
DD3501 Current Research in Proof Complexity Nov 14, 2011

Lecture 5

Lecturer: Jakob Nordström Scribe: Lukáš Poláček

1 Quick Recap of Lower Bounds on Length in Terms of Width

Recall that in previous lectures we proved two bounds by Ben-Sasson and Wigderson [BW01]
on length in terms of width. For an (unsatisfiable) CNF formula F over n variables, we have
the bound

LR (F `⊥) ≥ exp

(
Ω

(
(W(F `⊥)−W(F))2

n

))
(1.1)

in general resolution, whereas for tree-like resolution we proved the cleaner (and stronger) bound

LT (F `⊥) ≥ 2W(F ⊥̀)−W (F) . (1.2)

A natural question is: can we improve (1.1) to an expression similar to (1.2)? The short answer
is: no, we cannot. The purpose of today’s lecture is to show that the bound (1.1) is in some sense
essentially optimal for general resolution. As a byproduct, we will also see an example which
shows that general resolution is exponentially stronger than tree-like resolution with respect to
length.

2 Formulas with Wide and Short Refutations

Suppose F is a k-CNF formula for some bounded k = O(1). Then what (1.1) says is that if
W(F ` ⊥) = ω

(√
n log n

)
, it must hold that LR (F ` ⊥) is superpolynomial. Rephrasing our

question above, what we are asking is whether a weaker lower bound on width can also provide
guarantees for superpolynomial length lower bounds. We will prove that if one weakens the
bound by only a

√
log n factor, there are no longer any guarantees. Namely, we will find k-CNF

formulas that require width on the order of
√

n but nevertheless have refutations of polynomial
length.

The following result was proved first by Bonet and Galesi in a conference paper [BG99]
shortly after the result of Ben-Sasson and Wigderson was announced in [BW99]. As usual, we
will cite the journal version [BG01] in what follows.

Theorem 2.1 ([BG01]). There are 3-CNF formulas Fn over n variables with poly(n) clauses
such that LR (Fn `⊥) = poly(n) but W(Fn `⊥) = Θ (

√
n) .

As discussed above, this implies that (1.1) is essentially optimal. By (1.2), a refutation
in tree-like resolution for Fn has to have length at least 2Ω(

√
n). Thus, we have the following

corollary.

Corollary 2.2. General resolution is exponentially stronger than tree-like resolution with respect
to length.

There are stronger separations of tree-like and general resolution—the best one is in [BIW04]
as far as the lecturer is aware—but the nice thing with Corollary 2.2 is that we get it “for free”
from Theorem 2.1.

A word of caution: Above, the parameter n was the number of variables in the formula.
This will change in a few seconds, and from then on n will instead be the natural parameter for

5-1

a family of formulas {Fn}∞n=1 with poly(n) variables. This might be a bit confusing, but these
are standard conventions in the literature. Thus, rather than trying to shield course participants
from the harsh realities of life by changing these conventions, we instead add this caveat to help
deal with these realities head on.

Nevertheless, as an extra service to the reader we will also try to denote the number of
variables by N below for increased clarity.

In the rest of the lecture, we will prove Theorem 2.1. We will use formulas which encode
ordering principles. Suppose we have a finite set Sn = {e1, . . . , en} of partially (or totally)
ordered elements, then Sn must have a minimal element. Note that this statement is not true
for infinite sets, e.g. {1/n | n ∈ N+}.

Since we want unsatisfiable formulas, we will use CNF formulas saying that Sn is ordered
but that despite of this there is no minimal element in the set. Below, we should interpret the
variable xij to mean that ei < ej . We will use the following 4 types of clauses, where indices
i, j, k range from 1 to n.

A(i, j, k) = xij ∨ xjk ∨ xik for all i 6= j 6= k 6= i (transitivity) (2.1a)
B(i, j) = xij ∨ xji for all i 6= j (anti-symmetry) (2.1b)

Cn(j) =
∨

1≤i≤n,i6=j

xij for all j (non-minimality) (2.1c)

D(i, j) = xij ∨ xji for all i 6= j (totality) (2.1d)

Clauses of type (2.1a), (2.1b) and (2.1c) form the partial ordering principle formulas and we
denote the formula for Sn by POPn. By adding clauses of type (2.1d), we get linear ordering
principle formulas and we denote these formulas by LOPn. We remark that these formulas go
under a number of different names in the literature, but we will stick to POPn and LOPn in this
course. It is easy to check that both types of formulas have Θ

(
n2
)

variables and Θ
(
n3
)

clauses.

