
DD3501 Current Research in Proof Complexity Dec 5, 2011

Lecture 8

Lecturer: Jakob Nordström Scribe: Emma Enström, Jakob Nordström

The purpose of today’s lecture is to do as much as we can of the lower bound on PCR proof
size from Alekhnovich and Razborov [AR03], which we started on last time. Let us begin by
recalling what was said then.

1 Recapitulation of Material from Last Lecture

For a CNF formula F , we can define a bipartite graph G(F) with the clauses of F as the left
vertex set and the variables of F as the right vertex set, and edges between variable vertices and
clause vertices if the corresponding variable occurs in the corresponding clause. Note that this
is not a bijection between formulas and bipartite graphs—we are throwing away all information
about the signs of the literals in the clauses, for instance—but nevertheless the graph G(F) tells
us something about the structure of the formula F .

We say that the unique neighbours of a subset S of vertices on one side are the vertices
on the other side which have exactly one incoming edge from that subset (i.e., they are the
neighbour of a unique vertex in S). The unique neighbours are also called the boundary of the
set of neighbours of S. Informally, we say that a graph G is a unique-neighbour expander, or a
boundary expander, if all vertex sets on the left hand side of at most moderate size have many
unique neighbours on the right hand side. More formally, a bipartite graph G = (U ∪ V,E)
is a (d, s, e)-boundary expander if all vertices on the left have at most d incident edges and all
left vertex sets U ′ ⊆ U of size at most s have at least e ·

∣∣U ′∣∣ unique neighbours on the right.
It is a well-known fact that a random constant-degree bipartite graph, i.e., a graph where for
each vertex on the left we pick a fixed-size subset of neighbours on the right uniformly and
independently at random, is a good expander almost surely provided that we choose the right
parameters.1

We intend today to prove a PCR proof size lower bound for randomly generated formulas.
Formally, we say that F is a random k-CNF formula, denoted F ∼ Fn,∆k , if F consists of ∆n
clauses chosen uniformly and independently and random, and with replacement, from all

(
n
k

)
·2k

possible k-clauses over n variables. If the density ∆ is large enough, then F is almost surely
unsatisfiable. What density is needed for this to hold depends on k, but once k is fixed we can
also fix ∆ to be a constant. And this constant need not be particularly large—for instance, for
k = 3 we can pick ∆ = 4.6.

If we generate a random formula F in this way and then look at the graph G(F), it is not
hard to see that this is just a complicated way of generating a random bipartite graph. Hence
G(F) will almost surely be an excellent expander (again for the right choice of parameters, but
we will not go into too much detail here). Alekhnovich and Razborov get their lower bounds for
random k-CNF formulas by focusing on the graphs G(F) and establishing that if such a graph
has sufficiently good expansion, then the degree of any refutation of F has to be large.2 And
as we proved last time, a sufficiently strong lower bound on degree also implies a strong lower
bound on proof size both for PC and PCR.

1For a sequence of events Xn parameterized by n in some natural way, for instance the event that a random
k-CNF formula over n variables is unsatisfiable, we say that Xn happens almost surely (sometimes abbreviated
“a.s.”) if the probability of Xn approaches 1 as n approaches infinity.

2The attentive reader might ask what happens if F is not unsatisfiable in the first place. Note that for any
formula F , we can let F+ be the same formula with all literals flipped to be positive. The latter formula is clearly
satisfiable, but G(F+) = G(F). However, the claim still holds for a vacuous reason—if the formula is satisfiable,
then any refutation must have very high degree indeed (since there is no refutation at all).

8-1

Therefore, to get the lower bound that we are after it is sufficient to prove the following
theorem (the statement of which we recall from last lecture).

Theorem 1.1 (Theorem 3.13 in [AR03]). If G(F) is a (d, s, e)-boundary expander, then

DegPC(F `⊥) ≥ se

2

over any field F.

We remark that when applying this theorem, ideally we would want s to be linear in the
formula size n and e to be a constant. Such a linear lower bound on degree would give an
exponential lower bound on size by the theorem in [IPS99] that we proved last time.

2 Some Notation Used in This Lecture

We already defined some notation towards the end of last lecture, but repeat it again here to
have it fresh in memory.

