Chapter 1

PLUG AND PLAY SPOKEN DIALOGUE PROCESSING

Manny Rayner!, Johan Boye?, Ian Lewin', and Genevieve Gorrell!

Lnetdecisions Ltd
Westbrook Centre,
Milton Road, Cambridge CB4 1YG, UK

manny.rayner| ian.lewin | genevieve.gorrell@netdecisions.com

2 Telia Research
S5-123 86 Farsta, Sweden

johan.x.boye@telia.se

Abstract Plug and Play is an increasingly important concept in system and net-
work architectures. We introduce and describe a spoken language dia-
logue system architecture which supports Plug and Playable networks of
objects in its domain. Each device in the network carries the linguistic
and dialogue management information which is pertinent to it and up-
loads it dynamically to the relevant language processing components in
the spoken language interface. We describe the current state of our plug
and play demonstrator and discuss theoretical issues that arise from our
work.

Keywords: Speech recognition, spoken language understanding, dialogue, device
control, plug and play

1. Introduction

The notion of Plug and Play finds its most natural area of application
in the world of networked home devices, where it offers at least the
following two important properties

m the network of devices is dynamically reconfigurable as devices are
brought online or disappear offline

m zero re-configuration by the user is required

Frameworks for achieving Plug and Play generally address this by
including at least the following

m devices announce themselves on the network when they are plugged
into it (and also discover the existence of others)

m devices describe their own capabilities, provide a means for access-
ing them and can query and access the capabilities of others

m devices should support, where possible, seamless interaction with
other devices.

Plug and Play is, not surprisingly, viewed as a pre-requisite for the
commercial success of networked devices in the home. There are already
several promising candidate platforms for achieving the necessary func-
tionality, including Universal Plug and Play (UPnP) [Microsoft, 2000]
and Jini [Oaks and Wong, 2000].

In this paper, we address the requirements on spoken dialogue inter-
faces that arise from a plug and play domain. The discussion centres
around a concrete prototype system, CANTONA, developed by netde-
cisions and Telia Research, which demonstrates plug and play spoken
language control of a set of networked devices. To immediately give an
intuitive idea of what we mean by plug and play functionality in this
context, we start by presenting an annotated session with the current
English language version of CANTONA (there is also a Swedish version).
Spoken user utterances are prefixed with a “U”, and spoken system re-
sponses with an “S”. At the beginning of the dialogue, there is only one
device connected, a VCR in the TV room:

Ul: Switch on the television

S1: Sorry, try again
Since no television is currently connected, the system is not even able
to recognise the word “television”, and it is consequently unable to for-
mulate any more helpful response than S1. We now connect a TV in
the living room; currently we simulate the action of connecting a device
using a simple text interface. CANTONA then automatically reconfigures
iteself to include the new speech and language resources relevant to the
TV component. The user’s repeated request can now be understood,
and results in the TV being switched on, together with an informative
response:

U2: Switch on the television
S2: The TV is now on

We now connect a second TV, in the kitchen. When we repeat our initial
request for the third time (U4), the system now engages in disambigua-
tion behaviour (S4) whereas previously it had no need to:

U3: Switch on the VCR
S3: The VCR. is now on
U4: Switch on the television

Plug and Play Spoken Dialogue Processing 3

S4: Sorry, I don’t know which TV you mean
Ub: The television in the kitchen
S5: The kitchen TV is now on

In the next step, we connect lights with on/off switches in the hall and
bathroom. U7/S7 show however that although the system can now re-
spond to on/off commands, it is still unable to understand the word
“dim”:

U6: Switch on the light in the hall

S6: The hall light is now on

U7: Dim the light to fifty percent

S7: Sorry, try again

Finally, we connect a dimmable light in the kitchen. The system is
now capable both of responding to correct dimmer commands (S8) and
of providing helpful error messages in response to incorrect commands

(S9):

U8: Dim the kitchen light to fifty percent

S8: The light in the kitchen is now on at fifty percent
U9: Dim the light in the hall

S9: I'm sorry, the hall light can only be on or off

Simple as it is, the above dialogue illustrates the main points of plug
and play spoken language dialogue. At any given moment, the system’s
dialogue capabilities are determined by the set of devices currently con-
nected; adding new devices dynamically changes its ability to recognise,
understand, and respond to commands. It is still however impossible to
determine from the dialogue alone how this behaviour is being produced;
at this point, we will find it helpful to introduce a little terminology, and
distinguish between weak and strong plug and play functionality.

In its weakest form, Plug and Play refers only to the ability to add
a device to a network without manual configuration. Knowledge dis-
tribution is not included. Standard Plug and Play for PC peripherals
simply automates the matching up of physical devices with software
device-specific drivers in the PC. Communication links between them
are established by reserving resources such as shared memory and in-
terrupt request numbers. The weak sense is still, of course, very useful.
Users need not configure their hardware via jumper switches or software
drivers by entering ‘magic’ numbers in configuration files.

In the strong sense, Plug and Play can refer also to modular, dis-
tributed knowledge. Devices not only set up network communications
but publish information about themselves over it. Other devices can
obtain and use it. In Jini, for example, a new printer device can register
its printing service (and java code for invoking methods on it) on the

4

network. Then, a word-processing application can find it and config-
ure itself to use it. In UPnP, devices publish XML descriptions of their
interfaces.

The strong-weak contrast is not a sharp or binary one. The word-
processor might know the industry agreed printer interface and so display
a greyed-out print button if no printer is networked. When a new type
of printer is networked, it might supply additional print options (e.g.
“print colour”) that the processor knows nothing about.

