
DD3501 Current Research in Proof Complexity Oct 27, 2011

Lecture 2

Lecturer: Jakob Nordström Scribe: Joel Mickelin

The objective of today’s lecture is to introduce the concept of proof width. Width is an
important concept for resolution for several reasons, but the main reason for us to want to focus
on it now is that it turns out to be very helpful when we want to understand the fundamental
measures of length and space in resolution.

1 Terminology and Notation Used Throughout These Notes

Let us start by recalling some of the terminology and notation introduced in the previous lecture:

• A literal a is a variable x or its negation x.

• A clause C = a1 ∨ . . .∨ ak is a set of literals joined by the connective ∨. A clause with at
most k literals is known as a k-clause.

• A CNF formula F = C1∧ . . .∧Cm is a set of clauses joined by the connective ∧. A k-CNF
formula is a CNF formula consisting of k-clauses.

• Vars(·) denotes the set of variables in a formula. Lit(·) denotes the set of literals in a
formula.

• We write F � D to denote semantic implication. What this means is that for all truth
value assignments α, if α(F) is true then α(D) is true.

2 Recap of Resolution and a Slightly Modified Definition

As described in the last lecture, a resolution derivation from a CNF formula F can be defined
as a sequence of sets of clauses, or clause configurations, {D0, D1, . . . , Dτ}. The derivation steps
to go from a configuration Di to the next configuration Di+1 are as follows:

Axiom Download Dt = Dt−1 ∪ {C} where C is some clause in F .

Inference Dt = Dt−1 ∪ {D} where D is a clause obtained by resolving two clauses in Dt−1.

Erasure Dt = Dt−1 \ {D} where D is a clause in Dt−1.

We can observe that the erasure rule is only important when we care about measuring space.
If we are only interested in length, as will be the case in this and the next lecture, then we can
give a slightly simplified description of what a resolution derivation is as follows.

Definition 2.1. We write π : F `A, and say that π is a resolution derivation of A from F , if π
is a sequence of clauses π = {D1, . . . , Ds}, where Ds = A and each Di is either a clause C ∈ F
(an axiom) or a resolvent derived from clauses Dj , Dk ∈ π with j, k < i by the resolution rule.
Recall that the resolution rule

B ∨ x C ∨ x

B ∨ C
(2.1)

says that we can resolve two clauses B ∨ x and C ∨ x over the variable x to derive B ∨ C.
A resolution refutation of the CNF formula F is a derivation π : F `⊥, where ⊥ denotes the

empty clause containing no literals (which is the same thing as contradiction, since the empty
clause has no literals that can satisfy it and therefore is false by definition).

2-1

F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)
∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(a) CNF formula F .

1. x ∨ z Axiom 9. x ∨ y Res(1, 2)
2. z ∨ y Axiom 10. x ∨ y Res(3, 4)
3. x ∨ y ∨ u Axiom 11. x ∨ u Res(5, 6)
4. y ∨ u Axiom 12. x ∨ u Res(7, 8)
5. u ∨ v Axiom 13. x Res(9, 10)
6. x ∨ v Axiom 14. x Res(11, 12)
7. u ∨ w Axiom 15. ⊥ Res(13, 14)
8. x ∨ u ∨ w Axiom

(b) Resolution refutation of F .

Figure 1: Example resolution refutation.

An example of a resolution refutation is given in Figure 1.
Two important concepts for proof systems (in our case proof systems for refuting unsatisfi-

able CNF formulas) are soundness and completeness.

Definition 2.2. If F is a CNF formula and A is a clause, we say that a proof system is sound
if π : F `A implies that F � A.

In other words, if we can derive a clause A from a formula F , then it must also hold that F
semantically implies A. We can derive no invalid conclusions in a sound system.

Definition 2.3. If F is a CNF formula and A is a clause, we say that a proof system is
implicationally complete if F � A implies that there is a resolution derivation π : F `A′ for
some A′ ⊆ A.

In other words, a proof system with the completeness property is constructed in such a way
that all true implications can be proven.

Lemma 2.4. Resolution is sound and implicationally complete.

Proof sketch. We will not argue soundness in any detail, but this follows from the fact that the
resolution rule described above is sound.

