
DD3501 Current Research in Proof Complexity Nov 12, 2011

Notes on Pebble Games and Pebbling Contradictions

Lecturer: Jakob Nordström Scribe: Jakob Nordström

Towards the end of lecture 4, we started talking about pebble games and pebbling contradic-
tions. The presentation was somewhat rushed, however, and despite this we did not quite cover
what was intended. As a complement to what was said during the lecture, and as reference
material for future lectures, here are some more properly organized notes.

Section 1 defines pebbling and state some fundamental results; Section 2 introduces pebbling
contradiction CNF formulas, and in Section 3 we discuss connections between pebblings of
graphs and resolution refutations of pebbling contradictions. In Section 4, we prove a strong
trade-off between width and clause space. Finally, Section 5 presents some important concepts
which we have not discussed so far but to which we will return later in the course.

1 Pebble Games

Pebbling is a tool for studying time-space relationships by means of a game played on directed
acyclic graphs (DAGs). This game models computations where the execution is independent of
the input and can be performed by straight-line programs. Each such program is encoded as a
graph, and a pebble on a vertex in the graph indicates that the corresponding value is currently
kept in memory. The goal is to pebble the output vertex of the graph with minimal number of
pebbles (amount of memory) and steps (amount of time).

Pebble games were originally devised for studying programming languages and compiler
construction, but have found a broad range of applications in computational complexity theory.
An excellent survey of pebbling up to ca 1980 is [Pip80], and another in-depth treatment of some
pebbling-related questions can be found in [Sav98, Chapter 10]. Some more recent developments
are covered in the upcoming survey [Nor12] (which will be finished any decade now).

The pebbling price of a DAG G in the black pebble game captures the memory space, or
number of registers, required to perform the deterministic computation described by G. We will
mainly be interested in the the more general black-white pebble game modelling nondeterministic
computation, which was introduced in [CS76]. In what follows, we refer to vertices having
indegree 0 as sources and vertices having outdegree 0 as sinks. We write pred(v) to denote the
immediate predecessors of a vertex v, i.e., all vertices u which have an edge to v.

Definition 1.1 (Black-white pebble game). Let G be a directed acyclic graph (DAG) with
a unique sink vertex z. The black-white pebble game on G is the following one-player game.
At any time t, we have a pebble configuration Pt = (Bt,Wt) of black pebbles Bt and white
pebbles Wt on the vertices of G, where Bt,Wt ⊆ V (G) and Bt ∩ Wt = ∅. A (complete)
black-white pebbling of G, or a black-white pebbling strategy for G, is a sequence of pebble
configurations P = {P0, P1, . . . , Pτ} such that P0 = (∅, ∅), Pτ = ({z}, ∅), and for all t ∈ [τ ] it
holds that Pt is obtained from Pt−1 by one of the following rules:

1. Black pebble placement on v: A black pebble may be placed on v provided that v is
empty and all immediate predecessors of v are covered by pebbles. More formally, letting
Bt = Bt−1 ∪ {v} and Wt = Wt−1 is allowed if v /∈ Bt−1 ∪Wt−1 and pred(v) ⊆ Bt−1 ∪Wt−1.
(In particular, a black pebble can always be placed on a source vertex s since pred(s) = ∅.)

2. Black pebble removal from v: A black pebble may be removed from any vertex at
any time. Formally, if v ∈ Bt−1, then we can set Bt = Bt−1 \ {v} and Wt = Wt−1.

3. White pebble placement on v: A white pebble may be placed on any empty vertex at
any time. Formally, if v /∈ Bt−1 ∪ Wt−1, then we can set Bt = Bt−1 and Wt = Wt−1 ∪ {v}.

41/2-1



⇒ ⇒ ⇒

⇒ ⇒ ⇒

⇒ ⇒ ⇒

⇒ ⇒ ⇒

⇒

Figure 1: Complete black-white pebbling of pyramid of height 2.

4. White pebble removal from v: If all immediate predecessors of a white-pebbled ver-
tex v have pebbles on them, the white pebble on v may be removed. In particular, a
white pebble can always be removed from a source vertex. Formally, letting Bt = Bt−1

and Wt = Wt−1 \ {v} is allowed if v ∈ Wt−1 and pred(v) ⊆ Bt−1 ∪ Wt−1.

