O (1), the formula family Fn is a logarithmic separation
of P1 from P2 with respect to M if MP2 (πn2 ) = Ω (log n), a superlogarithmic
separation if MP2 (πn2 ) = ω (log n) and a linear separation if MP2 (πn2 ) = Ω (n).

83
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If MP1 (πn1 ) = Ω (n) and there is a function g : N 7→ N such that MP2 (πn2 ) ≥
g(MP1 (πn1 )), we say that Fn is a superpolynomial separation of P1 from P2 with
respect to M if g(m) = ω

(
mk
)

for all k ∈ N and an exponential separation if
g(m) = Ω (expmc) for some c ∈ R+.

Remark 5.3 Note that in order to prove a linear separation of P1 from P2,
it suffices to find a formula family {Fn}∞n=1 with MP2 (πn2 ) = Ω (nc) for some
c ∈ R+ (set Gn :=Fnd1/ce to get a polynomial-size linear separation {Gn}∞n=1).
In particular, it is sufficient to find formulas Fn with MP2 (πn2 ) = Ω (n/ log n).

Definition 5.4 We say that P1 is (linearly, superpolynomially or exponen-
tially) stronger than P2 with respect to M if P1 simulates P2 (in absolute terms,
polynomially or polynomially, respectively) but the two systems can be separated
with respect to M (linearly, superpolynomially or exponentially, respectively).

If there are separations both ways (of a relevant kind) for the measure M in
question, P1 and P2 are said to be incomparable with respect to M.

Not all kinds of separations are relevant for all measures. For proof length
and size, for example, usually only superpolynomial or exponential separations
are of interest. For hardness degree, the interesting types of separations are
superlogarithmic and linear ones.

5.2 Modifications of Dilemma

In this section we present two modifications of the dilemma proof system which
are of little interest in their own right but will be useful when proving theorems
about dilemma and reductio and their relation to resolution.

5.2.1 Normal Form Dilemma

The standard way of showing lower bounds on different proof-theoretic mea-
sures in a propositional proof system P is to study minimal proofs for formula
families Fn in P. Often such formula families Fn are conveniently defined by
allowing connectives with arity depending on n.

Formally speaking, formulas with connectives of arbitrary arity are not in
propositional logic as defined in definition 2.4, so in order for the results con-
cerning them to be valid they should be parenthesized in some way to make the
connectives binary. When showing the lower bounds, however, it can be ad-
vantageous to avoid arbitrary parenthesizing and instead exploit symmetries in
the formulas to simplify the proofs. With this in mind, we present an extension
of dilemma to formulas over the set of connectives {¬,∧,∨} where conjunction
and disjunction have arbitrary arity but negation can be applied on atomic
variables only. More formally, assuming (as before) the existence of a set of
variables Vars, we make the following definition.

Definition 5.5 (Extended propositional logic) Let the set of literals Lit
be defined by Lit := {x, x |x ∈ Vars} and let Conj and Disj be the smallest sets
such that

1. a ∈ Conj and a ∈ Disj for all a ∈ Lit,
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2. if Pi ∈ Disj for i = 1, . . . , n (where n ≥ 2), then
∧n
i=1 Pi ∈ Conj ,

3. if Pi ∈ Conj for i = 1, . . . , n (where n ≥ 2), then
∨n
i=1 Pi ∈ Disj .

Then the set of “extended” propositional logic formulas PROPext is defined as

PROPext :=Conj ∪Disj .

Note that the elements in Conj and Disj are defined as sets, so that for
instance the formulas a ∧ b ∧ c, a ∧ c ∧ b and a ∧ b ∧ c ∧ b ∧ a are all considered
identical. Note also that both CNF and DNF formulas are in PROPext .

We will use the term extended or normal form dilemma (NF-dilemma for
short) to refer to the dilemma proof system adapted to PROPext . When we
need to make the distinction, we will use the term binary dilemma for dilemma
proof system variants with ordinary binary logical connectives.

The propagation rules in NF-dilemma are basically the same as those for
binary dilemma. We list the rules in figures 5.1 and 5.2 on the following page
(compare with figures A.2 and A.3 in appendix A).

While we can leave the propagation rules basically unaltered, we have to be
more careful with the formula relations. A first try at defining formula relations
on formulas in PROPext would be to include all possible subformulas in the
domain. But this is not a good idea. For instance, the formula

x ∧ y ∧ z (5.1)

would give rise to the set of subformulas

{x ∧ y ∧ z, x ∧ y, x ∧ z, y ∧ z, x, y, z}, (5.2)

and in the worst case, the formula relation domain could be exponential in the
size of the formula. This would mean that a short proof (i.e. with few lines)
could still be exponentially large (since the formula relation on each line is
potentially exponential in size), which is undesirable.

Instead, we start with a relation on a formula F with smallest possible
domain, i.e.

{
F, FC ,>,⊥

}
. In each step of an NF-dilemma derivation, we add

to the domain of the formula relation the formulas shown or assumed true, false
or equivalent (as well as their complements). Propagation rules can be applied
to subformulas currently in the formula relation domain and to parents of such
formulas. By reasoning analogous to that in section 4.2.2, these are the only
subformulas which can yield new equivalences at that point in the derivation.

As before we may branch over arbitrary subformulas of F . The intersection
of two formula relations is defined as

R1uR2 :=
{
{C1 ∩C2} |

(
C1,C2

)
∈ R1 × R2, |{C1 ∩C2}| ≥ 2

}
. (5.3)

From (5.3) it follows that a subformula P introduced in the formula relation
domain in one of the branches in a dilemma rule application (i.e. a subformula
derived true or false or related to some other subformula) is eliminated by the
formula relation intersection if there are no common equivalences P ≡ Q derived
in both dilemma branches. In this way, we avoid adding superfluous subformulas
to the the formula relation when closing dilemma rule applications and make
sure that we keep the domain of the relation as small as possible. In particular,
there are no unit equivalence classes

[
P
]

in an NF-dilemma formula relation.
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∧n
i=1 Pi ∧

∧m
j=1Qj ≡ >∧n

i=1 Pi ≡ >
(C1NF )

∧n
i=1 Pi ∧

∧m
j=1Qj ≡ (

∧n
i=1 Pi)

C∧n
i=1 Pi ≡ >

(C2NF )

∧n
i=1 Pi ∧

∧m
j=1Qj ≡ (

∧n
i=1 Pi)

C∧m
j=1Qj ≡ ⊥

(C3NF )

∧n
i=1 Pi ≡ >∧n

i=1 Pi ∧
∧m
j=1Qj ≡

∧m
j=1Qj

(C4NF )

∧n
i=1 Pi ≡ ⊥∧n

i=1 Pi ∧
∧m
j=1Qj ≡ ⊥

(C5NF )

∧n
i=1 Pi ≡

∧m
j=1Qj∧n

i=1 Pi ∧
∧m
j=1Qj ≡

∧n
i=1 Pi

(C6NF )

∧n
i=1 Pi ≡

(∧m
j=1Qj

)C
∧n
i=1 Pi ∧

∧m
j=1Qj ≡ ⊥

(C7NF )

Figure 5.1: NF-dilemma propagation rules for conjunction.

∨n
i=1 Pi ∨

∨m
j=1Qj ≡ ⊥∨n

i=1 Pi ≡ ⊥
(D1NF )

∨n
i=1 Pi ∨

∨m
j=1Qj ≡ (

∨n
i=1 Pi)

C∨n
i=1 Pi ≡ ⊥

(D2NF )

∨n
i=1 Pi ∨

∨m
j=1Qj ≡ (

∨n
i=1 Pi)

C∨m
j=1Qj ≡ >

(D3NF )

∨n
i=1 Pi ≡ >∨n

i=1 Pi ∨
∨m
j=1Qj ≡ >

(D4NF )

∨n
i=1 Pi ≡ ⊥∨n

i=1 Pi ∨
∨m
j=1Qj ≡

∨m
j=1Qj

(D5NF )

∨n
i=1 Pi ≡

∨m
j=1Qj∨n

i=1 Pi ∨
∨m
j=1Qj ≡

∨n
i=1 Pi

(D6NF )

∨n
i=1 Pi ≡

(∨m
j=1Qj

)C
∨n
i=1 Pi ∨

∨m
j=1Qj ≡ >

(D7NF )

Figure 5.2: NF-dilemma propagation rules for disjunction.



5.2. MODIFICATIONS OF DILEMMA 87

If we define formula relations on formulas in PROPext in this way, the size
of a formula relation will always be polynomial in the length of a derivation,
and thus derivation length and size will be polynomially related as well.

The point of introducing NF-dilemma is to simplify the proofs of bounds
on dilemma derivations by exploiting the symmetry in PROPext -formulas (and
more specifically in CNF and DNF formulas).

Consider for example a contradictory k-CNF formula F parenthesized in
some natural way so that the connectives are binary. Any dilemma refutation
(atomic, bivalent or general) of F can be regarded as an NF-dilemma refutation.
Turning this around, if we can prove that there is no refutation of depth d or
length L of F in NF-dilemma, then there is no such refutation in ordinary
binary dilemma either. And proving that there is no NF-dilemma proof can be
easier, since by using symmetry we can assume without loss of generality that
an atomic proof, say, branches on a specific variable without having to worry
about how the clauses in the formula are parenthesized.

As a final remark, we observe that as defined above, NF-dilemma lacks one
of the most important characteristics of binary dilemma from a practical point
of view. Namely, we lose the possibility to search exhaustively for proofs of
limited depth in an efficient way. Since there might be an exponential number
of branching possibilities when saturating a formula relation, the upper bound
for the complexity of proof search in theorem 4.34 on page 77 no longer holds.

5.2.2 Equivalence-Based Dilemma

One of the problems when comparing dilemma and resolution is that if we want
to translate a dilemma proof into resolution, we have to take into consideration
that all information gathered so far in the dilemma derivation is encoded in the
formula relation on the current line in the derivation. This corresponds very
poorly to how resolution proofs work. Our next modification of the dilemma
proof system is designed specifically to eliminate this problem and thus facilitate
the translation of dilemma proofs to resolution.

The solution is to eliminate the usage of formula relations. Instead, we let the
propagation rules derive formula equivalences from other formula equivalences
occurring earlier in the proof. We do this by introducing the concept of scope
and specifying that equivalences derived in the current scope, and only such
equivalences, can be used to derive new formula equivalences. Also, we introduce
rules for formal manipulation of formula equivalences, such as for instance

P ≡ Q Q ≡ R

P ≡ R
(5.4)

for transitivity and
P ≡ Q

PC ≡ QC
(5.5)

for complement (see figure A.1 on page 126 for the full list of rules for formula
equivalences). We replace the canonical explicitly contradictory formula relation
by overloading the symbol ⊥ to denote that a contradiction has been derived
and adding the rule

P ≡ PC

⊥
. (5.6)
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The ideas sketched above are developed in more detail and formalized in ap-
pendix A.

Any variant of dilemma with formula relations (atomic, bivalent or gen-
eral variants of binary or even NF-dilemma, and correspondingly for reductio)
can be made into a proof system using formal manipulation of formula equiva-
lences. We will call such modifications of the dilemma or reductio proof systems
“equivalence-based”. From the discussions in section A.5 we get the following
proposition.

Proposition 5.6
If F is a tautology, P is a proof system using formula relations and P≡ is the
corresponding equivalence-based system, then it holds that

LP(` F ) ≤ LP≡(` F ) ≤ LP(` F )O(1)

and

SP(` F )/O(S (F )2) ≤ SP≡(` F ) ≤ SP(` F )O(1)
.

The hardness degree is the same in the two proof systems, i.e.

HP≡ (F ) = HP (F ).

In other words, it does not really matter whether we use proof system vari-
ants based on formula relations or formula equivalences for the theoretical anal-
ysis as long as polynomial differences are considered insignificant.

5.3 Lower Bounds and Proof Hardness

When defining a measure of proof hardness HP in a proof system P, we want it
to capture the intuitive concept that a propositional logic formula F is hard if
and only if there are no small (or short) proofs of F . More formally, if {Fn}∞n=1

is a family of polynomial-size tautologies we want the measure HP to possess
the properties

HP (Fn) = Ω (n) ⇒ SP(` Fn) = exp
(
Ω (n)

)
(5.7)

and
SP(` Fn) = exp

(
Ω (n)

)
⇒ HP (Fn) = Ω (nc) (5.8)

for some c ∈ R+.
All dilemma and RAA proof systems satisfy the property (5.8) that F must

be hard if there are no small proofs of F .

Theorem 5.7 (Size implies hardness for dilemma and RAA systems)
Let {Fn}∞n=1 be a family of polynomial-size tautologies and let P denote one
of the dilemma proof systems D, DB or DA or one of the reductio systems
RAA, RAAB or RAAA. Then it holds that if

SP(` Fn) = exp
(
Ω (n)

)
then

HP (F ) = Ω (n/ log n).
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Proof: By the inequalities (4.20) on page 51 we have

LP(` Fn) = Ω
(
SP(` Fn) / S (Fn)

2
)
. (5.9)

An inspection of theorem 4.23 on page 58 reveals that the proof of the upper
bound is independent of the dilemma or reductio system used, so

LP(` Fn) = O
(
S (Fn)

HP(Fn)+1
)
. (5.10)

Since S (Fn) is polynomial in n and SP(` Fn) is exponential in n, it follows
from (5.9) and (5.10) that HP (Fn) = Ω (n/ log n). 2

In the rest of this section, we discuss the other direction for the dilemma and
RAA proof systems, i.e. whether the property (5.7) holds and proof hardness
implies proof size, and give strategies for how to prove lower bounds on hardness.

A natural approach to proving bounds on hardness is as follows. Given a
family of propositional logic formulas {Fn}∞n=1, define a family of (implicitly
contradictory) formula relations {Rn}∞n=1, where each Ri corresponds to Fg(i)
for some function g(n) = Ω (n). Then prove that the hardness of the formulas Fn
grows as g−1(n) by induction by showing HP (Ri) ≥ HP (Ri−1) + 1.

For RAA proof systems, it is sufficient to show that Ri
[
ψ
]

is at least as hard
as Ri−1 for all “meaningful” assumptions ψ.

Definition 5.8 (Nontrivial association) Suppose that ψ is an association
on a formula relation R. We say that ψ is a nontrivial association on R if
R
[
ψ
]
6vSat

(
R, 0

)
and R

[
ψC
]
6vSat

(
R, 0

)
. Otherwise ψ is trivial.

That is, for a trivial association ψ on R, there is no use branching on ψ and
try to refute (or derive common associations for) R

[
ψ
]

and R
[
ψC
]
.

Proposition 5.9 (Obtaining lower bounds on RAA hardness)
Let Rn be a family of implicitly contradictory formula relations and let P denote
one of the reductio proof systems RAA, RAAB or RAAA. If it holds that
HP (R1) ≥ 1 and that

min
{
HP

(
Sat
(
Rn, 0

)[
ψ
])}

≥ HP (Rn−1)

for n > 1, where the minimum is taken over all nontrivial associations ψ on
the relation Rn allowable as assumptions by the branching rules of P, then
HP (Rn) = Ω (n).

The proof, which is an easy induction over n, is omitted.
For all (analytic) RAA proof systems, linear growth of hardness implies

exponential growth of proof length and size. This is not a very deep result, but
we state it as a theorem for reference.

Theorem 5.10 (Hardness implies length for all RAA proof systems)
Suppose that R is an implicitly contradictory formula relations and let P denote
one of the reductio proof systems RAA, RAAB or RAAA. Then

LP(R ` ⊥) ≥ 2HP(R).
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Sketch of proof: Show the contrapositive that if there is a P-derivation
π : R ⇒ ⊥R in length L (π) < b, then HP (R) < log b. Just mimic the proof
of theorem 4.18 and simplify the induction step (lemma 4.19 is not needed). 2

Taken together, proposition 5.9 and theorem 5.10 say that the measure of
proof hardness in reductio systems have the desired properties (5.7) and (5.8)
and provide a strategy for obtaining lower bounds on proof length and size by
proving bounds on hardness.

By theorems 4.18 and 4.23, in general dilemma D, too, the hardness mea-
sure HD satisfies (5.7) and (5.8). Moreover, if we can prove a lower bound on
HRAA (Rn), then the same asymptotic lower bound holds in general dilemma,
since HRAA (F ) ≤ 2 ·HD (F ) (theorem 6.12. in section 6.2).

For the dilemma subsystems DB and DA the matter is more complicated.
Anticipating the results in chapter 6, lower bounds on hardness in the two
systems cannot be obtained from bounds in the corresponding RAA systems
RAAB and RAAA, so we have to develop other tools for proving bounds on
hardness in DB and DA. Also, we have to study the question whether proof
hardness implies proof length and size (i.e. whether the lower bound for D in
theorem 4.18 can be translated into bound for the subsystems DB and DA).
Below, we discuss how lower bounds on hardness can be obtained in bivalent
and atomic dilemma. We defer the question whether proof hardness implies
proof length and size in DB and DA to section 6.1.

Let Rn be a family of (implicitly contradictory) formula relations and let P
denote one of the dilemma proof systems DB or DA. Assume, for simplicity,
that all Rn are 0-saturated and suppose that π is a P-refutation of Rn. Then
π can be depicted schematically as

Rn
R
[
ψ
]

R
[
ψC
]

π1 π2

R1
n R2

n

R1
nuR2

n

π3

⊥Rn

(5.11)

(where we might have R1
nuR2

n = ⊥Rn , in which case π3 is superfluous).
Just as for reductio, we would like to show that the hardness degree grows at

least linearly with n by proving that HP
(
Rn
[
ψ
])
≥ HP (Rn−1) for all nontrivial

associations ψ on the relation Rn allowable as assumptions by the branching
rules of P. But this is not enough. The above inequality does not exclude the
possibility that there are subderivations π1 : R

[
ψ
]
⇒ R1

n and π2 : R
[
ψC
]
⇒ R2

n

of depth strictly less than HP (Rn−1) which can be inserted in (5.11) to derive
common equivalences that reduce Rn to a formula relation R1

nuR2
n with hardness

degree HP
(
R1
nuR2

n

)
= HP (Rn−1).

What we need, therefore, is a stronger result. For example, we can try to
show by induction that if max {D (π1), D (π2)} < n−1 in the derivation (5.11),
then it must hold that R1

nuR2
n = Rn (i.e. that no new equivalences whatsoever

can be derived from the relation Rn in depth less than n). A strategy for such
a proof is outlined in the next proposition. We remind the reader that a proper
nontrivial dilemma derivation π : R1 ⇒ R2 is a derivation without redundant
derivation steps and with R1 6= R2 (definition 4.10).
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Proposition 5.11 (Obtaining lower bounds on dilemma hardness)
Let Rn be a family of implicitly contradictory formula relations and let P denote
one of the dilemma proof systems DB or DA.

Suppose that the following holds:

1. HP (Rn) ≥ 1 for all n ∈ N,

2. for all nontrivial associations ψ on the relation Rn, n ≥ 2, allowable as
assumptions by the branching rules of P, it holds that

Sat
(
Rn
[
ψ
]
, 0
)
uSat

(
Rn
[
ψC
]
, 0
)

= Sat
(
Rn, 0

)
,

3. for all nontrivial associations ψ on Rn, n ≥ 2, allowable as assumptions by
the branching rules of P, the relation Rn

[
ψ
]

is as least as difficult as Rn−1

in the following sense:

If there exists a proper nontrivial P-derivation π : Sat
(
Rn
[
ψ
]
, 0
)
⇒ R′n in

depth D (π) ≤ n− 1, then π can be modified to yield a proper nontrivial
P-derivation π′ : Sat

(
Rn−1, 0

)
⇒ R′n−1 in depth D (π′) ≤ D (π).

Then for all n ∈ N it must hold that if π : Sat
(
Rn, 0

)
⇒ R′n is a proper nontrivial

P-derivation (and such derivations exist), thenD (π) ≥ n. In particular, it holds
that

HP (Rn) = Ω (n).

Proof: By induction over n.
The base case n = 1 follows by definition.
For n ≥ 2, Rn is 1-hard by condition 1, so certainly there exist proper

nontrivial dilemma derivations π : Sat
(
Rn, 0

)
⇒ R′n. Suppose that π is such

a derivation. The first step in π must be a dilemma rule application with
subderivations π1 : Sat

(
Rn, 0

)[
ψ
]
⇒ R1 and π2 : Sat

(
Rn, 0

)[
ψC
]
⇒ R2 for some

nontrivial association ψ.
By condition 2, 0-saturating Rn

[
ψ
]

and Rn
[
ψC
]

and taking the intersec-
tion yields no new equivalences. Since π is a proper derivation, it follows
that we must have either R1 =Sat

(
Rn
[
ψ
]
, 0
)

in π1 or R2 =Sat
(
Rn
[
ψC
]
, 0
)

in π2. Combining condition 3 with the induction hypotesis, we conclude that
max {D (π1), D (π2)} ≥ n− 1. The proposition follows. 2

So if we can show that a formula relation family Rn satisfies conditions 1, 2
and 3 in proposition 5.11, this proposition yields a linear lower bound on H (Rn).
The problem, though, is how to prove condition 3.

If R1 and R2 are formula relations on the same domain with R1vR2, then
any derivation π from R1 can be made into a derivation from R2 in a natural
way (just augment π by some set of associations Ψ such that R2 = R1

[
Ψ
]
). We

would need some kind of tool for showing analogous results when R2 is stronger
than R1 in a “structural sense” although the formula relations are defined on
different domains Sub (R1) 6= Sub (R2).

