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Lecture 11

Lecturer: Jakob Nordström Scribe: Karl Palmskog

The goal of today’s lecture is to finish the proof of the lower bound on space in polynomial
calculus resolution by Filmus et al. [FLN+12] that we started doing last time (i.e., in the previous
regular lecture before the guest lecture on SAT solving).

1 Recap of Terminology and Notation

Recall from last time that for a variable x we introduced the notation x0 ≡ x and x1 ≡ x for
positive and negative literals over x. This means that xb = 0 in PCR (i.e., xb is true) if and
only if x = b.

The formulas we consider are so-called bitwise pigeonhole principle formulas, which are
encodings of the functional pigeonhole principle where the functionality condition that every
pigeon should only go into one hole does not require extra axiom clauses but is hard-coded into
the encoding. For k a positive integer we let [0, k) denote the set {0, 1, . . . , k − 1}.

For n = 2`, the bitwise PHP formula BPHPm
n has propositional variables x[p, i] for each

p ∈ [0,m) and i ∈ [0, `), with [0,m) the set of pigeons and [0, n) the set of holes (where we
assume m > n). Each pigeon p is sent to the hole whose binary encoding is given by the string
x[p, `−1] · · ·x[p, 1]x[p, 0], where we say that the variables x[p, i] are associated with the pigeon p.

The intuition behind the formula BPHPm
n is that it specifies that no two pigeons map to

the same hole. Specifically, for every two pigeons p1 6= p2 ∈ [0,m) and every hole h ∈ [0, n) we
have a hole axiom

H(p1, p2, h) =
`−1∨
i=0

x[p1, i]1−hi ∨
`−1∨
i=0

x[p2, i]1−hi (1.1)

stating that either p1 is not mapped to h or p2 is not mapped to h, where h`−1 · · ·h0 is the
binary encoding of h.

Let α be a total assignment to the variables of BPHPm
n , and let S ⊆ [0,m) be a set of

pigeons. We say that α is well-behaved on S if the holes assigned by α to the pigeons in S are
all distinct.

A (disjunctive) commitment is a 2-clause of the form x[p1, i1]b1 ∨ x[p2, i2]b2 , where p1 6= p2.
A commitment set is a set of commitments where all pigeons are distinct. The domain of
a commitment set A, written dom(A), is the set of pigeons mentioned in A. The size of a
commitment set A, denoted |A|, is the number of commitments in A. An assignment α is well-
behaved on and satisfies a commitment set A if α is well-behaved on dom(A) and satisfies A.

A commitment set A entails a PCR-configuration P over well-behaved assignments if every
assignment α which is well behaved on and satisfies A also satisfies P.

2 Some Key Technical Results

Last time we proved the following lemma.

Lemma 2.1. Let S be a set of fewer than n/2 pigeons; let α be an assignment well-behaved
on S; and let x[p, i]b a literal associated with a pigeon p /∈ S. Then it is possible to modify
α by reassigning p so that the new assignment is well-behaved on S ∪ {p} and satisfies the
literal x[p, i]b.

The proof was a simple counting argument, and from this lemma we immediately obtained
the following corollary.
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Corollary 2.2. Let S and T be disjoint sets of pigeons such that |S ∪ T | ≤ n/2. Let X be a set
containing exactly one literal associated with the pigeon p for each p ∈ T . Then, any assignment
α that is well-behaved on S can be modified, by reassigning pigeons in T , into an assignment β
that is well-behaved on S ∪ T and also satisfies all literals in X.

We also claimed, but did not prove, the next lemma.

Lemma 2.3 (Locality lemma). Let A be a commitment set and P a PCR-configuration such
that A entails P over well-behaved assignments and |A| ≤ n/4. Then there exists a commitment
set B of size |B| ≤ 2 · Sp(P) such that B entails P over well-behaved assignments.

Let us first see how the lower bound on PCR space that we discussed last time now follows,
and then prove the key technical result in Lemma 2.3 needed for the proof of the space lower
bound.

3 Proof of the PCR Space Lower Bound

In this section, we establish the following theorem, which is the lower bound we set out to prove
last time.