For a CNF formula F = C1∧C2∧· · ·∧Cm over variables x1, x2, . . . , xn, we let f1, f2, . . . , fm
denote the corresponding polynomials in the PC-translation of the formula (i.e., the formulas
are over variables xi only and we do not have any “negative variables” xi).

We write Tn to denote the set of all multilinear monomials (or terms, as we will per-
haps more frequently refer to them today)3 over the n variables x1, x2, . . . , xn. We let Tn,d =
{t ∈ Tn | Deg(t) ≤ d} denote all multilinear monomials of degree at most d.

We write Sn(F) to denote the set of all multilinear polynomials. For simplicity, we will as-
sume today that all Boolean axioms x2

i −xi for all i are applied implicitly so that we always have
multilinear polynomials.4 In particular, from now on “monomial” and “polynomial” will always
mean “multilinear monomial” and “multilinear polynomial” unless explicitly stated otherwise.
Formally, Sn(F) is an F-algebra, i.e., a vector space with multiplication of vectors, but we will
not be interested in getting too formal today. We let Sn,d(F) denote the set of all multilinear
polynomials of degree at most d. This is a vector space but not an algebra since it is not closed
under multiplication (since the degree can get too large). Just to make sure we are on the same
page, an example of a monomial is x1x2x3x5 and an example polynomial is 5x1x2x3x5 + 2x2x6.

We next state some definitions that play an important role in [AR03].

Definition 2.1 (Admissible ordering). An admissible ordering � of all monomials is any
(total) ordering such that

1. If Deg(t1) < Deg(t2) then t1 � t2.

2. If t1 � t2 and t ∈ Tn does not mention variables in t1 or t2, then tt1 � tt2.

One example of an admissible ordering is to order the monomials first with respect to degree
and then lexicographically, so that, for instance, x1 ≺ x2 ≺ x3 ≺ x4, x1x2x4 ≺ x1x3x4, and
x1x3x4 ≺ x1x2x3x4.

Definition 2.2 (Leading term). For any f ∈ Sn(F), let LT (f) denote the leading term of f
with respect to � (i.e., the largest monomial with respect to this ordering).

Notice that by property 1 in Definition 2.1 it must hold that the leading term of f is a term
of highest degree in f , i.e., Deg(LT (f)) = Deg(f).

Recall that an ideal is a subring S that is closed under multiplication by any element of the
ambient ring (the ring of which S is a subring). Following the notation in [AR03], we will write
Span(f1, . . . , fm) ⊆ Sn(F) to denote the ideal generated by f1, . . . , fm,5 i.e., by the polynomials

3Sometimes when one wants to be really precise, a monomial is a product of variables while a term is a
monomial multiplied by a coefficient, but we will not need to make this distinction.

4This is without loss of generality—if we wanted, we could have defined the multiplication rule in PC to always
yield a multilinear result, and in fact some papers use this definition.

5This is not completely standard, but we are just trying to be consistent with the notation in [AR03] here.

8-2

corresponding to the clauses in F . The reason we care about ideals is that a PC derivation
from a formula F is no more and no less than a computation generating elements in the ideal
spanned by the clauses of F . To prove lower bounds on PC refutations, we therefore need to
understand the structure of this ideal. To this end, we next give a quick recap of, and elaborate
on, some standard algebra.

3 Some Standard Algebra

For simplicity, let us start with a concrete example, choosing the integers Z as our ring. Consider
the subring Ik = {kn | n ∈ Z} for some constant k, or the subring I5 = {5n | n ∈ Z} to be even
more concrete. This subring is indeed a ring—the result of any multiplication or addition of
elements of the set is easily seen to be contained in the set—but it is not only a subring but
even an ideal since it is closed under multiplication by any integer of the ambient ring Z. That
is (and to be overly formal), for any element h ∈ I5 and any any a ∈ Z it holds that ah ∈ I5,
since h already had a factor 5 in it. We can write any m ∈ Z uniquely as m = q + r where

• q is in I5, and

• r is the minimal irreducible term in Ψ = {0, 1, 2, 3, 4}.

This is just a more complicated way of describing what we all know as modular arithmetic, and
what is usually written as r ≡ m mod 5. For reasons that will (hopefully) become clear shortly,
let us continue to be overly formal and give the next definition.