There are (at least) two rather obvious suggestions for such tools:

1. In section 2.6, we defined restrictions ρ on CNF formulas F and resolution
derivations π (definition 2.31). The most important property of restric-
tions is the fact that they preserve resolution derivations. That is, if π
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is a resolution refutation of F , then π|ρ is a resolution refutation of F |ρ
(proposition 2.33).

It does not seem to be an all too far-fetched idea to try to mimic these
definitions for dilemma. First, one would define 1-restrictions for the gen-
eral class of propositional logic formulas and extend these definitions to
arbitrary restrictions ρ on formulas F in the natural way. Then, one would
make analogous definitions for formula relations. Finally, one would hope-
fully be able to prove that if π : F> ⇒ ⊥F is a dilemma refutation of F ,
then π|ρ : F>|ρ ⇒ ⊥F |ρ is a dilemma refutation of F |ρ.

2. A possibly somewhat more general idea would be to formalize the notion
of structural similarities between formula relations and define some kind
of formula relation homomorphism. A preliminary suggestion would be as
follows.

Let R be a formula relation and let Ci denote equivalence classes in this
relation. Recalling the notation in section 4.2.2, we say that the relation〈
C1 : C2 ◦ C3

〉
holds if there exists a subformula P1

.= P3 ◦ P3 in Sub (R)
such that Pi ∈ Ci for i = 1, 2, 3 (where as usual ◦ ∈ {∧,∨,→,↔}).
Let R1 and R2 be formula relations (not necessarily compatible). A func-
tion f : R1 7→ R2 is a formula relation homomorphism from R1 to R2 if
the following holds for equivalence classes C1,C2,C3 ∈ R1:

(a) if > ∈ C1 then > ∈ f
(
C1

)
,

(b) f
(
C1

C
)

= f
(
C1

)C ,

(c) if x ∈ C1 for some variable x ∈ Vars(R1), then there exists a variable
y ∈ Vars(R2) such that y ∈ f

(
C1

)
,

(d) if
〈
C1 : C2 ◦ C3

〉
in R1 then

〈
f
(
C1

)
: f
(
C2

)
◦ f
(
C3

)〉
in R2.

That is, determinate equivalence classes are mapped on corresponding de-
terminate equivalence classes, complements are mapped on complements,
atomic equivalence classes are mapped on atomic equivalence classes and
any relation between equivalence classes in R1 are preserved in R2.

If we can find a formula relation homomorphism f : R1 7→ R2, then it
should hold that any derivation π1 : R1 ⇒ R′1 corresponds to a deriva-
tion π2 : R2 ⇒ f

(
R′1
)

of the same shape (start with π2 = f
(
π1

)
and then

possibly modify π2 somewhat to make it proper and standardized). In
particular, this would hold for refutations, from which would follow the
desired conclusion H (R1) ≥ H (R2).

There are quite a few fine points which need to be taken care of if the
ideas about formula relation restrictions or formula relation homomorphisms
are to be formalized, however. Therefore, it has not been practically feasible to
study these questions in any detail within the framework of this Master’s thesis.
Instead, we prove our results in chapter 6 concerning bounds on proof hardness
in dilemma by developing ad-hoc tools for each separate result and applying
proposition 5.11 where possible.



Chapter 6

Results

The moment of truth has finally come. We have arrived at the point where we
present the results of our Master’s project.

This chapter contains a comparative study of the dilemma, reductio and res-
olution proof systems, in which the proof power of different modifications of the
systems are examined and related to each other. The proof-theoretic measures
of interest are proof depth (where applicable), length and size. The ultimate
goal of the comparisons is to establish either p-simulations or superpolynomial
(or preferably exponential) separations with respect to proof length and/or size
between the different proof systems.

While chapters 3 and 4 to a large extent are accounts of earlier research,
this chapter consists mainly of our original contributions, based on the tools
developed in chapter 5. Results presented in this chapter that have been shown
earlier are provided with references. In the cases where no such references are
given, the results are, to our knowledge, new.

6.1 Subsystems of Dilemma

We begin our comparative study by examining the relative strength of the
atomic (DA), bivalent (DB) and general (D) dilemma proof systems.

Plainly, DB simulates DA and D simulates DB with respect to any mea-
sure M, since DA ⊆ DB ⊆ D as proof systems. We are interested in what
relations hold in the other direction.

Our first result is that DB is linearly stronger than DA with respect to
hardness degree.

Theorem 6.1 (Linear separation of DB from DA w.r.t. hardness)
There is a family of polynomial-size propositional logic formulas Fn which sep-
arates bivalent dilemma from atomic dilemma linearly with respect to hardness
degree (i.e. such that HDB

(Fn) = O (1) but HDA
(Fn) = Ω (n)).

Sketch of proof: Consider the formula family CM n in figure 6.1 on the fol-
lowing page. For a fix n, CM n is the (obviously contradictory) formula saying
that it is possible to fill in the cells in an n by n matrix with zeroes and ones
in such a way that there is both a row consisting only of ones and a column
consisting only of zeroes. We claim that the formulas CM n (parenthesized in

93
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Rni :=
∧

1≤j≤n

xi,j (6.1)

Cnj :=
∧

1≤i≤n

xi,j (6.2)

CM n :=
∨

1≤i≤n

Rni ∧
∨

1≤j≤n

Cnj (6.3)

Figure 6.1: Contradictory matrix formula CM n.

some suitable way to get formulas in propositional logic with binary connectives
in accordance with definition 2.4) is a linear separation with respect to hardness
of DB from DA.

Showing thatHDB
(Fn) = O (1) is easy. To get a bivalent dilemma refutation

(indeed, a bivalent RAA refutation) of CM n in depth 1, assume CM n true and
start by branching over Rn1 . If Rn1 ≡ >, then Cnj ≡ ⊥ for all j and we get a
contradiction. Hence, Rn1 ≡ ⊥. We repeat this for i = 2, . . . , n. But if all Rni
are false, so is CM n. Contradiction.

Strictly speaking, this is not a binary refutation but a normal form refutation
of an extended propositional logic formula (as defined in section 5.2.1). It is
immediate, however, that if we parenthesize CM n in any natural way to get a
(binary) propositional logic formula CM ′

n, the proof described above forms the
backbone of a 1-refutation of CM ′

n in binary bivalent reductio.
Proving the linear lower bound on HDA

(Fn) is considerably harder. We only
sketch the idea behind the proof below and refer to section B.1 for a detailed
proof.

By section 5.2.1, it suffices to give a lower bound on hardness in atomic
NF-dilemma of the (extended propositional logic) formulas CM n, since such
a bound must also hold in binary dilemma. So suppose that π is an atomic
NF-dilemma refutation of CM n. It is easy to see that HDA

(Fn) ≥ 1 for n ≥ 2,
so π must contain a dilemma rule application branching over some variable xi,j .
Because of symmetry, we may without loss of generality assume i = j = n.

Assuming xn,n ≡ > falsifies Cnn . The complementary assumption xn,n ≡ ⊥
falsifies Rnn. This is essentially everything of interest that can be derived in the
two branches by 0-saturation, and since there are no common new associations
there must be nested dilemma rule applications in at least one of the branches. It
seems intuitively plausible that deriving any further consequences in the branch
assuming xn,n ≡ > is just as hard as refuting CM n with the last column deleted,
and analogously with the last row deleted in the branch assuming xn,n ≡ ⊥. By
an appeal to proposition 5.11, we get the lower bound HDA

(Fn) = Ω (n). 2

While it is not very surprising that DB is linearly stronger than DA with
respect to hardness for general propositional logic formulas, it is not obvious
that the same should hold also for CNF formulas. On the one hand, a dilemma
rule assumption of type

∨n
i=1 ai ≡ ⊥ is strong, since it immediately follows than

ai ≡ ⊥ for all i = 1, . . . , n. On the other hand, the complementary assumption∨n
i=1 ai ≡ > is an extremely weak one (unless n = 1), so we cannot expect to

get anything much out of the branch assuming the disjunction true.
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A
(
i, j, k

)
:= xi,j ∨ xj,k ∨ xi,k (6.4)

B
(
i, j
)
:= xi,j ∨ xj,i (6.5)

Cn
(
j
)
:=

∨
1≤i≤n
i 6=j

xi,j (6.6)

An :=
∧

1≤i≤n

∧
1≤j≤n
i 6=j

∧
1≤k≤n
i 6=k 6=j

A
(
i, j, k

)
(6.7)

Bn :=
∧

1≤i≤n−1

∧
i<j≤n

B
(
i, j
)

(6.8)

Cn :=
∧

1≤j≤n

Cn
(
j
)

(6.9)

GTn := An ∧ Bn ∧ Cn (6.10)

Figure 6.2: Graph tautology formula GTn.

Nevertheless, it does seem to be the case that (normal form) bivalent dilemma
is linearly stronger than atomic dilemma with respect to hardness even when
restricted to CNF formulas. Since it has not been possible to develop the neces-
sary theoretic tools for proving lower bounds in dilemma proof systems within
the framework of this Master’s thesis (see remarks at the end of section 5.3),
we state this as a conjecture and give an argument why we are convinced that
this conjecture is true.

Conjecture 6.2 (Separation of DB from DA w.r.t. hardness for CNF)
There is a family of polynomial-size CNF formulas Fn which separates bivalent
NF-dilemma from atomic NF-dilemma linearly with respect to proof hardness.

Plausibility argument: Our conjectured separation of bivalent dilemma from
atomic dilemma for CNF formulas is a formula family encoding the negation
of the statement that any strict order over a finite set has a minimal element.
If we consider the directed graph associated to a strict order, this statement is
equivalent to the following: “Each directed graph closed under transitivity and
without loops must have a source node.”

The CNF formula GTn in figure 6.2 expresses the negation of the above
statement. The intended meaning of the variables xi,j for 1 ≤ i, j ≤ n, i 6= j,
is that

(
i, j
)

is a directed edge in a graph with vertices
[
n
]

if xi,j is true. The
subformulas An specify that the graph is transitive, the property that there is
no 2-cycles in the graph is described by Bn and the statement that the graph
has no source node is translated to the clauses Cn.

The formulas GTn can be proven 1-easy in bivalent reductio by an inductive
argument adapted from [54].1 Obviously,

GT 2 =
(
x1,2 ∨ x2,1

)
∧ x1,2 ∧ x2,1 (6.11)

is 0-easy. Suppose that GTn has been shown 1-easy for bivalent reductio and
1In fact, the resolution proof in [54] was constructed on the basis of a dilemma proof found

by St̊almarck’s method [51], and the reductio proof presented here is a retranslation back to
dilemma of this resolution proof.
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GTn+1 ≡ >
An+1 ≡ >
Bn+1 ≡ >
Cn+1 ≡ >

Cn
(
j
)
≡ > Cn

(
j
)
≡ ⊥

xi,j ≡ ⊥ {1 ≤ i ≤ n, i 6= j}
Cn+1

(
j
)
≡ >

xn+1,j ≡ >
A
(
i, n+ 1, j

)
≡ > {1 ≤ i ≤ n, i 6= j}

xi,n+1 ≡ ⊥ {1 ≤ i ≤ n, i 6= j}
B
(
j, n+ 1

)
≡ >

xj,n+1 ≡ ⊥
Cn+1

(
n+ 1

)
≡ ⊥

Cn+1

(
n+ 1

)
≡ >

Cn
(
j
)
≡ >

Figure 6.3: RAAB-derivation of Cn

(
j
)

from GTn+1 in depth 1.

consider GTn+1. We claim that from the assumption GTn+1 ≡ > we can de-
rive Cn

(
j
)
≡ > for all j = 1, . . . , n by (closed) bivalent reductio derivations in

depth 1. Since An ⊆ An+1 and Bn ⊆ Bn+1, it follows by induction that GTn+1

is 1-easy for bivalent reductio.
It remains to prove the claim. An outline of a 1-depth RAAB-derivation of

Cn
(
j
)

from GTn+1 is given in figure 6.3, where the notation

Di ≡ ν {1 ≤ i ≤ n, i 6= j} (6.12)

is shorthand for
D1 ≡ ν

...
Dj−1 ≡ ν
Dj+1 ≡ ν

...
Dn ≡ ν.

(6.13)

In words, suppose that Cn
(
j
)

is false, i.e. that there is no edge into vertex j from
any of the other n first vertices. Then the graph must have an edge

(
n+ 1, j

)
.

Since the graph is transitive and has no 2-cycles, it follows that vertex n+ 1 is
a source. Contradiction. Consequently Cn

(
j
)

must be true.
For atomic dilemma, it is easy to see that HDA

(GTn) ≥ 1 for n ≥ 3. Sup-
pose (without loss of generality because of symmetry) that an atomic dilemma
derivation branches over xn−1,n. It is a routine matter (though tedious) to show
that

Sat
(
GTn

>[xn−1,n ≡ >
]
, 0
)
uSat

(
GTn

>[xn−1,n ≡ ⊥
]
, 0
)

= Sat
(
GTn

>, 0
)
. (6.14)
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Thus the first two conditions in proposition 5.11 are met. If one inspects the
formula relations Sat

(
GTn

>[xn−1,n ≡ >
]
, 0
)

and Sat
(
GTn

>[xn−1,n ≡ ⊥
]
, 0
)
,

it seems obvious that condition 3 holds too, i.e. that deriving anything from
these relations must be at least as hard as deriving nontrivial consequences
from GTn−1. If this claim could be proven true, proposition 5.11 would yield
HDA

(GTn) = n − 2 (it is easy to rewrite the derivation in figure 6.3 to an
atomic derivation in depth n− 2, so HDA

(GTn) ≤ n− 2).
And indeed, tests with the program prove, which is an implementation for

research purposes of St̊almarck’s method, on GTn for n = 2, 3, . . . , 7 confirm
that HDA

(GTn) = n − 2 for these values of n. Constructing an analogue of
the laborious and rather clumsy proof in section B.1 of the lower bound in
theorem 6.1 has been judged outside the scope of this already rather extensive
report, however, wherefore this separation result is left as a conjecture. 2

It is trivial to give bounds for the relation between the hardness degrees in
D and DB . Any general dilemma derivation

R
R
[
P ≡ Q

]
R
[
P ≡ QC

]
π1 π2

R1 R2

R1uR2

(6.15)

in depth 1 can be transformed to an equivalent bivalent derivation

R
R
[
P ≡ ⊥

]
R
[
P ≡ >

]
R
[
Q ≡ ⊥

]
R
[
Q ≡ >

]
π1 π2

R1 R2

R1uR2

R
[
Q ≡ ⊥

]
R
[
Q ≡ >

]
π2 π1

R2 R1

R1uR2

R1uR2

(6.16)

in depth 2. The same transformation can be applied repeatedly to make any gen-
eral dilemma proof π of a formula F into a bivalent proof π′ in depth 2 ·D (π).

The bivalent dilemma proof π′ constructed in this way has length
L (π′) ≤ 2D(π) · L (π), so if D (π) = HD (F ), it follows by corollary 4.21 on
page 58 that L (π′) ≤ L (π)3. In other words, given a minimum-depth general
dilemma proof π, we can easily find a bivalent proof π′ with length (and size)
polynomial in L (π).

It should be observed, though, that this does not imply that the two proof
systems are p-equivalent. The problem is that there might be (unnecessarily)
deep but very short general dilemma proofs (say, a proof π in depth D (π) = d
and length L (π) = O (d)), the length of which explode exponentially when the
above transformation is applied. The question whether D and DB are p-equiv-
alent or whether D can be separated from DB is open. Note, however, that by
(the proof of) theorem 4.35 on page 78, DB can be at most quasi-polynomially
worse than D.

We summarize the above in a theorem.
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Theorem 6.3 (Relation between D and DB)
For any propositional logic formula F , the hardness degrees of F in bivalent and
general dilemma are within a constant factor, namely:

HD (F ) ≤ HDB
(F ) ≤ 2 ·HD (F ).

If π is a general dilemma proof for F in minimal depth HD (F ), it is pos-
sible to construct in polynomial time a bivalent proof π′ with length and size
polynomial in the length and size of π. That is, general dilemma restricted to
minimum-depth proofs is p-simulated by bivalent dilemma with respect to proof
length and size.

If π is any general dilemma proof for F , there is a bivalent proof π′ with
length and size at most quasi-polynomial in the size of π.

For general dilemma, we know that if a family of formulas F has linearly
increasing hardness degree, then the minimum proof length grows exponentially
(corollary 4.21). In view of theorem 6.3, this must hold for bivalent dilemma as
well. But what about atomic dilemma?

If we inspect corollary 4.21 closer, we see that one cannot simply copy the
proof to get a corresponding bound for atomic dilemma. The problem is that
the unrolling lemma 4.19 fails. And indeed, the assertion that proof length is
exponential in proof hardness is false for atomic dilemma. The formula fam-
ily CM n in figure 6.1 has linearly growing atomic hardness degree HDA

(CM n)
by theorem 6.1. But figure 6.4 gives an atomic NF-dilemma refutation of CM n

in length O
(
n2
)
, and it is not hard to see that this refutation works in atomic

binary dilemma as well. We state this as a theorem.

Theorem 6.4 (Hardness does not imply length for DA)
There is a family of polynomial-size propositional logic formulas Fn such that

HDA
(CM n) = Ω (n) but LDA

(Fn ` ⊥) = nO(1). That is, for atomic dilemma it
does not hold that proof length is exponential in proof hardness.

The significance of theorem 6.4 is that it tells us that for atomic dilemma,
hardness degree is not a very meaningful concept. Formulas with high atomic
dilemma hardness degree are not necessarily hard in the sense that they require
large proofs. Therefore, our main tool for proving lower bounds on derivation
length and size in other dilemma and reductio proof systems will not work for
atomic dilemma.

Can we find some other way of separating DB from DA with respect to
proof length and size, or are the two proof systems p-equivalent? It has not
been possible to give a definite answer to this question within the framework of
this report, but we include some observations below. We first study the question
for dilemma restricted to CNF formulas and then turn to general propositional
logic formulas.

If we look more closely at the atomic dilemma proof in figure 6.4, we see
that it is just a polynomially longer rewritten version of the RAAB-refutation
given in the proof of theorem 6.1 where assumptions over subformulas have
been replaced by nested assumptions over the atomic variables in the subfor-
mulas. It is not hard to see that an analogous transformation can be applied
to the RAAB-refutation of the CNF formula GTn outlined in conjecture 6.2
and figure 6.3. In the next proposition, we show how the technique can be
generalized further to arbitrary CNF formulas.
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CM n ≡ >∨n
i=1R

n
i ≡ >∨n

j=1 C
n
j ≡ >

x1,1 ≡ > x1,1 ≡ ⊥
Cn1 ≡ ⊥ Rn1 ≡ ⊥

x1,2 ≡ > x1,2 ≡ ⊥
Cn2 ≡ ⊥ Rn1 ≡ ⊥

...
x1,n−1 ≡ > x1,n−1 ≡ ⊥
Cn−1
n ≡ ⊥ Rn1 ≡ ⊥
Cnn ≡ >
x1,n ≡ ⊥
Rn1 ≡ ⊥

Rn1 ≡ ⊥
...

Rn1 ≡ ⊥
Rn1 ≡ ⊥

Rn1 ≡ ⊥
x2,1 ≡ > x2,1 ≡ ⊥

... Rn2 ≡ ⊥
Rn2 ≡ ⊥

Rn2 ≡ ⊥
...

Rnn ≡ ⊥∨n
i=1R

n
i ≡ ⊥
⊥

Figure 6.4: Schematic representation of short DA-refutation of CM n.
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R
a1 ≡ > a1 ≡ ⊥∨k
i=1 ai ≡ > a2 ≡ > a2 ≡ ⊥

π1

∨k
i=1 ai ≡ >

...
R1 π1 ak ≡ > ak ≡ ⊥

R1

∨k
i=1 ai ≡ >

∨k
i=1 ai ≡ ⊥

π1 π2

R1 R2

R1uR2

...
R1uR2

R1uR2

R1uR2

Figure 6.5: Atomic NF-dilemma derivation in the proof of proposition 6.5.

Proposition 6.5
Suppose that Fn is a family of contradictory CNF formulas with bivalent NF-di-

lemma refutations πn : Fn> ⇒ ⊥Fn
+ . Then the length of refuting Fn in atomic

NF-dilemma is
LDA

(Fn ` ⊥) ≤ W (Fn)
D(πn) · L (πn).

In particular, if the formulas Fn have width W (Fn) = O (n) and minimal refu-
tation length LDB

(Fn ` ⊥) = Ω (n), and if the bivalent NF-dilemma refuta-
tions πn have depth D (πn) = O (1), then the length of refuting Fn in atomic
NF-dilemma LDA

(Fn ` ⊥) is polynomial in LDB
(Fn ` ⊥).

Proof: Suppose that
∨k
i=1 ai is a clause in Fn and that

π =

R∨k
i=1 ai ≡ >

∨k
i=1 ai ≡ ⊥

π1 π2

R1 R2

R1uR2

(6.17)

is a bivalent NF-dilemma (sub)derivation in depth 1. Then figure 6.5 presents
an equivalent atomic derivation in length at most k · L (π). The transformation
from (6.17) to the derivation in figure 6.5 can be applied in a bottom-up fashion
to πn to yield an atomic refutation of Fn in length at most W (Fn)

D(πn) ·L (πn).
This proves the first part of the proposition. The second part is an easy

consequence. 2

It follows from proposition 6.5 that if we are looking for CNF formulas to
separate bivalent NF-dilemma from atomic NF-dilemma, the only candidates
are formula families Fn with HDB

(Fn) = ω (1) and/or width W (Fn) = ω (n).
Note that these requirements disqualify for example many CNF formula families
studied in the context of resolution. Of course, this does not answer the ques-
tion whether in fact there are CNF formulas that separate bivalent and atomic
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dilemma, but it tells us that at least we cannot expect to find any simple ex-
amples of such separations.