For completeness, let us give a proof by example. We begin by defining what we mean by a
decision tree. For a CNF formula F , a decision tree TF is a binary tree with leaves labelled by
clauses in F , internal vertices labelled by variables x, and two edges from each internal vertex
labelled 0 and 1. Suppose that we have a truth value assignment α to the variables in F . This
assignment defines a path through TF by starting from the root and following from each internal
node x the edge label agreeing with the value assigned to x by α. Such a path ends in some
leaf C, which is the answer of TF on α.

The search problem for F , given α, is to find a clause C in F which is falsified by α. The
tree TF solves the search problem for F if on any α the answer C is a clause falsified by α. In
Figure 2, we see a decision tree which solves the search problem for the formula:

F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u) ∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w) (2.2)

It should be clear that if F is unsatisfiable, then one can always construct a decision tree
solving the search problem for F . It can be proven (which we leave as an exercise) that such a

2-2

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1
x

y u

z u v w

Figure 2: Decision tree for F .

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0

x x

x ∨ y x ∨ y x ∨ u x ∨ u

Figure 3: Resolution refutation of F corresponding to the decision tree in Figure 2.

decision tree can be transformed into a resolution refutation of F by starting with the clauses in
the leaves and resolving in a bottom-up fashion over the variables labelling the internal vertices.
We show in Figure 3 how this transformation works for the decision tree in Figure 2.

We want to make the concept of visualizing resolution derivations as graphs for formal. For
this purpose, let us define derivation graphs.

Definition 2.5. The derivation graph Gπ corresponding to a resolution derivation π is a directed
acyclic graph (commonly abbreviated as DAG). The vertices of this graph are the clauses of the
derivation. The edges of this graph go from B ∨ x and B ∨ x to B ∨ C for each application of
the resolution rule, and from B to B ∨ C if B ∨ C is derived from B by weakening.

Definition 2.6. A resolution derivation π is tree-like if Gπ is a tree. (We may make copies of
the axiom clauses to make Gπ into a tree.)

For example, the derivation in Figure 3 is tree-like. Let us next recall what the measure
length in resolution is.

Definition 2.7. The length L(π) of a resolution derivation π : F `A is the number of clauses
in π, counting repetitions. The length of deriving A from F in resolution is

LR (F ` A) = min
π:F `A

{
L(π)

}
(2.3)

where the minimum is taken over all resolution derivations of A from F . The length of deriving
A from F in tree-like resolution is

LT (F ` A) = min
π:F `A

{
L(π)

}
(2.4)

where the minimum is taken over tree-like derivations π. The length of refuting F is the mini-
mum length of deriving the empty clause ⊥ from F , denoted LR (F `⊥) for general resolution
and LT (F `⊥) for tree-like resolution.

2-3

As an example, the resolution refutation in Figure 3 has length 15.
When the flavour of resolution used is clear from context, we will drop the index. In

particular, unless stated otherwise L(F `⊥) is understood to denote minimum refutation length
in general resolution.

The overall goal of this and the next lecture is to prove the following exponential lower
bound.

Theorem 2.8 ([Hak85]). There is a family of unsatisfiable CNF formulas
{
Fn

}∞
n=1

of size
Θ

(
n3

)
such that LR (Fn `⊥) = exp

(
Ω(n)

)
.

We mention that it has been shown that general resolution is exponentially stronger than
tree-like resolution [BEGJ00, BIW04].

Although there are exponential lower bounds known for resolution, this proof system is
widely used in practice anyway. This is due to the fact that is it is a nice system in which
to construct proof search algorithms (though, recalling the definition from the first lecture,
resolution is probably not automatizable as shown in [AR01]).

From a theoretical point of view, there are (at least) two reasons why we want to understand
the resolution proof system. Firstly, it helps us to understand SAT solvers using resolution, and
these SAT solvers are the best solvers known today. Secondly, by studying a simple proof system
such as resolution, we can hope to develop insights and techniques which may then help us when
we want to attack more powerful proof systems.

3 Weakening and Restrictions

For technical reasons, it turns out to be convenient to add an extra derivation rule to the
resolution proof system. This rule, known as weakening , intuitively says that we are allowed
to “throw away” information in a resolution refutation by going from stronger statements to
weaker statements. Formally, the weakening rule is defined as follows.