Theorem 3.1. SpPCR(BPHPm
n `⊥) > n/8.

Proof. Let π = {P0 = ∅, . . . , Pτ} be a PCR-derivation from BPHPm
n in monomial space at

most n/8. We will prove that for all Pt ∈ π, there exists a commitment set At such that
|At| ≤ 2 · Sp(Pt) ≤ n/4 and At entails Pt.

If we can do this, then the theorem follows. To see this, note first that by Corollary 2.2
(with S = ∅), At is satisfiable by some well-behaved assignment α (in fact, we can satisfy all
literals in At). This in turn implies that α must satisfy Pt as well, which in particular means
that Pt does not contain the constant polynomial 1 encoding contradiction. It follows that no
PCR-derivation in space at most n/8 can refute BPHPm

n .
We construct the commitment sets At by structural induction on the derivation π. For the

base case, we have P0 = ∅ and can set A0 = ∅. Suppose inductively that we have defined At and
want to construct At+1. There are three cases depending on which derivation step is performed
at time t + 1: axiom download, inference, or erasure. We analyze the different cases in this
order.

Axiom download We distinguish two download cases: (a) complementarity axioms of the form
x + x− 1 or boolean axioms of the form x2 − x and (b) hole axioms H(p1, p2, h). In the former
case, we can simply set At+1 = At since any truth value assignment satisfies such an axiom by
definition. In the latter case, we distinguish the following subcases (by symmetry).

1. {p1, p2} ⊆ dom(At): Note that any well-behaved assignment sends p1 and p2 to different
holes and thus satisfies H(p1, p2, h). Hence, At already entails Pt+1 over well-behaved
assignments, and we can set At+1 = At.

2. {p1, p2} ∩ dom(At) = ∅: We add a commitment C = x[p1, 0]1−h0 ∨ x[p2, 0]1−h0 , say (any
literal for p1 and any literal for p2 is fine), to At, i.e. we set At+1 = At ∪ {C}. Then
since p1 and p2 are now both in the domain of At+1, any well-behaved assignments will
send these two pigeons to distinct holes and in particular satisfy H(p1, p2, h), and since
At ⊆ At+1 everything else in Pt+1 is also entailed by At+1.

3. p1 ∈ dom(At), p2 /∈ dom(At): Fix p∗ /∈ dom(At) ∪ {p2} and let C = x[p2, 0]1−h0∨x[p∗, 0]0,
say. (This is just to get p2 added to the domain of At+1 = At ∪ {C} in a way that is
consistent with the formal requirements on how commitment sets may look). Again, any
well-behaved assignment will now have to send p1 and p2 to distinct holes and so satisfy
H(p1, p2, h).
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In an axiom download step, the space increases by 1 and we never add more than 1 < 2 com-
mitments in any of the cases above, so we clearly maintain the invariant |At+1| ≤ 2 · Sp(Pt+1).

Inference Let Pt+1 = Pt ∪ {Q}, where the polynomial Q is derived from P. Then since PCR is
sound, Q certainly follows semantically from Pt. That is, if it holds for all P ∈ Pt that P (α) = 0,
then it also holds that Q(α) = 0. Set At+1 = At. Then all well-behaved α satisfying At+1 = At

must satisfy Pt by the induction hypothesis and hence also Q, so all of Pt+1 is satisfied.
Here, space is increasing, but the space of the commitments is unchanged, so we are still on

track.

Erasure Set Pt+1 = Pt \ {Q} for some Q ∈ Pt. As we discussed last time, this is the hard case.
We know that At entails Pt+1 ⊆ Pt, but the size of At may now be far too large if Q contained
a lot of monomials. Thus we need to find a smaller commitment set that still entails Pt+1, but
it is not at all clear how to do this.

However, here the “magic” Lemma 2.3 comes to the rescue. We just appeal to this lemma
with A = At and P = Pt+1 and let At+1 be the B produced by the lemma. By the statement of
the lemma, At+1 has all the properties needed for the induction step to go through.

This takes care of all inductive cases, and the theorem follows.

