
Current Research in Proof Complexity: Problem Set 1

Due: December 4, 2011. Submit as a PDF-�le by e-mail to jakobn at kth dot se with
the subject line Problem set 1: 〈your name〉. Solutions should be written in LATEX or
some other math-aware typesetting system. Please try to be precise and to the point in your
solutions and refrain from vague statements. In addition to what is stated below, the general
rules stated on the course webpage always apply.
Hints: For most or all problems, �hints� can be purchased at a cost of 5�10 points. In this
way, you can con�gure yourself whether you want the problems to be more creative and
open-ended, where sometimes a lot can depend on �nding the right idea, or whether you
want them to be more of guided exercises providing a useful work-out on the concepts of
proof complexity. If you do not solve a problem, there is no charge for the hint (i.e., it is not
deducted from the score on other problems).
Collaboration: Discussions of ideas in groups of two to three people are allowed�and in-
deed, encouraged�but you should write down your own solution individually and understand
all aspects of it fully. For each problem, state at the beginning of your solution with whom
you have been collaborating. Everybody collaborating on a certain problem is considered to
have purchased a hint if one of the collaborators has done so.
Reference material: Some of the problems below are �classic� and hence their solutions
can probably be found on the Internet or in research papers. It is not allowed to use such
solutions in any way unless explicitly stated otherwise. Anything said during the lectures on
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. It is hard to pin down 100% formal rules
on what all this means�when in doubt, ask the lecturer.
About the problems: Note that as explained in class, this problem set is considerably

more comprehensive than following problem sets are expected to be. Some of these problems
are meant to be quite challenging and you are not necessarily expected to solve all of them.
As a general guideline, a total score of around 120 points on this problem set should be
enough to get a pass. Any corrections or clari�cations will be posted on the course webpage
www.csc.kth.se/~jakobn/teaching/proofcplx11.

1 (10 p) In the �rst lecture, we said that any propositional logic formula F can be transformed

to CNF formula F ′ such that F ′ only linearly larger than F and is unsatis�able i� F tautology.

We did do the full transformation, however, and your task now is to �ll in the missing details

regarding the connectives ∧ and ↔.

Given a formula F
.= G∧H, show how to write CNF clauses that force xF to take the value

of G ∧H assuming that xG and xH are computing G and H, respectively. Then solve the same

problem for the formula F
.= G ↔ H.

2 (10 p) In the second lecture, we introduced the weakening rule in resolution, which allows us

to derive C ∨ D from the clause C for any clause D, and then claimed that this rule can be

eliminated without loss of generality. Prove this formally.

That is, prove that if π : F `⊥ is a resolution refutation with weakening, then there is another

resolution refutation π′ : F `⊥ that does not use the weakening rule and has at most the same

length, clause space, and width as π.

Page 1 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://www.csc.kth.se/~jakobn/teaching/proofcplx11

3 (10 p) Prove that, again as claimed in class, restrictions preserve resolution derivations. That is,

show that if π : F `D is a resolution derivation of a clause D from a CNF formula F and ρ is

a restriction, then π�ρ is a derivation of D�ρ from F�ρ in at most the same length, clause space,

and width as π.
Do you need the weakening rule for this statement to hold? Why or why not? If you do need

weakening, is there any way of getting a similar statement without using the weakening rule?

4 (10 p) Prove that a (bipartite vertex) (d, s, κ)-expander is a (d, s, 2κ − d)-unique-neighbour ex-
pander.

5 (30 p) To complete the proof of the lower bound for PHPn+1
n by Ben-Sasson and Wigderson

presented in class, we need to establish the existence of (5, n/c, 3)-expanders (which is su�cient

to get unique-neighbour expansion by problem 4). Prove that if we generate a random bipartite

graph G = (U
.
∪ V,E) with |U | = n + 1 and |V | = n by picking for each u ∈ U a random set of

5 neighbours in V chosen uniformly and independently at random from all
(
n
5

)
subsets of vertices

with replacement, then there is a universal constant c > 0 such that G is a (5, n/c, 3)-expander
with high probability for large enough n (which in particular means that such graphs must exist).

Hint: Focus on what it means that G would fail to be an expander. Consider all the ways

in which this can happen, and calculate the probability using the tips given during the lecture.

Make sure to explain properly what is going on in your calculations.

6 (30 p) Let F be an unsatis�able CNF formula and let α denote any truth value assignment to

the variables in F . The search problem for F given α is to �nd a clause C ∈ F falsi�ed by α.
A decision tree TF for F is a binary tree with leaves labelled by clauses in F , internal

vertices labelled by variables x, and two edges from each internal vertex labelled 0 and 1. Any
assignment α de�nes a path through TF starting from the root and following from each internal

vertex x the edge label agreeing with the value assigned to x by α. Such a path ends in some

leaf C, which is the answer of TF on α. The tree TF solves the search problem for F if on any α
the answer C is a clause falsi�ed by α.