A black pebbling of G is a pebbling using black pebbles only, i.e., having Wt = ∅ for all t.

Figure 1 depicts the sequence of pebbling moves in an example black-white pebbling of a
small graph.

We are interested in measuring the time and space needed to pebble graphs. Time in
isolation is not so interesting, since any DAG with |V (G)| = n vertices can be pebbled in
time O(n)—just sort the vertices in topological order and then black-pebble the vertices in this
order to get a pebbling in linear time and space. However, the minimal space needed can be
much less than linear, and if one wants to optimize time and space simultaneously there can be
fairly nontrivial relations between the two measures. We will discuss this in more detail later
in the course.

41/2-2



The next definition makes the concepts of time and space in pebble games more precise and
introduces some notation that we will use.

Definition 1.2 (Pebbling time and space). The time of a pebbling P = {P0, . . . , Pτ} is
simply time(P) = τ and the space is space(P) = max0≤t≤τ{|Bt ∪ Wt|}. We say that G can be
pebbled in simultaneous time τ and space s if there is a complete pebbling P with time(P) ≤ τ
and space(P) ≤ s.

The black-white pebbling price (also known as the pebbling measure or pebbling number)
of G, denoted BW-Peb(G), is the minimum space of any complete pebbling of G. The (black)
pebbling price of G, denoted Peb(G), is the minimum space of any complete black pebbling of G.

Looking at our example pebbling P in Figure 1 again, it is easy to check that it has
time(P) = 13 and space(P) = 4. To get a feel for how to prove pebbling space bounds, and to
see why it is not entirely trivial, it might be a good exercise to show that space 4 is optimal for
this graph.

A classic result in pebbling, and indeed in complexity theory, is that if a graph G as bounded
indegree, then it is always possible to save a logarithmic factor over the trivial linear upper bound
on space. And you do not need white pebbles for this—there is such a pebbling using black
pebbles only.

Theorem 1.3 ([HPV77]). For any DAG G of size Θ(n) and constant fan-in it holds that
Peb(G) = O(n/ log n) (where the constant hidden in the big-oh notation depends on how large
the fan-in is).

An almost equally classic result is that this is optimal. In the worst case, you can never
save more than a logarithmic factor.

Theorem 1.4 ([GT78]). There are explicitly constructible DAGs Gn of size Θ(n) and fan-in 2
such that BW-Peb(Gn) = Ω(n/ log n).

A nice feature of this result, as stated in the theorem, is that these graphs are explicit. That
means that we do not need to use, for instance, the probabilistic method to argue that we just
know that such graphs exist but do not know more about them, but that we can in fact give an
algorithm that constructs such graphs in an efficient manner (i.e., polynomial time). We will
not go into details of the construction here, since it is somewhat elaborate, but the interested
reader can refer to [Nor12, Section 7] to see what these graphs look like and how the lower
bound is proven.

2 Pebbling Contradictions

In the last decade, there has been renewed interest in pebbling in the context of proof complexity.
The way pebbling results have been used in proof complexity has mainly been by studying so-
called pebbling contradictions (also known as pebbling tautologies1 or pebbling formulas). These
are CNF formulas encoding the pebble game played on a DAG G by postulating the sources
to be true and the sink to be false, and specifying that truth propagates through the graph
according to the pebbling rules. The idea to use such formulas seems to have appeared for the
first time in Kozen [Koz77], and they were also studied in [RM99, BEGJ00] before being defined
in full generality by Ben-Sasson and Wigderson in [BW01].

Definition 2.1 (Pebbling contradiction). Suppose that G is a DAG with sources S and
a unique sink z. Identify every vertex v ∈ V (G) with a propositional logic variable v. The
pebbling contradiction over G, denoted PebG, is the conjunction of the following clauses:

1Recall that we warned already during the first lecture for this sometimes confusing convention in proof
complexity to consider contradictory CNF formulas to be tautologies (since they are used to encode negations of
tautological statements).

41/2-3



z

x y

u v w

(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u ∨ v ∨ x)
∧ (v ∨ w ∨ y)
∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction PebΠ2 .

Figure 2: Pebbling contradiction for the pyramid graph Π2.