For general propositional logic formulas the matter seems more clear-cut.
Consider the following separation suggested by [51].

Fix a formula F ∗ with HDB
(F ∗) = h ≥ 1 and Vars(F ∗) = {x1, . . . , xk}.

Pick a family of polynomial-size formulas Gn with bivalent dilemma hardness
HDB

(Gn) = Ω (n) and let G(j)
n denote the formula Gn with variables tagged so

that Vars(G(j)
n )∩Vars

(
G(j′)
n

)
= ∅ if j 6= j′.

Now define a new formula family {Fn}∞n=1 by

Fi :=F ∗[G(1)
i /x1, . . . , G

(k)
i /xk] (6.18)

(i.e. each xj is substituted by a unique tagged version of Gi). Obviously, for
all Fn the bivalent dilemma hardness isHDB

(Fn) = HDB
(F ∗) = h and the same

refutation as for F ∗ can be used to refute Fn in constant length and polyno-
mial size (since we can ignore the new subformulas and make assumptions only
over the subformulas in F ∗). For atomic dilemma, however, we claim that the
refutation length grows exponentially with n. Intuitively speaking, the reason
for this is that in order to derive consequences about Fn from atomic assump-
tions, we must first descend into the subformulas and derive consequences in the
subdomains Sub

(
G(j)
i

)
, and this requires exponential length even for bivalent

dilemma.
Needless to say, the above argument needs to be formalized. We have not

done this out of practical considerations, and therefore leave this result as a
conjecture.

Conjecture 6.6 (Exponential Separation of DB from DA)
There exists a family of polynomial-size propositional logic formulas Fn which
separates bivalent dilemma from atomic dilemma exponentially with respect to
proof length and size.

6.2 Dilemma vs. Reductio

We now broaden our perspective and include the atomic, bivalent and general
reductio proof systems RAAA, RAAB and RAA in our comparative study.

It is trivially true that DA simulates RAAA, DB simulates RAAB and D
simulates RAA with respect to any measure M since any RAA derivation is
a dilemma derivation. Just as trivially, RAAB simulates RAAA and RAA
simulates RAAB with respect to any measure M.

In this section we establish some results in the opposite direction. Our
main focus is the comparison of dilemma and reductio systems with the same
restrictions on dilemma rule assumptions. The effectiveness of the dilemma
proof system is due to (at least) three factors: the large set of propagation rules,
the dilemma rule combining branching and merging and the possibility to branch
over the truth or falsehood of arbitrary subformulas of the formula to be proved.
Juxtaposing DA, DB and D (as was done in section 6.1) tells us how important it
is to be able to branch over arbitrary subformulas. Comparing atomic, bivalent
and general dilemma with corresponding reductio systems reveals how much
of the proof power is lost by removing merging, and thus in a sense makes it
possible to weigh the relative importance of the last two factors above.
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For atomic dilemma the merging part of the dilemma rule is crucial, as the
next theorem shows.

Theorem 6.7 (Exponential separation of DA from RAAA)
There is a family of polynomial-size formulas Fn such that LDA

(Fn ` ⊥) = nO(1)

but LRAAA
(Fn ` ⊥) = exp

(
Ω (n)

)
. That is, atomic dilemma is exponentially

stronger than atomic reductio with respect to proof length (and proof size).

Proof: Consider the formulas CM n defined in figure 6.1 on page 94. By
theorem 6.1, HDA

(CM n) = Ω (n), so certainly HRAAA
(CM n) = Ω (n) and

by theorem 5.10 we have LRAAA
(Fn ` ⊥) = exp

(
Ω (n)

)
. For atomic dilemma,

however, figure 6.4 on page 99 gives a polynomial-length DA-refutation of CM n.
The theorem follows. 2

Moreover, noting that the proof of theorem 6.1 in fact presents a polynomial-
length bivalent reductio refutation of CM n in depth 1, we have the following
two corollaries.

Corollary 6.8 (RAAB is exponentially stronger than RAAA)
Bivalent reductio is linearly stronger than atomic reductio with respect to proof
hardness and exponentially stronger with respect to proof length and size.

Corollary 6.9 (Separation of RAAB from DA w.r.t. hardness)
There is a family of polynomial-size propositional logic formulas Fn which sep-
arates bivalent reductio from atomic dilemma linearly with respect to hardness
degree.

Remark 6.10 Note that if conjecture 6.2 is true, the results in theorem 6.7 and
corollaries 6.8 and 6.9 hold also for the more restricted class of CNF formulas.

As can be seen from theorem 6.4 and figure 6.4, the separation with respect
to hardness in corollary 6.9 does not yield any separation with respect to the in
this context more interesting measures of proof length and size. It is not known
whether there are such separations of RAAB from DA. We have not studied
this question in any detail, but the answer is likely to be the same as that
in proposition 6.5 and conjecture 6.6 concerning DB and DA. In the opposite
direction, since DA can merge branches without having to derive a contradiction
andRAAB cannot, it might very well be the case that there are formula families
which separate DA from RAAB with respect to proof hardness, length or size.

For DB and RAAB , all we have is a logarithmic separation with respect to
hardness. This separation is not our result but is due to [53]. Since it has not
been published, we state it here for reference.

Theorem 6.11 (Separation of DB from RAAB w.r.t. hardness [53])
There is a family of polynomial-size propositional logic formulas Fn which sep-
arates bivalent dilemma from bivalent reductio logarithmically with respect to
hardness degree (i.e. HDB

(Fn) = O (1) but HRAAB
(Fn) = Ω (log n)).

The formulas which provide this separation are the so called Urquhart for-
mulas Un, defined by

Un :=
((((

. . .
((
x1 ↔ x2

)
↔ x3

)
↔ . . .

)
↔ xn

)
↔ x1

)
↔ . . .

)
↔ xn (6.19)
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(the formula in example 4.3 on page 66 is the Urquhart formula U2). According
to [53], HDB

(U1) = 0, HDB
(U2) = 1 and HDB

(Un) = 2 for n > 2, but in
RAAB the hardness grows at least logarithmically with n. However, [33] shows
that the growth is at most logarithmic, and that there are bivalent RAA proofs of
length and size polynomial in n. Thus, theorem 6.11 yields no superpolynomial
separation of DB from RAAB with respect to proof length and size.

It is an open question whether DB and RAAB can be separated superpoly-
nomially with respect to to proof length and size or superlogarithmically with
respect to proof hardness (from which superpolynomial separation of length and
size would follow).

Finally, we consider the general proof systems D and RAA. Obviously, any
general dilemma derivation

R
R
[
ψ
]

R
[
ψC
]

π1 π2

R1

[
φ
]

R2

[
φ
]

R
[
φ
] (6.20)

of depth 1 (where ψ and φ are single associations) can be transformed to an
equivalent general RAA derivation

R
R
[
φ
]

R
[
φC
]

R
[
φC , ψ

]
R
[
φC , ψC

]
π2

⊥R

R
[
φC , ψ

]
π1

⊥R

R
[
φ
]

(6.21)

of depth 2. It is easy to generalize the rewriting of (6.20) to (6.21) inductively
to a transformation of any dilemma proof π to an general RAA proof in depth
at most 2 ·D (π), which proves the first part of the next theorem.

Theorem 6.12 (Relation between D and RAA)
For any propositional logic formula F , the hardness degrees of F in general
dilemma D and reductio RAA are within a constant factor, namely:

HD (F ) ≤ HRAA (F ) ≤ 2 ·HD (F ).

As to proof size, RAA is at most quasi-polynomially worse than D.

Proof: The first part was proved above. For the proof size, by (4.20) it is
sufficient to prove that LRAA(` F ) is quasi-polynomial in SD(` F ).

For a 0-easy formula F all 0-depth proofs are polynomial in S (F ) ≤ SD(` F ),
so suppose HD (F ) = h ≥ 1. Then HRAA (F ) ≤ 2h and it follows from the proof
of theorem 4.23 that

LRAA(` F ) ≤ O
(
S (F )2h+1

)
. (6.22)
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Also, we have
SD(` F ) ≥ LD(` F ) ≥ 2h/2 (6.23)

by corollary 4.21. Using (6.22) and (6.23) we get

LRAA(` F ) ≤
(
2h/2

)6 log S(F ) ≤
(
SD(` F )

)6 log SD (`F )
, (6.24)

which proves the theorem. 2

There are no known separations between D and RAA, and even if it seems
likely that D should be strictly stronger than RAA, theorem 6.12 shows that
it cannot be exponentially stronger.

As a by-product of our comparisons between dilemma an reductio, we ob-
tained a full characterization of the relation between RAAB and RAAA with
respect to all three measures of hardness, length and size (corollary 6.8). In
contrast, we have no nontrivial results concerning the relation between RAA
and RAAB . Our only result in this context is an immediate consequence of
theorems 6.3, 6.11 and 6.12.

Corollary 6.13 (Separation of RAA from RAAB w.r.t. hardness)
There is a family of polynomial-size propositional logic formulas Fn which sep-
arates general reductio from bivalent reductio logarithmically with respect to
hardness degree.

6.3 Dilemma vs. Tree Resolution

Before even getting around to describing dilemma and reductio, we spent the
better part of two chapters of the thesis discussing resolution. The reason why
resolution is interesting is that it is the basis of many “real-life” proof search
algorithms. Comparing resolution and the dilemma proof system underlying
St̊almarck’s method can give us theoretical bounds on the performance of proof
methods in the two proof systems. Although such bounds more often than not
are of little immediate practical significance, they can still provide interesting
insights as to why we can expect certain proof methods to be effective or not
on certain types of problems.2

In the next section, we study general resolution. Before that, as a warm-
up we prove some easy results on dilemma/reductio and tree-like resolution T
(which is the proof system corresponding to the DLL proof search algorithm in
example 2.5 on page 24).

We start by proving that atomic NF-dilemma and bivalent reductio can be
separated from tree-like resolution exponentially with respect to of proof length
and size.

Theorem 6.14 (Exponential separation of DA and RAAB from T )
There exists a family of polynomial-size contradictory CNF formulas Fn such

that LDA
(Fn ` ⊥) = nO(1) and LRAAB

(Fn ` ⊥) = nO(1) but LT (Fn ` ⊥) =
exp
(
Ω (n/ log n)

)
.

2In fact, as it happened our study of dilemma proof systems for CNF coincided with tests
at Prover Technology AB of St̊almarck’s method on CNF formulas, and in this case there was
an interesting agreement between theoretically founded intuition and practical experience.
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Proof: Consider the pebbling contradictions PebG (definition 3.21 in sec-
tion 3.2). By theorem 3.18, the length of a minimal tree-like resolution refuta-
tion grows exponentially, but it it easy to transform the resolution refutation
described in the proof of lemma 3.22 to an atomic dilemma refutation or bivalent
RAA refutation in constant depth and length O (S (PebG)). 2

If we remove the possibility to branch over subformulas in bivalent reductio
or the possibility to merge the branches in atomic dilemma, we get a proof
system which is polynomially equivalent to tree-like resolution.

Theorem 6.15 (RAAA and T are p-equivalent w.r.t. length)
Atomic NF-reductio and tree-like resolution are polynomially equivalent with
respect to proof length.

Remark 6.16 Because of a technical snag, we do not get p-equivalence for the
proof sizes. Any formula relation based dilemma or RAA derivation πD from
a formula F must have size S (πD) ≥ S (F ) since by definition πD consists of
a sequence of formula relations and a formula relation on F is at least as large
as F . Now suppose that we define a formula family

Fn := x ∧ x ∧
∨

1≤i≤n

yi. (6.25)

The size of RAAA-refutations of Fn grows at least linearly in n, although Fn
can be refuted in RAAA (and T ) by deriving a contradiction from x and x in
length 3. It follows that there are formula families with RAAA- and T -refuta-
tions in constant length but RAAA-proof size more than exponential in T -proof
size.

One way of eliminating this rather artificial separation of T from RAAA
would be to require that all tree resolution refutations πT start by listing all
clauses in the formula F to be refuted. A more elegant way of solving the
problem would be to modify the definitions in chapter 4 so that derivations
are defined in terms of formula relations R with dynamic domains Sub (R), and
so that these domains consist of (in most cases strict) subsets of triplets of F
(definition 4.27). To simplify the exposition in this thesis, however, we have
chosen to define derivations on static formula relation domains in accordance
with the conventional description of the dilemma proof system and St̊almarck’s
method in [49].

Sketch of proof [of theorem 6.15]: If we consider a tree resolution refuta-
tion πT as a binary tree (turned upside down) with

� each leaf labelled by the clause (or one of the clauses) in the CNF formula
falsified at the leaf,

� each internal node labelled by the clause derived at that node,

� each edge labelled by the literal eliminated by the resolution rule when
moving from the children to the parent node,

then it is straightforward to construct an (equivalence-based) RAAA-refutation
in length L (πT ) which branches over the variables mentioned at the edges and
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derives contradictions in the branches by falsifying the clauses mentioned in
corresponding leaves. We leave the details to the reader.

The other direction is somewhat more complicated. Intuitively, dilemma
with only atomic branching and without merging is so weak for CNF formulas
that all it can do is essentially to assume variables true or false and apply unit
propagation. But this is what tree-like resolution does, too, so the two systems
are p-equivalent.

More formally, let πD be an atomic NF-reductio refutation of a CNF formu-
la F . Suppose without loss of generality that πD starts by deriving C ≡ > in
depth 0 for all clauses C ∈ F used in the proof. After this first subderivation,
no rules for conjunction (figure 5.1) need be used.

We claim that the following invariants hold for all formula relations R in πD:

1. if
∨k
i=1 ai ≡ ¬

∨l
j=1 bi in a formula relation R in πD, then

∨k
i=1 ai and∨l

j=1 bi are members of determinate equivalence classes in R (i.e. the
TRUE - and FALSE -classes),

2. if
∨k
i=1 ai ≡ ⊥ in R, then ai ≡ ⊥ already holds for all i = 1, . . . , k in R.

The invariants are certainly true at the beginning of the derivation. Consider
the propagation rules for disjunction in figure 5.2 on page 86. Because of the in-
variants, the only rules that can be used in πD are (D4NF ), (D5NF ) and (D6NF ),
and these rules preserve the invariants, as do branching and merging in atomic
reductio.

It follows that contradictions in the branches can only be derived by proving∨k
i=1 ai ≡ > and

∨k
i=1 ai ≡ ⊥ for some (sub)clause of F and never by deriving

D ≡ ¬D in some indeterminate equivalence class. But if
∨k
i=1 ai ≡ ⊥, then we

already have ai ≡ ⊥ for all i = 1, . . . , k, so without loss of generality we can
assume that all derived contradictions are of the type ai ≡ > and ai ≡ ⊥ for
some literal ai in F .

Now one can show that a DLL procedure can keep track of the set of true
clauses in every step in πD in the sense that if D is a clause (possibly a literal) in
the TRUE -class, then the DLL procedure has already proven a clause D′ ⊆ D
true (or assumed it true, in the case of a literal). The DLL procedure can
ignore all applications of rules (D4NF ) and (D6NF ) (which can be considered as
applications of weakening). For all applications of the rule (D5NF ) which derive
a new true clause, by induction the DLL procedure can derive the same clause
(or a subclause) true in a polynomial number of steps. When πD branches over
some variable, so does the DLL procedure. When πD arrives at a contradiction,
so does the DLL procedure (if not before). It follows that the tree resolution
refutation produced by the DLL procedure is polynomial in the length of πD.
Again, we leave the details to the reader. 2

Remark 6.17 (Hardness in tree-like resolution) The definitions of proof
depth and hardness in chapter 4 can be generalized to any tree-like proof sys-
tem P as follows. Suppose that π is a proof in P represented as a binary
tree. Define the proof depth of leafs v in π as D (v) := 0. For inner nodes v
with children v1 and v2, define D (v) := max {D (v1), D (v2)} if D (v1) 6= D (v2)
and D (v) :=D (v1) + 1 otherwise. Now the depth of the proof π is defined
as the proof depth of the root of the tree, and the hardness of a formula F
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in P is defined as HP (F ) := minπ {D (π)}, where the minimum is taken over all
P-proofs π for F .

If we define proof depth and hardness in tree resolution as described above, it
follows immediately from the proof of theorem 6.15 that HT (F ) ≥ HRAAA

(F )
for all unsatisfiable CNF formulas F . We have chosen not to study the hard-
ness measure in tree resolution (or its possible extension to general resolution),
however, and instead confine ourselves to noting that such a possibility exist.

From theorems 6.14 and 6.15 we get the following corollary.

Corollary 6.18 (DA and RAAB are exponentially stronger than T )
Atomic NF-dilemma and bivalent NF-reductio are both exponentially stronger
than tree resolution with respect to proof length.

The interesting thing is that since the the pebbling contradictions PebG are
1-easy not only for normal form but also for binary DA (and RAAB), this shows
that there are formulas F where St̊almarck’s method will find a proof in time
polynomial in the size S (F ), but where any DLL procedure, no matter what
splitting rule it uses, must take exponential time.

The reader might have noticed that we did not separate atomic dilemma
from atomic RAA with respect to hardness in section 6.2. Although this is a
purely academic question in view of the exponential separations in theorem 6.7,
we note that the results in this section provide the expected linear separation
of DA from RAAA in terms of proof hardness.

Corollary 6.19 (DA is linearly stronger than RAAA w.r.t. hardness)
There is a family of polynomial-size propositional logic formulas Fn such that
HDA

(Fn) = O (1) but HRAAA
(Fn) = Ω (n).

This is an immediate consequence of theorem 6.14 (which holds also for
parenthesized “propositional logic versions” of the pebbling contradictions) and
theorem 6.15 combined with theorem 5.7 (and remark 5.3).

6.4 Dilemma vs. General Resolution

We conclude this chapter by presenting our results relating dilemma to general
resolution. As before, resolution considered as a proof system is denoted R.

Our most important result, from which all other results in this section fol-
low, is that for CNF formulas with maximum clause width k, normal form
dilemma proofs in depth d and length L can be translated to resolution proofs
in width O (kd) and length

(
Lkd

)
O(1).

Theorem 6.20 (Depth-width relation of dilemma and resolution)
Suppose that F is an unsatisfiable CNF formula in width W (F ) = k. Then any
equivalence-based general NF-dilemma refutation πD of F in depth D (πD) = d
and length L (πD) = L can be translated to a resolution refutation πR of F in
width

W (πR) ≤ (2d+ 3) (k − 1)

and length
L (πR) ≤ 2L · k2d+3.
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We describe the ideas behind the proof below. The detailed proof is rather
tedious and is therefore deferred to section B.2.

Sketch of proof: Let F be an unsatisfiable CNF formula with maximum
clause width k and suppose that πD is an equivalence-based general NF-dilem-
ma refutation of F . We assume (without loss of generality) that πD starts by
deriving C ≡ > for all clauses C ∈ F used in the proof.

Every line in the proof πD consists of some equivalence φ derived under
(open) assumptions ψ1, . . . , ψi from preceding lines in the proof (within the
same scope as ψ, see definition A.2 on page 132). If we denote this

ψ1 ⇒ . . .⇒ ψi ⇒ φ, (6.26)

we can transform an equivalence-based dilemma proof to a line-based dilemma
proof by replacing the derivation steps by a sequence of lines on the form (6.26).
Note that all equivalences ψ1, . . . , ψi, φ are over (sub)clauses of F (except for
the first line F ≡ >).

In the next step, we translate each line in the line-based proof to (at most)
k2i+2 clauses by interpreting (6.26) as

¬ψ1 ∨ . . . ∨ ¬ψi ∨ φ (6.27)

and rewriting this formula to to a set of CNF clauses. Let us denote this
translation by CNF (ψ1 ⇒ . . .⇒ ψi ⇒ φ). Perhaps it is easiest explained by an
example: the line-based dilemma derivation line

x1 ∨ x2 ≡ y1 ∨ y2 ⇒ z1 ∨ z2 ≡ w1 ∨ w2 (6.28)

(i.e. z1 ∨ z2 ≡ w1 ∨ w2 derived under the assumption x1 ∨ x2 ≡ y1 ∨ y2) is rewrit-
ten to the set of CNF clauses in figure 6.6.

