75

1 Introduction

Travel-planning domains have been a common application area for spoken-
language dialogue systems almost from their inception, both as pure re-
search vehicles and now, with maturing speech technology, as fielded pro-
totypes. Fielded systems naturally tend to employ simpler linguistic and
dialogue processing. Domain-specific keyword/phrase spotting and slot-
filling techniques are preferred for utterance interpretation. At the dialogue
level, systems tend to keep the dialogue initiative to themselves by treating
the user simply as an answer-supplier. Particular systems may also imple-
ment particular instances of more sophisticated processing. However, the
simple methods do dovetail simply because the more expectations that a
system can impose on a dialogue, then the more those expectations can
be used to aid interpretation of user utterances. (For a range of recent
work, see [Aust and Oerder 1995], [Allen et al. 1996], [Lamel et al. 1998,
[Litman et al. 1998] and [Bos et al. 1999].)

In the work described here, we are primarily interested in exploring re-
laxation of the constraint that dialogues be system-driven together with the
use of both sophisticated (but sometimes brittle) and simple (but generally
robust) linguistic processing. We hypothesize that different techniques may
be applicable at different points in a dialogue. The specific scenario used was
that of booking a business trip within Sweden, using air travel or train, and
accessing information about times, destinations and fares. Communication
in both directions was entirely in spoken Swedish. The underlying database
was the Travellink 7™ system, accessible at http://www.travellink.se.!

Prior to designing the system, we collected a corpus of data through a
Wizard-of-Oz experiment, obtaining altogether 131 dialogues from 47 sub-
jects (31 male and 16 female); the Wizard’s conversational style was pur-
posely chosen so as to permit mixed-initiative user strategies. Analysis of
the data showed that it displayed significant variation. For example, with
respect to verboseness, there is a range of behaviour stretching from consis-
tent use of short, telegraphic-style utterances to very long, disfluent utter-
ances. Furthermore, there are both inactive users who refrain completely
from taking the initiative (in effect leaving it open to the system to cross-
examine them) and active users who quickly take the initiative by means of
counter-questions, keeping it more or less throughout the dialogue. There is
also a range of users whose behaviours fall between these extremes. One of
our immediate conclusions was that if mixed-initiative dialogues were sup-
ported, then a large proportion of the people interacting with the system
would make use of this capability.

Typically, we found that the structure of a dialogue about (a leg of)
a trip could be subdivided into two phases. First, there is a specification
phase, in which the user, possibly in response to system prompting, gave the
basic constraints on the trip they were looking for: where they were going
to, where they were coming from, the date, and some information about the
desired departure or arrival time. We regarded the specification phase as
terminated when the system had collected enough information that it could
access the database and suggest a possible specific trip. After this, there
is a second negotiation phase, in which the user may request additional in-
formation about the initially suggested trip, ask for alternative trips, and
eventually make a booking. The balance between the two phases displayed
considerable variation. For the most active users, the negotiation phase

'We would like to thank SMART for help in making the Travellink ™ system
available to us.

76

dominated: it sometimes started even before the system had suggested any
alternative and could persist more or less throughout the dialogue. In con-
trast, the negotiation phase could be non-existent in the case of the least
active users.

In general, we found that analysis of utterances during the negotiation
phase required a higher degree of linguistic sophistication than during the
specification phase. For example, it was often necessary to be able to under-
stand expressions referring to objects previously mentioned in the dialogue
(“that flight”, “the first flight”), or distinguish between questions expecting
a yes/no response (“Is that a direct flight?”) and questions expecting a new
object response (“Is there a direct flight?”).2

The above characteristics of the data and domain prompted us to focus
on the following aspects in the design of the system:

e Ability to handle context-dependent, mixed-initiative dialogues in or-
der to cover both kinds of phases in the dialogue as well as the range
of active/inactive users.

e Ability to do linguistic analysis deeper than surface slot-filling, so as
to be able to distinguish between different forms of utterances critical
to the domain.

e Robustness to be able to advance the dialogue even in the case of
complex, disfluent utterances and errors likely to be introduced by
the speech recognizer.