Definition 3.1 (Reduction operator). For any ideal Ik =
{
kn
∣∣n ∈ Z

}
, we say that the

reduction operator RIk(m) maps m to RIk(m) = r such that r ≡ m mod k and r ∈ [0, k − 1].

Now let us generalize this a bit. Fix a field F and let V ⊆ Sn(F) be an ideal in the multilinear
polynomial ring over F. We say that a term t ∈ Tn is reducible modulo V if there exists a
polynomial f in V such that LT (f) = t, that is, if t is the leading term of some polynomial in
the ideal. Otherwise, t is irreducible. We let Ψ denote the set of all irreducible monomials. It is
a standard fact in algebra that any polynomial p ∈ Sn(F) can be written uniquely as p = q + r
where

• q is in V ,

• r is in the linear subspace over Ψ,

and furthermore V and Ψ are linearly independent. Therefore, just as in Definition 3.1 above
we can define a reduction operator RV that maps the term t to the unique polynomial RV (t)
such that t−RV (t) is in V .

Actually, to make these notes self-contained let us give a proof of this standard fact. Let us
write p as p = q + r and p = q′ + r′ for q, q′ ∈ V and r, r′ in the linear subspace over Ψ. Then
q − q′ = r′ − r. Clearly, q − q′ ∈ V . If r 6= r′, then LT (r′ − r) is irreducible by assumption, but
on the other hand we have LT (r′− r) = LT (q− q′) which shows that it is reducible. Hence, we
must have r = r′. Linear independence follows in the same way by observing that if there are
polynomials q and r such that q + r = 0, then their leading terms cancel.

4 Ideals, Pseudoideals, and a Degree Lower Bound Approach

In order to prove lower bounds on refutation degree, and hence on refutation size, we show the
equivalent statement that no PC derivation of too low degree can derive contradiction.

In what follows, we will write Vn,d(f1, . . . , fm), or more briefly just Vn,d, to denote the set
of all polynomials in Sn,d(F) derivable in degree at most d. Note that it is sufficient for us to

8-3

prove that 1 /∈ Vn,d. However, Vn,d is not an ideal, since it is not closed under multiplication
because of the degree constraints on this set. But it turns out that we can sort of pretend that
Vn,d is an ideal and use the algebraic concepts in Section 3 anyway. This idea of studying such
pseudoideals Vn,d was first proposed in [CEI96]. So let us describe how to do this.

The addition rule in PC means that Vn,d is a vector space. We can also extend the concept
of reducibility in the natural way as follows.

Definition 4.1 (Reducible and irreducible terms). The term t ∈ Tn,d is reducible modulo
Vn,d if there exists an f ∈ Vn,d such that t = LT (f), and irreducible otherwise.

Let us denote the set of all irreducible terms in the sense of Definition 4.1 by Ψn,d. Then
we can write any p ∈ Sn,d(F) uniquely as p = q + r where

• q is in Vn,d and

• r is in the linear space over Ψn,d.

(More formally, the reason for this is that Sn,d(F) is the direct sum of Ψn,d and Vn,d, but we do
not want to go too deep into this or we will get lost.) Hence, we can let Rn,d be the reduction
operator that maps p = q + r to r as described above, and this will be analogous to the other
reduction operators that we have already seen.

Given these definitions, we can now describe what we want to prove in three equivalent ways
(for some degree bound d):

1. Any PC refutation (of the formula F with graph G(F)) must have degree strictly larger
than d.

2. The constant term 1 (which is the encoding of contradiction in PC) is not contained
in Vn,d.

3. The reduction operator Rn,d is nontrivial, i.e., Rn,d 6≡ 0 (because if 1 ∈ Vn,d, then it holds
that Vn,d = Sn,d and there are no irreducible terms).

If we recall that the kernel of an operator R is the set of all elements ker(R) = {v | R(v) = 0}
sent to zero by R, we can rewrite condition 3 as 1 /∈ ker(Rn,d), or equivalently ker(Rn,d) 6=
Sn,d(F). Explaining in natural language, the reason for this equivalence is that if 1 is in the
ideal, then everything is in the ideal, which means that we can always write p = q+ r for r = 0
and all terms are reducible.

Thus, to prove a lower bound on PC refutation degree, all we need to do is to study the
linear operator Rn,d and establish that 1 is not in its kernel. The problem is, though, that we
have not really done any real work so far—we have just restated our original problem in more
fancy algebraic terms. And it is very unclear how this will help us understand Rn,d.