3 An Upper Bound on Refutation Length of Ordering Principles

The ordering principle formulas were conjectured to be hard to refute in resolution by Krishna-
murthy [Kri85] (note that this is close in time to the first exponential lower bounds for resolution
by Haken [Hak85]), but were instead proven to be easy by St̊almarck [St̊a96] a decade later. We
will follow an adaptation of St̊almarck’s resolution refutation by Bonet and Galesi [BG01].

Note that POPn ⊆ LOPn, so a refutation for POPn is also a refutation for LOPn and hence
it holds that L(LOPn ` ⊥) ≤ L(POPn ` ⊥). Our goal is first to prove an upper bound on
length for POPn (which will automatically hold for LOPn as well) and then in the next section
a lower bound on width for LOPn (which will also automatically hold for POPn).

Theorem 3.1 ([St̊a96]). There exist resolution refutations of POPn in length poly(n).

Proof. For n = 1, we have POP1 = (x12∨x21)∧x12∧x21, and this formula can clearly be refuted
in a (small) constant number of steps by a resolution refutation π2. For bigger n our strategy
is to derive POPn−1 from POPn in polynomial length. If we have such resolution derivations
πn : POPn `POPn−1, we can then string all these derivations πn, πn−1, . . . , π3, π2 together to
get a refutation of POPn.

Note that clauses of type (2.1a) and (2.1b) from POPn−1 are all present in POPn, so
we only need to show a way to derive clauses of type (2.1c). Namely, we will derive clauses
Cn−1(1), . . . , Cn−1(n− 1) from A(i, j, k), B(i, j) and Cn(j) (for all needed i, j, k). The intuition
behind this derivation is that we can extract a smaller set Sn−1 from Sn which is also ordered
and does not contain a minimal element by showing that since en is not minimal, some element
in {e1, . . . , en−1} must be.

5-2

More formally, we claim that any clause Cn−1(i) can be derived in polynomial length, and
state this formally as Lemma 3.2 below. Assuming this lemma, which we will prove shortly, we
can apply it for all i = 1, 2, . . . , n− 1 to obtain all clauses of POPn−1 from those of POPn, and
Theorem 3.1 follows by induction.

Lemma 3.2. For any j ≤ n − 1, the clause Cn−1(j) is derivable in polynomial length from
Cn(1), . . . , Cn(n), A(1, n, j), . . . , A(n− 1, n, j), and B(j, n).

Proof. For any i 6= j, we can do the inference step

Cn(j) A(i, n, j)
Cn−1(j) ∨ xin

(3.1)

by resolving over xnj . We can interpret this step as follows. Suppose ej is not minimal in Sn

and none of the elements {e1, . . . , ej−1, ej+1, . . . , en−1} is smaller then ej (this corresponds to
Cn−1(j) being false), then en has to be smaller than ej . This implies that ei 6< en, since if on
the contrary ei < en, then we would also have ei < ej by transitivity contrary to assumption.
Thus, xin must be false in this case.

To derive Cn−1(j) ∨ xjn, we instead resolve

Cn(j) B(j, n)
Cn−1(j) ∨ xjn

(3.2)

over xnj . In this way, we can derive Cn−j ∨ xin for all i.
Using these clauses one by one and resolving over the variables x1n, x2n, . . . , xn−1,n in that

order, we get the resolution derivation

Cn(n) Cn−1(j) ∨ x1,n

Cn−1(j) ∨
∨n−1

`=2 x`n Cn−1(j) ∨ x2n

Cn−1(j) ∨
∨n−1

`=3 x`n Cn−1(j) ∨ x3n

Cn−1(j) ∨
∨n−1

`=4 x`n

...
Cn−1(j) ∨ xn−1,n Cn−1(j) ∨ xn−1,n

Cn−1(j)

(3.3)

which also clearly has polynomial length, and which derives Cn−1(j). This concludes the proof
of Lemma 3.2.