To meet these desiderata, we have taken an approach with the following
distinguishing characteristics:

e Linguistic analysis is factored into context-independent and context-
dependent processing phases. The initial context-independent phase
produces a set of descriptions based on the explicit form of the input
utterance; the descriptions are then interpreted in the relevant context
by the dialogue manager.

e The local exchange of initiatives and responses is guided by domain-
dependent moves and games [Power 1979], whereas the global goals
are handled using an agenda.

e To tackle deep linguistic analysis, we augment the slot-filling process-
ing method with a more sophisticated grammar-based method. The
two parsing engines are run in parallel, and feed independently into
the dialogue manager.

2 System Overview

The architecture of the system is shown in Figure 1. The modules commu-
nicate asynchronously by message passing; hence, in principle all of them
could run in parallel in different processes. In the current implementation,
there are four processes, which handle speech recognition, speech synthesis,
database access and everything else, respectively.

%Since the focus of the paper is on discourse-level phenomena, we have through-
out translated surface linguistic expressions from Swedish to English as a conces-
sion to non-Swedish readers.

7

|

Speech
recognizer

RN

Robust
CLE parser

NS

Dialogue Database
manager agent

Linguistic
generator

Speech
synthesizer

l

Figure 1: Architecture of the system.

The speech recognizer is a Swedish-language version of the SRI Decipher
system [Murveit et al. 1993], developed by SRI International and Telia Re-
search.® It sends an N-best speech hypothesis list to the two language pro-
cessors: the Core Language Engine (deep analysis) and the Robust Parser
(shallow analysis), further described in Section 3. The language processors
each send their analyses to the dialogue manager (DM). After each sys-
tem turn, the DM updates the language processors with limited information
about the state of the discourse: the most recent question (if any) posed by
the system, and the types of objects that are salient at the current point in
the dialogue.

The DM uses a two-stage heuristic selection process to advance the di-
alogue. First, each input analysis is categorized as a move of a certain
type, and an appropriate response to that move is selected. References are
resolved and contextual information is also added, resulting in a further
multiplication of possible moves and responses. Secondly, the relative util-
ity of the various responses is judged, and the most productive response
move is chosen. The dialogue manager is further described in Section 4.

The generator produces the surface string representing the actual utter-
ance, using a simple template-based approach. The surface string is then
turned into speech by Telia Research’s synthesizer LIPHON.

In the current system, the database agent contains a web client in or-
der to retrieve data from the Travellink database. All query results are
cached in order to shorten the response times as much as possible. How-

$Evaluation of an earlier version of the recognizer on a similar data set yielded
a 20.5 % word-error rate [Rayner et al. 2000, page 272].

78

ever, the response times for most queries would clearly not be acceptable
in a commercial system. That inspired us to develop a version that is able
to continue the dialogue while database access is in progress (that is, the
system might ask about the return leg of a trip, while the database agent
is searching for possible trains or flights for the outbound leg).

The system described here is fully implemented and was permanently
installed at the Telia Vision Center in Farsta/Stockholm between November
1998 and December 1999.

3 Language Analysis

3.1 Flat Utterance Descriptions

As previously noted, the system combines two different language process-
ing architectures. Shallow processing is performed by the slot-filling Robust
Parser described in Section 3.2 below; deep processing by the SRI Core Lan-
guage Engine (CLE; [Alshawi 1992]). Linguistic output can be either propo-
sitional or non-propositional. Non-propositional output consists of markers
which are directly linked to dialogue moves; the most important examples
are confirmations (“yes”, “sure”, “that’s fine”), rejections (“no”, “I’d rather
not”) and topic shifts (“then...”). Propositional output consists of struc-
tured expressions which make reference to world objects like flights, trains,
dates, times and costs.

The propositional representations produced by the Robust Parser are
lists of slot—filler pairs; those produced by the CLE are expressions in a con-
servatively extended first-order logic. To allow the DM easily to compare the
results produced by the two language processors, it is highly desirable that
they be mapped into a common form: the challenge is to find a level of rep-
resentation which represents an adequate compromise between them. With
regard to the CLE, the important point is that most logical forms in prac-
tice consist of one or two existentially quantified conjunctions, wrapped up
inside one of a small number of fixed quantificational patterns. By defining
these patterns explicitly, we can “flatten” our logical forms into a format,
which we call a Flat Utterance Description or FUD, that is compatible with
a slot—filler list.