• for all s ∈ S, a unit clause s (source axioms),

• For all non-source vertices v, the clause
∨

u∈pred(v) u ∨ v (pebbling axioms),

• for the sink z, the unit clause z (sink axiom).

If G has n vertices and maximal indegree `, the formula PebG is a minimally unsatisfiable
(1+`)-CNF formula with n + 1 clauses over n variables. We will almost exclusively be inter-
ested in dags with bounded indegree ` = O(1), usually ` = 2. We note that DAGs with fan-in
2 and a single sink have sometimes been referred to as circuits in the proof complexity litera-
ture, although we will not use that terminology in this course. For an example of a pebbling
contradiction, see the CNF formula in Figure 2(b) defined in terms of the graph in Figure 2(a).

3 Reductions Between Pebbling and Resolution

We mentioned towards the end of lecture 4 that any black pebbling of a graph can be simulated
by a resolution refutation of the corresponding pebbling contradiction. The formal statement
is as follows.

Observation 3.1 ([BIW04]). If G is a DAG with constant fan-in and a single sink, then from
any complete black-only pebbling P of G one can extract a resolution refutation π : PebG `⊥ of
the pebbling contradiction over G such that L(π) = O(time(P)) and TotSp(π) = O(space(P)).

Proof. We omit the proof as it is part of problem set 1, but remark that it is fairly straightfor-
ward.

The other direction is much less obvious, but essentially says that any resolution refutation
of a pebbling contradiction can be simulated by a black-white pebbling of the underlying graph.

Theorem 3.2 ([Ben09]). If G is a DAG with constant fan-in and a single sink, then from any
resolution refutation π : PebG `⊥ of the pebbling contradiction over G one can extract a complete
black-white pebbling Pπ of G such that time(Pπ) = O(L(π)) and space(Pπ) = O(TotSp(π)).

Proof sketch. This is also part of problem set 1, but we dropped some heavy hints in class, as
well as in the problem statement in the problem set. So here they are again.

The general idea is to let positive literals correspond to black pebbles and negative literals
to white pebbles. Using this correspondence, one gets a pebble configuration from every clause
configuration. Then one needs to glue these pebble configurations together in such a way that
one obtains a correct pebbling for which the bound stated above holds.

41/2-4



There are two helpful technical observations that one needs to prove (although in the problem
set it is allowed to use them without proof). Namely, without loss of generality one can make
the following assumptions:

• Any clause appearing in any configuration of the proof (other than the final empty clause)
is resolved over at least once before being erased.

• When a clause is erased from a configuration after having been used in a resolution
inference for the last time, it is erased immediately after this final resolution inference step
(or, if both clauses used for the inference are erased, then they are erased immediately
after one another in any order you prefer).

The rest is just figuring out how to put the pieces together. Note that the hard part is to
show that you really get a correct pebbling strategy for the graph, and this needs to be argued
carefully.

4 A Trade-off Between Width and Clause Space in Resolution

When we showed in lecture 3 that clause space is an upper bound on width in resolution,
we observed that the proof of this fact it [AD08] worked by taking a space-efficient resolution
refutation π and and transforming it into a potentially completely different narrow resolution
refutation π′ (namely, by first using π to derive a good strategy for the Spoiler in the combina-
torial game characterizing width, and then using the Spoiler strategy to obtain a refutation π′

in small width). It is natural to ask whether such a transformation is really necessary. Maybe
one can prove that a space-efficient refutation is also narrow simply by virtue of having small
space? Or maybe a refutation in small space can at least be massaged into one that has small
width also without blowing up the space?

It turns out that this question had been answered even before we knew there was this reason
to ask it, namely in the conference paper [Ben02] preceding [AD03]. (Both of these papers took
quite a while before being published as the journal versions [AD08] and [Ben09] in reverse
chronological order.) The answer is that in general it is impossible to optimize space and width
simultaneously in any meaningful way.

Theorem 4.1 ([Ben09]). There is a family of k-CNF formulas Fn of size Θ(n) such that
Sp(Fn ` ⊥) = O(1) and W(Fn ` ⊥) = O(1), but for any resolution refutation πn : Fn `⊥ it
holds that Sp(π) ·W(π) = Ω(n/ log n).