Nevertheless, by rephrasing the original problem in this way we can finally make some
progress by using the following observation: Suppose that we could somehow define a “stronger”
operator R, which had the property that ker(Rn,d) ⊆ ker(R) and such that R was easier to
understand than Rn,d, while at the same time R was not too strong in the sense that it still
held that 1 /∈ ker(R). If we found such an R, then clearly we would be done (by condition 3).
And this is exactly what we will do.

Let us describe in more detail what kind of R we are looking for, using a lemma from [Raz98]
(restated as Lemma 2.10 in [AR03]) that formalizes this approach.

Lemma 4.2 ([Raz98]). Suppose that f1, . . . , fm are multilinear polynomials over x1, . . . , xn of
degree at most d < n. If there exists a linear operator R on Sn,d(F) such that

1. R 6≡ 0,

8-4

2. R(fi) = 0 for all i,

3. for all terms t of degree Deg(t) < d and all variables x it holds that R(xt) = R(x ·R(t)),

then there is no PC refutation (or PCR refutation) of f1, . . . , fm in degree d or less.

Proof. In order to prove the lemma, we first show that for any PC derivation in degree at most d
the reduction operator R sends any polynomial derived to 0. To see this, we argue by induction:

• The claim is true for axioms (by the assumption about R in property 2).

• For addition steps, the claim holds simply by linearity.

• For multiplication steps, if the polynomial p =
∑

i ti is multiplied by x we get by linearity
and property 3 that

R(xp) = R(
∑

ixti) =
∑

iR(xti) =
∑

iR(xR(ti)) =

= R(
∑

ixR(ti)) = R(xR(p)) = R(x · 0) = 0 (4.1)

since R(p) = 0 by the inductive hypothesis.

Now this means that if there were a PC derivation of 1 in degree at most d, then we would have
R(1) = 0. But this in turn would mean that R would be sending everything in Sn,d(F) to 0
(by property 3, since t = t · 1), which means that R is trivial contradicting the assumption in
property 1. The lemma follows.

5 Constructing a Reduction Operator

Now we know that if we can find a reduction operator R meeting the criteria of Lemma 4.2,
this would suffice to prove Theorem 1.1. So let us build such an R. In doing so, we will in fact
move back from pseudoideals to ideals again, and to reduction operators over ideals, since they
are nicer to work with. It turns out we can do this if we choose our ideals carefully.

Before starting to define this stronger R, it is important to note that by linearity, it is
sufficient to define R on isolated monomials rather than on a full polynomial in one go. This of
course holds in general: in order to define a linear operator on a vector space, it is sufficient to
define how it acts on the elements in a basis since it is then uniquely defined on the whole space
by linearity. And in this case the set of monomials of degree at most d clearly form a basis of
the vector space Sn,d.

Informally speaking, for t any term (that is, monomial) we will define the result R(t) of
reducing t in three steps by:

• finding set of axioms {fi1 , . . . , fil} on which t “depends” (we will elaborate later on what
this means),

• looking at the (ordinary) ideal V (t) = Span(fi1 , . . . , fil) generated by these axioms, and

• letting R send t to the polynomial that is the “remainder” of t modulo the ideal V (t) as
described above, i.e., R(t) = RV (t)(t).

Our hope is that we can do this without the ideals V (t) getting too large, so that in particular
R(1) 6= 0.

Let us now (admittedly somewhat out of the blue) describe how to construct such a reduc-
tion operator R. Recall that the clauses of our CNF formula F are encoded as polynomials
f1, . . . , fm. We build the bipartite graph G(F) as explained at the beginning of this lecture, and
let N(fi) denote the neighbours on the right-hand side in G(F) of the polynomial fi encoding

8-5

the clause Ci. By a little abuse of notation, for any term t we will write N(t) to denote the ver-
tices on the right-hand side in G(F) corresponding to the variables in t. We can think of this as
temporarily adding a “bogus vertex” t at the bottom of the left-hand side of G(F) and drawing
edges from this term t to the variables on the right appearing in it. We will look at the graph
G(F) with t added on the left in this way to determine which subsets of the axioms/polynomials
f1, . . . , fm should be chosen to generate the ideal V (t) that we will use to construct R(t).