The strong and weak senses of plug and play apply to spoken lan-
guage dialogue interfaces. In the weakest sense, the dialogue system
might be entirely pre-configured to deal with all possible devices and
device-combinations. The required knowledge is already present in the
network. Plug and Play then consists of identifying which particular de-
vices are currently networked and establishing communication channels
with them. In the stronger sense, the components of the spoken language
dialogue interface acquire the knowledge pertinent to particular devices
from those devices. So, as in example S1 above, the speech recognizer
may not have the word “T'V” in its vocabulary until a TV is plugged
into the network. The dialogue manager may not be capable of utter-
ing “That device is not dimmable” until a dimmable device is plugged
into the network. A strongly Plug and Play system may therefore be
distinguishable from a weaker one by its behaviour in the absence of
certain device specific knowledge. If the relevant knowledge is present,
one cannot be certain whether it was pre-configured or uploaded “on
demand”.

The notion of Plug and Play has also been used for dialogue system
toolkits in which the various different language processing components
themselves (e.g. recognition, parsing, generation and dialogue manage-
ment) can be plugged in and out. The most prominent instance of this
is the Darpa Communicator architecture [Goldschen and Loehr, 1999,
which defines interoperability standards for language processing com-
ponents. The intention is simply that researchers and developers can
experiment with systems containing different instantiations of the lan-
guage processing components. The Communicator Architecture is not
designed to address the special requirements of a plug and play domain.
In fact, the Communicator architecture does not support the dynamic
re-configuration of language processing components while the system is
running.

We believe our notion of Plug and Play is an appealing theoretical
one because it embodies an interestingly different notion of knowledge
modularity and a new perspective on the idea of system reconfigura-
bility. Of course, re-configuration of spoken language systems has long

Plug and Play Spoken Dialogue Processing)

been a goal of language engineering. However, it is nearly always viewed
as the problem of cross-domain or possibly cross-language porting, e.g.
[Glass, 1999]. Once one has a cinema ticket booking service, for ex-
ample, one may examine the effort required for booking train tickets,
or for e-shopping in general or even the “database access” scenario.
There are various toolkits, architectures and methodologies for rapidly
and/or semi-expertly generating new instances of dialogue systems, e.g.
by abstracting away from domain or application dependent features of
particular systems, e.g. [Fraser and Thornton, 1995, Kolzer, 1999], or
‘bottom-up’ by aggregation of useful re-configurable components, e.g.
[Sutton et al, 1998, Larsson and Traum, 2000]. The automated within-
domain reconfiguration required for a plug and play domain, has not, to
our knowledge, been described previously.

In the rest of the paper, we will primarily be concerned with strong
plug and play functionality as it is manifested in a rule-based spoken dia-
logue system like CANTONA. Section 2 gives an overview of the CANTONA
system, describing the top-level components and the key interfaces. The
meat of the paper in in the next three sections. Section 3 describes
general architectural considerations relevant to achieving plug and play
functionality in rule-based systems; Section 4 describes how this kind
of architecture can be realised for the case of dialogue management;
and Section 5 describes how it can be realised for speech recognition
and parsing. The last section suggests directions for further work and
concludes.

2. The canTONA Plug and Play Demonstrator

This section provides an overview of the CANTONA demonstrator. All
processing is rule-based; the fundamental idea is to realise plug and
play functionality by associating each device with its own set of rules,
together with a core device-independent rule-set.

The system comprises four main components, respectively responsible
for speech understanding, dialogue management, action management
and spoken output generation, with low-level communication handled
over sockets. We briefly describe each of these components, focussing on
top-level functionality and interfaces.

Speech understanding The speech understanding module is imple-
mented on top of the Nuance Toolkit platform [Nuance Communi-
cations, 2002], using the C-based DialogBuilder API, and carries
out the tasks of speech recognition, parsing, and construction of
surface semantic representations. The linguistic knowledge used by
the module is encoded as a unification grammar, and compiled first

into a representation in Nuance Grammar Specification Language
(GSL) and then into a Nuance recognition package. The module’s
output consists of context-independent semantic structures in a
slightly extended attribute/value notation described below.

The speech processing module has strong plug and play function-
ality, with each device contributing a piece of unification grammar
relevant to its specific functionality.

Dialogue management The dialogue management component is im-
plemented in SICStus Prolog [SICStus, 2000], and is responsible
for deep semantic processing, including contextual interpretation
of the user’s command, translation into device instructions, and
response generation. It accepts the semantic structures produced
by the speech understanding module, and produces requests for
the action management and spoken output generation modules.

The dialog management module also has strong plug and play
functionality, with each device contributing a set of device-specific
rules.

Action management The action management module manages the
low-level interaction with real or simulated devices; it translates
abstract device commands created by the DM into device-specific
form, sends them to the devices, receives and decodes messages
from the devices, reports errors that may occur during the exe-
cution of instructions, and so on. CANTONA can be configured to
control both simulated and real devices; real devices are controlled
through a LonWorks network [LonWorks, 2002] via a Java servlet.

The action management module also has strong plug and play
functionality.

Spoken output generation The spoken output generation module re-
ceives abstract generation requests from the dialog manager, and
transforms them into spoken responses using a simple ad hoc sur-
face generation strategy; speech is produced by playing pre-recorded
audio files through the Nuance Toolkit’s standard interface.

The spoken output generation module currently has no plug and
play functionality.

The central level of representation is the semantic form sent from the
speech understanding module to the dialogue management module. User
utterances are encoded as feature-value lists, extended to allow handling
of conjunction. The semantic form representation is described in detail
at the end of Section 5; for the moment, we content ourselves with some
representative examples.

Plug and Play Spoken Dialogue Processing 7

“Switch the kitchen light on”
[[operation, switch_on], [device, light], [spec, thel], [location,
kitchen]]

“Switch on the light and the heater in the kitchen”
[[operation, switch_on], [and, [[device, light], [spec, thell,
[[device, heater], [spec, the]lll, [location, kitchen]]

“Dim the living-room light to fifty percent”
[[operation, dim_to], [onoff_level, 50], [device, lightl, [spec,
the], [location, living room]]

“Switch it off”
[[operation, switch_off], [pron, itl]

“And the one in the kitchen”
[[device, undefined], [location, kitchen]]

The dialogue manager’s design is essentially an elaboration of the
output/meta-output architecture described in [Rayner et al., 2000]. It
receives surface semantic representations from the speech understanding
module, and processes them in turn through the two phases of resolution
and response gemneration. The resolution phase attempts to translates
the input semantic representation into a deep semantic representation,
which we call an executable form; this may involve locating referents for
descriptions and pronouns, or interpretation of ellipsis. The response
generation phase accepts executable forms, and attempts to act on them.
Possible ways to respond include carrying out commands (with or with-
out accompanying verbal confirmation), answering questions, or giving
various kinds of informative feedback if error conditions occur.