Finally, we prove by induction that for each line ψ1 ⇒ . . . ⇒ ψi ⇒ φ in
the line-based dilemma proof, the clauses in CNF (ψ1 ⇒ . . .⇒ ψi ⇒ φ) can be
derived in resolution from sets of clauses corresponding to preceding lines in the
dilemma proof in length at most 2k · L (CNF (ψ1 ⇒ . . .⇒ ψi ⇒ φ)) and width
at most (2d′ + 3) (k − 1), where d′ is the maximum depth in the derivation so
far, (2d′ + 2) (k − 1) is the maximum width of the CNF clause translations so far
and k−1 is the maximum number of extra literals needed during the resolution
derivation of CNF (ψ1 ⇒ . . .⇒ ψi ⇒ φ). It follows that if

ψ1,1 ⇒ . . .⇒ ψ1,i1 ⇒ φ1

... (6.29)
ψn,1 ⇒ . . .⇒ ψn,in ⇒ φn

is a dilemma derivation in length L (πD) = L and depth D (πD) = d, then

CNF (ψ1,1 ⇒ . . .⇒ ψ1,i1 ⇒ φ1)
... (6.30)

CNF (ψn,1 ⇒ . . .⇒ ψn,in ⇒ φn)

is the backbone of a corresponding resolution derivation, the gaps of which can
be completed in length at most 2L · k2d+3 and width at most (2d+ 3) (k − 1).
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{
x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ w1 ∨ w2,

x1 ∨ x2 ∨ y1 ∨ y2 ∨ z2 ∨ w1 ∨ w2,

x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2 ∨ w1,

x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2 ∨ w2,

x1 ∨ y1 ∨ z1 ∨ w1 ∨ w2,

x1 ∨ y1 ∨ z2 ∨ w1 ∨ w2,

x1 ∨ y1 ∨ z1 ∨ z2 ∨ w1,

x1 ∨ y1 ∨ z1 ∨ z2 ∨ w2,

x1 ∨ y2 ∨ z1 ∨ w1 ∨ w2,

x1 ∨ y2 ∨ z2 ∨ w1 ∨ w2,

x1 ∨ y2 ∨ z1 ∨ z2 ∨ w1,

x1 ∨ y2 ∨ z1 ∨ z2 ∨ w2,

x2 ∨ y1 ∨ z1 ∨ w1 ∨ w2,

x2 ∨ y1 ∨ z2 ∨ w1 ∨ w2,

x2 ∨ y1 ∨ z1 ∨ z2 ∨ w1,

x2 ∨ y1 ∨ z1 ∨ z2 ∨ w2,

x2 ∨ y2 ∨ z1 ∨ w1 ∨ w2,

x2 ∨ y2 ∨ z2 ∨ w1 ∨ w2,

x2 ∨ y2 ∨ z1 ∨ z2 ∨ w1,

x2 ∨ y2 ∨ z1 ∨ z2 ∨ w2

}
Figure 6.6: Translation of x1 ∨ x2 ≡ y1 ∨ y2 ⇒ z1 ∨ z2 ≡ w1 ∨ w2 to CNF clauses.

For a simple example of the transformation from equivalence-based dilemma
via line-based dilemma to resolution, see the refutations in figures 6.7 and 6.8
of the formula GT 3 (defined in figure 6.2 on page 95). For clarity, we have filled
in the gaps in the “backbone” resolution proof in figure 6.8 with parenthesized
clauses and indicated from which previous lines in the proof these clauses can
be derived. We let figures 6.7 and 6.8 serve as a “proof by example” and refer
the interested reader to the formal proof in section B.2 for the details. 2

Fix the clause width k, and suppose that πD is a dilemma refutation of a
k-CNF formula F in minimal depth H (F ). Then the translation to resolution in
the proof of theorem 6.20 yields a resolution refutation πR at most polynomially
larger than πD. That is, for k-CNF formulas dilemma restricted to minimum-
depth proofs is p-simulated by resolution. We state this as a theorem.

Theorem 6.21 (Resolution p-simulates minimum-depth dilemma)
Let k ≥ 2 be a fix integer and let F be an unsatisfiable k-CNF formula. Suppose
that πD is a general NF-dilemma refutation of F in minimal depth H (F ).

Then it is possible to construct in polynomial time a resolution refutation πR
with size S (πR) polynomial in S (πD). That is, for k-CNF formulas resolution
p-simulates dilemma restricted to minimum-depth proofs.
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GT 3 ≡ >
A
(
1, 3, 2

)
≡ >

A
(
2, 3, 1

)
≡ >

B
(
1, 2
)
≡ >

B
(
1, 3
)
≡ >

B
(
2, 3
)
≡ >

C3

(
1
)
≡ >

C3

(
2
)
≡ >

C3

(
3
)
≡ >

x1,2 ≡ > x1,2 ≡ ⊥
x2,1 ≡ ⊥ x3,2 ≡ >
x3,1 ≡ > x1,3 ≡ ⊥
x2,3 ≡ ⊥ x2,3 ≡ ⊥
x1,3 ≡ ⊥ C3

(
3
)
≡ ⊥

C3

(
3
)
≡ ⊥ ⊥

⊥
⊥

Figure 6.7: Equivalence-based dilemma refutation of GT 3.

1. x1,3 ∨ x3,2 ∨ x1,2 [ CNF
(
A
(
1, 3, 2

)
≡ >

)
]

2. x2,3 ∨ x3,1 ∨ x2,1 [ CNF
(
A
(
2, 3, 1

)
≡ >

)
]

3. x1,2 ∨ x2,1 [ CNF
(
B
(
1, 2
)
≡ >

)
]

4. x1,3 ∨ x3,1 [ CNF
(
B
(
1, 3
)
≡ >

)
]

5. x2,3 ∨ x3,2 [ CNF
(
B
(
2, 3
)
≡ >

)
]

6. x2,1 ∨ x3,1 [ CNF
(
C3

(
1
)
≡ >

)
]

7. x1,2 ∨ x3,2 [ CNF
(
C3

(
2
)
≡ >

)
]

8. x1,3 ∨ x2,3 [ CNF
(
C3

(
3
)
≡ >

)
]

9. x1,2 ∨ x2,1 [ CNF (x1,2 ≡ > ⇒ x2,1 ≡ ⊥) ]
10. x1,2 ∨ x3,1 [ CNF (x1,2 ≡ > ⇒ x3,1 ≡ >) ]
11.

(
x1,2 ∨ x2,3 ∨ x3,1

)
[ By resolution of lines 2 and 3 ]

12. x1,2 ∨ x2,3 [ CNF (x1,2 ≡ > ⇒ x2,3 ≡ ⊥) ]
13. x1,2 ∨ x1,3 [ CNF (x1,2 ≡ > ⇒ x1,3 ≡ ⊥) ]
14.
15.

x1,2 ∨ x1,3

x1,2 ∨ x2,3

}
[ CNF

(
x1,2 ≡ > ⇒ C3

(
3
)
≡ ⊥

)
]

16.
(
x1,2 ∨ x2,3

)
[ By resolution of lines 8 and 14 ]

17. x1,2 [ CNF (x1,2 ≡ > ⇒ ⊥) ]
18. x1,2 ∨ x3,2 [ CNF (x1,2 ≡ ⊥ ⇒ x3,2 ≡ >) ]
19. x1,2 ∨ x1,3 [ CNF (x1,2 ≡ ⊥ ⇒ x1,3 ≡ ⊥) ]
20. x1,2 ∨ x2,3 [ CNF (x1,2 ≡ ⊥ ⇒ x2,3 ≡ ⊥) ]
21.
22.

x1,2 ∨ x1,3

x1,2 ∨ x2,3

}
[ CNF

(
x1,2 ≡ ⊥ ⇒ C3

(
3
)
≡ ⊥

)
]

23.
(
x1,2 ∨ x2,3

)
[ By resolution of lines 8 and 21 ]

24. x1,2 [ CNF (x1,2 ≡ ⊥ ⇒ ⊥) ]
25. 0 [ CNF (⊥) ]

Figure 6.8: Line-based dilemma refutation and resolution refutation of GT 3.
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Proof: By proposition 5.6, it suffices to prove the theorem for equivalence-
based dilemma. Let πR be the resolution refutation of F constructed from the
(equivalence-based) dilemma refutation πD in the proof of theorem 6.20 (which
can be done in polynomial time). Then it holds that

L (πR) ≤ 2 · L (πD) · k2H(F )+3 ≤ 2 · L (πD) · k5H(F ) (6.31)

and
W (πR) ≤

(
2H (F ) + 3

)(
k − 1

)
≤ 5kH (F ) (6.32)

(since H (F ) ≥ 1 for CNF formulas F without unit clauses). Also, by corol-
lary 4.21 on page 58 we have

L (πD) ≥ 2H(F )/2 (6.33)

(although this inequality is proved for binary formula relation dilemma, it is
easy to verify that the same bound holds for equivalence-based NF-dilemma).

We want to show that πR has size S (πR) polynomial in S (πD). Using the
above inequalities, we get

S (πR) ≤ L (πR) ·W (πR)

≤ 2 · L (πD) · k5H(F ) · 5kH (F ) [by (6.31) and (6.32)]

≤ 10 · L (πD)2 · 2H(F )·6 log k [since 1 ≤ H (F ) ≤ L (πD)]

≤ 10 · L (πD)2+12 log k [by (6.33)]

≤ 10 · S (πD)2+12 log k

which is polynomial in S (πD) if k is fix. 2

Note, however, that theorem 6.21 does not say that resolution p-simulates
dilemma for k-CNF formulas. The theorem does not exclude the possibility
that there are very deep but short dilemma proofs for which the translation
to resolution in theorem 6.20 yields a superpolynomially long proof. The exact
relation between resolution and (normal form) dilemma restricted to k-CNF for-
mulas (i.e. are there p-simulations in either direction? are the proof systems
p-equivalent? or incomparable?) is an open question, as is the relation of the
two proof systems on general CNF formulas.

Another way of looking at theorem 6.20 is from the perspective of proof
methods. As before, fix k and let F be an unsatisfiable k-CNF formula over
n variables. Suppose that we parenthesize the formula in some way and feed
it into St̊almarck’s method, and that the parenthesized version of F has hard-
ness degree H (F ) = h. Then a trivial lower bound on the time needed to
refute F with St̊almarck’s method is Ω

(
nh
)

(since the algorithm will have to
perform at least one full iteration of (h-1)-saturation and this takes time at
least nh if F has n variables). According to theorem 6.20, for resolution we have
WR(F ` ⊥) = O (kh), so the minimum-width proof search algorithm discussed
in section 3.1.3 finds a resolution refutation of F in time nWR(F`⊥) ≤ nckh for
some constant c. Since k is fix, this implies that minimum-width proof search
in resolution finds a refutation of a k-CNF formula F in time polynomial in the
lower bound on the running time of St̊almarck’s method.

The above reasoning can be generalized to propositional logic formulas as
well. We have the following theorem.
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Theorem 6.22 (Min-width proof search is polynomial in St̊almarck)
Suppose that F is a contradictory CNF formula in width W (F ) ≤ k (for some
fixed k) and that G is a tautology in propositional logic. Then

1. minimum-width proof search refutes F in time polynomial in the running
time of St̊almarck’s method.

2. minimum-width proof search proves G valid by refuting the Tseitin trans-
formation Gt of G in time polynomial in the running time of St̊almarck’s
method on G.

Proof: Part 1 of the theorem was proved above.
For part 2, suppose that G is a tautology of hardness HD (G) = h in general

propositional logic. Tseitin’s transformation (figure 2.1 on page 19) applied onG
returns a CNF formula Gt with W (Gt) = O (1). The original propositional logic
formula G is exactly h-hard for binary dilemma, so Gt can be at most h+ c′-hard
for NF-dilemma for some constant c′ (show by induction that if P ≡ Q is derived
by propagation in a dilemma derivation π for G, then xP ≡ xQ can be derived in
at most constant extra depth in a corresponding derivation πt for Gt). Since the
number of variables in Gt is |Vars(Gt)| = |Sub (G)|/2, minimum-width proof
search refutes Gt in time |Sub (G)|O(h).

For St̊almarck’s method, 0-saturation of G⊥ takes time Ω
(
|Sub (G)|

)
(since

all subformulas must be inspected at least once). Before (κ+1)-saturation ter-
minates, the algorithm has to assume all subformulas in Sub (G) true and false
and for each pair of assumptions κ-saturate both branches. By induction, we
get the lower bound on κ-saturation in St̊almarck’s method Ω

(
|Sub (G)|κ+1).

If the formula G is h-hard, St̊almarck’s method must perform a full pass of
(h-1)-saturation in time Ω

(
|Sub (G)|h

)
before it can prove G valid and termi-

nate. Thus minimum-width proof search is polynomial in St̊almarck’s method
as claimed. 2

It is not known whether St̊almarck’s proof method is polynomial in minimum-
width proof search or whether there are formulas for which the latter algorithm
is superpolynomially faster.

Regardless of what the relation between St̊almarck’s method and minimum-
width proof search might be, it should be stressed that theorem 6.22 is a
theoretical result. Our main tools when comparing proof systems are polynomial
simulations and superpolynomial separations, which both ignore polynomial dif-
ferences. Needless to say, in practical applications polynomial factors cannot be
neglected. In an applied context it might very well be the case that a polynomial
algorithm, although theoretically appealing, is completely infeasible, while an-
other algorithm with superpolynomial theoretical worst-case upper bound turns
out to be the preferred choice because of empirically better running times. The
question of what the practical implications of theorem 6.22 are (if there are
any), therefore, must be settled by other means.

In section 3.3 we studied refutation length of random k-CNF formulas. Com-
bining the upper bound in section 3.3.1 and the lower bound in section 3.3.2
with the translation from dilemma to resolution in theorem 6.20, we can derive
bounds on the hardness degree in dilemma of uniformly random 3-CNF formulas
(which can be generalized to k-CNF formulas for arbitrary k ≥ 3 in the same
way as the results in section 3.3).
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We remind that the notation F ∼ Fn,∆k means that F is a uniformly random
k-CNF formula with m = ∆n clauses on n variables and that θuk is the threshold
value such that for densities ∆ ≥ θuk , formulas F ∼ Fn,∆k are unsatisfiable with
probability 1− o (1) in n.

Theorem 6.23 (Bounds on hardness of random 3-CNF in dilemma)
Suppose that F ∼ Fn,∆3 , with ∆ ≥ θu3 . Then the following holds:

1. HD (F ) = O (n/∆) with probability 1− o (1) in n,

2. HD (F ) = Ω
(
n/∆2+ε

)
with probability 1 − o (1) in n, where ε > 0 is

arbitrary.

Proof: Let F ∼ Fn,∆3 with ∆ = m/n ≥ θu3 .
1. By lemma 3.29, if a DLL procedure has branched over cn/∆ variables

(for a suitably chosen constant c), then with probability 1 − o (1) in n at least
half of the remaining variables are critical (i.e. splitting over them leads to
contradictions in both branches by unit propagation).

But then in particular there is at least one critical variable. It follows (by
theorem 6.15) that it is sufficient to make cn/∆ + 1 simultaneous assumptions
to refute F in (binary) atomic reductio. Since atomic reductio is a subsystem
of general dilemma, the hardness degree in general dilemma HD (F ) is at most
cn/∆ + 1 with the same probability 1− o (1) in n.

2. By theorem 3.36, the minimum width in which F can be refuted by
resolution is

WR(F ` ⊥) = Ω
(
n/∆2+ε

)
(6.34)

with probability 1− o (1) in n. Let the hardness degree of F in general NF-di-
lemma be h. Since k = 3 is fix, it follows from theorem 6.20 that

WR(F ` ⊥) = O (h). (6.35)

Combining (6.34) and (6.35) and noting that the hardness degree in binary
dilemma is bounded from below by the hardness degree in NF-dilemma, we get
HD (F ) = Ω

(
n/∆2+ε

)
with probability 1 − o (1) in n, where ε is arbitrarily

small but positive. 2

We close this section with a supplementary remark to the exposition of the
dilemma proof system in section 4.1.

Remark 6.24 (Dilemma hardness degree hierarchy) When we presented
the dilemma proof system in chapter 4 and introduced the concept of hardness
degree, we also raised the question whether there exists an infinite hierarchy of
formulas with growing hardness or not. After a short discussion, we concluded
without giving any formal proof that the infinite hardness degree hierarchy does
indeed exist (section 4.1.6).

For readers not willing to accept the existence of this infinite hierarchy with-
out a formal proof, we now show that such a proof follows easily from theo-
rem 6.23. Fix ∆ ≥ θu3 and let n grow. Then by theorem 6.23 we get that for
3-CNF formulas F ∼ Fn,∆3 , HD (Fn) = Ω (n) with probability 1− o (1) in n. In
particular, since HD (Fn) = Ω (n) with high probability, there must exist exam-
ples of formulas Fn with growing hardness degree. This proves the existence of
the infinite hardness degree hierarchy in the dilemma proof system.
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Chapter 7

Conclusions

In this chapter we summarize the results of our work. This Master’s thesis is
quite long (one might even say a little on the long side), and a considerable part
of it contains accounts of earlier research. Here, we highlight our contributions
to the subject and try to put our results in perspective. We also discuss some
of the questions that remain open and give suggestions for further research.

7.1 Summary of Results

The results presented in this section are divided into those concerning the
dilemma and RAA proof systems (section 7.1.1) and those relating these proof
systems to resolution (section 7.1.2).

7.1.1 Results for Dilemma and Reductio

The main part of this thesis is dedicated to the formalization of the dilemma
proof system with subsystems (chapter 4 and appendix A) and the development
of tools for proving bounds on different proof systems in the “dilemma proof
system family” (chapter 5). While this is perhaps not an original contribution
in the strict sense, to our knowledge it is the first complete explicit formal
exposition of the dilemma proof system. This formalization of dilemma was a
necessary prerequisite for being able to prove the results listed below.

Our conclusions from the comparative studies of different dilemma and
RAA proof systems are:

� Dilemma (whether defined as general dilemma D or the bivalent sub-
system DB used in St̊almarck’s method) is a quasi-automatizable propo-
sitional proof system (theorem 4.35 on page 78).

� Bivalent dilemma DB is linearly stronger than atomic dilemma DA with
respect to proof hardness for general propositional logic formulas (the-
orem 6.1 on page 93) and almost certainly for CNF formulas as well
(conjecture 6.2 on page 95). Our separation with respect to hardness does
not yield any separation with respect to proof length and size, however,
which shows that hardness degree in atomic dilemma is not a meaningful
measure (theorem 6.4 on page 98).
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� Bivalent dilemmaDB simulates general dilemmaD restricted to minimum-
depth proofs polynomially with respect to proof length and size and is at
most quasi-polynomially worse than D with respect to size for proofs in
arbitrary depth (theorem 6.3 on page 97).

� Atomic dilemma DA is linearly stronger than atomic reductio RAAA with
respect to proof hardness and exponentially stronger with respect to proof
length and size (theorem 6.7 on page 102 and corollary 6.19 on page 107).

� Bivalent reductio RAAB is linearly stronger than atomic reductio RAAA
with respect to proof hardness and exponentially stronger with respect to
proof length and size (corollary 6.8 on page 102).

� Bivalent reductio RAAB can be separated from atomic dilemma DA lin-
early with respect to hardness degree (corollary 6.9 on page 102).

� General reductio RAA is at most quasi-polynomially worse than general
dilemma D with respect to proof size (theorem 6.12 on page 103).

7.1.2 Results for Dilemma and Resolution

The results about the comparative proof power of different dilemma and RAA
proof systems are mainly of theoretical value, in that they help us under-
stand better the “inner workings” of the dilemma proof system and St̊almarck’s
method. More interesting from an applied perspective are the comparisons of
dilemma and resolution. Results about the proof system underlying a proof
search algorithm can give us theoretically proven bounds on the performance of
the algorithm. Since the dilemma and resolution proof systems both lie at the
foundations of widely used proof methods, such bounds can potentially be of
great interest not only theoretically but also in practice.

Most of the results relating dilemma and resolution have been proven for
the normal form dilemma proof system (NF-dilemma for short) defined in sec-
tion 5.2.1 for CNF (and other types of) formulas. As was discussed in that
section, lower bounds on refuting CNF formulas in NF-dilemma imply at least
the same bounds in ordinary binary dilemma.

Below follows a list of our results for dilemma and resolution.

� Derivation depth in dilemma corresponds to derivation width in resolu-
tion. More precisely, a general NF-dilemma refutation in depth d and
length L of a CNF formula F with maximum clause width k can be trans-
lated to a resolution refutation of F in width O (kd) and length

(
Lkd

)
O(1)

(theorem 6.20 on page 107).

� For k-CNF formulas with k fix, resolution p-simulates general NF-dilemma
restricted to minimum-depth proofs (theorem 6.21 on page 109).

� For propositional logic tautologies the minimum-width proof search algo-
rithm suggested by Ben-Sasson and Wigderson [7] combined with Tseitin’s
transformation to CNF (figure 2.1) has running time polynomial in the
running time of St̊almarck’s method (theorem 6.22 on page 112).
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� If F is a uniformly random 3-CNF formula with ∆n clauses on n variables
(where the density ∆ is sufficiently large so that F is almost certainly
unsatisfiable), then with probability 1−o (1) in n it holds for the hardness
degree HD (F ) of F in (binary) general dilemma that

Ω
(
n/∆2+ε

)
≤ HD (F ) ≤ O(n/∆),

where ε is arbitrarily small but positive (theorem 6.23 on page 113).

� Atomic NF-reductio and tree-like resolution are p-equivalent with respect
to proof length (theorem 6.15 on page 105).

� Atomic NF-dilemma and bivalent NF-reductio are exponentially strong-
er than tree-like resolution with respect to proof length (corollary 6.18
on page 107). Since the formulas used in the separation have constant
hardness in binary dilemma, this shows that there are formulas where the
(atomic) St̊almarck method will find a proof in polynomial time but all
DLL procedures, no matter what the splitting rule, take exponential time.

7.2 Open Questions

In this section, we list the main open questions mentioned in chapter 6 and give
suggestions for further research.

� We have shown that for k-CNF formulas with k fix, resolution p-simulates
dilemma restricted to minimum-depth proofs, but what is the relation
between (normal form) dilemma without this minimum-depth restriction
and resolution on k-CNF formulas? And what is the relation between
dilemma and resolution on general CNF formulas?

� We have shown that bounds on depth in dilemma translates into bounds
on width in resolution. Is this true in the opposite direction as well? That
is, can resolution in width w be transformed to dilemma in depth O (w)? If
the converse of theorem 6.20 could be proven true, this would show that at
least for k-CNF formulas, St̊almarck’s method and minimum-width proof
search are basically the same algorithm but in different proof systems. It
might just as well be the case, however, that there are formula families
which can be refuted in fix width in resolution but have non-constant
refutation depth in dilemma. One candidate for closer study could be the
separations of general resolution from DP-resolution in [10]. It has not
been possible to do this whithin the framework of this Master’s project.