In order to give the formal definition, we introduce some new notational conventions that
will be used in the rest of these notes. We will let I (with or without subindex) denote any subset
of the natural numbers [m] = {1, . . . ,m}. We will associate such subsets of integers I with the
subsets of axioms {fi | i ∈ I} indexed by them. In fact, in what follows we will allow ourselves
to be a bit sloppy and sometimes identify I with {fi | i ∈ I} when no misunderstanding can
occur. Hence, in particular, ∂I is a shorthand for the boundary vertices ∂{fi | i ∈ I} on the
right-hand side of G(F).

Definition 5.1 (Support [AR03]). For t a term, we say it is possible to t-infer I ′ from I if

1. |I ′| ≤ s/2, and

2. ∂I ′ ⊆ N(I) ∪N(t), i.e., ∂{fi | i ∈ I ′} ⊆ N({fi | i ∈ I}) ∪N(t).

We define the support of the term t, denoted Sup(t), to be the largest subset of [m] that can be
t-inferred by repeated applications of the derivation rule above starting from I0 = ∅.

That is, the support of t is derived by some sequence

∅ `t I1

I1 `t I2

(I1 ∪ I2) `t I3

(I1 ∪ I2 ∪ I3) `t I4

et cetera, until it is not possible to add any more axioms/integers to Ij . Observe that part 1 of
the derivation rule enforces that the set Ij added in any one step is not too large, while part 2
makes sure that any new (compared to

⋃
i<j Ii) boundary variables for Ij are represented in the

term t (in this sense the polynomials and t “depend” on each other).

Remark 5.2. Perhaps we should also point out explicitly that the support of a term is well-
defined in the sense that there is one unique largest subset that we can t-infer. To see this,
suppose that we t-infer two subsets S1 and S2. Then we can also t-infer S1 ∪ S2 by first inferring
S1 and then inferring S2 starting with S1 instead of ∅. It is straightforward to verify that this is
in accordance with the rules. Also, we remark that the total size of the inferred set is allowed to
be larger than s/2; it is only the set of new integers inferred in each step that has this restriction
on its size.

We will use Definition 5.1 to define the polynomials generating the ideal V (t) that we will
use to reduce t. Intuitively, for any t we want V (t) to be not too large (so that R is nontrivial).
This is where the expansion of the graph comes into play. Because of expansion, condition 2
should be difficult to satisfy for (medium-)large sets. Also by expansion, Sup(c) for a constant
c ∈ F is the empty set, and we cannot c-infer anything from it.

Formally, we let V (t) = Span({fi | i ∈ Sup(t)}) and define R(t) = RV (t)(t). We want to
prove that this R is a linear operator as in Lemma 4.2. Let us start by proving that the
generating set Sup(t) of the ideal V (t) cannot be too large if t has not too large degree.

Lemma 5.3 (Lem 3.16 in [AR03]). If Deg(t) ≤ se/2, then |Sup(t)| ≤ s/2.

8-6

Proof. By contradiction. Suppose that there exists a sequence I0 = ∅, I1, I2, . . . , Iτ such that⋃r−1
j=1 Ij `t Ir for all r = 1, 2, . . . , τ and

∣∣⋃τ
j=1 Ij

∣∣ > s/2. Fix τ∗ ≤ τ to be minimal such that∣∣⋃τ∗

j=1 Ij
∣∣ > s/2. Since we could t-infer all the Ij ’s, by condition 1 in Definition 5.1 the last set

to be t-inferred, Iτ∗ , must have been of size at most s/2. By the minimality of τ∗ we also have∣∣⋃τ∗−1
j=1 Ij

∣∣ ≤ s/2, and putting these two facts together we get that |
⋃τ∗

j=1 Ij | ≤ s. This means
that this set of vertices on the left-hand side of G(F) is small enough to meet the expansion
guarantees, so it follows that

∣∣∂(
⋃τ∗

j=1 Ij)
∣∣ > se/2 (overloading notation as explained above).

By condition 2 in Definition 5.1, we must have that every new boundary element at each
step belongs to N(t). A conservative estimate of all of these boundary elements is ∂(

⋃τ∗

j=1 Ij).