Let us write SD(F) to denote the minimal size (i.e., number of vertices) of any decision tree

solving the search problem for F . Recall that LT (F ` ⊥) denotes the minimal length of any

tree-like resolution refutation of F .

We claimed in class that decision trees and tree-like resolution refutations are essentially the

same. Your task is now to formalize this claim as follows.

6a Prove that SD(F) ≤ LT (F `⊥) by showing that any tree-like resolution refutation of F
can be made into a decision tree solving the search problem for F .

6b Prove that LT (F ` ⊥) ≤ SD(F) by showing that any decision tree solving the search

problem for F can be made into a tree-like resolution refutation of F . (For partial credit,

just prove LT (F `⊥) = O(SD(F)) using weakening.)

6c Argue that this proves the implicational completeness of resolution, and show that any

unsatis�able CNF formula over n variables has a resolution refutation π in simultaneous

length L(π) = O(exp(n)) and clause space Sp(π) = O(n). What are the best concrete

bounds you can get, not using big-oh notation but providing explicit constants instead?

What bounds can you get expressed in terms of the number of clauses m of the formula?

Page 2 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

7 (30 p) In the �rst lecture, we discussed the proof systems resolution, Cutting Planes, and Poly-

nomial Calculus but did not say much about how they are related.

7a Prove that Cutting Planes can polynomially simulate resolution by showing that given any

resolution refutation π : F `⊥, Cutting Planes can simulate this refutation line by line in

almost the same length, size and space (where size is the total number of literals plus in

Cutting Planes also the sums of the logarithms of all the coe�cients, and where space is the

number of clauses in resolution and the number of inequalities in Cutting Planes). Making

clear what �almost� means is part of the problem, but any increase should be small.

7b Is it true that Polynomial Calculus can simulate resolution in the same way? Make the

necessary modi�cations to the proof in problem 7a or explain why this cannot be done.

8 (50 p) In the fourth lecture, we de�ned black-white pebbling and pebbling contradictions, and

argued rather informally that the properties of pebbling contradiction CNF formulas with respect

to resolution are related to properties of their corresponding graphs with respect to the black-

white pebble game. We now want to make this more precise.

In this problem, assume that G is a directed acyclic graph (DAG) with one unique sink

(usually denoted z) and with all non-source vertices having a constant number of incoming edges

(fan-in 2 can be assumed without loss of any credit).

8a Prove that given a pebbling strategy P for G that only uses black pebbles, there is a

resolution refutation π of PebG in length L(π) = O
(
time(P)

)
and clause space Sp(π) =

O
(
space(P)

)
.

8b Prove that given a resolution refutation π : PebG `⊥, there is a black-white pebbling strat-
egy P such that time(P) = O(L(π)) and space(P) = O(TotSp(π)). For simplicity, let us

specify explicitly that the resolution refutation does not use weakening.

Hint: For this problem there are two helpful technical assumptions that you are allowed

to make without a proof (although it is not too hard to show that these assumptions can

be made without loss of generality):

� Any clause appearing in any con�guration of the proof (other than the �nal empty

clause) is resolved over at least once before being erased.

� When a clause is erased from a con�guration after having been used in a resolution

inference for the last time, it is erased immediately after this �nal resolution infer-

ence step (or, if both clauses used for the inference are erased, then they are erased

immediately after one another in any order you prefer).

8c Can you improve the claim in problem 8a to the statement that given any black-white

pebbling strategy P for G, there is a resolution refutation π of PebG in length L(π) =
O

(
time(P)

)
and clause space Sp(π) = O

(
space(P)

)
? If so, what modi�cations are needed

in the proof? If this seems hard, can you pinpoint what is the problem?

Page 3 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

9 (40 p) We have seen that pigeonhole principle formulas PHPn+1
n are hard in theory, but what

does this mean in practice? In this problem, you are asked to investigate this by running the

state-of-the-art SAT solver MiniSAT on various �avours of pigeonhole principle formulas and

report your results.

Some helpful practical information about MiniSAT and about the standard DIMACS for-

mat used in SAT solving can be found on www.csc.kth.se/~jakobn/teaching/proofcplx11/

minisat.php.

For this problem, do not submit the code, but instead describe how it works. Place the actual

code in a directory in the AFS �le system where jakobn has reading and listing permission rl (as

shown by fs la .) . Note that permission l is needed for the whole path leading to the directory.