� In sections 6.1 and 6.2 we explored the relations between different dilemma
and reductio proof systems. As has already been noted, this study is
mainly of theoretical interest and is unlikely to have any practical conse-
quences. Nevertheless, we list below the questions remaining if we want
to get a complete picture of the relations between the proof subsystems.

– What is the relationship between bivalent and general dilemma with
respect to proof length and size?

– What is the relationship between general and bivalent reductio with
respect to proof hardness, length and size?
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– Can bivalent dilemma and bivalent reductio be separated superpoly-
nomially with respect to proof length and size or superlogarithmically
with respect to proof hardness? (That is, can the result in [53] be
strengthened?)

– What is the relationship between general dilemma and general re-
ductio with respect to proof length and size?

– Can bivalent reductio and atomic dilemma be separated with respect
to proof length and size? Are the two proof systems incomparable?

Finally, we mention two questions of a more practical nature.

� We have shown that minimum-width proof search in resolution is poly-
nomial in St̊almarck’s method, but how do the two algorithms compare
in practice? It would be interesting to make an efficient implementation
of minimum-width proof search and benchmark it against St̊almarck’s
method for (a) k-CNF or general CNF formulas which arise in practi-
cal problems and (b) fixed-width CNF formulas obtained by transforming
general propositional logic formulas arising in practical problems. Such
benchmarks could reveal whether minimum-width proof search is a viable
alternative to St̊almarck’s method when it comes to real-life problems and
also shed some light on the relation between the hardness measures of
proof depth in dilemma and proof width in resolution.

� What is the exact relation between bivalent and general dilemma with
respect to hardness? Of course the hardness degrees are within a constant
and thus from a theoretical point of view DB and D are equivalent with
respect to this measure. Still, from an applied perspective it would be in-
teresting if one could separate general and bivalent dilemma with respect
to hardness degree in the sense of finding a family of polynomial-size for-
mulas Fn such that HD (Fn) = n but HDB

(Fn) ≥ c · n for some c > 1.
This could show that there are formulas for which the general St̊almarck
method is better than the bivalent St̊almarck method. But then for all
we know it might be the case that HD (F ) ≤ HDB

(F ) ≤ HD (F ) + c
for all formulas F . If so, the bivalent St̊almarck method is likely to be
better than the general St̊almarck method not only empirically but also
theoretically.
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Appendix A

Equivalence-Based Dilemma

In this appendix we give a full description of the modification of the dilemma
proof system introduced in section 5.2.2 and used in some of the proofs in
chapter 6. For lack of better names, we call the variant of dilemma presented
here “equivalence-based dilemma” and the original version in chapter 4 “formula
relation dilemma”.

In equivalence-based dilemma we do not have formula relations containing
equivalence classes. Instead, we add rules for formal manipulation of formula
equivalences. The reason for this is that it is a way to achieve a closer corre-
spondence between dilemma and resolution. Using a variant of dilemma with
explicit derivations of all equivalences between formulas makes the proofs of the
theorems in chapter 6 comparing the two proof systems considerably easier.

This appendix is organized as follows: We start by giving rules for formula
equivalences in section A.1. In section A.2 we list the propagation rules (which
are identical for equivalence-based and formula relation dilemma). The dilemma
rule is presented and its different variants discussed in section A.3, after which
a formal definition of what constitutes an equivalence-based dilemma derivation
is given in section A.4. Finally, the differences between equivalence-based and
formula relation dilemma and their implications for the results presented in
this Master’s thesis are analyzed in section A.5. Throughout the appendix, the
letters P , Q, R and S (with or without indices) denote arbitrary logical formulas
and R (with or without index) denotes an arbitrary formula relation.

A.1 Formula Equivalence Rules

The dilemma proof system rules for formal manipulation of formula equivalences
are given in figure A.1 on the next page. These rules encode the fact that ≡ is
an equivalence relation, i.e. reflexive (rule (E1)), commutative (rule (E2)), and
transitive (rules (E3), (E4) and (E5)), which in addition respects complement
(rules (E6), (E7) and (E8)). The introduction rules (E9) and (E10) can be
considered as special cases of rule (E3). In the formula relation dilemma proof
system none of these rules are needed, since the corresponding information is
already available in the equivalence classes of a formula relation.

In addition to the rules mentioned above, there is also a rule (E11) for deriv-
ing a contradiction (corresponding to rule (4.18) on page 48). The interpretation
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P ≡ P
(E1)

P ≡ Q

Q ≡ P
(E2)

P ≡ Q Q ≡ R

P ≡ R
(E3)

P ≡ Q Q ≡ >
P ≡ >

(E4)

P ≡ Q Q ≡ ⊥
P ≡ ⊥

(E5)

P ≡ Q

PC ≡ QC
(E6)

P ≡ >
PC ≡ ⊥

(E7)

P ≡ ⊥
PC ≡ >

(E8)

P ≡ > Q ≡ >
P ≡ Q

(E9)

P ≡ ⊥ Q ≡ ⊥
P ≡ Q

(E10)

P ≡ PC

⊥
(E11)

Figure A.1: Dilemma proof system rules for formula equivalences.

of this last rule is that if we have derived from a set of assumptions that a for-
mula has the same truth value as its complement, we can conclude that the set
of assumptions is contradictory. We overload the symbol ⊥ to denote (when
appearing alone on a line) that a contradiction has been derived. It thus cor-
responds to the canonical contradictory formula relation ⊥R consisting of only
one equivalence class.

A.2 Propagation Rules

In this section we list the dilemma proof system propagation rules for the bi-
nary logical connectives conjunction (∧), disjunction (∨), implication (→) and
bi-implication (↔). As was mentioned above, the propagation rules are the
same for equivalence-based and formula relation dilemma. Note that due to the
definition of complement, no special rules for negation (¬) are needed.
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P ∧Q ≡ >
P ≡ >

P ∧Q ≡ >
Q ≡ >

(C1)

P ∧Q ≡ PC

P ≡ >
P ∧Q ≡ QC

Q ≡ >
(C2)

P ∧Q ≡ PC

Q ≡ ⊥
P ∧Q ≡ QC

P ≡ ⊥
(C3)

P ≡ >
P ∧Q ≡ Q

Q ≡ >
P ∧Q ≡ P

(C4)

P ≡ ⊥
P ∧Q ≡ ⊥

Q ≡ ⊥
P ∧Q ≡ ⊥

(C5)

P ≡ Q

P ∧Q ≡ P

P ≡ Q

P ∧Q ≡ Q
(C6)

P ≡ QC

P ∧Q ≡ ⊥
(C7)

Figure A.2: Dilemma proof system rules for conjunction.

P ∨Q ≡ ⊥
P ≡ ⊥

P ∨Q ≡ ⊥
Q ≡ ⊥

(D1)

P ∨Q ≡ PC

P ≡ ⊥
P ∨Q ≡ QC

Q ≡ ⊥
(D2)

P ∨Q ≡ PC

Q ≡ >
P ∨Q ≡ QC

P ≡ >
(D3)

P ≡ >
P ∨Q ≡ >

Q ≡ >
P ∨Q ≡ >

(D4)

P ≡ ⊥
P ∨Q ≡ Q

Q ≡ ⊥
P ∨Q ≡ P

(D5)

P ≡ Q

P ∨Q ≡ P

P ≡ Q

P ∨Q ≡ Q
(D6)

P ≡ QC

P ∨Q ≡ >
(D7)

Figure A.3: Dilemma proof system rules for disjunction.
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P → Q ≡ ⊥
P ≡ >

(I1)

P → Q ≡ ⊥
Q ≡ ⊥

(I2)

P → Q ≡ P

P ≡ >
(I3)

P → Q ≡ P

Q ≡ >
(I4)

P → Q ≡ QC

P ≡ ⊥
(I5)

P → Q ≡ QC

Q ≡ ⊥
(I6)

P ≡ >
P → Q ≡ Q

(I7)

Q ≡ >
P → Q ≡ >

(I8)

P ≡ ⊥
P → Q ≡ >

(I9)

Q ≡ ⊥
P → Q ≡ PC

(I10)

P ≡ Q

P → Q ≡ >
(I11)

P ≡ QC

P → Q ≡ PC
P ≡ QC

P → Q ≡ Q
(I12)

Figure A.4: Dilemma proof system rules for implication.
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P ↔ Q ≡ >
P ≡ Q

(B1)

P ↔ Q ≡ ⊥
P ≡ QC

(B2)

P ↔ Q ≡ P

Q ≡ >
P ↔ Q ≡ Q

P ≡ >
(B3)

P ↔ Q ≡ PC

Q ≡ ⊥
P ↔ Q ≡ QC

P ≡ ⊥
(B4)

P ≡ >
P ↔ Q ≡ Q

Q ≡ >
P ↔ Q ≡ P

(B5)

P ≡ ⊥
P ↔ Q ≡ QC

Q ≡ ⊥
P ↔ Q ≡ PC

(B6)

P ≡ Q

P ↔ Q ≡ >
(B7)

P ≡ QC

P ↔ Q ≡ ⊥
(B8)

Figure A.5: Dilemma proof system rules for bi-implication.

Because of the closure under transitivity and complement, the rules given
in this section form a complete set of propagation rules for formula relation
dilemma. For equivalence-based dilemma the matter is slightly less straight-
forward. When we replace formula relations with the derivation rules for formula
equivalence in section A.1, we also enlarge the set of distinct non-trivial propaga-
tion rules. The new rules are redundant in the sense that they can be discarded
without affecting the derivation depth, since the same conclusions can be reached
by using our chosen set of propagation rules and the rules for formula equiva-
lence in figure A.1. They do affect proof length and size in equivalence-based
dilemma, however, but only by a constant factor.

In order to minimize the number of cases that need to be analyzed in proofs
about dilemma in chapter 6, we have chosen not to include the full set of pos-
sible propagation rules for equivalence-based dilemma. The verification of the
statement that the omitted rules only affect proof length and size in equivalence-
based dilemma by a constant factor is a routine matter and is left to the reader
in order to save space in this report.

Symmetric instances of propagation rules are considered the same and are
therefore listed on the same line in the figures presenting the propagation rules.
Also, each rule always has exactly one consequence, which is why certain rules
have identical premises (as for instance rules (C2) and (C3)).

The dilemma proof system rules for conjunction are given in figure A.2 and
the rules for disjunction in figure A.3. The propagation rules for implication
are presented in figure A.4. Since implication is not symmetric, these rules
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look rather different than those for the other connectives. To avoid confusion
about formula relations and formula equivalences on the one hand (for which
we use the notation ≡) and the logical connective equivalence or bi-implication
(denoted ↔), we will refer to the connective ↔ exclusively as “bi-implication”.
Needless to say, equivalence relations and bi-implication are very intimately con-
nected. This is illustrated by the dilemma proof system rules given in figure A.5.
Note that all rules for bi-implication are invertible.

A.3 The Dilemma Rule

In addition to the rules for equivalence in section A.1 and the propagation rules
in section A.2, a rule for branching is needed in order to make the proof system
complete for propositional logic. The dilemma proof system is named after the
special “branch-and-merge” rule, called the dilemma rule, used in the proof
system. It is this rule (in combination with the large set of propagation rules)
that gives the dilemma proof system its characteristic properties.

If P , Q and R are arbitrary logical formulas (where we temporarily abuse
our notation by allowing Q = >/⊥), ψi ∈

{
P ≡ R,P ≡ RC , P ≡ >, P ≡ ⊥,⊥

}
denote arbitrary equivalences (or contradiction) and πi, i = 1, 2, 3 stand for
dilemma derivations (which will be formally defined in section A.4), the dilemma
rule in its most general form can be pictured as:

π1

P ≡ Q P ≡ QC

π2 π3

ψ1 ψ1

...
...

ψk ψk
ψ1

...
ψk

(A.1)

The interpretation of this rule is that if we can derive the equivalences
ψ1, . . . , ψk both under the assumption P ≡ Q and under the complementary
assumption P ≡ QC , then we can conclude that ψ1, . . . , ψk hold regardless of
the truth values of P and Q.

As a special case, if a contradiction is reached in one of the branches, we
can conclude that all equivalences derived in the other branch hold. After
simplification, we get the two symmetric special forms of the dilemma rule

π1

P ≡ Q P ≡ QC

π2

⊥
P ≡ QC

(A.2)
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for a contradiction in the left branch and

π1

P ≡ Q P ≡ QC

π3

⊥
P ≡ Q

(A.3)

for a contradiction in the right branch.
When reasoning about the dilemma rule, we call the equivalences P ≡ Q and

P ≡ QC in the rule schemas above dilemma rule assumptions and instances of
rules (A.1), (A.2) and (A.3) dilemma rule applications.

A.4 Formal Description of the Proof System

We are now ready to define more formally what we mean by a derivation in the
equivalence-based dilemma proof system given by the equivalence relation rules
in figure A.1, the propagation rules in figures A.2, A.3, A.4 and A.5 and the
dilemma rules (A.1), (A.2) and (A.3).

Intuitively, when defining the equivalence-based version of dilemma we want
to mimic the definitions given in chapter 4. Unfortunately, it turns out that
while gaining in convenience by abandoning the use of formula relations, we
lose the elegance of definition 4.9 on page 50. The problem is that in formula
relation dilemma, the current formula relation contains all formula equivalences
derived up to that point in the derivation. In equivalence-based dilemma, these
equivalences can be scattered throughout the preceding part of the derivation,
and we need to determine which of the earlier equivalences can be used at a
certain point to derive new equivalences and which cannot.

To get around this problem, we first describe what a dilemma derivation
looks like, somewhat awkwardly dodging the question how to determine whether
a derivation is legal or not. Once the structure of a dilemma derivation is clear,
we use information about the derivation structure to define the concepts of scope
and depth. Having defined these concepts, we finally turn to the question what
constitutes a valid equivalence-based dilemma derivation.

Definition A.1 (Dilemma derivation structure) From a structural point
of view, an equivalence-based dilemma derivation is a sequence of (possibly in-
terleaved) formula equivalences (P ≡ Q, P ≡ QC , P ≡ >, P ≡ ⊥ and ⊥) and
dilemma rule applications (A.1), (A.2) and (A.3). Recursively, the branches of
a dilemma rule application are themselves dilemma derivations.

A dilemma derivation is always defined relative to some formula F in the
sense that the only admissible logical formulas in the derivation are subformu-
las of F and their negations (i.e. the elements in Sub (F )). In other words,
the dilemma proof system obeys the subformula principle (definition 2.21 on
page 16).

Although we have not yet addressed the question how to determine in what
ways formula equivalences and dilemma rule applications may be legally inserted
into a derivation, the structure of a dilemma derivation is now clear.

Next, we define the scope of dilemma rule assumptions and dilemma rule
applications.
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Definition A.2 (Scope) The scope of a dilemma rule assumption is all for-
mula equivalences occurring in the branch of the assumption (including the as-
sumption itself and all formula equivalences in nested dilemma rule applica-
tions) up to the point where the two branches of the dilemma rule application
are merged.

The scope of a dilemma rule application is the combination of the scopes of
the two complementary assumptions of the dilemma rule application.

Thus, for example, the scope of the dilemma rule assumption P ≡ Q in (A.1)
is P ≡ Q itself, the formula equivalences in π2 and the equivalences ψ1, . . . , ψk.

Definition A.3 (Derivation depth) A formula equivalence in a derivation
that is not within the scope of any application of the dilemma rule has derivation
depth (or simply depth) zero. A formula equivalence which is within the scope
of j applications of the dilemma rule has derivation depth j.

The derivation depth of a dilemma derivation is the maximum depth of an
equivalence in the derivation.

Using the concepts of scope and depth, we can determine which formula
equivalences are admissible at a point in a dilemma derivation as premises for
deriving further equivalences. We call such admissible formula equivalences
active equivalences.

Definition A.4 (Active equivalence) A dilemma rule assumption P ≡ Q is
an active assumption at a point in a dilemma derivation if the formula equiva-
lence at that point is within the scope of the assumption P ≡ Q.

At a given point in a dilemma derivation, a formula equivalence occurring
earlier in the derivation is an active equivalence if it is either a zero-depth
formula equivalence or is within the scope of an active dilemma rule assumption
but not within the scope of a no longer active (i.e. closed) nested dilemma rule
application.

Note that by definition A.2, all active assumptions are also active equiva-
lences.

We are now finally ready to formally state the rules according to which a
legal equivalence-based dilemma derivation is formed.

Definition A.5 (Equivalence-based dilemma derivation) Let F be an ar-
bitrary formula in propositional logic.

An equivalence-based dilemma derivation from F is a sequence of formula
equivalences and dilemma rule applications that obeys the subformula principle
and is formed according to the rules below.

A dilemma proof of F starts with the equivalence F ≡ ⊥ and shows that F
is a tautology by deriving ⊥ (which corresponds to starting with the formula
relation F⊥ and deriving a contradictory formula relation).

A dilemma refutation of F starts with the formula equivalence F ≡ > (which
corresponds to the formula relation F>) and proves that F is contradictory by
deriving ⊥ from this equivalence.

Let P,Q ∈ Sub (F ). At any given point in a dilemma derivation, new formula
equivalences can be added to the derivation according to the following rules:
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Repetition At any point in a dilemma derivation, any active formula equiv-
alence P ≡ Q (as defined in definition A.4) may be restated (this rule
is included for purely practical reasons to simplify the definition of the
dilemma rule.)

Propagation If at a point in a dilemma derivation there is among the rules in
figures A.1, A.2, A.3, A.4 and A.5 a rule

P1 ≡ Q1, . . . , Pj ≡ Qj
P ≡ Q

for which all premises P1 ≡ Q1, . . . , Pj ≡ Qj are among the active equiv-
alences, then the formula equivalence P ≡ Q can be added at that point in
the derivation. If P ≡ PC is an active equivalence the symbol ⊥ may be
added in accordance with rule (E11).

Branching At any point in a dilemma derivation, a dilemma rule application
may be introduced by branching over the truth or falsity of a formula equiv-
alence P ≡ Q. The two branches of a dilemma rule application recursively
obey the same derivation rules as the dilemma derivation itself.

Merging At any point in a dilemma derivation, the innermost open dilemma
rule application may be closed according to the dilemma rule schemes (A.1),
(A.2) or (A.3). (Note that in order to simplify the formal description of
the dilemma rule applications, we add the restriction that the branches of
a dilemma rule application should end with a list of the formula equiva-
lences that we want to deduce, possibly including repetitions of equivalences
derived earlier in the branches.)

A dilemma proof or refutation ends when ⊥ has been derived at zero depth
according to the rules above.

A.5 Equivalence Rules vs. Formula Relations

The relations between dilemma and resolution in chapter 6 are shown for the
equivalence-based variant of the proof system formally defined in definition A.5
above, while St̊almarck’s proof search algorithm is based on formula relation
dilemma. Because of this, it seems appropriate to comment on how our results
on depth, length and size of dilemma proofs are affected by the differences
between equivalence-based and formula relation dilemma.

It follows from our discussion in section A.2 that the hardness degree of a
formula is not affected by the choice between equivalence-based and formula
relation dilemma. As to derivation length and size, it is not too difficult to see
that the two dilemma proof system variants are polynomially related. We give
informal proofs of these facts below.

It should be noted, however, that due to the “repetition rule” in defini-
tion A.5, an equivalence-based dilemma derivation can go on forever without
deriving any new consequences. Thus, for equivalence-based dilemma we lose the
upper bound on length (and consequently also on size) of proper d-derivations
given in theorem 4.23 on page 58 (though a similar bound could be recovered by
taking more care in designing the dilemma rule (A.1) and/or restricting what
kinds of formula equivalence repetitions are admissible in definition A.5).
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Below we first discuss the difference between equivalence-based and formula
relation dilemma and then give informal proofs for our claims about the poly-
nomial relations between the two proof systems for derivation length and size.

A.5.1 Comparison of the Dilemma Variants

In formula relation dilemma derivations, instead of dealing with formula equiv-
alences we operate directly on (sub)formula equivalence relations R. At each
propagation step in such a derivation, we apply one of the propagation rules in
figures A.2, A.3, A.4 or A.5 and then update the affected equivalence classes in
the formula relation by taking the closure under transitivity and complement.
This means that in the next step in a derivation, we automatically have access to
all implicit formula equivalences which can be derived by the equivalence rules
for commutativity (rule (E2)), transitivity (rules (E3), (E4) and (E5)), comple-
ment (rules (E6), (E7) and (E8)) and introduction (rules (E9) and (E10)).

We give a short example to clarify this. Suppose that we know before an
application of a rule that P ≡ Q and R ≡ S and as a result derive Q ≡ R. Then
in formula relation dilemma we may freely in all succeeding derivation steps use
the equivalence P ≡ S (indeed, P and S will be interchangeable representatives
of the same equivalence class). In contrast, before using the equivalence P ≡ S
in equivalence-based dilemma we have to derive it explicitly by two applications
of the transitivity rule (E3), deducing first that P ≡ Q and Q ≡ R imply P ≡ R,
and then that P ≡ R and R ≡ S imply P ≡ S.