Note that all the clauses appearing in the resolution refutation have width O
(
n
)
, which is

O
(√

N
)

if we let N denote the number of variables in POPn. But what exactly is the length
of the resolution refutation, and what is the clause space required to carry out the refutation
in this length? These question are left as an exercise for the reader.

4 3-CNF Versions of Wide CNF Formulas

So now we are done with the first half of our program for today, and if we can also prove a
lower bound on width for LOPn we will be done. Except. . .

Except that if we look closer at the definitions of POPn and LOPn, these formulas have
clauses of width n, but Theorem 2.1 is stated for 3-CNF formulas. Intuitively, if the width of
the clauses themselves is already n, then we would have to work very hard indeed to prove a
lower bound on W(LOPn `⊥) that could give anything interesting in (1.1).

So what can we do? One approach would be to proceed as for the pigeonhole principle
formulas, where we defined “sparser versions” with constant-width clauses and showed that

5-3

these formulas were also hard. That is in fact something one can do for ordering principles as
well,1 although one has to be a bit more careful, but that is not what we are going to do today.

Instead, we will use a standard transformation of formulas of arbitrary width into equivalent
3-CNF formulas, and prove lower bounds for these formulas. To describe this transformation,
let F = C1 ∧ · · · ∧Cm be a CNF formula. For each Cj with W(Cj) ≤ 3 we let C̃j = Cj , and for
each Cj with W(Cj) > 3, say Cj = a1 ∨ a2 ∨ · · · ∨ aw, we let C̃j be the set of clauses

C̃j =



y0j

y0j ∨ a1 ∨ y1j

y1j ∨ a2 ∨ y2j
...
yw−1,j ∨ aw ∨ ywj

ywj

(4.1)

where yij are new variables that are unique to C̃j and do not appear anywhere else. With this
notation, we define F̃ = C̃1 ∧ · · · ∧ C̃m to be the 3-CNF version or extended version of F . We
leave the verification of the following fact to the reader.

Proposition 4.1. F̃ is unsatisfiable if and only if F is unsatisfiable.

As was pointed out in class, since we want to get the number of variables in our formulas
right in order to prove that (1.1) is tight, we should check what happens to the ordering principle
formulas.

Proposition 4.2. The 3-CNF formulas P̃OPn and L̃OPn have Θ
(
n2
)

variables and Θ
(
n3
)

clauses.

Again we leave the verification to the reader, but it is a good idea to check that this really
holds and understand why. (Is it always true, for instance, that the number of variables and
clauses in F will be asymptotically the same as in F̃?)

The refutation length for F̃ will never be much larger than that of F and the refutation
width will not increase at all, as we can see in the following proposition.

Proposition 4.3. If F is a CNF formula with m clauses over n variables, then LR
(
F̃ `⊥

)
≤

LR (F `⊥) + O(nm) and W(F̃ `⊥) ≤ W(F `⊥).

Proof. We start by deriving Ci from C̃i for all i (or, if we want to be nitpick, for all axiom
clauses Ci that we will need to use in a short or narrow refutation of F). This can be done for
each Ci in at most n resolution steps over auxiliary variables, giving O(mn) steps in total. Now
we have the original clauses of F , so we can just copy any resolution refutation of F to finish
the refutation of F̃ .

Thus, P̃OPn is a 3-CNF formula that can be refuted in polynomial length and width O
(√

N
)

where N is the number of variables in P̃OPn.

5 A Lower Bound on Refutation Width of Ordering Principles

Good, so after this short detour we are now back on track again, and we can conclude today’s
lecture by proving that the width of any resolution refutation of L̃OPn is Ω

(
n
)
. Note that this

is all we need to complete the proofs of Theorem 2.1 and Corollary 2.2.
To prove the lower bound on width, we will focus on a particular type of truth value

assignments, namely assignments that satisfy every clause in LOPn except Cn(j) for some j.
Such assignments define a total (a.k.a. linear) order on Sn with unique minimal element j.

1See Lemma 8.17 in [SBI04] for the details.

5-4

Definition 5.1. A critical assignment α : Vars
(
LOPn

)
→ {0, 1} for LOPn is an assignment

defining a total order, where α(xij) = 1 if and only if ei < ej . The assignment α is j-critical if
ej is the unique minimal element in the ordering defined by α.