The different quantificational wrappers were suggested by our Wizard-
of-Oz data; it proved meaningful to distinguish between four kinds of FUDs:

yn Are there objects with property P?
wh Find X with property P
wh_agg Find the maximal/minimal X with property P

yn_agg Does the maximal/minimal X with property P also have property
pP?

The body of the FUD may contain items of three different kinds. Slot—filler
items are of the form

slot({frame name), (slot name), (filler value))

This is to be interpreted as saying that the slot (slot name) of the predicate
(frame name) is filled with the value (filler value).
Constraint items are of the form

ezec({goal))

79

and express numerical relations obtaining between slot-fillers and other val-
ues. Finally, referential items are of the form

ref ({filler value), (ref info))

and indicate that the object (filler value) is linguistically associated with
referential information encoded as (ref info).

For instance, the utterance “I want to arrive in Stockholm before 6
pm” is interpreted as “Find flights arriving Stockholm before 6 pm”, and is
represented by the following FUD:*

wh(X,[slot(trip,trip.id,X),
slot(trip, trip.mode,plane),
slot(trip,tocity,stockholm)
slot(trip,arr_time,T)
exec(before(T, 1800))])

The utterance “Is that a direct flight?” is represented by:

yn([slot(trip,tripmode,plane),
slot(trip, stops,0),
slot(trip,trip-id,X),
ref(X,det(def, sing))])

where the ref expression represents the referential expression (“that”) in the
utterance, and signals to the dialogue manager that a reference resolution
has to be made.

Utterances like “I want the first flight to Stockholm” and “Which is the
cheapest ticket?” translate into wh_agg expressions, while utterances like “Is
that the first flight?” translate into yn_agg utterances. In our Wizard-of-Oz
data, the vast majority of user utterances translate into wh FUDs (including
some utterances that superficially are yes/no-questions, like “Are there any
flights to Stockholm on Monday morning?”).

When producing the FUD, the Robust Parser does a simple pass over the
top hypothesis from the speech recognizer, in a manner described in the next
section. In contrast, the CLE attempts to extract the “best” grammatical
fragment from the lattice of words representing the top five hypotheses of
the recognizer. Currently, the CLE uses fragment length as well as acoustic
scores for determining the best fragment, a strategy that can sometimes
lead to trouble (see Section 5).

It is important to understand that the CLE may fail to translate its
analyses into FUDs when the user’s utterance is not possible to capture
using one of the FUD forms. In these cases, the CLE does not give any
output at all. The Robust Parser, on the other hand, will always produce
something; if the input is completely unintelligible it will at least give the
minimal output wh(X, [1) (which can be read as “Find X”, or rather “Find
any X”.) This robustness is usually an advantage, but sometimes it can lead
the system down the wrong path (see Section 5).

3.2 The Robust Parser

The main purpose of the Robust Parser is to rapidly produce some use-
ful output even if parts of the input are unintelligible or garbled. We

“The notation used here is simplified; for example, in our implementation each
filler value is typed.

80

Repeat until no words remain:

Read the next word.

If a matching pattern is found (possibly by looking ahead), then
fill the corresponding slot and throw away the words correspond-
ing to the pattern

else throw away the word.

Figure 2: Basic algorithm of the Robust Parser.

have deliberately aimed for a simplistic approach to be able to compare

an atheoretical, shallow method with the high-precision but more resource-
demanding and fragile processing carried out by the CLE. Also, experiences
from multi-engine systems show that approaches such as these may com-
plement each other well [Frederking and Nirenburg 1994, Wahlster 2000,
Rayner et al. 2000]. Given these objectives, a straightforward pattern-matching,
slot-filling approach seemed most suitable.

A first version of the parser with reasonable coverage was developed in
about two person-weeks. Briefly, the parser works as follows: First, it looks
for domain-dependent keywords and phrases and produces a list of filled
slots as well as information about the utterance type (for example, a wh or yn
question). The rules that guide this process are straightforwardly encoded in
a Definite Clause Grammar. The result is then converted into a well-formed
FUD. The parser is deterministic in the sense that only the first matching
pattern is chosen; hence, only a single analysis is produced. (Interestingly,
the fastest parsers reported in the literature are all deterministic, rule-based
partial parsers [Abney 1997, page 128].) The basic algorithm is shown in
Figure 2.