As to the dilemma rule, when merging the two branches of a formula relation
dilemma rule application, we derive in one step the new formula relation R1uR2.
Instead of the rule for contradiction (E11) in equivalence-based dilemma we have
the formula relation variant

P ≡ PC

Q ≡ >
∀Q ∈ Sub (F ) (A.4)

(rule (4.18) on page 48) and we can summarize the three cases (A.1), (A.2)
and (A.3) of the dilemma rule for equivalence-based dilemma in one dilemma
rule for formula relation dilemma:

R
R
[
P ≡ Q

]
R
[
P ≡ QC

]
π1 π2

R1 R2

R1uR2

(A.5)

(rule (4.19) on page 49). In contrast, in equivalence-based dilemma we have
to restate explicitly the derived formula equivalences before and after closing a
dilemma rule application.

A.5.2 Derivation Length

It follows from the above discussion that derivations in the equivalence-based
dilemma proof system will in general be longer than corresponding derivations
in formula relation dilemma. However, the difference in length is at most poly-
nomial. We sketch a proof of this fact below.
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We claim that for any derivation π in formula relation dilemma we can con-
struct a corresponding equivalence-based dilemma derivation π′ in such a way
that the following holds: Suppose that we have translated the formula relation
derivation π to a equivalence-based derivation π′ up to a certain point, possibly
somewhere inside one or more dilemma rule applications, and suppose that at
this point in π we derive the formula relation Rj by a simple rule from Ri or by
the dilemma rule from Ri and Ri′ . Then we can derive from the active equiva-
lences in our equivalence-based dilemma derivation π′ the formula equivalences
needed to generate Rj from Ri (and possibly Ri′) in a number of derivation steps
at most quadratic in the number of preceding formula relations in π. Granted
that this claim holds, we can construct for a formula relation dilemma deriva-
tion π of length L a corresponding derivation π′ in equivalence-based dilemma
of length at most O (

∑L
i=1 i

2) = O
(
L3
)
, i.e. with length L (π′) at most cubic

in L (π).
To show that the claim is true, we have to look at two cases: propagation

and dilemma rule application.
For propagation, assume that at a certain point in a formula relation dilemma

derivation we derive R1 ≡ R2 from (implicit) equivalences P1 ≡ Pi andQ1 ≡ Qj .
But the equivalences P1 ≡ Pi and Q1 ≡ Qj are closures under transitivity and
complement of chains of equivalences derived earlier in the derivation, which
can be written (not necessarily in order of derivation and possibly after renum-
bering)

P1 ≡ P2, P2 ≡ P3, . . . , Pi−1 ≡ Pi (A.6)

and
Q1 ≡ Q2, Q2 ≡ Q3, . . . , Qj−1 ≡ Qj . (A.7)

We see that in order to transform the derivation step in formula relation dilemma
above to a legal equivalence-based dilemma derivation, it is sufficient to go
through these chains and for each equivalence Pk−1 ≡ Pk add a derivation
P1 ≡ Pk−1, Pk−1 ≡ Pk ⇒ P1 ≡ Pk, using the equivalence rules for commuta-
tivity, transitivity, complement and introduction (and similarly for equivalences
Qk−1 ≡ Qk). Finally, we apply the needed propagation rule to P1 ≡ Pi and
Q1 ≡ Qj to derive R1 ≡ R2. In all, we shall have to insert no more than a
constant number of derivation steps for each preceding relation in the formula
relation dilemma derivation.

Transforming dilemma rule applications is slightly more complicated. Sup-
pose that we have the formula relation derivation fragment in figure A.6, where πf
does not contain any closed dilemma rule applications but is the “path” of for-
mula relations leading up to the first closed dilemma rule application in some
branch of the derivation (and is thus not necessarily a dilemma derivation it-
self), and the derivations π1 : R

[
P ≡ Q

]
⇒ R1 and π2 : R

[
P ≡ QC

]
⇒ R2 in the

branches do not contain any dilemma rule applications but only simple deriva-
tions. Suppose, furthermore, that the formula relation derivation fragment up
to and including R has been translated to an equivalence-based derivation frag-
ment π′f as described above. To construct an equivalence-based dilemma rule
application corresponding to figure A.6, we proceed as follows.

The branching and the two subderivations π1 and π2 do not present any
problems. We insert the dilemma rule assumption P ≡ Q in the left branch and
P ≡ QC in the right branch and then construct corresponding equivalence-based
derivations π′1 and π′2 as described above for propagation.
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πf
R

R
[
P ≡ Q

]
R
[
P ≡ QC

]
π1 π2

R1 R2

R1uR2

Figure A.6: Derivation fragment in formula relation dilemma.

π′f
P ≡ Q P ≡ QC

π′1 π′2
π′′1 π′′2
ψ1 ψ1

...
...

ψk ψk
ψ1

...
ψk

Figure A.7: Derivation fragment transformed to equivalence-based dilemma.

As to the merging of the two branches, let Ψ = {ψ1, . . . , ψk} be a minimal
set of formula associations needed to generate R1uR2 from R. These are the
equivalences ψ1, . . . , ψk of the equivalence-based dilemma rule (A.1) on page 130
that we will need to derive explicitly in the two branches of the dilemma rule
application in π′ and then restate after merging the branches. It must certainly
hold that |Ψ| ≤ max {L (π1), L (π2)} ≤ L (π1) + L (π2) (since R1 and R2 are
generated from L (π1) and L (π2) number of formula equivalences respectively).

All associations in Ψ are consequences under closure by transitivity and
complement of formula equivalences derived explicitly in π and π1 on the one
hand and π and π2, on the other. Therefore, we can make equivalence-based
derivations π′′1 and π′′2 in the two branches where each of the at most L (π1) +
L (π2) ψi’s are derived by the equivalence rules for commutativity, transitivity,
complement and introduction in length O (L (π) + L (π1) + L (π2)). We then
restate the equivalences ψi at the bottom of both branches, close the dilemma
rule application and repeat the ψi once more.

The resulting derivation fragment in equivalence-based dilemma is presented
in figure A.7, where

L
(
π′f
)

= O
(
L (πf )

2
)

(A.8)

L (π′i) = O
(
(L (πf ) + L (π1) + L (π2))

2
)

(A.9)

L (π′′i ) = O
(
(L (πf ) + L (π1) + L (π2))

2
)

(A.10)

|{ψ1, . . . , ψk}| = O (L (π1) + L (π2)) (A.11)
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We see that the formula relation derivation fragment in figure A.6 can be trans-
formed to a corresponding equivalence-based derivation fragment in figure A.7
with length at most quadratic in the number of formula relations in figure A.6.
This special case can be generalized to the case where π1 and π2 are derivations
with an arbitrary amount of nested dilemma rule applications and πf is an ar-
bitrary dilemma derivation fragment in the sense described above. We leave the
details to the reader.

A.5.3 Derivation Size

Since the length of a minimal equivalence-based dilemma derivation is at most
cubic in the length of the corresponding formula relation dilemma derivation,
the same bound certainly holds for the sizes of the two derivations.

More than that, one can argue that the size of a minimal equivalence-based
dilemma derivation is at most quadratic in the length of the corresponding
formula relation derivation, since in the latter derivation the full formula relation
(including the “equivalence chains” described above) is given at each step in the
derivation. However, since a cubic bound is enough for our purposes, we choose
not to elaborate on this any further.
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Appendix B

Two Proofs

This appendix contains the missing parts in the proofs of two of the theorems
in chapter 6. In section B.1 we prove the lower bound on hardness in atomic
dilemma needed in theorem 6.1, and in section B.2 we fill in the details in the
proof of theorem 6.20.

B.1 Separation of DB from DA w.r.t. Hardness

Theorem 6.1 says that there exists a linear separation of bivalent dilemma from
atomic dilemma with respect to hardness. In section 6.1 we proved that the
hardness in bivalent dilemma of the suggested separation formulas CM n was
constant, but only sketched a proof of the Ω (n)-bound on the hardness of CM n

in atomic dilemma needed for the separation. We now formalize the argument
given in the proof sketch for the lower bound.

First, we generalize the matrix formulas CM n to n by m matrices. Recalling
the definitions

Rmi :=
m∧
j=1

xi,j (B.1)

Cnj :=
n∧
i=1

xi,j (B.2)

from figure 6.1, we define

CM n,m :=
n∨
i=1

Rmi ∧
m∨
j=1

Cnj . (B.3)

To save some typing, we introduce a special notation for the formula relation
resulting from assuming CM n,m true and 0-saturating:

Mn,m :=Sat
(
CM n,m

>, 0
)
. (B.4)

The intuitive concept that was mentioned in the proof sketch of “deleting” the
last column Cnm is formalized as augmenting Mn,m by the set of associations

ΨCn
m

:=
{
Rm−1

1 ≡ Rm1 . . . , Rm−1
n−1 ≡ Rmn−1

}
(B.5)

139
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and “deleting” the last row Rmn corresponds to augmenting by

ΨRm
n

:=
{
Cn−1

1 ≡ Cn1 . . . , C
n−1
m−1 ≡ Cnm−1

}
. (B.6)

Next, we show a technical lemma.

Lemma B.1
Suppose that min {n,m} ≥ 3. Then

Sat
(
Mn,m

[
xn,m ≡ >,ΨCn

m

]
, 0
)
uSat

(
Mn,m

[
xn,m ≡ ⊥,ΨRm

n

]
, 0
)

= Mn,m.

Proof: Consider first Mn,m = Sat
(
CM n,m

>, 0
)
. Assuming CM n,m true and

propagating yields
∨n
j=1R

m
i ≡ > and

∨m
i=1 C

n
j ≡ > by rule (C1NF ). No further

consequences can be derived by the propagation rules in figures 5.1 and 5.2, so
Mn,m consists of the TRUE -class

[
>,CM n,m,

n∨
i=1

Rmi ,
m∨
j=1

Cnj ,
]

(B.7)

and its complementing FALSE -class. Note that according to the definition of
formula relations in NF-dilemma (equation (5.3) on page 85), the unit equiva-
lence classes

[
P
]

for all other subformulas P in CM n,m are not in Mn,m.
If we augment Mn,m by xn,m ≡ > and propagate, we derive for the “parent

subformulas” of xn,m the equivalences

Rmn ≡ Rm−1
n [by rule (C4NF )] (B.8)

Cnm ≡ ⊥ [by rule (C5NF )] (B.9)

as well as the less interesting equivalences

Rmn \ V1 ≡ Rm−1
n \ V1 [by rule (C4NF )] (B.10)

for all subsets ∅ 6= V1 ⊂ {xn,1, . . . xn,m−1} (i.e. for all subclauses of Rmn contain-
ing xn,m) and

Cnm \ V2 ≡ ⊥ [by rule (C5NF )] (B.11)

for all subsets ∅ 6= V2 ⊂ {x1,m, . . . , xn−1,m}. This is all that can be derived by
propagation on xn,m ≡ >. Using the new equivalences (B.8)–(B.11) we get

m−1∨
j=1

Cnj ≡
m∨
j=1

Cnj [by (B.9) and rule (D5NF )] (B.12)

as well as∨
j∈S

Cnj ≡
∨
j∈S

Cnj ∨ Cnm [by (B.9) and rule (D5NF )] (B.13)

for all ∅ 6= S ⊂
[
m− 1

]
. It is straightforward to check that nothing more can

be derived nor about “parent subformulas” nor about “children subformulas”
of the formulas in (B.8)–(B.13) by the propagation rules in figures 5.1 and 5.2.
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Now add the associations
{
Rm−1

1 ≡ Rm1 . . . , Rm−1
n−1 ≡ Rmn−1

}
in ΨCn

m
. The

equivalence classes originating from ΨCn
m

have no common elements with the
classes arising as a result of the equivalences derived in (B.8)–(B.13), so any new
associations resulting from the addition of ΨCn

m
must be derived by application

of the propagation rules for conjunction on the classes
[
Rmi , R

m−1
i

]
, i = 1, . . . , n.

An inspection of figure 5.1 reveals that there are no applicable rules. That is,
the formula relation is 0-saturated.

Summarizing the above, we can depict the relation

Sat
(
Mn,m

[
xn,m ≡ >,ΨCn

m

]
, 0
)

(B.14)

schematically as consisting of:

>-1 the TRUE -class

[
>,CM n,m,

n∨
i=1

Rmi ,
m∨
j=1

Cnj ,
m−1∨
j=1

Cnj , xn,m,¬Cnm
]

∪
[
¬
(
Cnm \ V2

)
| ∅ 6= V2 ⊂ {x1,m, . . . , xn−1,m}

]
,

>-2 the equivalence classes
[
Rmi , R

m−1
i

]
for i = 1, . . . , n,

>-3 the “subclasses”
{[
Rmn \ V1, R

m−1
n \ V1

]
| ∅ 6= V1 ⊂ {xn,1, . . . , xn,m−1}

}
of

the equivalence class
[
Rmn , R

m−1
n

]
,

>-4 the “subclasses”
{[∨

j∈S C
n
j ,
∨
j∈S C

n
j ∨ Cnm

]
| ∅ 6= S ⊂

[
m− 1

]}
in (B.13)

of (B.12)

and complementary equivalence classes. In an analogous fashion we derive that

Sat
(
Mn,m

[
xn,m ≡ ⊥,ΨRm

n

]
, 0
)

(B.15)

has the following equivalence classes (with complements):

⊥-1 the TRUE -class

[
>,CM n,m,

n∨
i=1

Rmi ,
m∨
j=1

Cnj ,
n−1∨
i=1

Rmi , xn,m,¬Rmn
]

∪
[
¬
(
Rmn \ V1

)
| ∅ 6= V1 ⊂ {xn,1, . . . , xn,m−1}

]
,

⊥-2 the classes
[
Cnj , C

n−1
j

]
, j = 1, . . . ,m,

⊥-3 the “subclasses”
{[
Cnm \ V2, C

n−1
m \ V2

]
| ∅ 6= V2 ⊂ {x1,m, . . . , xn−1,m}

}
,

⊥-4 the “subclasses”
{[∨

i∈S R
m
i ,
∨
i∈S R

m
i ∨ Rmn

]
| ∅ 6= S ⊂

[
n− 1

]}
.

It is now a routine matter to verify the statement of the lemma that the
formula relation intersection of (B.14) and (B.15) is Mn,m by investigating the
pairwise intersections of the equivalence classes in (>-1)–(>-4) and (⊥-1)–(⊥-4).
We remind the reader that by the definition in (5.3), pairwise intersections that
yield unit equivalence classes are not included in the domain of the formula
relation intersection.
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The intersection of the TRUE -classes (>-1) and (⊥-1) is easily seen to
be (B.7). The intersection of one TRUE - and one FALSE -class is the unit
equivalence class

[
xn,m

]
, which is ignored.

Intersections of classes in (>-1)–(>-4) with classes in (⊥-2) yield only unit
equivalence classes, since Cn−1

j is not in the domain of (B.14). This holds also
for (>-1)–(>-4) and (⊥-3), since no Cn−1

m \ V2 is in the domain of (B.14). The
intersections of (>-1)–(>-4) with (⊥-4), finally, also result only in unit classes
since

∨n−1
j=1 R

m
i and

∨
i∈S R

m
i (for ∅ 6= S ⊂

[
n− 1

]
) are not in (B.14).

In the same way, we get that the intersections of classes in (⊥-1) with classes
in (>-2)–(>-4) yield nothing but unit equivalence classes. Thus, the formula
relation intersection of (B.14) and (B.15) is Mn,m, which was to be proved. 2

Using lemma B.1 and the strategy laid out in proposition 5.11, we can prove
an Ω (min {n,m})-bound on any nontrivial atomic derivation from Mn,m.

Lemma B.2
Suppose that min {n,m} ≥ 2 and let π be a proper nontrivial atomic NF-di-
lemma derivation π : Mn,m ⇒ M′

n,m. Then

D (π) ≥ min {n,m} − 1

and in particular in holds that

HDA
(Mn,m) ≥ min {n,m} − 1.

Proof: We prove lemma B.2 by a somewhat modified variant of the proof of
proposition 5.11 with induction over n and m.

By the proof of lemma B.1, the relation Mn,m is 1-hard for min {n,m} ≥ 2,
which guarantees the existence of nontrivial derivations (this is condition 1 in
proposition 5.11).

For min {n,m} ≤ 2 there is nothing to prove, since the inequality in the
lemma is true by definition. Suppose that the lemma holds for Mn,m−1 and
Mn−1,m with min {n,m} ≥ 3, and let π be a proper nontrivial atomic derivation
from Mn,m.

Since Mn,m is 0-saturated, π must start by a dilemma rule application, with-
out loss of generality branching over xn,m. Then π can be written as

Mn,m

Mn,m

[
xn,m ≡ >

]
Mn,m

[
xn,m ≡ ⊥

]
π1 π2

R1 R2

R1uR2

π3

M′
n,m

(B.16)

where π1 : Mn,m

[
xn,m ≡ >

]
⇒ R1 and π2 : Mn,m

[
xn,m ≡ ⊥

]
⇒ R2 are subderi-

vations such that
R1uR2 =Mn,m (B.17)

since π is proper. Note that we must have max {D (π1), D (π2), } ≥ 1 (this is
condition 2 in proposition 5.11) since it follows from lemma B.1 that

Sat
(
Mn,m

[
xn,m ≡ >

]
, 0
)
uSat

(
Mn,m

[
xn,m ≡ ⊥

]
, 0
)

= Mn,m. (B.18)
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Now consider the augmented derivations

π1

[
ΨCn

m

]
: Mn,m

[
xn,m ≡ >,ΨCn

m

]
⇒ R1

[
ΨCn

m

]
(B.19)

and
π2

[
ΨRm

n

]
: Mn,m

[
xn,m ≡ ⊥,ΨRm

n

]
⇒ R2

[
ΨRm

n

]
. (B.20)

In view of lemma B.1, it must either be the case that

R1

[
ΨCn

m

]
=Sat

(
Mn,m

[
xn,m ≡ >,ΨCn

m

]
, 0
)

(B.21)

or that
R2

[
ΨRm

n

]
=Sat

(
Mn,m

[
xn,m ≡ ⊥,ΨRm

n

]
, 0
)

(B.22)

(otherwise R1uR2vMn,m, which contradicts (B.17)).
Suppose that the inequality (B.21) holds. Then we can augment the deriva-

tion (B.19) with all associations in Sat
(
Mn,m

[
xn,m ≡ >,ΨCn

m

]
, 0
)

and remove
redundant derivation steps to get a proper nontrivial derivation

π′1 : Sat
(
Mn,m

[
xn,m ≡ ⊥,ΨRm

n

]
, 0
)
⇒ R′1. (B.23)

We now show that π′1 can be used to construct a proper nontrivial derivation π′′1
from Mn,m−1 in depth D (π′′1 ) ≤ D (π1) (this is condition 3 in proposition 5.11).

The derivation π′1 must start by a dilemma rule application. If the dilemma
rule branches over xi,j for j ≤ m−1, we let our constructed derivation π′′1 branch
over the same variable. If the branch is over some variable xi,m in column m,
we let π′′1 branch over xi,m−1.

Now suppose π′1 applies some propagation rule which derives an equivalence
P1 ≡ P2. If the subformulas Pi of CM n,m are also subformulas of CM n,m−1,
the derivation π′′1 can apply the same rule on the same subformulas to derive
the same equivalence. If one or both of the Pi are formulas Rmi or Rmi \ V1

containing xi,m, then π′′1 can derive corresponding equivalences for P ′i = Rm−1
i

or P ′i = Rm−1
i \V1. Finally, if one or both of the Pi are formulas Cmn or Cmn \V2,

then π′′1 can derive corresponding equivalences for P ′i = Cm−1
n or P ′i = Cm−1

n \V ′2
(where xi,m−1 ∈ V ′2 if and only if xi,m ∈ V2). This is so since branches over xi,m
in π′1 correspond to branches over xi,m−1 in π′′1 .

The same reasoning can be applied to nested dilemma rule applications
within the two branches in π′1. In this way, as long as π′1 branches and propa-
gates, the derivation π′′1 can mimic the derivation steps in π′1 as described above.
It follows that if π′1 closes a dilemma rule application deriving common new as-
sociations in the two branches (since π′1 is proper), then π′′1 , too, can close its
corresponding dilemma rule application and derive common new associations.

Thus, since π′1 is a proper nontrivial derivation, so is π′′1 . But if π′′1 is a
proper nontrivial derivation from Mn,m−1, we must have

D (π1) ≥ D (π′1) ≥ D (π′′1 ) ≥ min {n,m− 1} − 1, (B.24)

(where the last inequality follows by the induction hypotesis).
If (B.22) holds, we can derive the bound

D (π2) ≥ min {n− 1,m} − 1 (B.25)

from the induction hypotesis for Mn−1,m in an analogous way.
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Since either (B.24) or (B.25) must be true, we conclude that

D (π) ≥ min {n,m} − 1. (B.26)

The lemma follows by the induction principle. 2

It is an immediate consequence of lemma B.2 that the hardness degree
of CM n in atomic NF-dilemma is at least n − 1, and by the reasoning in
section 5.2.1, the same lower bound must hold in binary atomic dilemma for
any parenthesized propositional logic version of the formula. (In fact, it is not
hard to show that the hardness of CM n in atomic dilemma is exactly n − 1;
see figure 6.4 on page 99.) This completes the proof of the linear separation
in theorem 6.1.

B.2 Depth-Width Relation of D and R
The results on dilemma and resolution presented in section 6.4 are based on
theorem 6.20, which says that dilemma refutations πD of CNF formulas F can
be translated to resolution refutations πR in width

W (πR) = O (W (F ) ·D (πD)) (B.27)

and length

L (πR) =
(
L (πD) ·W (F )D(πD)

)O(1)

. (B.28)

We never proved this theorem in section 6.4, however, but only sketched very
roughly the intuition behind the proof. In this section, we fill in the missing
details and give a formal proof of the theorem.