Looking at last three examples immediately above, for instance, the
representation of “Dim the living-room light to fifty percent” will be
translated into the form

[dim(50), <Devi1>]
if a device with ID <Dev1> can be located which has the properties
[[device, light], [location, living room]]

The resource used to locate the device is a database called the world-
state, which contains information about all the devices currently con-
nected to the system. If no such device can be found in the world-state
database, or if there are several such devices, resolution instead passes
an error message to response generation describing the nature of the

problem.

Assuming that a suitable device was found in the world state, and
that processing was thus successful, the representation of the follow-up
utterance “Switch it off” will be translated into the form

[switch_off, <Devi>]

8

since the component
[pronoun, it]

can be resolved to the object referred to in the previous utterance. The
final utterance, “And the one in the kitchen” will be translated into the
form

[switch_off, <Dev2>]
if a device with ID <Dev2> can be located which has the properties

[[device, light], [location, kitchen]]

In this case, the resolution component fills in the missing semantic values
for operation and device from a set of defaults maintained by the cur-
rent discourse context. Again, if no such device can be found, the result
is that an appropriate error message is passed to response generation

instead.

The response generation module accepts executable forms from the
resolution module, and attempts to act on them. Just as in the case of
resolution, execution may be successful or unsuccessful. For example,
successful processing of our first executable form,

[dim(50), <Devi>]

will result in the light <Dev1> being dimmed to an intensity of 50%,
together with production of a confirmation utterance. Processing may
on the other hand be unsuccessful for several possible reasons. The
device in question might be inoperational, or inaccessible due to network
problems, or disconnected, or it could be an on/off light rather than
a dimmer. Thus some problems may arise immediately, while others
can arise only when the result of the operation is reported back from
the physical device. In each case, the response generation module has
rules which associate different failure types with appropriate feedback
messages, resulting in spoken output to the user describing the reason
why the operation failed. The form of these rules is described in detail
in Section 4.

3. Device encapsulated rules and grammars

In order to realise Plug and Play in a rule-based spoken dialog sys-
tem, we must associate each device with a set of rules. These rules will
be uploaded when the device is connected, and compiled together with
rules from other devices and also, in general, a set of device-independent
rules. CANTONA currently admits two types of device-dependent rules.
Linguistic rules define the constructions (words and phrase-types) spe-
cific to the device. They are used by the speech understanding com-
ponent and described in Section 5. Response generation rules define
the behaviour of the response generation subcomponent of the dialogue

Plug and Play Spoken Dialogue Processing 9

manager, and are described at the end of Section 2. At present, the
rules used by the resolution subsystem of the dialogue manager are all
device-independent.

Rules on their own are of course valueless; they must be compiled
into executable code or interpreted. These aspects of the system are
however of less interest to us here, since they have no direct relevance to
the central theme of achieving Plug and Play functionality, and in the
sequel we will more or less take them for granted. We will instead focus
on what we see as the central question: how to structure our rule-sets
so that they can be distributed between the various components.

Consider a concrete example. Suppose that a light with a dimmer
switch is added to the network. The speech understanding component
is updated with the necessary words and phrases, including nouns like
“light” and “lamp”, which directly refer to that type of device. There
will also be grammar rules permitting use of constructions like “Dim
X7, “Set X to Y percent”, “Switch X off”, and so on. Many grammar
rules will have a much wider area of applicability than just dimmer lights.
The word “light” pertains only to one or two specific types of device; but
“Switch X off” is applicable much more broadly. It is highly desirable
that the knowledge used by the system should not only be distributed
over the various devices, but also be hierarchically organised. In fact,
we can imagine at least three different hierarchies over

1 the linguistic resources needed to query & control devices

2 the functionalities the devices implement, or

3 the code needed to control the devices.

In the first case above, it seems reasonable that lights that can only
be turned on or off (“switchable” lights) should be instances of a more
general “light” class. Sentences like “Is the lamp in the kitchen on?” or
“Switch on the light in the hall” could refer to dimmers or switchable
lights. (This is even more evident in Swedish where there is a special
verb tanda that can refer to lamps but not other switchable devices like
TVs or CD players). Thus according to this principle, a part of the
device hierarchy would look as follows:

10

Device

/\
Light

Dimmer On/off lamp

Considering functionality however, it seems that “continously control-
lable” devices, of which dimmers form a subclass (together possibly with
heaters, fans, and so on), constitute a subclass of on/off-devices. Dim-
mers implement all the operations of an on/off device, in addition to
the operation “dim”. (Switching on a dimmer could be understood as
either turning the illumination level to 100%, or to the level the dimmer
was set to before it last was switched off). Thus we have the following
situation:

Device

|
On/off device

Cont. device ~ On/off lamp

Dimmer Heater

Thirdly, consider the situation where there are several manufacturers
supplying the hardware and software needed to actually control the phys-
ical devices (by sending control pulses over the electricity network, for
instance). We might reasonably assume that the software controlling
many of manufacturer A’s devices would overlap to some extent, i.e.
that A would have general device-control software inherited by several
devices. Thus, a third possibility is to organise the devices according to
the code base needed to access and control them.

Plug and Play Spoken Dialogue Processing 11

Device
A device/\ B device
A on/off A dimmer ... B on/off B dimmer
lamp lamp

So which is the correct view? In our opinion, they all are; in order to
facilitate reusability and maintainability of the plug-and-play spoken-
dialogue interface, it is important to let objects (= device descriptions)
inherit linguistic resources, dialogue descriptions and code. In principle,
it is possible to collapse all hierarchies into one, by taking the cross-
product of the above diagrams. But that would only confuse the issue,
not only because resulting diagram would be complicated, but because
the diagrams above represent three different inheritance relations.