4 Dialogue Management

The dialogue manager (DM) is responsible for interpreting each user utter-
ance in its appropriate context, issuing database queries, and formulating
responses to the user.

4.1 Dialogue Moves

One of the most important tasks of the DM is to categorize each user utter-
ance as a move of a certain type. The move categories were again determined
based on an analysis of our Wizard-of-Oz data; for a related set of moves
conceived at a similar abstraction level, see [Clark and Wilkes-Gibbs 1986].
Figure 3 shows an annotated dialogue fragment including several important
move categories.

For example, in the user:constraint move, the user delimits the range
of possible trips he is interested in. By contrast, in the user:ask-for-info
move the user asks for information about possible trips, but the queried in-
formation does not count as content to be added to the current constraints
on possible trips. The query is a “side question” not contributing directly
to the current set of mutually understood constraints (but may, depending
on the answer, lead to a new constraint). In the user:ask-for-suggestion

81

User: I want to go from Gothenburg to Stockholm on
Friday. user:constraint

System: At what time do you want to leave?
system:ask-for-constraint

U: In the morning. user:constraint

S: There is a train at 5.30 am arriving at 9.45 am. sys-
tem:suggestion

U: Is that a direct train? user:ask-for-info
S: Yes. system:answer-with-info
U: Is there a later train? user:ask-for-suggestion

S: There is a train at 6.06 arriving at 9.15. sys-
tem:suggestion

U: Fine, I'll take that one. user:accept

Figure 3: A dialogue fragment annotated with move labels.

move, the user asks for an alternative suggestion without rejecting the pre-
vious suggestions from the system (the user might very well go back and
accept a previous suggestion).

It is important to realize that there is no one-to-one correspondence
between FUDs and move types. For example, the sentence Jag vill ta taget
(“I want to take the train”) can be interpreted as “I want to book that
train” or “I’d like to go by train” or even “Could you give me a train alter-
native instead?” depending on the context. Thus, the resulting FUD may
correspond to three move types, namely, user:constraint, user:accept or
user:ask-for-suggestion.

We distinguish between twelve different user moves and roughly the
same number of system moves. The DM categorizes a user utterance as a
certain move using the following heuristic algorithm:

e Determine a number of properties of the utterance and the dialogue
state, for instance:

1. the existence of suitable objects in the dialogue state (see the
next section).

2. the difference between the propositional contents of the utter-
ance and that of the context.

3. the precence of keywords in the utterance.

e Compute a score for each move type based on the above properties,
for example:

1. If the system has not proposed any train(s) and/or flight(s) that
the user can accept, user:accept would be given a low score.

2. If the propositional contents of the utterance and that of the
context are inconsistent, user:accept would be given a low
score and user:ask-for-suggestion a high score. If on the

82

other hand they are consistent, the scores would be the other
way around.

3. For example, if the utterance contains “accept” keywords like
“yes”, “ok”, etc., the user:accept would be given a high score.

e The move type with the highest score is selected.

We conjecture that this set of move labels is reusable for a large set
of applications; basically any application where the user gradually specifies
what she wants, the system presents the user with alternative suggestions,
and the user accepts some suggestions and rejects others. The implementa-
tion of the Dialogue Manager is divided into domain-independent code and
domain-dependent code (i.e. code that directly refers to flights, trains, etc.),
and is thus largely reusable. However, we do not have a separate domain
description language; to modify the Dialogue Manager to work with a new
domain, one has to rewrite the domain-dependent Prolog code.

4.2 The Dialogue State

The DM maintains a dialogue state, which is updated as a result of each
incoming message (from the language processors and the database agent).
The dialogue state consists of three data structures:

e a list of objects that have been introduced in the course of the dia-
logue. An object may be a concrete train or flight alternative pro-
posed by the system, or a set of constraints given by the user;

e the dialogue history, that is, the utterances up to the current point
in the dialogue;

e the agenda, a data structure encoding the objectives of the system.
The agenda is organised as a stack of items of the form
(Condition, Action)

where Condition can be any predicate that can be true or false of a dialogue
state. Typically, a condition could be “The destination of trip number
1 is unknown” (where trip number 1 is an object in the dialogue state,
containing the user’s constraints concerning the trip under discussion). The
corresponding action would then be “Ask for the destination of trip number
1”. Clearly, the condition “the destination of trip number 1 is unknown”
can be either true or false about the current dialogue state. Declaratively,
such a condition can be seen as the negation of a goal the system wants to
attain — to know the destination of the user’s desired trip. Operationally,
the condition can be seen as a guard for the corresponding action — we don’t
want to ask about the destination if it is already known.