4 Proof of the Locality Lemma

Looking at the proof of Theorem 3.1 above, it seems that we never really did any hard work. The
only case that looked tricky was the erasure steps, and there we just appealed to Lemma 2.3
and were immediately done. Thus, if there is any work at all needed to be done in proving
Theorem 3.1, we should expect this to be in the proof of Lemma 2.3. We now finally prove this
“magic lemma.”

Proof of Lemma 2.3. Consider a bipartite graph with on the left-hand side the set M of all
distinct monomials in P (which is certainly a lower bound on the monomial space), and on
the right-hand side the set of all disjunctive commitments in A. We let there be an edge
between a monomial m ∈ M on the left and a commitment C ∈ A on the right if there is
a pigeon p mentioned in both (i.e., there is some variable x[p, i]b ∈ Vars(m) and some literal
x[p, i′]b

′ ∈ Lit(C), where i and i′ might be the same or distinct, and similarly for b and b′). To
follow the rest of the argument, it might be helpful to consider the example graph drawn in
Figure 1(a).

Let Γ ⊆ M be a set of maximal size such that |N(Γ)| ≤ 2 · |Γ|. Note that Γ is not necessarily
unique, but such a maximal set always exists. If nothing else, Γ = ∅ satisfies the requirement
that |N(Γ)| ≤ 2 · |Γ|. If we would have Γ = M , then it is not too hard to prove directly that
we can conclude with B = N(Γ) (although this is not quite immediate but requires a short
argument), so in what follows it is helpful to think of the case when Γ 6= M (although the proof
works for any Γ such that ∅ ⊆ Γ ⊆ M).

If Γ 6= M , it must hold for all S ⊆ M \ Γ that |N(S) \ N(Γ)| > 2 · |S|, since otherwise we
could add S to Γ to get a larger set. But this means that there is a matching of every m ∈ M \Γ
to two distinct commitments C ′, C ′′ ∈ A\N(Γ) such that no two m,m′ share any commitment.
To see this, just make two copies of each monomial/vertex in m ∈ M \ Γ with the same edges
from both copies to the vertices on the right, apply Hall’s theorem, and then identify the two
copies of the monomial again (this step is illustrated in Figure 1(b), where Γ and N(Γ) are in
the upper half of the graph).

Fix such a monomial m ∈ M \ Γ and suppose it has been matched to the two disjunctive
commitments C ′ = x[p′, i′]b

′ ∨x[q′, j′]c
′
and C ′′ = x[p′′, i′′]b

′′ ∨x[q′′, j′′]c
′′

as shown in Figure 1(c).
By construction, m must mention at least one pigeon each from C ′ and C ′′, so suppose without
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(c) Graphs with Γ and matchings
constructed at end of argument.

Figure 1: Illustration of argument in proof of the Locality lemma.

loss of generality that we can pick p′ and p′′ to be these pigeons. (It can be the case that m
also mentions q′ or q′′ or both, but by construction we are guaranteed that m mentions at least
one pigeon in each commitment and this is all we will need here.) Thus, there are some literals
x[p′, i1]b1 and x[p′′, i2]b2 such that m = x[p′, i1]b1 · x[p′′, i2]b2 ·m′. We choose a new commitment
Cm for m to be Cm = x[p′, i1]b1 ∨ x[p′′, i2]b2 . We construct commitments in this way for every
m ∈ M \ N(Γ), and let our new commitment set be B = N(Γ) ∪ {Cm | m ∈ M \N(Γ)}, i.e.,
the union of all these new assignments and the old commitments from A in N(Γ). We claim
that this is the commitment set we are looking for.

Firstly, we can verify that B is indeed a commitment set. This is so since all pigeons
mentioned inA are different, and the pigeons in B are just a subset of the pigeons inA. Secondly,
with regard to size it clearly holds that |B| ≤ 2 · |N(Γ)| + |M \ N(Γ)| ≤ 2 · |M | ≤ 2 · Sp(P)
(taking a look at Figure 1(c) might be helpful in verifying this). However, we also need to show
that B entails P over well-behaved assignments. That is, we must prove that every β that is
well-behaved on and satisfies B also satisfies P. Note that this is a priori not clear. We know
that this holds for A by assumption, but dom(A) is potentially much larger than dom(B) and
so A only has to deal with much more well-behaved assignments. Also, and more seriously, the
commitments in B are not a subset of those in A, and on the contrary might be in conflict with
A in the sense that satisfying literals in B falsifies literals in A.