The challenge is to define a computational formalism that supports
these three inheritance relations, avoids the problems associated with
multiple inheritance, and is straightforward to use. This is the subject
of the next two sections. The basic idea is to associate each device
with four distinct pieces of information: an identifier, a class, a set of
attributes, and a grammar. A typical device declaration is written as
follows:

device(
’LIGHT3’,
attributes([location=kitchen, level=0.0]),
class(telia_switchable_light),
grammar (switchable_light)
).

Here LIGHT3 is the identifier of the device, possessing the attributes
location and level with initial values kitchen and 0.0 respectively;
these attributes are used to update the dialog manager’s world-state
sub-component.

The types of executable form accepted by the device, and the way
in which they are handled by response generation, are determined by
its class, telia_switchable_light. Classes are described in detail in
Section 4. Finally, the device extends the speech understanding com-
ponent with the words and constructions listed in the grammar module
switchable light. Grammar modules will be described in Section 5.

12

4. Plug and Play Response Generation

This section describes the Plug and Play response generation compo-
nent, whose fundamental construct is the class definition. A class def-
inition contains the code for accessing devices belonging to that class.
Classes are arranged in an inheritance hierarchy; so for example telia_-
switchable light, telia dimmable_light and telia_sensor are all
subclasses of telia device. The latter class contains code for accessing
a device in the Telia intelligent-home demonstration environment (the
“Vision Centre”), while its different subclasses contain more specialised
code for performing specific operations (like “dim”) on a device. The
diagram below shows the class hierarchy of our current demonstrator.

device
telia device simulated_device
/\ simulated_
telia_switchable_telia_ telia_ dimmable_
light dimmable_ligh&ensor light

simulated_switchablegimylated.
light sensor

From the point of view of dialogue management, however, instructing
a device to perform an operation is the same, regardless of the envi-
ronment of the device, or of whether the device is real or simulated.
The same information has to be given to the system, the same kind of
ambiguities may arise, the system will ask the same kind of clarifica-
tion questions, and so on. Thus, there is a relationship between classes
like telia_switchable_light and simulated_switchable light which
is not shown by the class diagram above. And, as already discussed,
adding more superclasses and arrows would lead to a diagram with mul-
tiple inheritance and an unclear operational interpretation. To avoid
these problems, we will borrow an idea from the programming language
Java.

What the two classes telia_switchable_light and simulated_switch-
able_light have in common is that their instances may perform the
operations switch_ on and switch off. We will say, analogous to Java,
that the two classes implement the interface switchable.

Thus the class definition for telia_switchable_light begins as fol-
lows:

class(
telia_switchable_light,

Plug and Play Spoken Dialogue Processing 13

extends(telia_device),
implements(switchable)

).

indicating the position of telia_switchable light in the class hierar-
chy, but also listing the set of interfaces the class is implementing.
Parts of the interface declaration for switchable is shown in fig-
ure 1.1. (The declaration also contains a specification of the operation
switch off which is not shown.) An interface declaration contains one
or more operation declarations. An operation declaration is a quadruple

(name, interface, id, L)

where id is a variable acting as a placeholder for the identifier of the
device which is to perform the operation. L is the meat of the definition;
it is a list of rules specifying the system’s dialogue behaviour associated
with the operation.

A rule has four kinds of elements:

condition(P) — P is a pre-condition of the rule; if P is true, then this
rule will be fired upon consideration. If P is false, the rule will not
be fired.

action(A,R) — A is the procedure call that should be executed if the
precondition above is true. The optional parameter R holds the
result sent back from the device after execution of A.

feedback(C,F) — F is the feedback that should be given to the user
when the action A has finished executing and the result R is re-
turned, provided that the condition C is true. In most cases, C will
be dependent on R. C is an optional parameter; if omitted, it is
assumed to have the value true.

update(C,U) — U describes how the system’s model of the network
state should be updated when the action A has finished executing
and the result R is returned. The update instruction U will only be
executed if the condition C is true. In most cases, C will be depen-
dent on R. C is an optional parameter; if omitted, it is assumed to
have the value true.

The operational interpretation of a rule is as follows. First, the pre-
condition is evaluated. If the result is false, nothing more happens. If
the result is true, the action A is executed, and upon its termination,
the feedback items and update items are evaluated, as follows:

If there are several feedback items, their preconditions are evaluated
in top-to-bottom order, and the first feedback with a true precondition

14

interface(switchable).

operation(
switch_on,
switchable,
DevID,
[
[

condition(and(device_connected(DevID),
device_switchable(DevID),
device_off (DevID))),
action(switch_on(DevID), R),
feedback(action_successful(R),
device_has_been_switched_on(DevID)),
feedback(action_unsuccessful(R),
device_has_not_been_switched_on(DevID)),
update(action_successful(R),
device_update(DevID, level=1.0)) ,
update(action_unsuccessful (R), no_update)

1,

L
condition(and(device_connected(DevID),
device_switchable(DevID),
device_on(DevID))),
action(no_action),
feedback(device_is_already_on(DevID)),
update (no_update)
]:

L
condition(device_not_connected(DevID)),
action(no_action),
feedback(device_not_connected(DevID)),
update(no_update)

1,

L
condition(device_not_switchable(DevID)),
action(no_action),
feedback(device_not_switchable(DevID)),
update(no_update)

]

Figure 1.1. Parts of the switchable interface definition

Plug and Play Spoken Dialogue Processing 15

(or with no precondition) is produced as the system’s output to the
user. The remaining feedback items are not evaluated. Update items
are treated analogously.

As an example, consider the first rule in the declaration for switch_-
on in Fig. 1.1. This rule is fired if the device with the identity DevID
is connected to the network, if it is indeed a switchable device, and if
it is currently switched off (we will return to how these conditions are
evaluated in the next section). If the rule is fired, the system instructs
the device with id DevID to switch on (this is specified by the action
item). After the device has carried out the switch_on operation, the
system generates feedback and updates its internal state, depending on
the return value R sent from the device.