What this theorem says is that although the formulas Fn can be refuted in essentially
minimal clause space and essentially minimal width, when we optimze one of these measures
the other has to blow up to almost worst possible. (Recall that the worst-case upper bound is
linear in n, and the lower bound we get here is linear except for a log n factor.)

We will spend the rest of this section proving this theorem. Let us start by an easy obser-
vation.

Observation 4.2. For any resolution refutation π it holds that Sp(π) ·W(π) ≥ TotSp(π).

Proof. The refutation π never has more that Sp(π) clauses in memory, and each clause has size
at most W(π). Thus the total number of literals in memory at any point during π, i.e., the
total space, is at most Sp(π) ·W(π).

Now we can present the formulas we want to use to prove Theorem 4.1. Namely, we take the
graphs Gn from Theorem 1.4, which are very hard with respect to pebbling space, and look at
pebbling contradictions over these graphs. Using Theorem 3.2, we can conclude that for these
formulas it must hold that TotSp(PebGn

`⊥) = Ω(n/ log n).
All that remains now is to prove that these formulas are easy with respect to both width

and clause space. But this is in fact the case for any pebbling contradiction, as stated next.

41/2-5



Observation 4.3. For any DAG G of size Θ(n) and constant fan-in there is a resolution
refutation π : PebG `⊥ with L(π) = O(n) and W(π) = O(1).

Lemma 4.4 ([Ben09]). For any DAG G of size Θ(n) there is a refutation π : PebG `⊥ with
L(π) = O(n) and Sp(π) = O(1).

Before proving Observation 4.3 and Lemma 4.4, let us just note that if we can do so then
we are done also with Theorem 4.1. We already argued above that TotSp(PebGn

` ⊥) =
Ω(n/ log n). This means that although we can refute the formulas PebGn

in width W(PebGn
`

⊥) = O(1) by Observation 4.3 and also in clause space Sp(PebGn
`⊥) = O(1) by Lemma 4.4,

any refutation π optimizing one of the measures must have the other measure being large.

Proof of Observation 4.3. Suppose that G is a DAG with indegree ` and unique sink z. Let
n = |V (G)|. Sort the vertices of G in topological order. We will show how to derive the unit
clause v for all vertices v ∈ V (G) in this topological order in length n(1 + `) and width 1 + `.
Once we derive z, we then resolve with z to get the empty clause. Since ` is assumed to be
constant, this is sufficient to prove the observation.

The argument is by induction. If s is a source vertex, then the unit clause s is an axiom
of PebG and there is nothing to prove. If u is a non-source, say with immediate predecessors
pred(u) = {v1, . . . , v`′} for `′ ≤ `, then by induction we have already derived all the unit clauses
vi for i = 1, . . . , `′. Download the axiom v1 ∨ · · · ∨ v`′ ∨ u and resolve in `′ steps with vi,
i = 1, . . . , `′, to derive u. This is a total of at most 1+ ` steps per vertex, and the widest clauses
that appear in the refutation are the axiom clauses.

Proof of Lemma 4.4. Suppose again that G is a DAG with unique sink z and number of vertices
n = |V (G)|, but this time sort the vertices of G in reverse topological order. We will consider
the vertices in this order v1 = z, v2, . . . , vn−1, vn and derive in constant clause space (in fact,
minimal clause space 3) for each vi a clause Di =

∨
w∈Wi

w such that Wi ⊆ {vi+1, . . . , vn}.
When we reach vn, this means we have derived the empty clause.

Start by downloading the sink axiom z as well as the pebbling axiom
∨

w∈pred(z) w ∨ z for
the sink, and resolve these two clauses to get D1 =

∨
w∈pred(z) w. This clause clearly satisfies

the invariant specified above for W1 = pred(z).
When we get to the vertex vi, the clause Di−1 =

∨
w∈Wi−1

w must contain the literal vi since
vi is the predecessor of some vi′ for i′ < i, and the literal vi was added to the clause when the
pebbling axiom for vi′ was downloaded. Now download the pebbling axiom

∨
w∈pred(z) w∨vi for

vi and resolve with Di−1 to get a new clause Di =
∨

w∈Wi
w for Wi = (Wi−1 ∪ pred(vi)) \ {vi},

and then erase everything except Di from memory. Since the resolution step removed the
literal vi and all new literals added must be for vertices before vi in the topological ordering,
the invariant is maintained. Since the derivation works by always keeping one clause in memory
and downloading axioms and resolving with this clause, the space of the derivation is 3. We make
exactly one resolution inference (plus two erasures) per vertex, so the length of the derivation
is linear in the number of vertices (independent of the fan-in of the graph). The lemma now
follows by the induction principle.