Definition 3.1. The weakening rule
B

B ∨ C
(3.1)

says that from a clause B we can derive the weaker clause B ∨ C for an arbitrary C. We say
that B ∨ C is a weakening of B.

We can add this extra rule without loss of generality, since any applications of weakening in
a resolution refutation can always be eliminated.

Proposition 3.2. Any resolution refutation π : F `⊥ using weakening can be transformed into
a refutation π′ : F `⊥ without weakening in at most the same length.

Proof. The proof follows easily by induction over the resolution refutation and is left as an
exercise. (In fact, it is easy to show that the weakening rule does not affect any of the proof
complexity measures we are interested in.)

An important tool in proof complexity is that of restrictions, which are partial truth value
assignments.

Definition 3.3. A restriction ρ is a partial truth value assignment. We represent a restriction
by the set of literals ρ = {a1, . . . , am} set to true by ρ.

Let us now explain how restrictions operate on clauses, formulas and derivations. In words,
if a clause does not contain any variable set by a restriction, then it is not affected at all.
Otherwise, if a clause is satisfied by a restriction, it can be ignored and is removed, and if it is
not satisfied then we shrink it by removing falsified literals (which cannot help to satisfy the
clause since they have been set to false).

2-4

π =
1. x ∨ z Axiom in F
2. z ∨ y Axiom in F
3. x ∨ y ∨ u Axiom in F
4. y ∨ u Axiom in F
5. u ∨ v Axiom in F
6. x ∨ v Axiom in F
7. u ∨ w Axiom in F
8. x ∨ u ∨ w Axiom in F
9. x ∨ y Res(1, 2)

10. x ∨ y Res(3, 4)
11. x ∨ u Res(5, 6)
12. x ∨ u Res(7, 8)
13. x Res(9, 10)
14. x Res(11, 12)
15. ⊥ Res(13, 14)

(a) Resolution refutation π.

π�x =
1. 1
2. z ∨ y Axiom in F�x

3. 1
4. y ∨ u Axiom in F�x

5. u ∨ v Axiom in F�x

6. v Axiom in F�x

7. u ∨ w Axiom in F�x

8. u ∨ w Axiom in F�x

9. 1
10. 1
11. u Res(5, 6)
12. u Res(7, 8)
13. 1
14. ⊥ Res(11, 12)
15. ⊥

(b) Restriction π�x setting x to true.

Figure 4: Proof by example that restrictions preserve resolution refutations.

Definition 3.4. For a clause C, the ρ-restriction of C is

C�ρ =

{
1 if ρ ∩ Lit(C) 6= ∅
C \ {a | a ∈ ρ} otherwise

(3.2)

where 1 denotes the trivially true clause. For a formula F , the ρ-restriction of F is F�ρ =∧
C∈F C�ρ. For a derivation π = {D1, . . . , Ds}, the ρ-restriction of π is π�ρ = {D1�ρ, . . . , Ds�ρ}.

A restriction of our example refutation π in Figure 1 can be seen in Figure 4. A closer look
at Figure 4 reveals that π�x is in fact a resolution refutation of F�x. This is true in general, as
stated next.

Proposition 3.5. If π : F `A is a resolution derivation and ρ is a restriction on Vars(F), then
π�ρ is a derivation of A�ρ from F�ρ , possibly using weakening.

Proof. This is again an easy proof by induction over the resolution derivation, which we again
leave as an exercise.

Using Proposition 3.2, we can conclude that if π : F `⊥, then π�ρ can be transformed into
a resolution refutation of F�ρ without weakening in at most the same length as π.

4 The Concept of Width

We define the most important concept discussed in today’s lecture, related to length, namely
the concept of width. We define the concept of width for clauses, formulas and derivations.

Definition 4.1. The width of a clause C is written W(C) and is defined as the number of literals
in C. The width of a formula F is written W(F) and is defined as W(F) = maxC∈F

{
W(C)

}
,

and the width of a derivation π is W(F) = maxC∈π

{
W(C)

}
. The width of deriving A from F ,

denoted W(F ` A), is defined to be W(F ` A) = minπ:F `A

{
W(π)

}
, where the minimum is

taken over all resolution derivations of A from F . The width of refuting F is W(F `⊥).