Note that, within a rule, there may be any number of feedback and
update items, but there may only be one precondition and one action
item.

Any item may be omitted within the rule. If the precondition is omit-
ted, it is regarded as true, and the rule will be fired upon consideration.
An alternative way is to write condition(true). If there is no action
item, no action will be performed as a result of executing this rule. An
alternative way of specifying this is action(no_action), as in the ex-
ample in Fig. 1.1.

The operational interpretation of an operation declaration, such as the
one in Fig. 1.1, is as follows. The preconditions of the rules are evaluated,
in top-to-bottom order, and the first rule with a true precondition (or
with no precondition) is executed.

4.1 The interface-class relationship

We now turn to the relationship between interfaces and classes. As
noted from the example, an interface expresses the operational behaviour
of the system in terms of conditions, actions and update operations. The
interface does not describe, however, how conditions are evaluated, and
how actions and update operations are performed. This is the purpose
of the classes.

For a class to implement an interface, it must provide code for eval-
uating all the conditions, and executing all actions and update rules,
that are referred to in the interface. Thus, the two classes telia_-
switchable light and simulated_switchable_light (or their super-
classes) both provide code for evaluating device_connected(DevID),
device_on(DevID), and so on, as well as code for executing switch -
on(DevID) and device_update(DevID, level=1.0), and so on. They

16

do so, however, in two completely different ways, since one class deals
with real switchable lights, and the other with simulated ones.

This division between interfaces and classes thus has several advan-
tages:

m It allows a clear division between high-level dialogue and contex-
tual interpretation rules on the one hand (interfaces), and low-level
implementation details on condition evaluation and command ex-
ecution on the other (classes).

m [t avoids problems related to multiple inheritance by distinguishing
between a class hierarchy and an interface hierarchy (as outlined
in Section 3).

s [t allows the user to overload natural commands like “switch off”.
Switching off a lamp and switching off a computer are two very dif-
ferent things (and thus the lamp and the computer will implement
them very differently), but to the user they seem the same: She
can just say “Switch off the lamp” or “switch off the computer”,
and it will work as intended.

5. Plug and Play Speech Recognition and
Parsing

In this section, we describe how we have addressed the issues that arise
when we attempt to apply the strong Plug and Play scenario to the tasks
of speech recognition and language processing. Each device provides the
knowledge that the speech interface needs in order to recognise the new
types of utterance relevant to the device in question, and convert these
utterances into well-formed semantic representations.

Modern speech interfaces supporting complex commands are typically
specified using a rule-based grammar formalism defined by a platform
like Nuance [Nuance Communications, 2002] or SpeechWorks [Speech-
Works, 2002]. The type of grammar supported is some subset of full
CFG, extended to include semantic annotations. Grammar rules define
the language model that constrains the recognition process, tuning it
to the domain in order to achieve high performance. (They also supply
the semantic rules that define the output representation; we will return
to this point later). If we want to implement an ambitious Plug and
Play speech recognition module within this kind of framework, we have
two top-level goals. On the one hand, we want to achieve high-quality
speech recognition. At the same time, standard software engineering
considerations suggest that we want to minimize the overlap between

Plug and Play Spoken Dialogue Processing 17

the rule-sets contributed by each device: ideally, the device will only
upload the specific lexical items relevant to it.

It turns out that our software engineering objectives conflict to some
extent with our initial goal of achieving high-quality speech recognition.
Consider a straightforward solution, in which the grammatical informa-
tion contributed by each device consists purely of lexical entries, i.e.
entries of the form

<Nonterminal> --> <Terminal>

In a CFG-based framework, this implies that we have a central device-
independent CFG grammar, which defines the other rules which link
together the nonterminals that appear on the left-hand-sides of the lexi-
cal rules. The crucial question is what these lexical non-terminal symbols
will be. Suppose, for concreteness, that we want our set of devices to
include lights with dimmer switches, which will among other things ac-
cept commands like “dim the light”. We might achieve this by making
the device upload lexical rules of the rough form

TRANSITIVE_VERB --> dim
NOUN --> light

where the LHSs are conventional grammatical categories. (We will for
the moment skip over the question of how to represent semantics). The
lexical rules might combine with general grammar rules of the form

COMMAND --> TRANSITIVE_VERB NP
NP --> DET NOUN
DET --> the

This kind of solution is easy to understand, but experience shows that
it leads to poor speech recognition. The problem is that the language
model produced by the grammar is underconstrained: it will in particu-
lar allow any transitive verb to combine with any NP. However, a verb
like “dim” will only combine with a restricted range of possible NPs,
and ideally we would like to capture this fact. What we really want to
do is parameterise the language model. In the present case, we want to
parameterise the TRANSITIVE_VERB “dim” with the information that it
only combines with object NPs that can be used to refer to dimmable de-
vices. We will parameterise the NP and NOUN non-terminals similarly.
The obvious way to do this within the bounds of CFG is to specialise
the rules approximately as follows:

COMMAND --> TRANS_DIM_VERB DIMMABLE_NP
DIMMABLE_NP --> DET DIMMABLE_NOUN

18

TRANS_DIM_VERB --> dim
DIMMABLE_NOUN --> light
DET --> the

Unfortunately, however, this defeats the original object of the exercise,
since the “general” rules now make reference to the device-specific con-
cept of dimming. What we want instead is a more generic treatment,
like the following:

COMMAND -->
TRANSITIVE_VERB: [sem_obj_type=T]
NP: [sem_type=T]

NP: [sem_type=T] -->
DET NOUN: [sem_type=T]

DET --> the
TRANSITIVE_VERB: [sem_obj_type=dimmable]
-=> dim

NOUN: [sem_type=dimmable] --> light

This kind of parameterisation of a CFG is not in any way new: it is
simply unification grammar [Gazdar et al., 1985]. Thus our first main
idea is to raise the level of abstraction, formulating the device grammar
at the level of unification grammars, and compiling these down into the
underlying CFG representation. There are now a number of systems
which can perform this type of compilation [Moore, 1998, Kiefer and
Krieger, 2000]; the basic methods we use in our system are described in
detail elsewhere [Rayner et al., 2001a]. Here, we focus on the aspects
directly relevant to the “distributed” unification grammars needed for
Plug and Play.