Operationally, the agenda is used as follows by the DM to select its next
action. Recall that the agenda is used as a stack, i.e. a last-in-first-out data
structure. When the system is to decide its response to the user, it starts
by examining the item on top of the agenda. If the condition of that top
item is true, the corresponding action is carried out (in the example above,
if the destination of trip number 1 is unknown, the system will ask for the
destination). If the condition is false (the destination is known), the whole
item is removed from the agenda, and the system proceeds to examine the
item which is now on top of the agenda. The system will thus continue down

83

the agenda, popping items until it finds an item whose condition evaluates
to true. It will then execute the corresponding action.

An action is either a response move (for example, a reply from the
system to the user), or a database lookup, or an instruction to reorganize
some internal data structure.

Thus, the process of selecting the next response action can cause the DM
to remove items from the agenda as described above. The DM, as a reaction
to some user utterances, will also put new items on the agenda. Each move
type T has an associated updating rule, deciding how the agenda and the
list of objects should be updated in case the user’s utterance is classified
as a move of type T. As soon as the DM has established that the user’s
utterance is of type T, that rule is fired.

As an example, consider the move type user:accept. Suppose the user
says “I want to book that flight”, and the DM resolves the reference “that
flight” into an internal trip object (number 2, say), representing a previously
discussed flight. The utterance will be tagged by the DM as an user:accept
move, with the associated context being trip object 2. The updating rule for
the user:accept move type will, when fired, change the status of trip object
2 into “accepted”, and add an item on top of the agenda for confirming the
booking.

The use of a stack-based agenda as described above extends the familiar
form-filling approach, used for example in the Philips train timetable sys-
tem [Aust and Oerder 1995], insofar that it allows the user to take initiatives
by asking side-questions about proposed travel alternatives (user:ask-for-
info), like “Is that a direct flight” or “What airline is that”. Such negoti-
ating questions do not naturally belong to a predefined form. As a reaction
to such a side-question, the system will push an item for answering the
question onto the stack.

4.3 The Dialogue Management Cycle

The working cycle of the DM is summarized in Figure 4.

For each FuD:
1. Resolve references
2. Add contextual information
3. Classify the FUD as a certain move
4. Update dialogue state
5. Choose a response action (system utterance or database call)

6. Calculate preference score

Figure 4: Basic working cycle of the dialogue manager.

In every turn, the DM receives a number of FUDs. No attempt is made to
select the “best” FUD at this stage, but each FUD is processed in a number
of steps. First, references are resolved and contextual information is added
(step 1 and 2 above). Since there may be several possible antecedents for

84

each reference, and several possible contexts, this leads to a multiplication
of the FUD (typically a FUD gives rise to five to ten “resolved” FUDs).

Steps 3-5 have already been explained in the previous section.

Finally, the chosen response action is given a score by a heuristic func-
tion (step 6). The function assesses both properties of the input FUD, as
well as the utility of the response action (for example, prompting the user
to rephrase his last utterance is judged as being less productive than asking
“When do you want to travel” or performing a database lookup). The prop-
erties of the input FUD that contribute to the assessment are the following:

e the number of previously unknown slot values determined by the FUD;

e the number of words of the utterance that contributed to the con-
struction of the FUD;

e the number of words in the utterance that were discarded and did
not contribute to the construction of the FUD;

e a reference resolution penalty based on the number of dialogue turns
since the referred object was last mentioned.

Note, again, that the DM performs steps 1-6 for all FUDs received from
the CLE and the RP. The FUD+response action with the highest score is
declared the winner, all other FUDs are discarded, and the winning response
action is carried out. This amounts to sending a message to the linguistic
generator (in case of a system utterance), or to the database agent.

