
Current Research in Proof Complexity: Problem Set 3

Due: February 6, 2012. Submit as a PDF-�le by e-mail to jakobn at kth dot se with
the subject line Problem set 3: 〈your name〉. Solutions should be written in LATEX or
some other math-aware typesetting system. Please try to be precise and to the point in your
solutions and refrain from vague statements. In addition to what is stated below, the general
rules stated on the course webpage always apply.
Hints: For most or all problems, �hints� can be purchased at a cost of 5�10 points. In this
way, you can con�gure yourself whether you want the problems to be more creative and
open-ended, where sometimes a lot can depend on �nding the right idea, or whether you
want them to be more of guided exercises providing a useful work-out on the concepts of
proof complexity. If you do not solve a problem, there is no charge for the hint (i.e., it is not
deducted from the score on other problems).
Collaboration: Discussions of ideas in groups of two to three people are allowed�and in-
deed, encouraged�but you should write down your own solution individually and understand
all aspects of it fully. For each problem, state at the beginning of your solution with whom
you have been collaborating. Everybody collaborating on a certain problem is considered to
have purchased a hint for that problem if one of the collaborators has done so.
Reference material: Some of the problems might be �classic� with solutions easily found
on the Internet or in research papers. It is not allowed to use such solutions in any way
unless explicitly stated otherwise. Anything said during the lectures on in the lecture notes
should be fair game, though, unless you are speci�cally asked to show something that we
claimed without proof in class. It is hard to pin down 100% formal rules on what all this
means�when in doubt, ask the lecturer.
About the problems: Some of these problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. As a general guideline, a total score of
around 130 points on this problem set should be enough to get a pass. Any corrections or
clari�cations will be posted on the course webpage www.csc.kth.se/~jakobn/teaching/

proofcplx11.

1 (40 p) Unit propagation, known in the SAT community as Boolean constraint propagation (BCP),

applied on a CNF formula F works as follows: If there is a unit clause in F , i.e., a clause of size 1
consisting of a single literal a, set this literal a to true, remove all clauses from F containing a,
and shrink all clauses containing a by removing this literal. Repeat on the new CNF formula

obtained in this way until either contradiction is derived (in the form of an empty clause) or

there are no more unit clauses. Note that described in this way, unit propagation can be viewed

as an (incomplete) proof system for refuting unsatis�able CNF formulas.

As explained in the guest lecture on SAT solving, in a CDCL solver one tries to pick decision

variables to set in such a way that there is a lot of unit propagation for every decision made.

Intuitively, if we can make only a few variable decisions and then refute the rest of the formula

by unit propagation, the formula is easy. In this problem, we want to study an extreme case of

this situation and derive a correspondence of sorts between theory and practice.

1a Suppose that a CNF formula F is such that it can be refuted by unit propagation only

(without any decision variables). Prove that this implies that SpR (F `⊥) = O(1). For full
credit, determine the exact refutation clause space complexity in resolution.

Page 1 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://www.csc.kth.se/~jakobn/teaching/proofcplx11
http://www.csc.kth.se/~jakobn/teaching/proofcplx11


1b Suppose that a CNF formula F is such that it can be refuted by a CDCL solver making only

a constant number of decisions (and using unit propagation for the non-decision variables).

Prove that this implies that SpR (F `⊥) = O(1). (Here the constant hidden in the big-oh

notation will depend on the number of decisions, but there is no need to study the concrete

numbers.)

Hint: You do not need to worry about clause learning or any fancy techniques for this problem,

but can consider a simpli�ed model where the solver branches on the values of variables and a

run of the solver corresponds to a decision tree for the search problem of �nding an unsatis�ed

clause for F .

2 (40 p) One important technique in SAT solving is to preprocess the input CNF formula F by

removing so-called blocked clauses. A clause C in a CNF formula F is blocked with respect to the

literal a if for every clause D in F that contains a there is also another literal b in D such that b
is a literal in C (recall that we de�ne x = x). Equivalently, C is blocked with respect to a if all

resolvents over a involving C yield trivial clauses. (A clause is trivial if it contains both literals

x and x for some variable x.)