We start with a general device-independent unification grammar, which
implements the core grammar rules. In our current English language pro-
totype, there are 34 core rules. Typical examples are the NP conjunction
and PP modifications rules, schematically

NP --> NP CONJ NP
NP --> NP PP

which are likely to occur in connection with any kind of device. These
rules are parameterised by various features. For example, the set of
features associated with the NP category includes grammatical num-
ber (singular or plural), WH (plus or minus) and sortal type (multiple
options).

Each individual type of device can extend the core grammar in one of
three possible ways:

Plug and Play Spoken Dialogue Processing 19

New lexical entries A device may add lexical entries for device-specific
words and phrases; e.g., a device will generally contribute at least
one noun used to refer to it.

New grammar rules A device may add device-specific rules; e.g., a
dimmer switch may include rules for dimming and brightening,
like “another X percent” or “a bit brighter”.

New feature values Least obviously, a device may extend the range
of values that a grammatical feature can take (see further below).

For usual software engineering reasons, we find it convenient to divide
the distributed grammar into modules; the grammatical knowledge as-
sociated with a device may reside in more than one module.

The grammar in our current demonstrator contains 21 modules, in-
cluding the “core” grammar described above. Each device typically
requires between two and five modules. For example, an on/off light
switch loads three modules: the core grammar, the general grammar
for on/off switchable devices, and the grammar specifically for on/off
switchable lights. The core grammar, as already explained, consists of
linguistically oriented device-independent grammar rules. The module
for on/off switchable devices contains grammar rules specific to on/off
switchable behaviour, which in general make use of the framework es-
tablished by the general grammar. For example, there are rules of the
schematic form

QUESTION -->
is
NP: [sem_type=devicel
ON_OFF_PHRASE

PARTICLE_VERB: [particle_type=onoff]
--> switch

Finally, the module for on/off switchable lights is very small, and just
consists of a handful of lexical entries for nouns like “light”, defining
these as nouns referring to on/off switchable devices. The way in which
nouns of this kind can combine is however defined entirely by the on/off
switchable device grammar and core grammar.

The pattern here turns out to be the usual one: the grammar ap-
propriate to a device is composed of a chain of modules, each one de-
pending on the previous link in the chain and in some way specialising
it. Structurally, this is similar to the organisation of a piece of normal
object-oriented software, and we have been interested to discover that

20

many of the standard concepts of object-oriented programming carry
over naturally to distributed unification grammars. In the remainder of
the section, we will expand on this analogy.

If we think in terms of Java or a similar mainstream OO language, a
major grammatical constituent like S, NP or PP has many of the prop-
erties of the methods in an OO interface. Grammar rules in one module
can make reference to these constituents, letting rules in other modules
implement their definition. For example, the temperature sensor gram-
mar module contains a small number of highly specialised rules, e.g.

QUESTION -->
what is the temperature
PP: [pp_type=location]
QUESTION -->
how many degrees is it
PP: [pp_type=location]

The point to note here is that the temperature sensor grammar module
does not define the locative PP construction; this is handled elsewhere,
currently in the core grammar module. The upshot is that the temper-
ature sensor module is able to define its constructions without worrying
about the exact nature of the locative PP construction. As a result,
we were for instance able to upgrade the PP rules to include conjoined
PPs (thus allowing e.g. “what is the temperature in the kitchen and
the living room”) without in any way altering the grammar rules in the
temparature sensor module!

In order for the scheme to work, the “interface methods” — the major
categories — naturally need to be well-defined. In practice, this implies
restrictions on the way we handle three things: the set of syntactic
features associated with a category, the range of possible values (the
domain) associated with each feature, and the semantics of the category.
We consider each of these in turn.

Most obviously, we need to standardise the feature-set for the cate-
gory. At present, we define most major categories in the core grammar
module, to the extent of specifying there the full range of features as-
sociated with each category. It turns out, however, that it is sometimes
desirable not to fix the domain of a feature in the core grammar, but
rather to allow this domain to be extended as new modules are added.
The issues that arise here are interesting, and we will discuss them in
some detail.

The problems occur primarily in connection with features mediating
sortal constraints. As we have already seen in examples above, most
constituents will have at least one sortal feature, encoding the sortal

Plug and Play Spoken Dialogue Processing 21

type of the constituent; there may also be further features encoding the
sortal types of possible complements and adjuncts. For example, the V
category has a feature vtype encoding the sortal type of the V itself,
a feature obj_sem np_type encoding the sortal type of a possible direct
object, and a feature vp_modifiers_type encoding the sortal type of a
possible postverbal modifier.

Features like these pose two interrelated problems. First, the plug
and play scenario implies that we cannot know ahead of time the whole
domain of a sortal feature. It is always possible that we will connect a
device whose associated grammar module requires definition of a new
sortal type, in order to enforce appropriate constraints in the language
model. The second problem is that it is still often necessary to define
grammar rules referring to sortal features before the domains of these
features are known: in particular, the core module will contain many
such rules. Even before knowing the identity of any specific devices,
general grammar rules may well want to distinguish between “device”
NPs and “location” NPs. For example, the general “where-question”
rule has the form

QUESTION --> where is NP

Here, we prefer to constrain the NP so as to make it refer only to devices,
since the system currently has no way to interpret a where question
referring to a room, e.g. “where is the bathroom”.