Make sure your code works in the CSC Ubuntu Linux environment. Include a Make�le in the

directory, or a shellscript make that will compile your code. If there are problems with any of

the above, contact the lecturer to agree on some other technical solution.

9a Write a program that takes as input a �le specifying bipartite graph G and outputs a

�le containing the formula PHP(G) in DIMACS format. If given no arguments on the

command line, the program should read the graph from standard input and write the

formula on standard output. The format of the input graph �le should be:

m n

1 : neighbour1 neighbour2 ... neighbourD1

2 : neighbour1 neighbour2 ... neighbourD2

...

m : neighbour1 neighbour2 ... neighbourDm

where the �rst line speci�es the number of vertices on the left m and on the right n, and
where each following line speci�es a vertex on the left followed by a colon and then a list

of neighbours on the right separated by spaces.

9b Feed complete bipartite graphs Kn+1,n to this program to generate formulas PHPn+1
n ,

and run MiniSAT on these formulas. How large instances can you solve? How does the

running time scale with n? With the total size of the formula (measured as the total

number of literals counted with repetitions)? Do you get better or worse results when you

turn o� preprocessing (-pre=none) of the formula in MiniSAT? Please specify what kind of

hardware you have run your experiments on (processor, clock frequency, amount of internal

memory). Providing nice plots of the results will give brownie points.

9c Generate random graphs G according to the distribution described in problem 5 and use

the program from problem 9a to obtain the corresponding CNF formulas PHP(G). For

how large n can MiniSAT solve these formulas? Do they seem to be easier or harder than

PHPn+1
n for the same n? How does the time scale with n? With the total size of the

formula? Do you get better or worse results when you turn o� preprocessing?

Page 4 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://www.csc.kth.se/~jakobn/teaching/proofcplx11/minisat.php
http://www.csc.kth.se/~jakobn/teaching/proofcplx11/minisat.php

10 (40 p) Sudoku is played over a 9x9 grid, divided to 3x3 subgrids called �regions,� where some

of the grid cells are already �lled with numbers 1 to 9. The goal is to �ll the remaining cells

with numbers 1 to 9 so that when the whole 9x9 grid has been completed, every number appears

exactly once in each row, each column, and each region. For more details see, e.g., en.wikipedia.

org/wiki/Sudoku. The purpose of this problem is to investigate if and how SAT solvers can be

used to solve Sudoku puzzles.

10a Describe a way to encode a speci�c Sudoku instance as a CNF formula in such a way that

the formula is satis�able if and only if the Soduko puzzle has a solution, and so that a

solution to the puzzle can be read o� from any satisfying assignment to the formula. The

encoding should be explicit and have reasonable size and complexity.

In case you happen to consider several di�erent options, describe what these are and discuss

what you think are possible pros and cons. (All such variants should be correct, of course.

Also, this is optional in the sense that only one correct encoding is needed for full credit.)

10b For this problem, do not submit the code, but instead follow the technical instructions

given in problem 9. If there are any problems, contact the lecturer to agree on some other

technical solution. The information on the webpage www.csc.kth.se/~jakobn/teaching/

proofcplx11/minisat.php may come in handy here as well.

Write a program that generates your CNF encoding from problem 10a for a a given Sodoku

instance and outputs it in DIMACS format. The format of the Sudoku input �le should

be as in the following example:

2--8-6--5

76-1-3-92

53-----28

-2-3-1-7-

17-----64

49-7-8-31

6--9-5--7

That is, the �le contains 9 rows with 9 characters in each row, and �-� denotes an empty

cell. If given no arguments, the program should read a Sudoku instance from standard

input and write the CNF formula on standard output.

Write another program that reads a satisfying assignment as produced by MiniSAT and

writes a solved puzzle on the format described above. Again the program should read from

standard input and write on standard output if no command line arguments are given.

How good is MiniSAT at solving Sudoku, and how much time does it take when the solver

is successful? Can you �nd a solvable or unsolvable Sudoku instance that MiniSAT cannot

handle? What happens for the empty instance (i.e., no �gures in any cells)? What happens

for an overconstrained instance (e.g., if you look at a solution and �ll in some cell in the

original puzzle in a way that is in con�ict with this solution)? In case you were considering

di�erent encoding options above, do they seem to make any di�erence in practice? (You

do not need to answer this �nal question in order to get full credit.)

To get you started, the directory www.csc.kth.se/~jakobn/teaching/proofcplx11/files

contains four �les sudoku1.txt to sudoku4.txt in the format described above.

Page 5 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Sudoku
http://www.csc.kth.se/~jakobn/teaching/proofcplx11/minisat.php
http://www.csc.kth.se/~jakobn/teaching/proofcplx11/minisat.php
http://www.csc.kth.se/~jakobn/teaching/proofcplx11/files