For a j-critical assignment α, α(LOPn\{Cn(j)}) = 1 and α(Cn(j)) = 0, since ej is a minimal
element. Let us extend this notion to the formulas L̃OPn and assignments β to Vars

(
L̃OPn

)
.

Definition 5.2. A j-critical assignment β : Vars
(
L̃OPn

)
→ {0, 1} for L̃OPn is such that β

restricted to variables {xij} is j-critical for LOPn, β(L̃OPn \ C̃n(j)) = 1 and β(C̃n(j)) = 0.

Proposition 5.3. Any j-critical assignment α for LOPn can be extended to j-critical assign-
ment β for L̃OPn.

Proof. Let Cn(i) be a clause in LOPn where i 6= j and let xik ∈ Cn(j) be one of the variables
with α(xik) = 1. Such a variable must exist, since α(Cn(i)) = 1. We set β(ylj) = 0 if l < k

and β(ylj) = 1 otherwise. Notice that β
(
C̃n(j)

)
has to be false, since α(Cn(j)) = 0 and so it is

impossible to satisfy all the clauses in (4.1) regardless of how the auxiliary variables are set.

We next define the set of variables Vj that intuitively speaking are all the variables that

can give us any information about the element ej in Sn. Formally, we let Vj = Vars
(
C̃n(j)

)
∪

{xji | i 6= j}. We have the following simple but crucial proposition.

Proposition 5.4. If D is a clause with W (D) = w, then at most 2w sets Vj have variables
appearing in D.

Proof. A variable xij appears only in Vj and Vi, and an auxiliary variable yij appears only in
the set Vj . Thus, any variable in D can cover at most two sets.

We are now ready to prove our width lower bound. We will follow the same proof structure
that we used successfully in a couple of previous lectures. Namely, we define a measure µ on
the clauses which is small for axioms and big for the empty clause ⊥, and then use this µ
to measure the “progress” made in a resolution refutation. We prove that somewhere in any
refutation there must be a clause that has made “medium-progress,” and that any such clause
must contain many literals. This shows that any resolution refutation must be wide.

For I ⊆ {1, . . . , n}, let C̃I =
∧

i∈I C̃n(i). For a clause D, let ID ⊆ {1, . . . , n} be a set of
minimal size such that all critical assignments to L̃OPn that satisfy C̃ID

also must satisfy D.
Then the µ-measure of this clause is defined as µ(D) = |ID| (and note that although ID is not
necessarily uniquely defined, the size of any minimal such set is uniquely defined).

Lemma 5.5. The following holds for the measure µ as defined above:

1. µ(D) ≤ n for any clause D.

2. µ(D) ≤ 1 if D is an axiom.

3. µ(⊥) = n.

4. µ(D ∨D′) ≤ µ(D ∨ x) + µ(D ∨ x), for clauses D ∨ x and D ∨ x.

Proof. For item 1, let I ′D = {1, . . . , n}. We have that C̃I′
D

is unsatisfiable for all critical as-

signments, so all critical assignments α for which α(C̃I′
D
) = 1 satisfy D as well for the vacuous

reason that there are no such assignments. Hence µ(D) ≤ n.

For item 2, if D is an axiom in C̃n(j), we can take ID = {j}. Otherwise ID = ∅ is fine, since
we are only considering assignments defining total orders and such assignments clearly satisfy
anti-symmetry and transitivity.

5-5

To prove the third item, note that there are assignments satisfying C̃I′ for any I ′ with at
most n−1 elements but that no assignment can satisfy the empty clause, so µ(⊥) > n−1. The
inequality µ(⊥) ≤ n then implies µ(⊥) = n.

To see that the claim in item 4 holds, consider I ′ = ID∨x ∪ ID′∨x. Any assignment satisfying
C̃I′ has to satisfy both D ∨ x and D′ ∨ x by assumption, which means it also has to satisfy
D ∨D′. Hence, |I ′| ≤ |ID∨x| + |ID′∨x| is an upper bound on µ(D ∨D′) and we conclude that
µ(D ∨D′) ≤ µ(D ∨ x) + µ(D ∨ x).

Using the previous lemma we can finally prove the last missing piece in the proof of the
main theorem in this lecture.

Lemma 5.6. Every refutation π of L̃OPn contains a clause D such that W (D) ≥ n/6.