2-5

As an example, the resolution from Figure 3 has width 3. We remark that for the width
measure, there is no need to distinguish between general resolution width and tree-like resolution
width. Any derivation in general resolution can be transformed into a tree-like derivation of the
same width just by repeating all clauses enough times.

Clearly, the width of refuting a formula can never be larger than the total number of variables
in it.

Observation 4.2. For a formula F , we always have that W(F `⊥) ≤
∣∣Vars(F)

∣∣.
Also, it is easy to see that a narrow proof in general resolution is short by necessity.

Observation 4.3. If π : F `⊥ is a general resolution refutation in width W(π) = w, then
L(π) ≤

(
2 · |Vars(F)|

)w.

Proof. For a proof in width w,
(
2 · |Vars(F)|

)w is an upper bound on the total number of
possible distinct clauses. If π is a derivation in general resolution, there is no need to mention
any clause more than once.1

In an influential paper titled “Short proofs are narrow—resolution made simple”, Ben-
Sasson and Wigderson proved that there is a kind of converse to Observation 4.3. As many
research articles in theoretical computer science, this paper was first published in a conference
version [BW99] and later appeared as a full-length journal version [BW01] (which is the reference
we will use in what follows). We first describe the result of [BW01] very informally.

Theorem 4.4 (Very informal [BW01]). If there is a short resolution refutation of F , then
there is a resolution refutation in small width as well.

We will spend the rest of today’s lecture formalizing and proving this theorem. We will also
return to the title of the paper and discuss some questions that it raises.

5 Two Technical Lemmas

In order to make Theorem 4.4 more precise, we start by establishing two fairly simple but
important technical lemmas.

Lemma 5.1. If W(F�x ` A) ≤ w then W(F ` A ∨ x) ≤ max{w + 1,W(F)} (where the
resolution derivations can make use of the weakening rule).

Proof. Suppose π = {D1, . . . , Ds} derives A from F�x in width W(π) ≤ w. We want to
construct a derivation π′ of A ∨ x from F .

We start π′ by simply listing all clauses in F . We then continue π′ by listing all clauses in π′

but with the literal x added to all clauses. We claim that this makes π′ into a legal derivation
of A ∨ x from F (possibly with weakening). Clearly the last line in π′ is A ∨ x, and the width
is at most max{w + 1,W(F)} so if we can just prove this claim that π′ is a correct derivation,
then we are done.

To prove the claim, we need to show that each clause in π′ can be derived from previous
clauses by resolution or weakening. The first half of π′ just lists axioms from F . Thus, we only
need to consider the second half, containing clauses of the form Di∨x for Di ∈ π with x added.
Let Fx = {C ∈ F | x ∈ Lit(C)} be the set of all clauses of F containing x. We have three cases:

1. Di ∈ Fx�x: This means that Di ∨ x ∈ F .

2. Di ∈ F�x \ Fx�x: This means that Di ∈ F , so Di ∨ x can be derived by weakening Di.

1But note that, as was pointed out in class, this argument does not work for tree-like resolution.

2-6

3. Di is not an axiom in F�x: Thus, Di is derived from Dj , Dk ∈ π by resolution. We know
then that we can derive Dj ∨ x and Dk ∨ x ∈ π′ by weakening Dj and Dk. We can then
resolve Dj ∨ x and Dk ∨ x to get Di ∨ x.

Thus, we have shown that π′ is a legal derivation of A ∨ x from F , and the lemma follows.

The second lemma will be our key lemma in what follows, and is a straightforward conse-
quence of Lemma 5.1.

Lemma 5.2. If W(F�x ` ⊥) ≤ w − 1 and W(F�x ` ⊥) ≤ w then it holds that W(F ` ⊥) ≤
max{w,W(F)}.

Proof. We begin by deriving x in width at most w, as we know we can do by Lemma 5.1. We
then resolve x with all clauses C ∈ F containing the literal x. This has the effect of removing
all literals x, that is, the same effect as restricting F by x. Thus, after this step we have derived
all clauses in F�x in width at most W(F). Finally, we derive ⊥ from F�x in width at most w,
using the derivation assumed to exist in the statement of the lemma. This gives the desired
result.