2a Prove that if we start with a formula F and remove blocked clauses in any order until there

are no more blocked clauses, we always get the same formula F ′. (In somewhat more fancy

terminology, blocked clause elimination is a con�uent operation.)

2b Prove for the formula F ′ resulting from blocked clause elimination in F that F ′ is unsat-
is�able if and only if F is unsatis�able (i.e., the two formulas are equisatis�able).

3 (60 p) Consider the bitwise pigeonhole principle formula BPHPm
n which has axiom clauses∨`−1

i=0 x[p1, i]1−hi∨
∨`−1

i=0 x[p2, i]1−hi for every two pigeons p1 6= p2 ∈ [0,m) and every hole h ∈ [0, n)
stating that p1 and p2 do not both go to hole h, where n = 2` and h`−1 · · ·h0 is the binary encod-

ing of h. In class, we proved an Ω(n) lower bound on monomial space in PCR for these formulas,

and we now want to take a closer look at this proof.

Recall that we de�ned a commitment to be a 2-clause of the form x[p1, i1]b1 ∨ x[p2, i2]b2 ,
where p1 6= p2, and a commitment set A to be a 2-CNF formula consisting of commitments

where all pigeons are distinct. We used these commitment sets to capture information about

PCR-con�gurations. More precisely, for a PCR-derivation π = {P0 = ∅, P1, . . . , Pτ} in small

space we constructed commitment sets A0 = ∅,A1, . . . ,Aτ such that Ai implied Pi in a certain

sense, and this proved that no small-space derivation could refute BPHPm
n .

3a In a key lemma, we proved that any commitment set A is in fact �super-satis�able� in the

sense that both literals in all commitments x[p1, i1]b1 ∨ x[p2, i2]b2 can be satis�ed simulta-

neously. This raises the obvious question whether we could not just have single literals as

commitments instead of 2-clauses.

Therefore, let us de�ne a commitment to be a unit clause x[p1, i1]b1 and let a commitment

set be a 1-CNF formula consisting of commitments where all pigeons are distinct. Does

the proof we did in class still go through with this modi�cation? Explain how to adapt the

proof to make it work, or point out where it fails.

Page 2 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström



3b Suppose that we drop the requirement that p1 6= p2 for a commitment x[p1, i1]b1∨x[p2, i2]b2 ,
but still insist that any two distinct commitments in the same commitment set A cannot

mention the same pigeon. Does the proof we did in class still go through with this modi�-

cation? Explain how to adapt the proof to make it work, or point out where it fails.

3c Suppose we change the de�nition of commitment to an exclusive or x[p1, i1]b1 ⊕ x[p2, i2]b2
requiring that one of the literals but not both should be true (and where we still have

p1 6= p2), and let a commitment set A be a �2-XOR formula� consisting of commitments

where all pigeons are distinct. Does the lower bound proof still work with this de�nition

of commitment sets? Explain how to adapt it or point out where it breaks down.

4 (30 p) De�ne a new sequential proof system implicational monomial calculus (IMC) as follows.

Every line in a proof is a Boolean function f(m1, . . . ,md) where the arguments m1, . . . ,md

are monomials over variables and negated variables, just as in PCR. Clauses are translated to

monomials as in PCR. For inference steps, any function f(m1, . . . ,md) that follows semantically

from the monomial functions f1(m1,1, . . . ,m1,d1), . . . , fs(ms,1, . . . ,ms,ds) currently in memory

can be derived in one step.

Let the size of a proof be the total number of monomials occuring in the proof (counted

with repetitions) and let SIMC (F `⊥) be the minimal size of refuting the formula F in implica-

tional monomial calculus. Let the (monomial) space of a con�guration be the total number of

monomials (counted with repetitions) in all functions f(m1, . . . ,md) currently in memory, and

let SpIMC (F `⊥) denote the minimal space of refuting the formula F .