5 Generalized Pebbling Contradictions

In some cases when we will want to use pebbling to establish proof complexity results, the
formulas in Definition 2.1 are not quite sufficient for our purposes since they are a bit too easy
to refute. We therefore want to make them (moderately) harder, and it turns out that a good
way of achieving this is to substitute some suitable Boolean function f(x1, . . . , xd) for each
variable x and expand to get a new CNF formula.

It will be useful to formalize this concept of substitution for any CNF formula F and
any Boolean function f. To this end, let fd denote any (non-constant) Boolean function

41/2-6



fd : {0, 1}d 7→ {0, 1} of arity d. We use the shorthand ~x = (x1, . . . , xd), so that fd(~x) is just
an equivalent way of writing fd(x1, . . . , xd). Every function fd(x1, . . . , xd) is equivalent to a
CNF formula over x1, . . . , xd with at most 2d clauses. Fix some canonical set of clauses repre-
senting fd and let Cl [¬fd(~x)] denote the clauses in some chosen canonical representation of the
negation of fd. This canonical representation can be given by a formal definition (in terms of
min- and maxterms), but we do not want to get too formal here and instead try to convey the
intuition by providing a few examples. For instance, we have

Cl [∨2(~x)] = {x1 ∨ x2} and Cl [¬∨2(~x)] = {x1, x2} (5.1)

for logical or of two variables and

Cl [⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} and Cl [¬⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} (5.2)

for exclusive or of two variables. If we let thrk
d denote the threshold function saying that k out

of d variables are true, then for thr2
4 we have

Cl [thr2
4(~x)] =


x1 ∨ x2 ∨ x3,

x1 ∨ x2 ∨ x4,

x1 ∨ x3 ∨ x4,

x2 ∨ x3 ∨ x4

 and Cl [¬thr2
4(~x)] =



x1 ∨ x2,

x1 ∨ x3,

x1 ∨ x4,

x2 ∨ x3,

x2 ∨ x4,

x3 ∨ x4


. (5.3)

The following observation is rather immediate, but nevertheless it might be helpful to state
it explicitly.

Observation 5.1. Suppose for any non-constant Boolean function fd that C ∈ Cl [fd(~x)] and
that ρ is any partial truth value assignment such that ρ(C) = 0. Then for all D ∈ Cl [¬fd(~x)] it
holds that ρ(D) = 1.

Proof. If ρ(C) = 0 this means that ρ(fd) = 0. Then clearly ρ(¬fd) = 1, so, in particular, ρ
must fix all clauses D ∈ Cl [¬fd(~x)] to true.

We want to define formally what it means to substitute fd for the variables Vars(F ) in a
CNF formula F . For notational convenience, we assume that F only has variables x, y, z, et
cetera, without subscripts, so that x1, . . . , xd, y1, . . . , yd, z1, . . . , zd, . . . are new variables not
occurring in F .

Definition 5.2 (Substitution formula). For a positive literal x and a non-constant Boolean
function fd, we define the fd-substitution of x to be x[fd] = Cl [fd(~x)], i.e., the canonical repre-
sentation of fd(x1, . . . , xd) as a CNF formula. For a negative literal ¬y, the fd-substitution is
¬y[fd] = Cl [¬fd(~y)]. The fd-substitution of a clause C = a1 ∨ · · · ∨ ak is the CNF formula

C[fd] =
∧

C1∈a1[fd]

. . .
∧

Ck∈ak[fd]

(
C1 ∨ . . . ∨ Ck

)
(5.4)

and the fd-substitution of a CNF formula F is F [fd] =
∧

C∈F C[fd].

For example, for the clause C = x ∨ y and the exclusive or function f2 = x1 ⊕ x2 we have

C[f2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) .