We prove that B entails P over well-behaved assignments in a slightly roundabout way by
finding, given any assignment β well-behaved on and satisfying B, another assignment α such
that

1. P(α) = P(β), and

2. α is well-behaved on and satisfies A.

By item 2 it follows from the inductive hypothesis that α satisfies P. But if so, then β also
satisfies P by item 1, which is what we want to prove.

To this end, let S be the set of pigeons in dom(B), and let T be the set of pigeons in
dom(A) \ dom(B) (notice that dom(B) ⊆ dom(A)). Let X be the set of literals that for each
p ∈ T includes the (unique) literal x[p, i]b associated with p and appearing in A. Note that each
commitment in A\N(Γ) will have at least one literal in X (some commitments will potentially
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have both literals in X). Since |A| ≤ n/4, we have |S ∪ T | ≤ n/2. Apply Corollary 2.2 to S, T ,
and β to get a truth value assignment that is well-behaved on S ∪ T , agrees with β on pigeons
outside T , and satisfies X. We claim that this is the assignment α that we need.

To see this, note first that no monomial in Γ mentions pigeons in T (by construction), so α
and β agree on on monomials in Γ. For m ∈ M \ Γ, all β satisfying B must set the monomial
m to zero, since this is how the new commitments were constructed. Reassigning pigeons in T
can change variables in m, but there is still at least one variable that is set to zero, zeroing the
whole monomial. So for all m ∈ M , α gives the same value to m as does β, namely 0. Hence α
and β agree on all monomials in M and P(α) = P(β). This takes care of item 1 above.

By Corollary 2.2, α is well-behaved on S ∪ T = dom(A). Also, since α satisfies X as well
as N(Γ), α satisfies A. This takes care of item 2, and as already discussed it now follows that
P(α) = 0.

Thus, every β that is well-behaved on and satisfies B must also satisfy P. The lemma
follows.

5 Summary of the Lectures on Polynomial Calculus and PCR

Let us conclude by making a quick summary of what we have covered for polynomial calculus
and polynomial calculus resolution, just as we did for resolution in lecture 6.

For PC and PCR, we have studied the proof complexity measures size, space, and degree,
where we observed that in some sense degree seemed to play a role analogous to that of width in
resolution, and we have proven lower bounds for size [AR03] and space [FLN+12] in PCR (and
hence also PC). Let us summarize what we know about the relations between these measures.
As we will see, in contrast to what was the case for resolution, here we do not know much.

5.1 Size Versus Degree

The relationship between size and degree is analogous to the relationship between length and
width in resolution, that is, small degree implies small size [CEI96] and small size implies
(reasonably) small degree [IPS99]. Currently, nothing is known about tradeoffs between size
and degree. Thus, here we have the same situation as for length versus width in resolution.

5.2 Space Versus Degree

Since we said that degree is an analogoue of width, and since we know a lot about the relationship
between space and width in resolution,1 it is natural to ask whether there are nontrivial relations
between space and degree in PC or PCR. For instance, is there some kind of connection along
the lines of [AD08]? The answer is that we do not know. As far as the lecturer is aware, nothing
is currently known about these questions.

5.3 Size Versus Space

Does small space imply small size as in resolution? Does small size imply anything about space?
Are there any tradeoffs? Again, almost nothing is known. However, there is a very recent result
by Huynh and Nordström [HN12] that can be interpreted as giving some indications as to what
kind of relations we can expect to hold here.2

1Although we did not have time to cover all the results so far, but will return to the remaining ones after the
Christmas break.

2Regarding this result, it is absolutely clear that we will not have the time to cover it in any detail—
unfortunately, that is beyond the scope of this course—but if there is interest we could perhaps give an overview
of roughly how the result goes.
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