4a Prove that IMC can simulate PCR-proofs without any blow-up in size or space.

4b Can you use the ideas from the PCR-space lower bound for BPHPm
n to prove a similar

lower bound for IMC-space? Explain how to do this or point out where and why the

analogous approach fails.

5 (60 p) In this problem, we consider the functional pigeonhole principle formula FPHPn+1
n dis-

cussed in lecture 9 and the standard 3-CNF version (as de�ned in lecture 5) F̃PHPn+1
n of this

formula.

Recall that FPHPn+1
n is the formula PHPn+1

n with added axioms xi,j1 ∨xi,j2 for all pigeons i
and all holes j1 6= j2 specifying that a pigeon can only go into one hole. Recall also that for a

CNF formula F = C1 ∧ · · · ∧ Cm, for each Cj with W(Cj) ≤ 3 we let C̃j = Cj , and for each Cj

with W(Cj) > 3, say Cj = a1 ∨ a2 ∨ · · · ∨ aw, we let C̃j be the set of clauses{
yj,0 , yj,0 ∨ a1 ∨ yj,1 , yj,1 ∨ a2 ∨ yj,2 , . . . , yj,w−1 ∨ aw ∨ yj,w , yj,w

}
(1)

where yj,i are new variables that are unique to C̃j and do not appear anywhere else. With this

notation, we de�ne F̃ to be the conjunction of all the clauses in C̃j for j = 1, . . . ,m.

5a Prove that for any CNF formula F it holds that SpR

(
F̃ `⊥

)
≤ SpR (F `⊥) + O(1), i.e.,

that going to the 3-CNF version of a formula can never increase the clause space (at least

not by more than a very small constant term).

Page 3 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström



5b Prove that for the functional pigeonhole principle, the opposite direction also holds in the

sense that SpR

(
FPHPn+1

n `⊥
)
≤ SpR

(
F̃PHPn+1

n `⊥
)

+ O(1).

Hint: Regarding the auxiliary variables in Equation (1), it is natural to think of the

positive literal yj,i as a shorthand for
∨

`≤i a`, since if yj,i is set to true then any satisfying

assignment must also satisfy the clause
∨

`≤i a`. In the same way, the negative literal yj,i

corresponds to
∨

`>i a`. Thus, a naive approach for proving the inequality above would

be to substitute these clauses for yj,i and yj,i, respectively, in any resolution refutation of

F̃PHPn+1
n to get a refutation in essentially the same clause space for FPHPn+1

n . This does

not work in general for any CNF formula (why?), but for FPHPn+1
n this idea can actually

be implemented with a bit of care. (For bonus points, explain exactly which property of

FPHPn+1
n makes this go through. Would the same idea work also for PHPn+1

n ?)

5c Is it also true for PCR that we can relate SpPCR

(
FPHPn+1

n `⊥
)
and SpPCR

(
F̃PHPn+1

n `⊥
)

in a way analogous to Problem 5b? Explain how to prove a similar statement, or explain

why this does not work. (In the latter case we are not necessarily asking about a proof for

the opposite statement, but just an explanation of why the approach sketched above fails.)

6 (60 p) Kakuro, or Cross Sums, is a crossword puzzle but with numbers instead of words. The

empty cells, or squares, in the grid should be �lled in so that each run of cells adds up to the

total in the clue square above or to the left. Only numbers 1�9 should be used, and a number can
never be used more than once per run (but can reoccur in the same row or column in another,

separate run). Kakuro puzzle grids can be of any (rectangular) size.

A clue square, which we write as d\a below, can have a down clue or an across clue, or both.

For an across clue a, the numbers in the blank cells to the right of the clue should sum to a.