This is so since an element can be in ∂(
⋃r−1
j=1 Ij) at time r − 1 and then disappear from the

boundary in ∂(
⋃r
j=1 Ij) if it is contained in Ir, but if an element is in the boundary at time τ∗

then it certainly was so also at the time when it was added. Thus the size of the boundary
at time τ∗ is a lower bound on the number of variables in t and hence on the degree, i.e.,∣∣∂(
⋃τ∗

j=1 Ij)
∣∣ ≤ Deg(t).

But combining the preceding two paragraphs we get that Deg(t) ≥
∣∣∂(
⋃τ∗

j=1 Ij)
∣∣ > se/2.

This is a contradiction. The lemma follows.

Now we can intuitively see that we are in good shape. If G(F) is an expander with expansion
rate e ≥ 1 then any subset of at most s clauses is satisfiable. Hence, any low-degree monomial t
as in Lemma 5.3 will get an ideal V (t) generated from a satisfiable subset of clauses, so in this
case we will have 1 /∈ V (t). This is not the way the proof in [AR03] goes, but for random k-CNF
formulas it might be that we could actually do (parts of) the argument that remains in this
way.

But at this point in the lecture we ran out of time. . . So we did not have time to prove
that our reduction operator R as defined above satisfies the conditions in Lemma 4.2. For
completeness, we present a proof of this below.

A The Part of the Proof That We Did Not Do in Class

We want to prove that the reduction operator R defined in Section 5 meets the requirements
of Lemma 4.2. A key step in the proof of this is to show that the reduction R(t) of t does
not change if we compute it modulo an ideal generated by a slightly larger set than Sup(t), as
long as it is not too large. We continue to overload notation so that Span(I) is a shorthand for
Span({fi | i ∈ I}).

Lemma A.1 (Lemma 3.17 in [AR03]). Assume that t is a term and that I ⊆ [m] is such
that I ⊇ Sup(t) and |I| ≤ s/2. Then RSpan(I)(t) = RSpan(Sup(t))(t).

In order to establish Lemma A.1 we will need two (even more) technical lemmas. In what
follows below, let us adopt vector notation signifying that ~x is a set of variables x1, . . . , xn and
~P is a set of polynomials P1, . . . , P` (for ranges of the indices to be determined from context).
The first lemma that we need might look rather abstract (which it is), but it will come in handy
very soon.

Lemma A.2 (Lemma 3.14 in [AR03]). Let ~y,~v, ~z be a partition of ~x = {x1, . . . , xn}, let
~P = ~P (~y,~v) be a set of polynomials over ~y ∪ ~v, and let Q = Q(~v, ~z) be a polynomial over ~v ∪ ~z
such that (z − b) divides Q for some z in ~z and some b in {0, 1}. Suppose that the term t(~y,~v)
does not contain any of the z-variables and is reducible modulo Span(~P ,Q) with respect to �.
Then t is reducible modulo Span(~P).

Proof. By assumption, there exists some polynomial f ∈ Span(~P ,Q) such that t = LT (f). By
the implicational completeness of polynomial calculus,6 it holds that f ∈ Span(f1, . . . , ft) if and

6Which is discussed in more detail in the scribe notes for lecture 6.

8-7

only if f1, . . . , ft � f , i.e., if for every α such that fi(α) = 0 for all i, it must also hold that
f(α) = 0. Hence, it follows from the assumptions in the lemma that ~P ,Q � f .

Let us now apply the restriction setting z = b. Since implications are preserved under
restrictions, we have ~P �z=b, Q�z=b� f �z=b. Let us look closer at this implication. ~P does not
contain z by assumption, so ~P�z=b= ~P . Since also by assumption (z−b) is a factor of Q we have
Q�z=b= 0. Consequently, the implication can be written as ~P � f�z=b, and using completeness
again we conclude that f�z=b∈ Span(~P). Now we observe that since the term t does not contain
the variable z it is not affected by the restriction setting z = b, so it must remain the leading
term also in f�z=b, i.e., t = LT (f�z=b) = LT (f). Restating this in words, there is a polynomial
in the ideal Span(~P) such that t is the leading term of this polynomial (namely f�z=b), which is
exactly the definition of what it means that t should be reducible modulo Span(~P). This proves
the lemma.