Suppose that F is an unsatisfiable CNF formula in width W (F ) = k and
that πD is an equivalence-based general NF-dilemma refutation of F . Without
loss of generality, we may assume that πD starts by deriving C ≡ > in depth 0
for all clauses C ∈ F mentioned in the proof and that apart from this πD does
not contain any applications of the propagation rules for conjunction in fig-
ure 5.1. (If πD does not meet these requirements it is easy to construct a new
derivation π′D from πD in length L (π′D) ≤ L (πD) and width W (π′D) ≤W (πD)
that does).

As described in the proof sketch for theorem 6.20 in section 6.4, we trans-
form πD to a proof consisting of a sequence of lines by denoting the fact that
the equivalence φ has been derived under (open) assumptions ψ1, . . . , ψi from
preceding lines in the proof by

ψ1 ⇒ . . .⇒ ψi ⇒ φ. (B.29)

The first row in every new branch of πD is not translated (i.e. the first row in
the proof F ≡ > and the assumptions ψ and ψC in dilemma rule applications).
When the proof πD branches, we translate first the subderivation in the left
branch of the dilemma rule application, then the right branch and finally the
subderivation after the closure of the dilemma rule application (and recursively
in the same way for the dilemma rule applications within the branches).
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In this way, πD is rewritten to a proof

ψ1,1 ⇒ . . .⇒ ψ1,d1 ⇒ φ1

... (B.30)
ψn,1 ⇒ . . .⇒ ψn,dn

⇒ φn

in a somewhat more general proof system which we may call line-based dilemma.
Lines in a line-based dilemma refutation can in turn be translated into sets
of CNF clauses. These CNF clauses constitute the backbone of a resolution
refutation of the formula F , the gaps in which can be completed in width and
length as stated in theorem 6.20.

This section is organized as follows. We start by giving a formal definition of
line-based dilemma in section B.2.1. In section B.2.2, we define the translation
of lines in a line-based dilemma refutation to sets of CNF clauses and state the-
orem B.3 about translation from line-based dilemma to resolution, from which
theorem 6.20 follows. The remaining part of the appendix is spent proving the-
orem B.3. After some preliminaries in section B.2.3, the proof boils down to a
case analysis for the disjunction propagation rules in figure 5.2 in section B.2.4,
the equivalence rules in figure A.1 in section B.2.5 and the dilemma rules (A.1),
(A.2) and (A.3) in section B.2.6.

B.2.1 Formal Definition of Line-Based Dilemma

A line-based dilemma derivation from a CNF formula F is a sequence

πL = {H1, . . . ,Hn} (B.31)

of legal lines
Hi = ψ1 ⇒ . . .⇒ ψd ⇒ φ (B.32)

where ψj , φ are equivalences P ≡ Q for P,Q unnegated or negated subclauses
of the clauses of F .

In the rest of this appendix, we use the shorthand Ψ ⇒ to denote a chain
of assumptions ψ1 ⇒ . . .⇒ ψd ⇒. We write ψj ∈ Ψ to denote that ψj ⇒ is one
of the assumptions in Ψ ⇒. If all assumptions in Ψ′ ⇒ are found in Ψ ⇒, we
write Ψ′ ⊆ Ψ. We use the notation |ψ1 ⇒ . . .⇒ ψd ⇒| = d for the number of
assumptions in a chain and define |Ψ ⇒ φ| := |Ψ ⇒|+1 for a line-based dilemma
derivation line.

A derivation line Hi in line-based dilemma is legal if it is derivable according
to one of the following rules.

Axiom If C is a clause in F , then Hi = C is a legal line.

Propagation The line Hi = Ψ ⇒ φ is a legal conclusion by propagation if
there exists a disjunction propagation rule

ψ

φ

in figure 5.2 on page 86 such that either ψ ∈ Ψ or there is a line-based
dilemma line Hi′ = Ψ′ ⇒ ψ with i′ < i (i.e. occurring earlier in the
derivation πL) and Ψ′ ⊆ Ψ.
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Equivalence The line Hi = Ψ ⇒ φ is a legal conclusion by equivalence if there
exists an equivalence relation rule

ψ1, . . . , ψc
φ

in figure A.1 on page 126 such that for all 1 ≤ j ≤ c ≤ 2 either ψj ∈ Ψ or
there is a line-based dilemma line Hij = Ψ′j ⇒ ψj with ij < i and Ψ′j ⊆ Ψ.

Dilemma Hi = Ψ ⇒ φ is a legal conclusion by the dilemma rule if there are
line-based dilemma lines

Hi1 = Ψ ⇒ ψ′ ⇒ φ

and

Hi2 = Ψ ⇒ ψ′
C ⇒ φ

or

Hi2 = Ψ ⇒ ψ′
C ⇒ ⊥

with i1, i2 < i (where we abuse notation slightly to allow for the special
case φ = ⊥ in both branches).

The line-based dilemma derivation πL is a refutation of F if it ends with the
line Hn = ⊥.

It is not hard to see that the translation of a a proper equivalence-based
general NF-dilemma refutation πD of F as described above yields a legal line-
based dilemma refutation πL of F in at most the same length and depth.

B.2.2 Translation of Line-Based Dilemma to CNF

We now define how the lines in a line-based dilemma derivation are translated
to sets of CNF clauses. As described in section 6.4, each line

ψ1 ⇒ . . .⇒ ψd ⇒ φ (B.33)

is translated to a set of CNF clauses CNF (ψ1 ⇒ . . .⇒ ψd ⇒ φ) by interpret-
ing (B.33) as

¬ψ1 ∨ . . . ∨ ¬ψd ∨ φ (B.34)

and rewriting this formula to conjunctive normal form. In the following, we
will somewhat incorrectly denote a set of clauses {C |C ∈ CNF (Ψ ⇒ φ)} by
their conjunction

∧
C∈CNF(Ψ⇒φ) C. We feel that this a convenient way to make

the notation concise and avoid cluttering the proofs, and trust that it will not
confuse the reader.

We start by defining translations to clauses in conjunctive normal form of
single equivalences:
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CNF

(
n1∨
i=1

ai ≡ >

)
:=

n1∨
i=1

ai (B.35)

CNF

(
n1∨
i=1

ai ≡ ⊥

)
:=

n1∧
i=1

ai (B.36)

CNF

 n1∨
i=1

ai ≡
n2∨
j=1

bj

 :=
n1∧
i=1

(
ai ∨

n2∨
j=1

bj
)

∧
n2∧
j=1

(
bj ∨

n1∨
i=1

ai
)

(B.37)

CNF

 n1∨
i=1

ai ≡ ¬
n2∨
j=1

bj

 :=
n1∧
i=1

n2∧
j=1

(
ai ∨ bj

)
∧
( n1∨
i=1

ai ∨
n2∨
j=1

bj
)

(B.38)

The other types of single equivalences are reduced to the above cases in the
obvious way:

CNF

(
¬
n1∨
i=1

ai ≡ >

)
:= CNF

(
n1∨
i=1

ai ≡ ⊥

)
(B.39)

CNF

(
¬
n1∨
i=1

ai ≡ ⊥

)
:= CNF

(
n1∨
i=1

ai ≡ >

)
(B.40)

CNF

¬ n1∨
i=1

ai ≡ ¬
n2∨
j=1

bj

 := CNF

 n1∨
i=1

ai ≡
n2∨
j=1

bj

 (B.41)

CNF

¬ n1∨
i=1

ai ≡
n2∨
j=1

bj

 := CNF

 n1∨
i=1

ai ≡ ¬
n2∨
j=1

bj

 (B.42)

Let ψi and φ denote arbitrary equivalences Pi ≡ Qi for Pi, Qi unnegated or
negated subclauses of the clauses of F and let Ψ ⇒ denote a chain of assumptions
ψ1 ⇒ . . .⇒ ψd ⇒. Then for line-based dilemma derivation lines we define:

CNF (ψi ⇒) := CNF
(
ψi
C
)

(B.43)

CNF (Ψ ⇒ ψi ⇒) :=
∧

A∈CNF(Ψ⇒)

∧
B∈CNF(ψi⇒)

(
A ∨B

)
(B.44)

CNF (Ψ ⇒ ⊥) := CNF (Ψ ⇒) (B.45)

CNF (Ψ ⇒ φ) := CNF
(
Ψ ⇒ φC ⇒ ⊥

)
(B.46)

We adopt the convention CNF (∅ ⇒) = 0 for an empty chain of assumptions ∅ ⇒
and A ∨ 0 = A ∨ 0 = A for all clauses A (where 0 is the empty clause).

We are now ready to state formally theorem B.3, the proof of which is the
goal of the rest of section B.2.
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Theorem B.3 (Translation from line-based dilemma to resolution)
Let πL = {H1, . . . ,Hn} be a line-based dilemma refutation (as defined in sec-
tion B.2.1) of a CNF formula F with maximum clause widthW (F ) = k. Assume
that πL is proper in the sense that no assumptions are made over clauses C ∈ F
and no equivalences D1 ≡ D2 or D1 ≡ ¬D2 are derived for clauses D1, D2 at a
point in the derivation where instead Di ≡ >/⊥ can be derived in two simple
derivation steps (in particular, this holds if D1, D2 ∈ F ).

Then for each line Hi = ψi,1 ⇒ . . . ⇒ ψi,di ⇒ φi in πL, the set of
CNF clauses

CNF (ψi,1 ⇒ . . .⇒ ψi,di
⇒ φi)

can be derived by the resolution and weakening rules from the sets of clauses

CNF (ψ1,1 ⇒ . . .⇒ ψ1,d1 ⇒ φ1)
...

CNF
(
ψi−1,1 ⇒ . . .⇒ ψi−1,di−1 ⇒ φi−1

)
corresponding to preceding lines in the proof πL in length at most 2 · k2d+3 and
width at most (2d+ 3)(k − 1) for d = max1≤j≤i {dj}.

In view of what has been said above, if we can prove theorem B.3 then
theorem 6.20 follows immediately.

B.2.3 Some Auxiliary Lemmas and Observations

Before actually proving theorem B.3, we gather some facts which help us simplify
and shorten the proof. Our first observation is an immediate consequence of the
definitions in section B.2.2.

Observation B.4
If H = ψ1 ⇒ . . . ⇒ ψd ⇒ φ is a line-based dilemma line, then the translation
of H to CNF clauses can be written as

CNF (ψ1 ⇒ . . .⇒ ψd ⇒ φ) =

=
∧

A1∈CNF(ψ1⇒)

· · ·
∧

Ad∈CNF(ψd⇒)

∧
B∈CNF(φ)

( d∨
i=1

Ai ∨B
)
.

In particular, the translation to CNF is independent of the order of the assump-
tions in H.

This means that we can freely reorder the assumptions to simplify the proofs
of derivability in resolution of the rules in line-based dilemma.

Lemma B.5
If πL is a line-based dilemma derivation as described in theorem B.3, then for
all lines Hi = ψi,1 ⇒ . . .⇒ ψi,di

⇒ φi in πL we have

L (CNF (ψi,1 ⇒ . . .⇒ ψi,di
⇒ φi)) ≤ k2di+2

and
W (CNF (ψi,1 ⇒ . . .⇒ ψi,di

⇒ φi)) ≤ 2di(k − 1) + (2k − 1).
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This follows from section B.2.2 and observation B.4. Note that by definition,
the CNF clauses do not contain extra copies of any literals. Thus, we assume
that for example a clause a ∨ b ∨ b is implicitly reduced to a ∨ b.

Often we can simplify the proofs by ignoring the set of assumptions under
which the premises and the conclusion have been derived.

Observation B.6
Suppose that Hi = Ψ ⇒ φ was derived from lines Hij = Ψj ⇒ ψj , j = 1, . . . , c
such that for all j it holds that Ψj ⊆ Ψ. Then to show that CNF (Ψ ⇒ φ) is
derivable in resolution from the sets of clauses CNF (Ψj ⇒ ψj), it suffices to
show that CNF (φ) is derivable from CNF (ψj), j = 1, . . . , c.

For if so, we can first derive CNF (Ψ ⇒ ψj) for all j by weakening and
then insert L (CNF (Ψ ⇒)) number of copies of the derivation of CNF (φ)
from CNF (ψj), j = 1, . . . , c, one for each clause in CNF (Ψ ⇒).

Another simplifications is to throw away sets of clauses CNF (Ψ ⇒ φ) that
are not needed in the proof. Clauses C that are not ordinary, i.e. that contain
both x and x for some variable x, are tautological and can be omitted in a
resolution refutation.

Observation B.7
If we delete all non-ordinary clauses in a resolution refutation π we get a valid
refutation π′ using the resolution and (possibly) weakening rules.

So if CNF (Ψ ⇒ φ) contains a subset S of non-ordinary clauses we can ignore
both S and the derivation of S from preceding clauses. In particular:

Observation B.8
Clauses in sets of type CNF

(
Ψ ⇒ ψ ⇒ ψC ⇒ φ

)
and CNF

(
Ψ ⇒ ψ ⇒ ψC ⇒ ⊥

)
are non-ordinary and can be ignored in the proof of theorem B.3.

When we prove that the disjunction propagation rules and equivalence re-
lation rules are derivable in resolution, we will run into a lot of non-ordinary
clauses. The following lemma reduces the number of cases which need to be
taken care of in the case analysis.

Lemma B.9
Suppose that ψ is an equivalence and that S is a set of clauses such that

∧
C∈S C

is a subset of CNF (ψ) or is derivable from CNF (ψ) by weakening. Then∧
D∈CNF(ψ⇒)

∧
C∈S

(
C ∨D

)
is a set of non-ordinary clauses.

Proof: If
∧
C∈S C is a subset of CNF (ψ) or can be derived from CNF (ψ) by

weakening, every C must be a superset of some clause in CNF (ψ). Now the
lemma follows by an inspection of

∧
D∈CNF(ψ⇒)

∧
C∈S

(
C∨D

)
for the four cases

for ψ in (B.35), (B.36), (B.37) and (B.38). 2

We are now ready to prove that the bounds in theorem B.3 hold for all sets
of clauses CNF (Ψ ⇒ φ) regardless of by which rule in line-based dilemma the
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line Hi = Ψ ⇒ φ was derived. The case with an axiom Hi = C, C ∈ F is
trivial, since by definition CNF (C) = C is a legal conclusion in resolution if C
is a clause in F . In the next three subsections, we attend to the other three
kinds of rules for line-based dilemma derivations.

B.2.4 Derivability of Propagation Rules in Resolution

If the line Hi = Ψ ⇒ φ was concluded by a propagation rule for disjunction in
figure 5.2 from some equivalence ψ we have two cases: Either ψ ∈ Ψ or there is
a line-based dilemma line Hi′ = Ψ′ ⇒ ψ with i′ < i and Ψ′ ⊆ Ψ.

For all propagation rules but one, we prove derivability in resolution by
showing that if Hi was derived from Hi′ then CNF (Ψ ⇒ φ) can be obtained
from CNF (Ψ′ ⇒ ψ) by weakening (and thus trivially satisfies the bounds on
derivation length and width). For the case where ψ ∈ Ψ, it then follows by
lemma B.9 that CNF (Ψ ⇒ φ) is a set of non-ordinary clauses.

Disjunction Propagation Rule (D1NF )

Rule (D1NF ) derives
∨n1
i=1 ai ≡ ⊥ from

∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ ⊥.

Suppose that

Hi = Ψ ⇒
n1∨
i=1

ai ≡ ⊥ (B.47)

was derived from an earlier line

Hi′ = Ψ′ ⇒
n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ ⊥. (B.48)

By inspection of (B.36), we see that

CNF

(
n1∨
i=1

ai ≡ ⊥

)
⊆ CNF

 n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ ⊥

 , (B.49)

and it follows (by observation B.6) that CNF
(
Ψ ⇒

∨n1
i=1 ai ≡ ⊥

)
is derivable

from CNF
(
Ψ′ ⇒

∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ ⊥

)
by weakening.

If
∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ ⊥ is one of the assumptions in Hi (say,

Ψ ⇒ = Ψ′ ⇒
n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ ⊥ ⇒ (B.50)

without loss of generality because of observation B.4), then

CNF

Ψ′ ⇒
n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ ⊥ ⇒
n1∨
i=1

ai ≡ ⊥

 (B.51)

is a set of non-ordinary clauses by lemma B.9 (note that (B.49) shows that the
preconditions of the lemma are satisfied).
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Disjunction Propagation Rule (D2NF )

Rule (D2NF ) derives
∨n1
i=1 ai ≡ ⊥ from

∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ ¬

∨n1
i=1 ai.

Applying the definition in equation (B.38), we have

CNF

 n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ ¬
n1∨
i=1

ai

 =
n1∧
i=1

n1∧
i′=1

(
ai ∨ ai′

)
∧

n2∧
j=1

n1∧
i=1

(
bj ∨ ai

)
∧
( n1∨
i=1

ai ∨
n2∨
j=1

bj
)

(B.52)

which is a superset of CNF (
∨n1
i=1 ai ≡ ⊥) as defined by (B.36) (for i = i′ in∧n1

i=1

∧n1
i′=1

(
ai ∨ ai′

)
).

So if
∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ ¬

∨n1
i=1 ai was derived by an earlier line, the set of

clauses CNF (Ψ ⇒
∨n1
i=1 ai ≡ ⊥) is derivable from the clauses corresponding to

that line by weakening. By lemma B.9, if
∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ ¬

∨n1
i=1 ai is one

of the assumptions in Ψ the resulting set of CNF clauses is tautological.

Disjunction Propagation Rule (D3NF )

Rule (D3NF ) derives
∨n2
j=1 bj ≡ > from

∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ ¬

∨n1
i=1 ai.

Note that we must have n1 + n2 < k. Otherwise,
∨n1
i=1 ai ∨

∨n2
j=1 bj is a

clause in F and is known to be true, so
∨n2
j=1 bj ≡ > can be derived by applying

rule (D5NF ) and equivalence relation rules.
If Hi = Ψ ⇒

∨n2
j=1 bj ≡ > was derived by an earlier line

Hi′ = Ψ′ ⇒
n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ ¬
n1∨
i=1

ai, (B.53)

the set of clauses

CNF

Ψ ⇒
n2∨
j=1

bj ≡ >

 =
∧

A∈CNF(Ψ⇒)

( n2∨
j=1

bj ∨A
)

(B.54)

can be derived by resolution over ai, i = 1, . . . , n1 from clauses

∧
A∈CNF(Ψ′⇒)

n1∧
i=1

(
ai ∨A

)
(B.55)

and ∧
A∈CNF(Ψ′⇒)

( n1∨
i=1

ai ∨
n2∨
j=1

bj ∨A
)

(B.56)

in the CNF translation of (B.53) (which is (B.52) complemented with CNF en-
codings of the assumptions Ψ) in length at most k ·L

(
CNF

(
Ψ ⇒

∨n2
j=1 bj ≡ >

))
and width no more than the widest CNF clause in the translations ofHi andHi′ .
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Suppose instead that
∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ ¬

∨n1
i=1 ai is an assumption. If we

ignore non-ordinary clauses, we have

CNF

 n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ ¬
n1∨
i=1

ai ⇒


= CNF

 n1∨
i=1

ai ∨
n2∨
j=1

bj ≡
n1∨
i=1

ai


=

n2∧
j=1

(
bj ∨

n1∨
i=1

ai
)

= CNF

 n2∨
j=1

bj ≡ > ⇒
n1∨
i=1

ai ≡ >


= CNF

 n2∨
j=1

bj ≡ > ⇒
n1∨
i=1

ai ≡ ⊥ ⇒

 .

(B.57)

Using this equality and observation B.8, we get that

CNF

Ψ ⇒
n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ ¬
n1∨
i=1

ai ⇒
n1∨
i=1

ai ≡ ⊥

 =

= CNF

Ψ ⇒
n2∨
j=1

bj ≡ > ⇒
n1∨
i=1

ai ≡ ⊥ ⇒
n1∨
i=1

ai ≡ > ⇒ ⊥

 (B.58)

is a set of non-ordinary clauses.

Disjunction Propagation Rule (D4NF )

Rule (D4NF ) derives
∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ > from

∨n1
i=1 ai ≡ >.

It follows immediately from the definition in equation (B.35) and lemma B.9
that CNF

(
Ψ ⇒

∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ >

)
either can be derived by weakening or

is a set of non-ordinary clauses.

Disjunction Propagation Rule (D5NF )

Rule (D5NF ) derives
∨n1
i=1 ai ∨

∨n2
j=1 bj ≡

∨n2
j=1 bj from

∨n1
i=1 ai ≡ ⊥.

From (B.57) we have the equality

CNF

 n1∨
i=1

ai ∨
n2∨
j=1

bj ≡
n2∨
j=1

bj

 =
n1∧
i=1

(
ai ∨

n2∨
j=1

bj
)
, (B.59)

which shows that either CNF
(
Ψ ⇒

∨n1
i=1 ai ∨

∨n2
j=1 bj ≡

∨n2
j=1 bj

)
can be derived

by weakening or it is a set of non-ordinary clauses.
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Disjunction Propagation Rule (D6NF )

Rule (D6NF ) derives
∨n1
i=1 ai ∨

∨n2
j=1 bj ≡

∨n1
i=1 ai from

∨n1
i=1 ai ≡

∨n2
j=1 bj .

Referring again to (B.57), we have

CNF

 n1∨
i=1

ai ∨
n2∨
j=1

bj ≡
n1∨
i=1

ai

 =
n2∧
j=1

(
bj ∨

n1∨
i=1

ai
)

⊆ CNF

 n1∨
i=1

ai ≡
n2∨
j=1

bj

 (B.60)

and it follows that CNF
(
Ψ ⇒

∨n1
i=1 ai ∨

∨n2
j=1 bj ≡

∨n1
i=1 ai

)
either can be de-

rived by weakening or is a set of non-ordinary clauses.