As already referred to above, these blank cells are said to constitute a run. For a down clue d,

the cells forming the run that should sum to d are positioned below the clue square. For more

details see, e.g., en.wikipedia.org/wiki/Kakuro.

The purpose of this problem is to investigate if and how SAT solvers can be used to solve

Kakuro puzzles. For this problem, do not submit any code, but instead describe how it works.

Place the actual code in a directory in the AFS �le system where jakobn has reading and listing

permission rl (as shown by fs la .) . Note that permission l is needed for the whole path

leading to the directory. Make sure your code works in the KTH CSC Ubuntu Linux environment.

Include a Make�le in the directory, or a shellscript make that will compile your code. If there are

problems with any of the above, contact the lecturer to agree on some other technical solution.

For the SAT solving you should use MiniSAT. Some helpful practical information about MiniSAT

and about the standard DIMACS format used by MiniSAT and other SAT solvers can be found

on the webpage www.csc.kth.se/~jakobn/teaching/proofcplx11/minisat.php.

6a Describe a way to encode any given Kakuro instance as a CNF formula in such a way that

the formula is satis�able if and only if the Kakuro puzzle has a solution, and so that a

solution to the puzzle can be read o� from any satisfying assignment to the formula. The

encoding should be explicit and have reasonable size and complexity.

In case you happen to consider several di�erent options, describe what these are and discuss

what you think are possible pros and cons. (All such variants should be correct, of course.

Also, this is optional in the sense that only one correct encoding is needed for full credit.)

Page 4 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://en.wikipedia.org/wiki/Kakuro
http://www.csc.kth.se/~jakobn/teaching/proofcplx11/minisat.php


6b Write a program that generates your CNF encoding from problem 6a for a a given Kakuro

instance and outputs it in DIMACS format. If given no arguments, the program should read

a Kakuro instance from standard input and write the CNF formula on standard output.

The format of the Kakuro input �le should be as in the following example:

8 x 6

-\- 17\- 28\- -\- 42\- 22\-

-\9 - - 31\14 - -

-\20 - - - - -

-\- -\30 - - - -

-\- 22\24 - - - -\-

-\25 - - - - 11\-

-\20 - - - - -

-\14 - - -\17 - -

That is, the �rst line <int> x <int> speci�es the dimensions of the Kakuro puzzle grid

(rows x colums). Then the puzzle grid follows, line by line. Clue squares are formatted like

d\a, where d is a down clue and a is an across clue. A dash instead of a number d or a

means that there is no clue. Empty cells - should be �lled with numbers 1�9, and -\-

denotes a cell that should not be �lled in. There is at least one blank between each cell,

but the number of blanks does not matter (we have just used some pretty-printing above

to get columns aligned). Each line is terminated by a newline character.

Write another program that reads a satisfying assignment as produced by MiniSAT and

pretty-prints a solved puzzle on the format analogous to that described above (so that the

problem and the solution can be easily compared). The program should take (at least)

two arguments, namely �rst the problem instance and then the satisfying assignment. If

no further command line arguments are given, the program should write the solved puzzle

on standard output.

How good is MiniSAT at solving Kakuro, and how much time does it take when the solver

is successful? Can you �nd a solvable or unsolvable Kakuro instance that MiniSAT cannot

handle? How large does the instance have to be (note that here it is required that the

hardness should not be the result of an obviously ine�cient CNF encoding, but should in

some intuitive sense be intrinsic to the instance). What happens for an overconstrained

instance (e.g., if you look at a solution and change the original problem in a way that is in

con�ict with this solution)? In case you were considering di�erent encoding options above,

do they seem to make any di�erence in practice? (You do not need to answer this �nal

question in order to get full credit.)

To get you started, the directory www.csc.kth.se/~jakobn/teaching/proofcplx11/files

contains four �les kakuro1.txt to kakuro4.txt in the format described above that you

can experiment with.

Page 5 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://www.csc.kth.se/~jakobn/teaching/proofcplx11/files