The second lemma formalizes the (hopefully fairly obvious) claim that if we reduce a term t
modulo a set of polynomials ~P , then the remaining irreducible terms will not contain any
variables other than the ones in t and ~P .

Lemma A.3. Let t be a term and ~P be a set of polynomials, and let t = q+ r for q ∈ Span(~P)
and r = RSpan(~P)(t). Then Vars(r) ⊆ Vars(t) ∪ Vars

(
~P
)
.

Proof. Write t = q + r for q ∈ Span(~P) and r = RSpan(~P)(t), and suppose there is a variable

z ∈ Vars(r) \ Vars(t) ∪ Vars
(
~P
)
. As in the proof of Lemma A.2 we can apply the restriction

z = b on the implication ~P � q = t − r. Since z does not occur in ~P or t we get that
~P � t− r�z=b, and we can write t = q′ + r′ for q′ ∈ Span(~P) and r′ = r�z=b. Note that r′ is also
a linear combination of irreducible terms since restricting an irreducible term can never make
it reducible. But if so we get q = q′ and r = r′ = r�z=b by uniqueness, which shows that z does
not appear in r after all.

Now we can prove Lemma A.1.

Proof of Lemma A.1. By assumption Sup(t) 6`t I\Sup(t). Hence by condition 2 in Definition 5.1
there exists a j ∈ I \ Sup(t) such that fj contains a variable z ∈ ∂I that does not occur in t.

Apply Lemma A.2 with ~P = {fi | i ∈ I \ {j}} and Q = fj . Since fj encodes a disjunctive
clause Cj , we know that the fact that z appears implies that fj is divisible by z−b for b ∈ {0, 1}
chosen depending on the sign of z in Cj . Hence, Lemma A.2 says that if t is reducible modulo

Span(~P ,Q), t is also reducible modulo Span(~P). (Restating this in our overloaded notation we
have that if t is reducible modulo Span(I), then t is also reducible modulo Span(I \ {j}).

Furthermore, we claim that RSpan(~P)(t) = RSpan(~P ,Q)(t), i.e., that all irreducible terms in

RSpan(~P)(t) are irreducible also modulo Span(~P ,Q). This follows from repeated application of
Lemma A.2 if we can prove that none of these terms contains the variable z. To see that this
latter statement must be true, write t = q + r for q ∈ Span(~P) and r = RSpan(~P)(t) and appeal
to Lemma A.3.

Summing up, we have proven that RSpan(I)(t) = RSpan(I\{j})(t) for j ∈ I \ Sup(t). By
induction, we can eliminate all j ∈ I \ Sup(t) one by one, which proves the lemma.

With the help of Lemma A.1 we are now able to verify that R satisifies the conditions in
Lemma 4.2.

1. R is linear. This is by construction. We define the operator on all monomials in Sn,d(F)
and extend it by linearity.

2. For any axiom fi it holds that R(fi) = 0. Consider ti =
∏
xj∈Vars(fi)

xj . For all

terms t ∈ fi we have that Vars(t) ⊆ Vars(ti). Lemma 5.3 yields the upper bound

8-8

|Sup(ti)| ≤ s/2. Clearly, for each t ∈ fi it holds that Sup(t) ⊆ Sup(ti). Since i ∈ Sup(ti),
it holds that RSpan(Sup(ti))(fi) = 0 (this is just a complicated way of stating the obvious
fact that fi ∈ Span(fi), so “the remainder” modulo the ideal in this case is 0). But then
it follows that R(fi) = 0, since for each t ∈ fi Lemma A.1 says that RSpan(Sup(t)) agrees
with RSpan(Sup(ti))(t)—i.e., it does not change the reduction operator when we replace
Span(Sup(t)) by the somewhat larger ideal Span(Sup(ti))—and by linearity it then holds
that

R(fi) =
∑

t∈fiR(t) =
∑

t∈fiRSpan(Sup(t))(t) =

=
∑

t∈fiRSpan(Sup(ti))(t) = RSpan(Sup(ti))

(∑
t∈fit

)
= RSpan(Sup(ti))(fi) = 0 . (A.1)

3. For any term t such that Deg(t) < se/2 and any variable x it holds that R(xt) =
R(xR(t)). This is clearly the crucial property where we should expect to have to work
the hardest, so let us argue carefully step by step.