Disjunction Propagation Rule (D7NF )

Rule (D7NF ) derives
∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ > from

∨n1
i=1 ai ≡ ¬

∨n2
j=1 bj .

By the definitions in (B.35) and (B.38) it holds that

CNF

 n1∨
i=1

ai ∨
n2∨
j=1

bj ≡ >

 ⊆ CNF

 n1∨
i=1

ai ≡ ¬
n2∨
j=1

bj

 , (B.61)

from which it follows that CNF
(
Ψ ⇒

∨n1
i=1 ai ∨

∨n2
j=1 bj ≡ >

)
can be derived by

weakening or is a set of non-ordinary clauses.

Summary of Results for Disjunction Propagation Rules

If Hi = Ψ ⇒ φ is a line in a line-based dilemma derivation πL where φ
was derived by a disjunction propagation rule from a premise φ ∈ Ψ, then
CNF (Ψ ⇒ φ) is a set of non-ordinary clauses and can be ignored when trans-
lating πL to a resolution derivation.

If the line Hi = Ψ ⇒ φ is the result of applying a disjunction propagation
rule on an earlier line Hi′ = Ψ′ ⇒ ψ in πL, then for all rules except (D3NF ) the
set of clauses CNF (Ψ ⇒ φ) can be derived by weakening. For rule (D3NF ), the
translation to CNF of Hi can be derived in length at most

k · L (CNF (Ψ ⇒ φ)) ≤ k|Ψ⇒φ|+1 (B.62)

and width at most

max {W (CNF (Ψ ⇒ φ)),W (CNF (Ψ′ ⇒ ψ))} ≤ 2 · |Ψ ⇒ φ| · (k − 1) (B.63)

(where the last inequality holds since Ψ′ ⊆ Ψ). Thus, the bounds in theorem B.3
hold for disjunction propagation rules.

B.2.5 Derivability of Equivalence Rules in Resolution

It is interesting to note that from the point of view of resolution, almost all
dilemma derivation conclusions by propagation just restate self-evident facts
either in the form of tautological sets of clauses (if the premise of the propagation
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rule is an assumption in the current line-based dilemma line) or as weakening of
preceding clauses (if the premise was derived in an earlier dilemma derivation
step). Most of the equivalence relation rules force resolution to work a bit
harder, as we shall see, although rules for reflexivity and commutativity need
not be translated at all for natural reasons.

Equivalence Relation Rule (E1)

The axiom P ≡ P translates to a set CNF (P ≡ P ) of non-ordinary clauses and
can thus be ignored.

Equivalence Relation Rule (E2)

Rule (E2) derives Q ≡ P from P ≡ Q. Such derivation steps can be ignored in
resolution since the two equivalences translates to the same set of CNF clauses.

Equivalence Relation Rule (E3)

Rule (E3) derives Q ≡ R from P ≡ Q and Q ≡ R.
Without loss of generality we may assume that the subformula P is an

unnegated CNF clause
∨n1
i=1 ai (otherwise derive QC ≡ RC from PC ≡ QC and

QC ≡ RC). For Q and R we then have three cases:

1. Q =
∨n2
j=1 bj and R =

∨n3
l=1 cl,

2. Q =
∨n2
j=1 bj and R = ¬

∨n3
l=1 cl,

3. Q = ¬
∨n2
j=1 bj and R =

∨n3
l=1 cl.

(If Q = ¬
∨n2
j=1 bj and R = ¬

∨n3
l=1 cl, we set P ′ = RC , Q′ = QC and R′ = PC

and use the results for the second case above.) For all three cases, we get
subcases depending on whether the premises are assumptions in the current
line or have been derived in preceding lines.

In what follows, we will make frequent use of observation B.4, which makes it
possible to to reorder the assumptions as wee see fit, and observation B.6, which
allows us to ignore assumptions other than the premises P ≡ Q and Q ≡ R.

Case 1: P =
∨n1
i=1 ai, Q =

∨n2
j=1 bj , R =

∨n3
l=1 cl.

(a) Both premises
∨n1
i=1 ai ≡

∨n2
j=1 bj and

∨n2
j=1 bj ≡

∨n3
l=1 cl are de-

rived.
Consider

CNF

 n1∨
i=1

ai ≡
n2∨
j=1

bj

 =
n1∧
i=1

(
ai∨

n2∨
j=1

bj
)
∧
n2∧
j=1

(
bj∨

n1∨
i=1

ai
)

(B.64)

and

CNF

 n2∨
j=1

bj ≡
n3∨
l=1

cl

 =
n2∧
j=1

(
bj∨

n3∨
l=1

cl
)
∧
n3∧
l=1

(
cl∨

n2∨
j=1

bj
)
. (B.65)
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By resolving ai ∨
∨n2
j=1 bj with bj ∨

∨n3
l=1 cl for j = 1, . . . , n2, the

set of clauses
∧n1
i=1

(
ai ∨

∨n3
l=1 cl

)
can be derived in n1n2 steps in

width n2 +n3. In the same way,
∧n3
l=1

(
cl∨

∨n1
i=1 ai

)
can be derived

in length n2n3 and width n1 + n2. It follows that

CNF

(
Ψ ⇒

n1∨
i=1

ai ≡
n3∨
l=1

cl

)
=

∧
A∈CNF(Ψ⇒)

( n1∧
i=1

(
ai ∨

n3∨
l=1

cl ∨A
)
∧

n3∧
l=1

(
cl ∨

n1∨
i=1

ai ∨A
))

(B.66)

can be derived in length at most(
n1n2 + n2n3

)
· L (CNF (Ψ ⇒)) ≤ 2 · k2|Ψ⇒P≡R| (B.67)

and width at most

max {n1 + n2, n2 + n3}+W (CNF (Ψ ⇒)) ≤

≤
(
2k − 1

)
+ 2
(
k − 1

)
|Ψ ⇒|. (B.68)

(b) One of the premises is assumed, say
∨n2
j=1 bj ≡

∨n3
l=1 cl without loss

of generality because of symmetry.
Then

CNF

 n2∨
j=1

bj ≡
n3∨
l=1

cl ⇒
n1∨
i=1

ai ≡
n3∨
l=1

cl


=

n2∧
j=1

n3∧
l=1

n1∧
i′=1

(
bj ∨ cl ∨ ai′ ∨

n3∨
l′=1

cl′
)

(B.69)

∧
n2∧
j=1

n3∧
l=1

n3∧
l′=1

(
bj ∨ cl ∨ cl′ ∨

n1∨
i′=1

ai′
)

(B.70)

∧
n1∧
i′=1

( n2∨
j=1

bj ∨
n3∨
l=1

cl ∨ ai′ ∨
n3∨
l′=1

cl′
)

(B.71)

∧
n3∧
l′=1

( n2∨
j=1

bj ∨
n3∨
l=1

cl ∨ cl′ ∨
n1∨
i′=1

ai′
)
, (B.72)

where (B.69) and (B.72) are non-ordinary and can be ignored and
(B.70) and (B.71) follow from CNF

(∨n1
i=1 ai ≡

∨n2
j=1 bj

)
by weak-

ening.

(c) Both premises
∨n1
i=1 ai ≡

∨n2
j=1 bj and

∨n2
j=1 bj ≡

∨n3
l=1 cl are as-

sumed.
By inspecting the calculations in case (1b) and combining the re-
sults with lemma B.9, we see that in this case the translation to
conjunctive normal form yields a set of non-ordinary clauses which
can be ignored.
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Case 2: P =
∨n1
i=1 ai, Q =

∨n2
j=1 bj , R = ¬

∨n3
l=1 cl.

(a) Both premises
∨n1
i=1 ai ≡

∨n2
j=1 bj and

∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl are de-

rived.

Using (B.64) and

CNF

 n2∨
j=1

bj ≡ ¬
n3∨
l=1

cl

 =
n2∧
j=1

n3∧
l=1

(
bj ∨ cl

)
∧
( n2∨
j=1

bj ∨
n3∨
l=1

cl
)
,

(B.73)
we can derive

∧n1
i=1

∧n3
l=1

(
ai ∨ cl

)
by resolving ai ∨

∨n2
j=1 bj with

bj∨cl for j = 1, . . . , n2 for all i and l in a total of n1n2n3 steps and
in no extra width. Resolving

∨n2
j=1 bj ∨

∨n3
l=1 cl with bj ∨

∨n1
i=1 ai

for j = 1, . . . , n2, we derive
∨n1
i=1 ai ∨

∨n3
l=1 cl in length n2 and

width n1 + n2 + n3 − 1. Putting this together, we see that

CNF

(
Ψ ⇒

n1∨
i=1

ai ≡ ¬
n3∨
l=1

cl

)
=

∧
A∈CNF(Ψ⇒)

( n1∧
i=1

n3∧
l=1

(
ai ∨ cl ∨A

)
∧
( n1∨
i=1

ai ∨
n3∨
l=1

cl ∨A
))

(B.74)

can be derived in length at most

(
n1n2n3 + n2

)
· L (CNF (Ψ ⇒)) ≤ 2 · k2|Ψ⇒P≡R|+1 (B.75)

and width at most

n1 + n2 + n3 − 1 +W (CNF (Ψ ⇒)) ≤
≤
(
2|Ψ ⇒|+ 3

)(
k − 1

)
. (B.76)

(b)
∨n1
i=1 ai ≡

∨n2
j=1 bj is derived,

∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl is assumed.

Since

CNF

 n2∨
j=1

bj ≡ ¬
n3∨
l=1

cl ⇒
n1∨
i=1

ai ≡ ¬
n3∨
l=1

cl

 =

= CNF

 n1∨
i=1

ai ≡
n3∨
l=1

cl ⇒
n2∨
j=1

bj ≡
n3∨
l=1

cl

 , (B.77)

this case reduces to case (1b).
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(c)
∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl is derived,

∨n1
i=1 ai ≡

∨n2
j=1 bj is assumed.

We have

CNF

 n1∨
i=1

ai ≡
n2∨
j=1

bj ⇒
n1∨
i=1

ai ≡ ¬
n3∨
l=1

cl


=

n1∧
i=1

n2∧
j=1

n1∧
i′=1

n3∧
l′=1

(
ai ∨ bj ∨ ai′ ∨ cl′

)
(B.78)

∧
n1∧
i=1

n2∧
j=1

(
ai ∨ bj ∨

n1∨
i′=1

ai′ ∨
n3∨
l′=1

cl′
)

(B.79)

∧
n1∧
i′=1

n3∧
l′=1

( n1∨
i′=1

ai′ ∨
n2∨
j=1

bj ∨ ai′ ∨ cl′
)

(B.80)

∧
( n1∨
i=1

ai ∨
n2∨
j=1

bj ∨
n1∨
i′=1

ai′ ∨
n3∨
l′=1

cl′
)
. (B.81)

The clauses (B.79) and (B.80) are non-ordinary and can be ig-
nored. The ordinary clauses in (B.78) and (B.81) follow from
CNF

(∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl

)
by weakening (see (B.73)).

(d) Both premises
∨n1
i=1 ai ≡

∨n2
j=1 bj and

∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl are as-

sumed.
If both premises are assumptions, the translation to CNF results
in a set of non-ordinary clauses by lemma B.9 applied on the cal-
culations in case (2b) or case (2c).

Case 3: P =
∨n1
i=1 ai, Q = ¬

∨n2
j=1 bj , R =

∨n3
l=1 cl.

(a) Both premises
∨n1
i=1 ai ≡ ¬

∨n2
j=1 bj and

∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl are

derived.
Fix i and derive ai ∨

∨n3
l=1 cl from ai ∨ bi and

∨n2
j=1 bj ∨

∨n3
l=1 cl in

n2 steps (see (B.38) and (B.73)). In this way we get∧
A∈CNF(Ψ⇒)

n1∧
i=1

(
ai ∨

n3∨
l=1

cl ∨A
)

(B.82)

in length n1n2 ·L (CNF (Ψ ⇒)) and no extra width. The comple-
mentary set of clauses∧

A∈CNF(Ψ⇒)

n3∧
l=1

(
cl ∨

n1∨
i=1

ai ∨A
)

(B.83)

is derived in the same way for a total length of(
n1n2 + n2n3

)
· L (CNF (Ψ ⇒)) ≤ 2 · k2|Ψ⇒P≡R| (B.84)

and width of

max {n1 + n2, n2 + n3}+W (CNF (Ψ ⇒)) ≤

≤
(
2k − 1

)
+ 2
(
k − 1

)
|Ψ ⇒|. (B.85)
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(b) One of the premises is assumed, say
∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl without

loss of generality because of symmetry.
We leave it to the reader to verify that the (ordinary) clauses in
CNF

(∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl ⇒

∨n1
i=1 ai ≡

∨n3
l=1 cl

)
are derivable by

weakening from CNF
(∨n1

i=1 ai ≡ ¬
∨n2
j=1 bj

)
.

(c) Both premises
∨n1
i=1 ai ≡ ¬

∨n2
j=1 bj and

∨n2
j=1 bj ≡ ¬

∨n3
l=1 cl are as-

sumed.
The non-ordinarity of the CNF translation follows from case (3b)
by lemma B.9.

Equivalence Relation Rules (E4) and (E5)

The rules (E4) and (E5) are special cases of rule (E3), and the proof for the
latter rule can easily be adapted to proofs for the former with the same bounds
on length and width. We leave the details to the reader.

Equivalence Relation Rules (E6), (E7) and (E8)

The premises and conclusions in the equivalence rules (E6), (E7) and (E8)
(which derive PC ≡ QC from P ≡ Q, PC ≡ ⊥ from P ≡ > and PC ≡ > from
P ≡ ⊥, respectively) translate into identical sets of CNF clauses. These rules
can therefore be ignored.

Equivalence Relation Rule (E9)

Rule (E9) derives P ≡ Q from P ≡ > and Q ≡ >.
Without loss of generality we may assume that the subformula P is an

unnegated CNF clause
∨n1
i=1 ai and that Q =

∨n2
j=1 bj or Q = ¬

∨n2
j=1 bj (if

P = ¬
∨n1
i=1 ai, set P ′ = PC and Q′ = Q′

C and apply rule (E10)).

Case 1: P =
∨n1
i=1 ai, Q =

∨n2
j=1 bj .

If
∨n1
i=1 ai ≡ > and

∨n2
j=1 bj ≡ > has both been derived, it is easy to

verify that CNF
(∨n1

i=1 ai ≡
∨n2
j=1 bj

)
follows from CNF

(∨n1
i=1 ai ≡ >

)
and CNF

(∨n2
j=1 bj ≡ >

)
by weakening.

If one of the premises, say
∨n2
j=1 bj ≡ >, is an assumption, it is just as

easy to check that CNF
(∨n2

j=1 bj ≡ > ⇒
∨n1
i=1 ai ≡

∨n2
j=1 bj

)
follows by

weakening from CNF
(∨n1

i=1 ai ≡ >
)
.

The non-ordinarity of the CNF translation in the case where both
premises are assumptions now follows from lemma B.9.

Case 2: P =
∨n1
i=1 ai, Q = ¬

∨n2
j=1 bj .

We get four cases depending on whether
∨n1
i=1 ai ≡ > and ¬

∨n2
j=1 bj ≡ >

are derived or assumed, but other than that the calculations (and re-
sults) are wholly analogous to case 1. We leave the details to the reader.
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Equivalence Relation Rule (E10)

Rule (E10) derives P ≡ Q from P ≡ ⊥ and Q ≡ ⊥.
Assume without loss of generality P =

∨n1
i=1 ai and Q =

∨n2
j=1 bj (the other

cases can be reduced to rule (E9)). The case analysis and the calculations are
wholly analogous to case 1 in rule (E9). We omit the details.

Equivalence Relation Rule (E11)

Rule (E11) derives ⊥ from P ≡ PC .
Assume P =

∨n1
i=1 ai and note that

∨n1
i=1 ai ≡ ¬

∨n1
i=1 ai never can be an

assumption but always is derived. The empty clause can be derived from

CNF

(
n1∨
i=1

ai ≡ ¬
n1∨
i=1

ai

)
=

n1∧
i=1

n1∧
i′=1

(
ai ∨ ai′

)
∧
( n1∨
i=1

ai ∨
n1∨
i′=1

ai′
)

=
n1∧
i=1

ai ∧
n1∧
i=1

n1∧
i′=i+1

(
ai ∨ ai′

)
∧
( n1∨
i=1

ai
)

(B.86)

in n1 steps and no extra width by resolving
∨n1
i=1 ai with ai, i = 1, . . . , n1, so

CNF (Ψ ⇒ ⊥) (B.87)

is derivable from

CNF

(
Ψ′ ⇒

n1∨
i=1

ai ≡ ¬
n1∨
i=1

ai

)
(B.88)

in length at most

n1 · L (CNF (Ψ ⇒)) ≤ 2 · k2|Ψ⇒|+1 (B.89)

and width no more than (
2|Ψ ⇒|+ 2

)(
k − 1

)
. (B.90)

Summary of Results for Equivalence Relation Rules

Suppose that Hi = Ψ ⇒ φ is a line in a line-based dilemma derivation πL
derived by an equivalence relation rule (where we abuse notation by allowing
φ = ⊥). Then the set of clauses CNF (Ψ ⇒ φ) can be derived by the resolution
and weakening rules from CNF clauses corresponding to earlier lines in the
proof πL in length at most

2k3 · L (CNF (Ψ ⇒)) ≤ 2k|Ψ⇒|+3 (B.91)

and width at most

3
(
k − 1

)
+W (CNF (Ψ ⇒)) ≤

(
2 · |Ψ ⇒|+ 3

)(
k − 1

)
, (B.92)

so the bounds in theorem B.3 hold also for equivalence relation rules.
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B.2.6 Derivability of Dilemma Rule in Resolution

Suppose that the line Hi = Ψ ⇒ φ has been derived by the dilemma rule. Then
by definition there are lines

Hi1 = Ψ ⇒ ψ′ ⇒ φ (B.93)

and
Hi2 = Ψ ⇒ ψ′

C ⇒ φ (B.94)

or
Hi2 = Ψ ⇒ ψ′

C ⇒ ⊥ (B.95)

with i1, i2 < i.
Assume first the most general case that ψ′ =

∨n1
i=1 ai ≡

∨n2
j=1 bj and that

Hi2 is on the form (B.94) (with φ 6= ⊥). Then we have

CNF

Ψ ⇒
n1∨
i=1

ai ≡
n2∨
j=1

bj ⇒ φ

 =

=
∧

A∈CNF(Ψ⇒φ)

( n1∧
i=1

n2∧
j=1

(
ai ∨ bj ∨A

)
∧
( n1∨
i=1

ai ∨
n2∨
j=1

bj ∨A
))

(B.96)

and

CNF

Ψ ⇒
n1∨
i=1

ai ≡ ¬
n2∨
j=1

bj ⇒ φ

 =

=
∧

A∈CNF(Ψ⇒φ)

( n1∧
i=1

(
ai ∨

n2∨
j=1

bj ∨A
)
∧

n2∧
j=1

(
bj ∨

n1∨
i=1

ai ∨A
))
. (B.97)

For every A ∈ CNF (Ψ ⇒ φ), we derive ai ∨ A by resolution in n2 steps from
clauses ai∨

∨n2
j=1 bj ∨A in (B.97) and ai∨ bj ∨A, j = 1, . . . , n2 in (B.96). In the

same way, we derive clauses bj ∨A. In a total of 2n1n2 ·L
(
CNF

(
Ψ ⇒ φ

))
steps

we get ∧
A∈CNF(Ψ⇒φ)

( n1∧
i=1

(
ai ∨A

)
∧

n2∧
j=1

(
bj ∨A

))
(B.98)

and we see that no clauses in this derivation are wider than the sets of clauses
in (B.96) and (B.97). Finally, we use

(
ai ∨A

)
and

(
bj ∨A

)
from (B.98) and(∨n1

i=1 ai ∨
∨n2
j=1 bj ∨A

)
from (B.96) to derive∧

A∈CNF(Ψ⇒φ)

A = CNF (Ψ ⇒ φ) (B.99)

in
(
n1 + n2

)
·L (CNF (Ψ ⇒ φ)) steps and no extra width.

Summarizing, (B.99) is derivable from (B.96) and (B.97) in length(
2n1n2 + n1 + n2

)
·L (CNF (Ψ ⇒ φ)) ≤ 2k2|Ψ⇒φ|+3 (B.100)
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and width

max {W (CNF (Ψ ⇒ ψ′ ⇒ φ)),W (CNF (Ψ ⇒ ψ′
C ⇒ φ))} ≤

≤
(
2|Ψ ⇒ φ|+ 2

)(
k − 1

)
. (B.101)

The special cases that need to be taken care of are:

1. Hi1 and/or Hi2 are on the form Ψ ⇒ ψ′ ⇒ ⊥.

The same proof as above holds (just replace clauses A ∈ CNF (Ψ ⇒ φ)
with subclauses B ∈ CNF (Ψ ⇒ ⊥) where appropriate).

2. ψ′ =
∨n1
i=1 ai ≡ > or ψ′ =

∨n1
i=1 ai ≡ ⊥.

It is easy to adjust the proof of the general case given above (or of case 1)
to a proof of the same bounds on length and width for this special case.
Just simplify (B.96) and (B.97) and derive (B.99) without the intermediate
step (B.98). We omit the details.

It follows that dilemma rule derivation steps can be derived in resolution
within the bounds on length and width in theorem B.3. The proof of the theorem
is completed.