We have addressed these issues in a natural way by adapting the OO-
oriented idea of inheritance: specifically, we define a hierarchy of possible
feature values, allowing one feature value to inherit from another. In the
context of the “where is NP” rule above, we define the rule in the core
module; in this module, the sortal NP feature sem np_type may only
take the two values device and location, which we specify with the
declaration?

domain(sem_np_type, [location, devicel)
This allows us to write the constrained “where is” rule as

QUESTION -->
where is NP:[sem_np_type=devicel

Suppose now that we add modules for both on/off switchable and dimmable
devices; we would like to make these into distinct sortal types, called
switchable device and dimmable device. We do this by including
the following declarations in the “switchable” module:

domain(sem_np_type,

22

[location,

device,

switchable_devicel)
specialises(switchable_device, device)

and correspondingly in the “dimmable” module:

domain(sem_np_type,

[location,

device,

dimmable_devicel])
specialises(dimmable_device, device)

When all these declarations are combined at compile-time, the effect is

as follows. The domain of the sem np_type feature is now the union of

the domains specified by each component, and is thus the set {location,
device, switchable_device, dimmable_device}. Since switchable_device
and dimmable device are the precise values specialising device, the
compiler systematically replaces the original feature value device with

the disjunction

switchable_device \/ dimmable_device
Thus the “where is” rule now becomes

QUESTION -->
where is
NP: [sem_np_type=switchable_device \/
dimmable_device]

If new modules are added which further specialise switchable_device,
then the rule will again be adjusted by the compiler so as to include
appropriate new elements in the disjunction. The important point to
notice here is that no change is made to the original rule definition;
in line with normal OO thinking, the feature domain information is
distributed across several independent modules, and the changes occur
invisibly at compile-time?.

We have so far said nothing about how we deal with semantics, and
we conclude the section by sketching our treatment. In fact, it is not
clear to us that the demands of supporting Plug and Play greatly af-
fect semantics. If they do, the most important practical consideration is
probably that plug and play becomes easier to realise if the semantics
are kept simple. We have at any rate adopted a minimal semantic rep-
resentation scheme, and the lack of problems we have experienced with
regard to semantics may partly be due to this.

Plug and Play Spoken Dialogue Processing 23

The annotated CFG grammars produced by our compiler are in nor-
mal Nuance Grammar Specification Language (GSL) notation, which
includes semantics; unification grammar rules encode semantics using
the distinguished feature sem, which translates into the GSL return
construction. So for example the unification grammar rules

DEVICE_NOUN: [sem=1ight] --> light
DEVICE_NOQUN: [sem=heater] --> heater

translates into the GSL rule

DEVICE_NOUN
[light {return(light)}
heater {return(heater)}]

Unification grammar rules may contain variables, translating down into
GSL variables; so for example,

NP: [sem=[D, N]] -—>
DET: [sem=D]
NOUN: [sem=N]

translates into the GSL rule
NP (DET:d NOUN:n) {return(($d $n))}

Our basic semantic representation is a form of feature/value nota-
tion, extended to allow handling of conjunction. We allow four types of
semantic construction:

m Simple values, e.g. light, heater. Typically associated with lexi-
cal entries.

m Feature/value pairs expressed in list notation, e.g. [device, light],
[location, kitchen]. These are associated with nouns, adjec-
tives and similar constituents.

» Lists of feature/value pairs, e.g. [[device, light], [location,
kitchen]]. These are associated with major constituents such as
NP, PP, VP and S.

» Conjunctions of lists of feature/value pairs, e.g. [and, [[device,
light]]l, [[device, heater]]] These represent conjoined con-
stituents, e.g. conjoined NPs, PPs and Ss.

This scheme makes it straightforward to write the semantic parts of
grammar rules. Most often, the rule just concatenates the semantic

24

contributions of its daughters: thus for example the semantic features
of the nominal PP rule are simply

NP: [sem=concat (Np, Pp)] -->
NP : [sem=Np]
PP: [sem=Pp]

The semantic output of a conjunction rule is typically the conjunction
of its daughters excluding the conjunction itself, e.g.

NP: [sem=[and, Npl, Np2]] -->
NP: [sem=Np1]
and
NP: [sem=Np2]

Some examples of semantic representations can be found in Section 2.

6. Discussion

The focus of our paper has been on adding Plug and Play functional-
ity to a complex rule-based system, but there are of course other possible
types of architecture where the Plug and Play idea is potentially appli-
cable. For example, in a very simple system the command vocabulary
offered by the speech interface may just consist of a list of fixed phrases,
and dialog management may make no reference to context. In this case,
Plug and Play speech recognition becomes trivial. Each device con-
tributes the phrases it needs, after which they can be combined into a
single command grammar; a similar approach can be used for the dialog
management component.

Another popular type of architecture performs recognition using a
robust statistical recogniser, and language-processing through device-
specific phrase-spotting rules, e.g. [Milward, 2000]. It seems possible in
principle to add Plug and Play functionality to a system of this kind too,
but the problems which arise are rather different in nature; for exam-
ple, it is not immediately clear how to modularise a statistical language
model so as to give it Plug and Play functionality. Of course, a system
with a large vocabulary recognizer can simply represent weak plug and
play with respect to recognition and possibly strong plug and play in
dialogue management. Evidently, exploring the space of possible combi-
nations represents a fascinating research area in its own right. Indeed,
the “right combination” may depend on many factors - including the
current state of component technologies. One of our objectives has been
to investigate the reconfiguration of a rule based speech recognizer, pre-
cisely because it currently represents the commercially most attractive
recognition solution.

25

The role of “modular device knowledge” in inference based processes
is another area we have not addressed at all. For example, indirections
between executable actions and linguistic contents can arise at several
levels: the speech act level (“It’s too warm in here”), the content level
(“How warm is it?”), as well through underdetermination of contents
either through pronominal or elliptical constructions. At the moment,
our pronominal and elliptical resolution methods depend on very simple
‘matching’ algorithms. In general, one might at least want some sort of
consistency check between the linguistic properties expressed in an utter-
ance and those of candidate objects referred to. One might expect that
inferential elements in contextual interpretation should be strongly Plug
and Play - they will depend, for correctness and efficiency, on tailoring
to the current objects in the domain. The research project of uploading
relevant axioms and meaning postulates from a device to a general pur-
pose inference engine that can be invoked in contextual resolution looks
very exciting.