5 A Preliminary Experiment

This section reports the results of an experiment, aimed particularly at
comparing the relative utility of the Robust Parser and the CLE, respectively.
To this end, we used two configurations of the system: One of them (RP-
CLE) corresponds to the architecture shown in Figure 1, in which the CLE
and the Robust Parser work in parallel. In the other (RP-only), the CLE
was disabled, thus only containing the shallow processing path.

Two similar tasks, A and B, were created, each involving a business trip
with at least three legs during two consecutive days, suitable for both train
and air travel. The tasks were presented in written form, except for the time
constraints which were presented graphically because of earlier problems
of written time expressions having coloured subjects’ ways of expressing
themselves. The subjects were instructed to imagine themselves living in
downtown Stockholm, and reserving trips to two other cities for the purpose
of making customer visits.

Two subjects were used. Each of them was given the opportunity to
try out the RP—CLE version of the system. More specifically, what they
used was the demo version of the system, in which system components
get highlighted as they engage in processing, and in which the recognized
utterance as well as the system’s responses are successively written into a
window. The purpose of this was to give the subjects a better sense of what
was going on, since otherwise the system could remain silent for typically
30-60 seconds on Internet database queries. When the subjects felt that
they were able to handle the system, they were presented with tasks A and
B in different orders.

The experiment resulted in four dialogues, each consisting of between
22 and 28 user-system turns. Each turn was tagged with “OK” or “fail-
ure”, depending on whether the system had managed to move the dialogue

85

forward or not in response to the user’s utterance (provided that the ut-
terance was reasonable given the context). “Failure” thus consists of cases
where the system responded that it did not understand the last utterance or
where its response constituted a misunderstanding. Furthermore, each turn
was tagged with “user” or “system”, depending on whether the subject’s
utterance was a response to a system initiative or whether the utterance
constituted a user initiative (for example, a spontaneous request for infor-
mation or a counter-question). The tasks were designed so as to encourage
mixed initiative, and both subjects displayed a majority of user initiatives
in their dialogues.

Because of the small size of the experiment, the results at this point can
only be taken as suggestive. Nevertheless, to provide a rough idea of where
we stand, we shall briefly present some figures that we obtained.

To begin with, the RP—CLE configuration appeared slightly more efficient
in terms of moving the dialogue forward than the RP-only one: The RP—CLE
and RP-only dialogues used on average 22 and 27 moves, and out of these
had 15 and 14 “OK” turns, respectively. However, in terms of providing
successful analyses (in the cases when at least one fragment of the output
from the speech recognizer was reasonable), the RP was the slightly more
successful one in the RP—CLE configuration: It succeeded on average on 16
turns, whereas the CLE succeeded on 13. Surprisingly, the RP also turned
out to be a bit more successful on those turns where the user had taken the
initiative: it was successful on almost 2/3 of those cases, whereas the CLE
was successful on about half of them.

A closer analysis revealed that on five times in each of the RP—CLE
dialogues, failure of the CLE to deliver a correct analysis was due to the fact
that it had chosen a wrong fragment (usually too long). The reason for this
is that the CLE attempts to analyse the longest grammatical fragment on
the path chosen from the N-best list, something which may lead to strange
results (compare the example further below).?

In terms of which component causes the most turn failures, the picture
was unclear. In the RP—CLE case, only a single “failure” turn in each dialogue
was actually due to language analysis (in which case both the RP and the
CLE failed, though the CLE had the better analyses). In the RP-only case,
the RP caused none at all of 11 failures in one of the dialogues, whereas in
the other, it caused 5 of 15 failures. The figures also indicate that language
analysis was not the main bottleneck of the system (both speech recognition
and dialogue management were the sources of more failed turns). This might
have played a role when none of the subjects said that they had noted any
difference in terms of overall performance between the RP—CLE and RP-only
configurations of the system. But the relatively small difference in terms of
overall turn efficiency, as indicated above, might also have contributed to
this.

Our analysis also indicates that the Dialogue Manager is quite good
at choosing between analyses from the RP and CLE: In the two RP—CLE
dialogues, there is only a single case of the Dialogue Manager choosing
the wrong alternative. (In this case, it chooses a CLE analysis which lacks
some information but the rest of whose contents are correct, thereby still
managing to move the dialogue forward.)