Firstly, as we already noted several times by now we have

|Sup(xt)| ≤ s/2 (A.2)

by Lemma 5.3. By combining the degree bound in Equation (A.2) with what we just
proved in Lemma A.1, we deduce that

RSpan(Sup(t))(t) = RSpan(Sup(xt))(t) . (A.3)

Secondly, for any term t′ ∈ RSpan(Sup(t))(t) it holds that

Sup(xt′) ⊆ Sup(xt) . (A.4)

This can be derived from the fact that

N(t′) ⊆ N(t) ∪ N(Sup(t)) , (A.5)

i.e., that all variables in t′ must come from somewhere on the right-hand side of (A.5),
which is what we showed in Lemma A.3. To prove that (A.4) follows from (A.5), it is
sufficient to show that if Ij xt

′-infers Ij+1 for Ij ⊆ Sup(xt), then Sup(xt) xt-infers Ij+1.
Suppose Ij `xt′ Ij+1. By Definition 5.1 and Equation (A.5) we obtain that

∂Ij+1 ⊆ N(xt′) ∪ N(Ij)

= N(x) ∪ N(t′) ∪ N(Ij)

⊆ N(x) ∪ N(t) ∪ N(Sup(t)) ∪ N(Ij)

⊆ N(xt) ∪ N(Sup(xt)) ,

(A.6)

which again by Definition 5.1 means that Sup(xt) `xt Ij+1. Combining (A.4) and (A.2)
and applying Lemma A.1 again we deduce that

RSpan(Sup(xt′))(xt
′) = RSpan(Sup(xt))(xt

′) . (A.7)

Finally, it is a straightforward to check that

RSpan(Sup(xt))

(
xRSpan(Sup(xt))(t)

)
= RSpan(Sup(xt))(xt) (A.8)

8-9

(this is the analogue of the statement for integers a, b, c that ab ≡ a(b mod c) (mod c)).
Putting all the pieces together, we get

R(xR(t)) =
∑

t′∈R(t)R(xt′) [by linearity]

=
∑

t′∈R(t)RSpan(Sup(xt′))(xt
′) [by the definition of R]

=
∑

t′∈R(t)RSpan(Sup(xt))(xt
′) [by (A.7)]

= RSpan(Sup(xt))(xR(t)) [by linearity]

= RSpan(Sup(xt))(xRSpan(Sup(t))(t)) [by the definition of R]

= RSpan(Sup(xt))(xRSpan(Sup(xt))(t)) [by (A.3)]

= RSpan(Sup(xt))(xt) [by (A.8)]

= R(xt) [by the definition of R]

which is exactly what we needed to show.

4. R 6≡ 0, i.e., in particular R(1) 6= 0. Consider Definition 5.1 with t = 1 and I = ∅. Then
N(t) = N(1) = ∅, but by the expansion properties of G(F) it holds for any I1 such that
|I1| ≤ s/2 that ∂I1 6= ∅. Hence, we cannot t-infer anything from ∅ for t = 1, which means
that Sup(1) = ∅. Thus, R(1) = RSpan(Sup(1))(1) = RSpan(∅)(1) = 1.

We have now verified all the conditions in Lemma 4.2, so Theorem 1.1 follows. Hence, for
random k-CNF formulas F ∼ Fn,∆k with ∆ = O(1) large enough it holds almost surely that
F is unsatisfiable and requires linear refutation degree (and thus exponential refutation size in
both PC and PCR).

Acknowledgements

Many people have helped improve these notes since the lecture was first given. Among all
these people, the lecturer would like to especially acknowledge the assistance of Yuval Filmus,
Mladen Mikša, and Bangsheng Tang.

References

[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calcu-
lus: Non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18–35,
2003. Available at http://people.cs.uchicago.edu/~razborov/files/misha.pdf.
Preliminary version appeared in FOCS ’01.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM
Symposium on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial
calculus and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144,
1999.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational
Complexity, 7(4):291–324, December 1998.

8-10

http://people.cs.uchicago.edu/~razborov/files/misha.pdf

	Recapitulation of Material from Last Lecture
	Some Notation Used in This Lecture
	Some Standard Algebra
	Ideals, Pseudoideals, and a Degree Lower Bound Approach
	Constructing a Reduction Operator
	The Part of the Proof That We Did Not Do in Class