Furthermore, higher pragmatic relations between what the user “strictly
says” and possible device operations are also very heavily inference
based. At the moment, we simply encode any necessary inferences di-
rectly into the device grammars. The most natural interaction with
a thermometer is “How warm is it?” or “What is the temperature?”
and not “Query the thermometer”. In our demonstrator, the (gram-
mar derived) semantic values simply reflect directly the relevant device
operations: { op=query device=thermometer). The strategy supports
the simple natural interactions it is designed to and interacts tolerably
well with our ellipsis and reference resolution methods. “What is the
temperature in the hall? And in the living room?” and “What is the
temperature in the hall? What is it in the living room?” can both
be correctly interpreted. On the other hand, the default output when
resolution cannot identify a device N is “I don’t know which N you
mean”. Asking for the temperature in a room with several thermome-
ters should probably not result in “I don’t know which temperature you
mean”. Clearly, the inference from service required to service provider
has become insecure in the presence of other service providers. In the
highly networked homes of the future, more sophisticated inference may
be required just because such service level concepts will predominate
over device level concepts.

Acknowledgments

Plug and play spoken dialogue functionality formed a central theme
of the D’Homme project (EU 5th Framework project IST-2000-26280),

26

and much of the work described in this paper was funded under it. We
are grateful to our partners in the D’Homme project for many useful
discussions, especially concerning the importance and role of differing
strengths of Plug and Play.

Notes

1. An ambitious treatment of conjunction might arguably also necessitate changes in the
dialogue management component specific to the temperature sensor device. In the imple-
mented system, conjunction is uniformly treated as distributive, so “what is the temperature
in the kitchen and the living room” is automatically interpreted as equivalent to “what is the
temperature in the kitchen and what is the temperature in the living room’.

2. We have slightly simplified the form of the declaration for expository purposes.

3. Readers familiar with OO methodology may be disturbed by the fact that the rule
appears to have been attached to the daughter nodes (switchable_device dimmable_device,
etc), rather than to the mother device node. We would argue that the rule is still conceptually
attached to the device node, but that the necessity of eventually realising it in CFG form
implies that it must be compiled in this way, so that it can later be expanded into a separate
CFG rule for each daughter.

References

[Fraser and Thornton, 1995] Fraser, N. and Thornton, J. (1995). Vocal-
ist: A robust, portable spoken language dialogue system for telephone
applications. In Proc. of Eurospeech ’95, pages 1947-1950, Madrid.

[Gazdar et al., 1985] Gazdar, G., Klein, E., Pullum, G., and Sag, I.
(1985). Generalized Phrase Structure Grammar. Harvard Univer-
sity Press, Cambridge, MA.

[Glass, 1999] Glass, J. (1999). Challenges for spoken dialogue systems.
In Proc. IEEE ASRU Workshop, Keystone, CO.

[Goldschen and Loehr, 1999] Goldschen, A. and Loehr, D. (1999). The
role of the darpa communicator architecture as a human computer
interface for distributed simulations. In 1999 SISO Spring Simulation
Interoperability Workshop, Orlando, Florida, March 1999.

[Kiefer and Krieger, 2000] Kiefer, B. and Krieger, H. (2000). A context-
free approximation of head-driven phrase structure grammar. In
Proceedings of 6th Int. Workshop on Parsing Technologies, pages
135-146.

[Kolzer, 1999] Kolzer, A. (1999). Universal dialogue specification for
conversational systems. In Proceedings of IJCAI’99 Workshop on
Knowledge & Reasoning In Practical Dialogue Systems, Stockholm.

[Larsson and Traum, 2000] Larsson, S. and Traum, D. (2000). Infor-
mation state and dialogue management in the trindi dialogue move
engine toolkit. Nat.Lang. Engineering, 6.

27

[LonWorks, 2002] LonWorks (2002). LonWorks Device Control
http://www.lonworks.com. Version x.x, 15 February 2002.

[Microsoft, 2000] Microsoft (2000). Universal Plug and Play Device Ar-
chitecture. http://www.upnp.org. Version 1.0, 8 June 2000.

[Milward, 2000] Milward, D. (2000). Distributing representation for ro-
bust interpretation of dialogue utterances. In Proc. of 38th ACL,
Hong Kong, pages 133-141.

[Moore, 1998] Moore, R. (1998). Using natural language knowledge
sources in speech recognition. In Proceedings of the NATO Advanced
Studies Institute.

[Nuance Communications, 2002] Nuance Communications (2002). Nu-
ance Speech Recognition System Developer’s Manual. 1380 Willow
Road, Menlo Park, CA 94025.

[Oaks and Wong, 2000] Oaks, S. and Wong, H. (2000). Jini in a Nut-
shell. O’Reilly.

[Rayner et al., 2000] Rayner, M., Hockey, B., and James, F. (2000). A
compact dialogue management architecture based on scripts and
meta-outputs. In Proc. 5th Conference on Applied Natural Language
Processing, Seattle.

[Rayner et al., 2001a] Rayner, M., Dowding, J., and Hockey, B. (2001a).
A baseline method for compiling typed unification grammars into
context free language models. Proc. Eurospeech 2001, Aalborg.

[Rayner et al., 2001b] Rayner, M., Gorrell, G., Hockey, B., Dowding, J.,
and Boye, J. (2001b). Do CFG based language models need agree-
ment constraints? In Proceedings of 2nd NAACL, Pittsburgh.

[SICStus, 2000] SICStus team. (2000). SICStus Prolog User’s Manual.
Swedish Institue of Computer Science.

[SpeechWorks, 2002] SpeechWorks (2002). SpeechWorks.
http://www.speechworks.com. As at 15 February 2002.

[Sutton et al, 1998] Sutton et al, S. (1998). Universal speech tools: The
CSLU toolkit. In Proc. ICSLP-98, pages 3221-3224.