6 Length Versus Width in Resolution

For tree-like resolution, Theorem 4.4 can now be formalized as stated in the next theorem.

Theorem 6.1 ([BW01]). For tree-like resolution, the width of refuting a CNF formula F is
bounded from above by

W(F `⊥) ≤ W(F) + log2 LT (F `⊥).

From Theorem 6.1 we get the following immediate corollary, which can be used to obtain
lower bounds on length from lower bounds on width.

Corollary 6.2 ([BW01]). For tree-like resolution, the length of refuting a CNF formula F is
bounded from below by

LT (F `⊥) ≥ 2(W(F ⊥̀)−W(F)).

Proof of Theorem 6.1. We prove by induction that if LT (F ` ⊥) ≤ 2b then W(F ` ⊥) ≤
W(F) + b. The induction is over b and over the number of variables of F .

Base cases: If b = 0, there exists a proof of length 1. The only way this can happen is that
F already contains the empty clause, which is a correct proof (if a rather uninteresting one) in
width 0.

If the formula contains only one variable, say x, the formula must be x ∧ x. By resolving
these two clauses, we get the empty clause ⊥. This proof has width 1.

Induction step: Suppose for a formula F with n variables that π is a tree-like refutation
of F having length ≤ 2b. The last step of any given refutation π : F `⊥ is x x

⊥ for some x.
Let πx and πx be the tree-like subderivations of x and x, respectively, as depicted in Figure 5.
Since L(π) = L(πx) + L(πx) + 1 ≤ 2b (this is true since π is tree-like), one of πx and πx has
length ≤ 2b−1. Suppose without loss of generality that L(πx) ≤ 2b−1.

1. πx�x is a refutation of F�x in length at most 2b−1. Hence, by the induction hypothesis we
have that W(F�x `⊥) ≤ W

(
F�x

)
+ b− 1 ≤ W(F) + b− 1.

2. πx�x is a refutation in length at most 2b of F�x where F�x has at most n−1 variables (since
the restriction eliminates x). This means that we can again use the induction hypothesis
to conclude that W(F�x `⊥) ≤ W

(
F�x

)
+ b ≤ W(F) + b.

2-7

πx πx

x x

0

Figure 5: Depiction of the subderivations πx and πx.

We have now shown that W(F�x `⊥) ≤ W(F) + b− 1 and W(F�x `⊥) ≤ W(F) + b. But this
means that we can apply Lemma 5.2 to derive that W(F `⊥) ≤ W(F) + b. The theorem now
follows by the induction principle.

In the light of the above proof of Theorem 6.1, is it true that “short proofs are narrow”? We
start with a short proof which need not be narrow, and end up with a narrow proof. However, if
we consider the details of the proof, we see that each inductive step may make the proof length
several times larger. This because whenever we use Lemma 5.2, in step 2 in the construction
of the proof of this lemma we have to repeat the whole derivation of x every time we need it
in order to maintain tree-likeness. This can potentially blow up length exponentially, and such
a blow-up cannot be avoided in a worst case scenario as was proven in [Ben02] (which later
appeared as the journal version [Ben09]). Thus, if we want to nitpick it is in fact not true, at
least not for tree-like resolution, that “short proofs are narrow.” (But of course it is a great
title for a paper anyway, and above all a great paper.)

Let us now focus on general, unrestricted resolution. In this case, we cannot get quite as
strong a bound as for the tree-like case.

Theorem 6.3 ([BW01]). The width of refuting a CNF formula F over n variables in general
resolution is bounded from above by

W(F `⊥) ≤ W(F) + O
(√

n log L(F `⊥)
)

.

For tree-like resolution, we obtained an upper bound for width proportional to the logarithm
of the length of a shortest proof. For general resolution, one way of viewing Theorem 6.3 is that
since exp(O(n)) is the maximal possible proof length, we can write the bound above as

W(F `⊥) / W(F) +
√

log(worst case proof length) · log L(F `⊥) , (6.1)

that is, as being proportional to the geometric mean of the logarithm of the length of a shortest
proof and the logarithm of the worst case.

Just as in the tree-like case, we can rewrite Theorem 6.3 so that it yields lower bounds on
length from lower bounds on width as follows.