We now turn to some qualitative differences between the RP and CLE
that we have observed in our analysis above.® To begin with, the obvious

® A previous study using our Wizard-of-Oz data came to a similar result; see
[Lewin et al. 1999].
6All example utterances below come from the experiment described above,

86

advantage of the Robust Parser (RP) is that it is rather undisturbed by
ungrammaticalities, disfluences and (to some extent) recognition errors in
the input. For example, the utterance

Hej jag bestiller en flygbiljett den attonde i sjitte tisdag
fran Stockholm till Sundsvall. (Hi I'm ordering a flight ticket
on June eighth from Stockholm to Sundsvall).

recognized as VAD HEJ JAG BESTALLER JAG VILL JAG DEN
ATTONDE I SJATTE I JAG MMM DA STOCKHOLM TILL SUNDSVALL.
(roughly What hi I'm ordering I want I on June eighth in I
mmm then Stockholm to Sundsvall.)

is analysed perfectly by the RP. The CLE locates the longest grammatical
fragment “den attonde i sjatte”, and produces an analysis that includes the
date but not the destination and origin cities of the trip.

As pointed out above, the strategy of choosing the longest grammatical
fragment can sometimes lead the CLE completely astray. The utterance

Jag bokar det taget. (I book that train.)

was misrecognized as
JAG BOKAR DET DET TAGET

whose longest grammatical fragment is “bokar det det taget” (“does that
book that train”), which is something completely different from what the
user actually said. The CLE failed to produce any FUD, while the RP got it
right.

On the other hand, the RP can produce erroneous results because it
is analysing unconnected bits and pieces of sentences. For instance, the
RP analysed “Klockan nitton eller senare” (“at seven pm or later”) as “at
seven pm, and later than some previously mentioned trip”, because it trig-
gered on the two separate patterns “klockan nitton” and “senare” without
considering the relation between them.

Actually, the very robustness of the RP can sometimes prove to be a dis-
advantage. In one case, the test subject meant to say “Jag har féretagsrabatt
pa flyget” (“I have a corporate discount on air travelling”), but the input
became totally garbled: “JA DA HAR FORETAG FYRA VAD FOR ATT FLYGA”
(roughly “Yes then has company four what for to fly”). The CLE did not
produce any FUD. The RP reacted on “to fly”, and its analysis together
with the keyword “Ja” (“Yes”) in the utterance made the system book a
previously mentioned flight alternative. If the RP had been disconnected,
the system’s reply would instead have been to ask the user to rephrase her
utterance; certainly a more sensible reaction.

6 Conclusion

We have described an implemented spoken-language dialogue system, which
combines deep and shallow language-processing engines and an agenda-
driven dialogue manager. We have also described an experiment, aimed
at comparing the two language processors in the system. The results of
the experiment (which are compatible with our experiences from using and
demonstrating the system) point in the following direction:

using the system.

87

1. The Robust Parser (RP) performs better than we had expected: Thus,
from what we have seen so far in interaction with the real system, the
linguistic variability even in the face of mixed initiative is sufficiently
limited that a shallow-parsing strategy achieves quite good results.

2. The CLE performs worse than expected. In particular, our hypothe-
sis that deep processing was more advantageous in situations where
the user takes the initiative has not received support. However, it
seems that a dominating reason for this problem is bad interaction
with the speech recognizer: More specifically, the principle of trying
to analyse the longest grammatical fragment from the N-best list is
clearly not a good one in this case. A better strategy might be to
generate a set of “good” fragments, analyse these, and send all the
resulting FUDs to the dialogue manager. Decisions on fragment selec-
tion in the CLE could then be made statistically from the results of
supervised training over already parsed corpora. Some work has been
done to integrate this technique into our general tool for customizing
the disambiguation component of a language processor [Carter 1997].

There are clearly types of sentences that are difficult to capture with the
RP, but which the CLE is in a position to deal successfully with (compare the
examples mentioned in Sections 1 and 5). From what we have seen so far,
these sentences occur much less frequently with the real system than we had
anticipated given the data from the Wizard-of-Oz experiment. Furthermore,
as long as the problems in (2) dominate, the advantage of being able to
analyse these residual sentences seems insignificant. For the current domain
and present configuration of the system, we thus cannot claim to have shown
that both the CLE and RP are needed. Making the domain more complex
(for example, by including tickets and prices) might change this state of
affairs.