Proof. We will consider a clause D with “medium” measure µ(D) and assume W (D) < n/6 to
get a contradiction. We will find two elements ek and e` not mentioned in D, such that k ∈ ID

and ` 6∈ ID. Their existence will follow by a simple counting argument from the fact that D is
small. Then we will consider any k-critical assignment β falsifying D (such an assignment must
always exist by assumption). Under this assignment, ek is a minimal element, so β(C̃ID

) = 0.
We will construct a new assignment β′ where e` will be the new minimal element but otherwise
it will be the same assignment as β. This will make C̃ID

satisfied, since the minimal element
e` is outside ID. However, D will remain falsified, since it does not contain any information
about ek or e`. Hence the new assignment β′ will satisfy C̃ID

but not D, which contradicts the
definition of ID.

We will now formalize the previous informal argument. Fix ID and the corresponding clause
D ∈ π such that n/3 ≤ |ID| ≤ 2n/3. By part 4 of Lemma 5.5, such a clause D must exist, since
otherwise it would be impossible to reach the progress level µ(⊥) = n. Now we are going to
assume W (D) < n/6 in order to derive a contradiction.

By Proposition 5.4 and the assumption that 2W (D) < |ID|, we conclude by counting that
there must exist a k ∈ ID such that Vk∩Vars

(
D
)

= ∅. Next, consider ID = {1, . . . , n}\ID. Since
|ID| ≥ n/3, by the same argument we get that there is an ` ∈ ID such that V` ∩ Vars

(
D
)

= ∅.
These are the two elements ek ∈ ID and e` 6∈ ID not mentioned in D that we described in the
informal proof overview above.

Let β be a k-critical assignment such that β(D) = 0. Such an assignment must exist since
ID was chosen of minimal size and k ∈ ID, which means that there exists a critical assignment
that satisfies C̃ID\{k} but falsifies D. Note that β(C̃ID

) = 0 since β is k-critical.
We will now change the order given by β a little, namely by making e` the minimal element-

but leaving the internal order of all other elements unchanged. This will define a new `-critical
assignment β′. Since ` is not in ID, for every j ∈ ID there exists an element which is smaller
than ej , so β′(C̃ID

) = 1.
We first make e` the new minimal element by setting β′(xlj) = 1 and β′(xjl) = 0 for all j.

For all j 6∈ {l, k}, the only change from β is that xlj is potentially flipped to true. However,

since C̃n(j) was already satisfied we can keep the values assigned to the auxiliary variables in

these clauses. It remains to examine C̃n(k). We have β′(xlk) = 1, so we can set the auxiliary

variables in C̃n(k) so that it is true under β′.

The assignment β′ only differs from β in variables x`j , xj` and auxiliary variables in C̃n(k).
All of these are not in D, so D remains falsified. Hence β′ is a critical assignment satisfying
C̃ID

but falsifying D, which is a contradiction. This concludes the proof of the lemma.

Now the proofs of Theorem 2.1 and Corollary 2.2 are complete, so this ends the lecture.

5-6

References

[BG99] Maria Luisa Bonet and Nicola Galesi. A study of proof search algorithms for resolution
and polynomial calculus. In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’99), pages 422–431, October 1999.

[BG01] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolu-
tion. Computational Complexity, 10(4):261–276, December 2001. Preliminary version
appeared in FOCS ’99.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of
treelike and general resolution. Combinatorica, 24(4):585–603, September 2004.

[BW99] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made sim-
ple. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
(STOC ’99), pages 517–526, May 1999.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001. Preliminary version appeared in
STOC ’99.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[Kri85] Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Informatica,
22(3):253–275, August 1985.

[SBI04] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for
small restrictions and lower bounds for k-DNF resolution. SIAM Journal on Comput-
ing, 33(5):1171–1200, 2004. Preliminary version appeared in FOCS ’02.

[St̊a96] Gunnar St̊almarck. Short resolution proofs for a sequence of tricky formulas. Acta
Informatica, 33(3):277–280, May 1996.

5-7

	Quick Recap of Lower Bounds on Length in Terms of Width
	Formulas with Wide and Short Refutations
	An Upper Bound on Refutation Length of Ordering Principles
	3-CNF Versions of Wide CNF Formulas
	A Lower Bound on Refutation Width of Ordering Principles