(5.5)

41/2-7



(u1 ∨ u2) ∧ (v2 ∨ w1 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v2 ∨ w2 ∨ y1 ∨ y2)
∧ (w1 ∨ w2) ∧ (x1 ∨ y1 ∨ z1 ∨ z2)
∧ (u1 ∨ v1 ∨ x1 ∨ x2) ∧ (x1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ v2 ∨ x1 ∨ x2) ∧ (x2 ∨ y1 ∨ z1 ∨ z2)
∧ (u2 ∨ v1 ∨ x1 ∨ x2) ∧ (x2 ∨ y2 ∨ z1 ∨ z2)
∧ (u2 ∨ v2 ∨ x1 ∨ x2) ∧ z1

∧ (v1 ∨ w1 ∨ y1 ∨ y2) ∧ z2

∧ (v1 ∨ w2 ∨ y1 ∨ y2)

(a) Substitution pebbling contradiction PebΠ2 [∨2] with respect to binary logical or.

(u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)
∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

(b) Substitution pebbling contradiction PebΠ2 [⊕2] with respect to binary exclusive or.

Figure 3: Examples of substitution pebbling formulas for the pyramid graph Π2.

41/2-8



Note that F [fd] is a CNF formula over d · |Vars(F )| variables containing strictly less than
|F | · 2d·W(F ) clauses. (Recall that we defined a CNF formula as a set of clauses, which means
that |F | is the number of clauses in F .) It is easy to verify that F [fd] is unsatisfiable if and
only if F is unsatisfiable.

Two examples of substituted version of the pebbling formula in Figure 2(b) are the substi-
tution with logical or in Figure 3(a) and with exclusive or in Figure 3(b). As we shall see later
in the course, these formulas have played an important role in the line of research trying to
understand proof space in resolution.

Although we will not prove it here, it can be shown (and we will need it later) that Obser-
vation 3.1 in fact extends to generalized pebbling contradictions PebG[fd] (although the hidden
constant factors will then depend on the specific substitution function fd chosen).

References

[AD03] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. In Proceedings of the 18th IEEE Annual Conference on Computational Com-
plexity (CCC ’03), pages 239–247, July 2003.

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323–334, May 2008. Pre-
liminary version appeared in CCC ’03.

[BEGJ00] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On
the relative complexity of resolution refinements and cutting planes proof systems.
SIAM Journal on Computing, 30(5):1462–1484, 2000. Preliminary version appeared
in FOCS ’98.

[Ben02] Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing (STOC ’02), pages 457–464, May 2002.

[Ben09] Eli Ben-Sasson. Size space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version appeared in STOC ’02.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation
of treelike and general resolution. Combinatorica, 24(4):585–603, September 2004.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made sim-
ple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version appeared
in STOC ’99.

[CS76] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial
time recognizable languages. Journal of Computer and System Sciences, 13(1):25–37,
1976.

[GT78] John R. Gilbert and Robert Endre Tarjan. Variations of a pebble game on graphs.
Technical Report STAN-CS-78-661, Stanford University, 1978. Available at http:
//infolab.stanford.edu/TR/CS-TR-78-661.html.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal
of the ACM, 24(2):332–337, April 1977.

[Koz77] Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’77), pages
254–266, 1977.

41/2-9

http://infolab.stanford.edu/TR/CS-TR-78-661.html
http://infolab.stanford.edu/TR/CS-TR-78-661.html


[Nor12] Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics
with supplemental results. Manuscript in preparation. To appear in Foundations and
Trends in Theoretical Computer Science. Current draft version available at http:
//www.csc.kth.se/∼jakobn/research/, 2012.

[Pip80] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research
Center, 1980. Appeared in Proceedings of the 5th IBM Symposium on Mathematical
Foundations of Computer Science, Japan.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combi-
natorica, 19(3):403–435, March 1999. Preliminary version appeared in FOCS ’97.

[Sav98] John E. Savage. Models of Computation: Exploring the Power of Computing.
Addison-Wesley, 1998. Available at http://www.modelsofcomputation.org.

41/2-10

http://www.csc.kth.se/~jakobn/research/
http://www.csc.kth.se/~jakobn/research/
http://www.modelsofcomputation.org

	Pebble Games
	Pebbling Contradictions
	Reductions Between Pebbling and Resolution
	A Trade-off Between Width and Clause Space in Resolution
	Generalized Pebbling Contradictions