Acknowledgements We would like to thank Kristiina Jokinen for very
useful comments and questions on a previous version of this paper.

References

[Abney 1997] Steven Abney. Part-of-Speech Tagging and Partial Parsing.
In Steve Young and Gerrit Bloothooft, editors, Corpus-based Methods
in Language and Speech Processing, pages 118-136. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1997.

[Allen et al. 1996] James F. Allen, Bradford W. Miller, Eric K. Ringger and
Teresa Sikorski. A Robust System for Natural Spoken Dialogue. In Proc.
34st Annual Meeting of the Association for Computational Linguistics,
pages 62-70, Santa Cruz, California, USA, 1996.

[Alshawi 1992] Hiyan Alshawi, editor. The Core Language Engine. MIT
Press, Cambridge, Massachusetts, 1992.

[Aust and Oerder 1995] Harald Aust and Martin Oerder. Dialogue Con-
trol in Automatic Inquiry Systems. In Proc. ESCA Workshop on Spoken
Dialogue Systems: Theories and Applications, Vigsg, Denmark, 1995.

[Bos et al. 1999] J. Bos, S. Larsson, I. Lewin, C. Matheson and D. Mil-
ward. Survey of Existing Interactive Systems. Trindi (Task Oriented
Instructional Dialogue) report number D1.3, 1999. [Trindi, Telematics

88

Application Programme, Language Engineering LE4-8314, funded by the
European Commission.]

[Carter 1997] David Carter. The Treebanker: A Tool for Supervised
Training of Parsed Corpora. In ACL Workshop on Computational
Environments for Grammar Development and Linguistic Engineering,
Madrid, 1997. See also: SRI Technical Report CRC-068 available from
http:/www.cam.sri.com.

[Clark and Wilkes-Gibbs 1986] Herbert H. Clark and Deanna Wilkes-Gibbs
Referring as a collaborative process. Cognition 22, pages 1-39, 1986.

[Frederking and Nirenburg 1994] Robert Frederking and Sergei Nirenburg.
Three heads are better than one. In Proc. 4th Conference on Applied
Natural Language Processing, pages 95—100, Stuttgart, Germany, 1994.

[Lamel et al. 1998] L. Lamel, S. Rosset, J. L. Gauvin, S. Bennacef, M.
Garnier-Rizet and B. Prouts. The LIMSI ARISE System. In Proc. IEEE
4th Workshop Interactive Voice Technology for Telecommunications Ap-
plications, pages 209-214, Torino, Italy, 1998.

[Lewin et al. 1999] Ian Lewin, Ralph Becket, Johan Boye, David Carter,
Manny Rayner, and Mats Wirén. Language processing for spoken dia-
logue systems: is shallow parsing enough? In Accessing Information in
Spoken Audio: Proceedings of ESCA ETRW Workship, Cambridge, 19 &
20th April 1999, pages 37-42, 1999.

[Litman et al. 1998] Diane J. Litman, Shimei Pan and Marilyn A. Walker.
Evaluating Response Strategies in a Web-based Spoken Dialogue Agent.
In Proc. ACL/COLING 98: 36th Annual Meeting of the Association of
Computational Linguistics, pages 780-787.

[Murveit et al. 1993] H. Murveit, J. Butzberger, V. Digalakis and M. Wein-
traub. Large Vocabulary Dictation using SRI’s DECIPHER (TM) Speech
Recognition System: Progressive Search Techniques. In Proc. Inter-
national Conference on Acoustical, Speech and Signal Processing, Min-
neapolis, Minnesota, 1993.

[Power 1979] Richard Power. The Organization of Purposeful Dialogues.
Linguistics, 17, pages 107-152, 1979.

[Rayner et al. 2000] Manny Rayner, David Carter, Pierrette Bouillon, Vas-
silis Digalakis and Mats Wirén (editors). The Spoken Language Transla-
tor. Cambridge University Press, 2000.

[Wahlster 2000] Wolfgang Wahlster (editor). Verbmobil: Foundations of
Speech-to-Speech Translation. Springer Verlag, 2000.