Corollary 6.4 ([BW01]). For general resolution, the length of refuting a CNF formula F over
n variables is bounded from below by

L(F `⊥) ≥ exp
(

Ω
(

(W(F `⊥)−W(F))2

n

))
.

2-8

πx πx

x x

0

Figure 6: Depiction of the subderivations πx and πx for the general case.

As we noted in class, the bounds in Theorem 6.3 and Corollary 6.4 look perhaps a little bit
ugly, and it is natural to ask whether one could improve them to something nicer and stronger,
along the lines of the bounds that were proved for tree-like resolution above. This is a question
that we will return to in a future lecture.

But be the bounds ugly or pretty, Corollary 6.4 has turned out to be terrifically useful in
that it has been used to simplify many length lower bound proofs in resolution, as well as to
prove number of new ones.

Let us discuss what is needed to prove superpolynomial lower bounds on length with the
help of Corollary 6.4. Clearly, we will want W(F) to be small, and in particular significantly
smaller than W(F ` ⊥). Because if it is not, then the difference W(F ` ⊥) − W(F) will
never be large and so we cannot get any interesting lower bounds. In the cases where we will
apply Corollary 6.4, we will make sure that W(F) is some constant. So how large will we then
want the difference W(F `⊥) −W(F) to be? A moment of thought reveals that we will need
W(F ` ⊥) − W(F) = ω

(√
n log n

)
in order to get superpolynomial lower bounds. Because if

W(F `⊥) −W(F) = O
(√

n log n
)
, we get the length bound L(F `⊥) ≥ exp

(
O(log n)

)
which

is just a polynomial.
At the very end of the lecture, we briefly discussed what the proof of Theorem 6.3 (and hence

Corollary 6.4) looks like. One can see that the type of proof used for tree-like resolution breaks
down in the general case. It is not true that L(π) = L(πx) + L(πx) + 1, since subderivations πx

and πx may share clauses, as depicted in Figure 6. Therefore, making an inductive argument
by restricting on the very last variable x resolved over in the proof is no longer necessarily a
good idea.

The overall structure of the proof for the general case is the same, but now one looks at very
wide clauses, and then constructs restrictions that eliminate many of these clauses by setting
commonly occuring literals to true. This leads to a more complicated inductive argument. In
this case, too, one gets an exponential blow-up in proof length, but for general resolution it is
not known whether such a blow-up is necessary or not.

Open Problem 1. Can the exponential length blow-up, which is unavoidable in tree-like res-
olution according to [Ben09], be avoided for general resolution? I.e., given short resolution
refutation, can we find a refutation that is both narrow and short? (With at most polynomial
blow-up, say.) Or is there a length-width trade-off, so that decreasing width must always increase
length in worst case?

A Proof of Theorem 6.3 (Not Covered in the Lecture)

Let us finally, with joint efforts by the scribe and the lecturer, add the missing proof of Theo-
rem 6.3 that we did not have time to do in class.

2-9

Recall that Lemma 5.2 says that if W(F�x ` ⊥) ≤ w − 1 and W(F�x ` ⊥) ≤ w, then
W(F `⊥) ≤ max{w,W(F)}. The high-level argument will again be to find some good variable
to restrict, use the induction hypothesis to get small-width derivations of the formulas obtained
by restricting this variable to true and false, and then apply Lemma 5.2 to stitch this together
to a small-width refutation of the unrestricted formula.

Let F be a k-CNF formula over n variables. Suppose W(F `⊥) ≤ k +
√

8n lnL, where ln
is the natural logarithm. Fix a minimum length refutation π : F `⊥ of length L(π) = L. Set

d =
√

2n lnL (A.1)

and

a =
(

1− d

2n

)−1

. (A.2)

Since L ≤ 2n+1 � e2n we have d < 2n and hence a > 1.
Let us say that a clause D is fat if W (D) ≥ d. We write fat(π) to denote the number of fat

clauses in a derivation π. Then Lemma 5.2 says that follows if we can prove the next lemma.

Lemma A.1. Let G be any k-CNF over m ≤ n variables and suppose there exists a refutation
π′ of G such that fat(π′) < ab for a as in (A.2). Then

W(G `⊥) ≤ k + d + b− 1 (A.3)

Proof of Theorem 6.3 assuming Lemma A.1. To see that Lemma A.1 yields that

W(F `⊥) ≤ W(F) +
√

8n lnL , (A.4)

observe first that k = W(F) and d =
√

2n lnL. Thus, we only need to work on b.
Clearly, not all clauses in the resolution refutation can be fat, so we have fat(π) < L ≤

adloga Le ≤ aloga L+1. Thus, it is sufficient to set b = loga L + 1 = 1 + ln L
ln a (where we use that

loga x = ln x
ln a). Furthermore, we see that ln a = ln

(
(1 − d

2n)−1
)

= − ln
(
1 − d

2n

)
≥ d

2n , using

the inequality ln(1 + x) ≤ x which is valid for x > −1. By (A.1) we get d
2n =

√
ln L
2n . Hence,

W(F `⊥) ≤ k + d + b− 1 ≤ k + 2
√

2n lnL.

It remains to prove Lemma A.1. Again, we do the proof by nested induction over b and
the number of variables m in G (which is at most the number of variables n in the original
formula F).

Base cases: We have the following base cases for our inductive proof:

1. m = 1 or k = 1 or L ≤ 3: This means that G contains x∧ x. If so, W(G `⊥) = 1 and we
are done.

2. m ≤ k (for m, k ≥ 2, L ≥ 4): Since L > 3 we have d > 1. but the refutation width is at
most the number of variables, i.e., at most m ≤ k ≤ k + d + b− 1︸ ︷︷ ︸

≥0

.

3. b = 0: If b = 0, this means that there are no fat clauses in the resolution refutation. Thus,
the refutation width is at most d ≤ d + k + b− 1︸ ︷︷ ︸

≥0

.

Induction step: Suppose the induction hypothesis (A.3) holds for:

• all k-CNF formulas over strictly less than m variables,

• all k-CNF formulas over m variables with proofs π′ such that fat(π′) < ab−1.

2-10

Consider π : G`⊥ with fat(π) < ab. G has 2m distinct literals all in all. There are at least
d · fat(π) literals in fat clauses. So, by counting there is some literal appearing in at least
d

2m fat(π) ≥ d
2n fat(π) fat clauses.

Suppose without loss of generality that x is such a literal that appears in at least d
2n fat(π)

number of fat clauses. Consider π�x : G�x `⊥. All the fat clauses containing the literal x are
satisfied by the restriction and disappear, so π�x has less than

(
1 − d

2n

)
ab ≤ ab−1 fat clauses.

By the induction hypothesis, we deduce that

W(G�x `⊥) ≤ k + d + b− 2 . (A.5)

Now consider π�x : G�x `⊥. The refutation π�x has less than ab fat clauses and G�x has less
than m variables. This means that we can again apply the induction hypothesis to derive

W(G�x `⊥) ≤ k + d + b− 1 . (A.6)

But now we can use Lemma 5.2 on the inequalities (A.5) and (A.6). This gives us that
W(G `⊥) ≤ max{k, k + d + b− 1} = k + d + b− 1, and Lemma A.1 follows.

References

[AR01] Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable
unless W[P] is tractable. In Proceedings of the 42nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’01), pages 210–219, October 2001.

[BEGJ00] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On
the relative complexity of resolution refinements and cutting planes proof systems.
SIAM Journal on Computing, 30(5):1462–1484, 2000. Preliminary version appeared
in FOCS ’98.

[Ben02] Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing (STOC ’02), pages 457–464, May 2002.

[Ben09] Eli Ben-Sasson. Size space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version appeared in STOC ’02.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation
of treelike and general resolution. Combinatorica, 24(4):585–603, September 2004.

[BW99] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made sim-
ple. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
(STOC ’99), pages 517–526, May 1999.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made sim-
ple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version appeared
in STOC ’99.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

2-11

	Terminology and Notation Used Throughout These Notes
	Recap of Resolution and a Slightly Modified Definition
	Weakening and Restrictions
	The Concept of Width
	Two Technical Lemmas
	Length Versus Width in Resolution
	Proof of Theorem 6.3 (Not Covered in the Lecture)

